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For the first time, an algorithm for reconstructing an arbitrary distribution of residual stresses
by the polarization tomography method for cylindrical rod structures with a radial distribution of
the refractive index has been presented. The reconstruction took into account the ray refraction.
The algorithm is based on the expansion of the tensor stress field in angular harmonics (singular
value expansion). The case of an axisymmetric tensor field with an arbitrary stress gradient along the
cylinder axis was considered. Numerical calculations were carried out for an axially symmetric stress
distribution in a gradan for the case of a plane deformation state. The reconstruction was based on
the expansion of the stress tensor in eigenfunctions of the boundary value problem. The regularized
solution of the resolving equation (of Abelian type) used the expansion in the Zernike polynomials.
The results of the reconstruction are given with taking into account the additional term due to the
deflection of the transmission rays as well as without this doing.

Keywords: residual stress, integrated photoelasticity, transverse translucence, GRIN rod lense

Citation: Karov D.D., Puro A.E., Curved-ray tensor tomography for residual stress measurements
in the axisymmetric graded rods, St. Petersburg Polytechnical State University Journal. Physics and
Mathematics. 13 (4) (2020) 133—148. DOI: 10.18721/JPM.13411

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/
licenses/by-nc/4.0/)

TEH30PHAA TOMOIPA®UA AN USMEPEHUA OCTATOYHDIX
HAMNPAXXEHUMA B OCECUMMETPUYHbIX TPAAUEHTHbIX .
CTEP)XHAX NMPU UCKPUBJIEHUU NMPOCBEYUBAIOLLLUX JTYHEU

A.A4. Kapog', A.3. lNypo?

! CaHkT-TeTepbyprckuii NONUTEXHUYECKUI yHBepcuTeT MeTpa Benukoro,
CaHkT-lNeTepbypr, Poccuiickas degepaums;

2 EBpoakagemus, . TanavMHH, DCTOHMS

BriepBbie mpeacTaBieH aaropuTM PEKOHCTPYKIIMM TPOU3BOJIBHOTO PACIIPENEIeHUS OCTATOUYHBIX
HANpPsKEHUI METOIOM MOJIIPU3allMOHHON ToMorpaduu Uik HUJIUHAPUYECKUX CTEPKHEBBIX CTPYKTYP
C paaualIbHBIM pacrpelesieHUeM MokasaTelisl MpeJoMIeHUs, ¢ Y4eTOM pedpakiiuy Jydyeil. AJIroputm
OCHOBBIBAETCSI Ha PA3JI0KEHUM TEH30PHOTO MOJIsI HAMPSDKEHW 10 YIJIOBBIM rapMOHUKaM (CUHTYJISIp-
Hoe pazjioxxeHue). PaccMoTpeH BaxKHbIi B MPUKIAHOM IJIaHe Cilydyait 0CeCUMMETPUYHOTO TEH30PHOTO
T10JI51 TIPY TTPOM3BOJILHOM T'PAJIMEHTE HAMPSIKEHUI BIOIb OCH LIMJIMHAPA. YrcaeHHbIe pacyeThl poBe-
JIEHBI JUISI aKCUAJIbHO CUMMETPUYHOTO PACIIPENEIEHUS] HATIPSDKEHUI B TpagaHe IJIsl CIIydasi TIJIOCKOTO
ne(opMUPOBAHHOTO COCTOSIHUS. PEKOHCTPYKIIMSI OCHOBaHA Ha Pa3oXeHUU TeH30pa HaIPSKeHU 1o
COOCTBEHHBIM (DYHKUMSIM KpaeBoil 3aiaun. PerynsipuzoBaHHOE pellleHUE pa3pellaroniero ypaBHeHus
(AGeneBa TUIIA) UCIIOJIB3YET pa3yoxkeHue o nojuHoMam LlepHuke. [TpuBoasgTcst pe3ynbraThl PeKOH-
CTPYKIIMU C yYETOM U 6€3 yueTa J00aBOUHOIO CIaraeMoro, 00yCJIOBJIEHHOIO OTKJIOHEHUEM MTPOCBEYU-
BaIOLUUX JIYYEN.

KioueBbie cji0Ba: octaTouHOE HAMpPsDKEHKE, MHTerpaibHask (hOTOYIPYroCTh, MOMEPEYHOe ITPOCBE-
YyUBaHUE, CTEPXKHEBAs TpaiMeHTHAsl IMH3a
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Introduction

Residual stress (RS) is one of the key char-
acteristics describing the strength and optical
quality of glass and crystal articles. Gradient re-
fractive index (GRIN) structures, like rod lenses,
laser rods, ball lenses, fiber preforms, and fibers
have numerous applications. Most of them have
an axially symmetric distribution of the refractive
index that is the highest along its optical axis and
decreases toward the periphery. A remarkably
diverge range of optical profiling techniques has
been developed during the last decades [1]; we
assume in the discussion below that the refractive
index (RI) n is known. Integrated photoelasticity
[2] is a nondestructive method for stress analysis
in 3D transparent specimens. This method con-
sists in placing a 3D sample in an immersion bath
(n, =n, 75 Mo My ATE the RI of the immer-
sion and product surface, respectively) and pass-
ing a beam of polarized light through the sample
cross-section. Reconstruction of the spatial dis-
tribution of the stress tensor by interpreting the
integrated optical effects of the rays that have
passed through the medium may be considered
a type of tensor field tomography [3]. It is based
on solving the problem of optical tomography of
the stress tensor field in combination with the re-
sulting problem of elasticity theory. The problem
of light propagation is separated into two parts
[4] in the case of weak stresses (fiber preforms
and fibers, GRIN Ienses, laser rods): determin-
ing the ray paths in the GRIN structure and de-
termining the change in the polarization of the
light passed through a birefringent medium. As a
rule, induced birefringence is rather weak in the
GRIN structures, and it is possible to measure
two linear integrals on each ray. One of them is
connected with the transversal interaction of the
2D vector field and the other with the transversal
interaction of the 2D tensor field. From a math-
ematical standpoint, we have the special case of
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tensor tomography with beam deflection [5, 6].
The reconstruction algorithm is based on circular
harmonic decomposition (Cormac-type inver-
sion) [7] of ray integrals. The inverse problem of
reconstructing the RSs is actually divided into the
following two successive stages [3] for rectilinear
propagation of rays:

(i) reducing the tensor ray integrals to scalar
ones,

(ii) determining all the stress-tensor compo-
nents based on inverting the ray integrals and
solving the corresponding thermoelasticity prob-
lem [8].

In contrast to polarimetric tomography of
straight light rays, the tomographical problem
and the inverse thermoelastic problem must be
solved together in the GRIN media [9].

Below we will investigate two types of inverse
problems.

The global inverse problem: tomographic
measurements are performed in a system of par-
allel planes over the entire height of the sample
(optical axis) (Fig. 1,a).

The local inverse problem: tomographic meas-
urements are carried out in the two closely spaced
sections orthogonal to the optical axis (Fig. 1,b).

The paper is structured as follows. The basics
of tensor field tomography are introduced in the
next section. In what follows, we give the algo-
rithm of RS reconstruction. Appendix after the

Fig. 1. Schematic drawing of the two raying
methods corresponding to the global (a)
and local (b) inverse problems
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main material of the paper gives the singular de-
composition of quasi-plane stresses in a circular
cylinder.

Preliminaries

To make the presentation of our paper logical,
we will give here the main concepts of tensor to-
mography of RS: the scalar and 2D-vector field
tomography in the axially symmetric GRIN me-
dia and the main notions of the inverse thermo-
elasticity problem of integrated photoelasticity.

Ray equation in axially symmetric optical
media. We will rely on the results obtained in
the ray theory of axially symmetric optical me-
dia [10]. We use the Cartesian (x, y, z) coordi-
nate system, as well as the cylindrical one (7, @, z)
and the moving one (s, a, z) associated with the
measuring process (Fig. 2).

The axis z coincides with the axes of the cyl-
inder. The cylinder is taken to have a unit radius.
The ray is localized by its normal vector s, such
that s = Isl is the smallest distance from the ray to
the origin, and 0 is the angle between the s and
the axis x (see Fig. 2). An arbitrary point on the
ray is determined by its polar angle @ =0 * o and
by its distances » from the origin.

The RI n(r) has rotational symmetry around
the z-axis and R(r) = n(r)r is a monotonic con-
tinuous function of 7 so that there is a one-to-

one correspondence between R and r and only
one ray passes through any two points inside the
circle. We introduce another moving coordinate
systems, (R, Q, z) and (S, T, z), associated with
the RI:

S(s)=sn(s), T =++/R*-S?,

sin Q=—,
R

where the plus sign holds for the left-hand side
and minus for the right-hand side of the ray.

Then, the ray equation can be written in the
next form:

# SD(K)dK

S KK -2

where a(r,s) = £(¢p(r) — 0).
We give here also the formula for the differen-
tial of length / of an arc on the ray:

Fig. 2. The Cartesian (x, y, z), the cylindrical (r, ¢, z) and the moving coordinate (s, a., z)
systems used in the paper; the z-axis coincides with the axes of the cylinder;
¢ =0 £ ais the polar angle, n(r) is a radial distribution of the refractive index
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2 exp| —-M (R,S) |L(R)RdAR
dl =+ 1+[rd—a} dr=1= R(r)dr = X p[ ( 2 )]2( ) : (3)
dr JR r)—S2 (s) VR =S
(2)
—+ L(R)RdR _ L( R) dT L( R) _ dr (R) Applying the Radon transform for tomogra-
B R?—§? ’ dR phy of stress tensor fields in the optical glasses is

connected with the circular harmonic decompo-
sition (CHD) of stress functions [8, 9]. Expand-
We assume that the RI is known and we can ing f{r,p) and f (S ,9) in a Fourier series with
determine the ray equation. respect to the corresponding angular variables,
Attenuated Radon transform in axially sym- we obtain
metric optical media. The Radon transform of
f (s, 0, u) with attenuation is defined here as fol-

lows [7]: f(re)=2_ f(r)e™. ../ (5.6)=
= Z:?w g, (S) eime,

1(s)
f(S,e,M)Z _[ f(s0+x)>< where
—I(s)
L 1 ¢2n .
X exp [Iu(sﬂ +x)kodl, £, (r)=ﬂ . f(r.9)e™de,
0
g, (S)= [ 7(5.0)e ™ do.
where /(s) is half the length of the ray in the circle, 2m 0
0 = (cosH, sin) is the unit vector along the s-axis,
U is the attenuation. The absorption is imaginary in the problems
Let us transform the attenuation accumulated of magneto-photoelasticity [11], in the studies of
along the ray the magnetic field of the Tokamak plasma [12,

13], and in the magnetic resonance imaging [ 14].
Thus, we give the reconstruction algorithm for

M (R’ S ) - the case of imaginary attenuation, p = in,

p(sﬂ +X) dk =

O C—y ~

_ [ mB)R(K)dk y
l JIRET -[s()] R R e
=JRM(K)L(K)de

s| K2 _ S?

We can transform the ray integral by using po-

_ag0
=M (T N ) Inserting relationship (4) into a circular har-

monic, we obtain

lar coordinates (R, ¢): g, (S,TI) =
A N __(kcos| E(m,K,S)|F, (K)KdK
7(5.0)=] " [RO+4(R.S)] x =2, I s . @

. exp| M (R,S)]L(R)RdR E(m,K,S)=mA(K,S)+0(K.,S),

JR? - S?
R, an integral equation (generalized Cormack equa-
+_L f[R,G—A(R,S)] X tion) for

+ (3)
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The solution of Eq. (4) can be written as fol-
lows [7]:

S (r)n(r)=
1

-1|0
2_757{8 Crl(¢S,R n)+ Srl(q,R n)}

Crl(gS,R,n)=
=Cr(gS,R,n)+Cr(gS,R,—),

Cr(gS,R,m)=
_ (xch[G(m,S,R,m)]
T (s

G(m,S,R,n)=mB(S,R)+N(s,R),
sl SD(K)dK

S N ara

i) [

©)

Srl(gaRan):Sr(g’Ran)+Sr(gaRa_n)a

Sr(q,R,n)=

= [ sh[G(m.5. k)] (5.m)as.

We write it in a more familiar form:

—1dR(r
=5 dg)x

x{[Crl(g,’n,R,n)] +
+[Sr2(r,n) +Sr2(r, —n)]} ,

Sr2(R,n) =
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:IRO sh[G(m,S,R,n)] 0. (S.0)x

R SZ—RZ
[,

LpeS[nx) K)] aK
[ e |

The operator Sr2 consists of the part connect-
ed with the ray curvature (it is proportional to
the harmonic number m) and the part connected
with attenuation (the second integral in square
brackets). It means that this part can be neglect-
ed if the angle variation of the field is small (m is
small).

Cormack-type inversion of attenuated ray
integral of a vector function. Reconstruction of
stresses is connected with the reconstruction of
vector fields. According to the Helmholtz theo-
rem, any vector field W(r, ¢) can be split up into
a curl-free component and a source-free one:

W=We +We, =
(81’ GNJ (61 8Nj
=l —+—1e, +| ———|¢
on ol ol on

where T, N are the potentials of these compo-
nents; e , €, denote the unit normal and unit tan-
gent vectors to our curves.

For simplicity, we suppose that

(L) =N(1,0)=0

have homogeneous boundary conditions, obtai-
ned in the case of reconstructions of quasi-plane
deformation.

The measurements in the linear vector tomog-
raphy can be represented by a ray path integral in
the form of a scalar (inner) product of a “probe”
vector p and vector W as

J‘I(S)
~I(s)

PW(s0+ x)x
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|
1
X exp(ijo n(s0+ x)dkjdl.

The special case when p = e, is what H. Braun
and A. Hauck [15] call the longitudinal measure-
ments, and this leads to the formula

NI
W= ‘f-w[a“m}

) (6)
xexp(ijon(sm x)dkjdz
with applications to the Doppler tomography of
a velocity field. Here we transform the ray path
integral by partial integration.
Another special case when p = e gives the
transverse measurements:

N ®| ot
VV” B I—/(e) [a_ lT]N:| 8

, (7

xexp(ij'o v(s0+ x)dk)dl,
which is essential for reconstructing the shear
stresses.

A simple analogy between Egs. (6), (7) is evi-
dent. Thus, only the application of Cormack-type
inversion to the transverse vector integral (7) can
be described. It can be written as the sum of two
integrals:

WAn =
)] ot !
=J—l<s>[§}e)§p(ljo”(s°+X)dk)dl— (®)

l(s) !
- ij‘l(s)nNexp(iJ. n(s0+ x)dkjdl.

0

The first one is transformed using cylindrical
coordinates:

ot . Ot ot
— =sinv—+cosv—,
on or roQ
sinv = S(S) =cosQ),
R(r)
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cosv=x=

RV C)=50)

where the plus sign holds for the left-hand side
and minus for the right-hand side of the ray.

Expanding t©(R, ¢), n(R, ¢), N(R, ¢) and
Wn (5,0) in Fourier series, namely

W(Ro)=2, T (R)E™,

N(R.Q)N(R.0)=),  N,(R)e™,
Vf/n (S,O) = Z:}w w, (S)e"”e,

we can transform integral equation (8) to the fol-
lowing form:

w, (S)=w, (S,t)+w. (S,N),

m

NG cos| E(m,K,S)|S dr, (K)

RO B N e S 0

msin| E(m,K,S) | dk(K) ’
k(K) ax (KK,

W (8.N)= (10)

~ 2J-Ro cos| E(m,K,S)|N, (K)L(K)K K
L JKP—§? ’

The reconstruction of potential T is carried out
by the operator [7]:

rm(R):—%Crl(wfn,R,n). (11)

As integral (10) coincides with Eq. (4), we can
reconstruct N (R) by using Eq. (5) for recon-
struction of the scalar function [7].

Invariant representation of the stress ten-
sor field in the inverse thermoelasticity prob-
lem. Most of the GRIN structures are formed
by the ion-exchange method based on diffusion
in alkali-containing glasses. There are two possi-
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ble sources of RSs produced by varying the glass
composition: the size difference between the
exchange and the diffusing ions, and the radial
variation in the coefficient of thermal expansion
across the gradient region. As the lens cools from
the ion-exchange temperature to room temper-
ature, RS is introduced. In general, the tensor
of residual deformation is the reason for RSs;
the components of this tensor do not satisfy the
compatibility equations. In the case of ordinary
glass, the tensor of residual deformation can be
considered to be spherical. Such an isotropic
dilation field can be described by a certain “fic-
tive” temperature field [16], and determination
of RS can be connected with the solution of the
thermoelasticity problem. The problem of recon-
structing the thermal residual stresses using inte-
grated photoelasticity is called the inverse ther-
moelasticity problem of optical tomography [8].
It is assumed in this model that the stress tensor
6 obeys the equilibrium equations div 6 = 0. The
lateral surface of a cylinder is free from loads.

Let us use stress functions @, t, N for the rep-
resentation of RSs:

2
c, = li+i282 (ORS
ror rooe

0,001,
0z or| rop

@}

(12)
2
BRI N
or|ror r- o
o | |p 0.
o Oz
Loty
or| rop
Grz—i’t-l—iN,
or  roe

It was established | 8] that the following stressed
states are possible in a sample: (/) a quasi-planar
stressed state caused by residual deformations
(VN = 0); (ii) a torsional stressed state caused by
external loads (® =t = 0), and (iii) a superposi-
tion of the aforementioned stresses (a quasi-tor-
sional deformation). The state of pure torsion
cannot be generated by a thermal source alone.
Therefore, the first and third types of stresses are
to be reconstructed.

We have also two additional equations for the
reconstruction of the quasi-plane stress state:

2 2
AD= a—2+li+L2 82 D=
or- ror r o

=o_+¥(x,02),

A+T:__Gzz’ (13)
Oz
62
(A+ +—2j\1/ —AY =0,
0z

and the equation for determining quasi-torsional
stresses AN = 0.

Here W is a 3D harmonic function, connected
with boundary conditions. It was proved that the
quasi-planar stress (N = 0, ¥ = 0) can be deter-
mined locally based on the values of axial stress
and its two first derivatives along the direction of
the axis. Moreover, it can be seen from Eqgs. (13)
that in this case,

%CD(x,y,z)z—t(x,y,z).

In particular, it was confirmed that the thermal
stresses of the first angular harmonic are com-
pletely reconstructed by the local method. The
quasi-torsional stresses can be reconstructed by
the global method. The magnitude of the quasi-
torsional stresses is almost negligibly small in
comparison with quasi-plane stresses and we will
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confine our attention mainly to reconstructing
quasi-plane stresses (N =0, ¥ =0).

Algorithm for reconstruction
of residual stresses

Since the reconstruction of RS is based on
solving the problem of optical tensor tomography
of the stress tensor field together with the prob-
lem of elasticity theory, let us first consider the
tomographical problem.

Ray integrals of polarized tomography.
Transformation of light polarization is measured
in a plane orthogonal to the axis of the cylin-
der. Because there is added torsion of the ray in
the plane of transillumination, variations in the
polarization within the quasi-isotropic approxi-
mation are governed by the following system of
equations [9]:

where E is the vector representing the amplitude
of the electric field strength (the Jones vector), o,
are the stress tensor components in the moving
system coordinates € , €, _(the Frenet — Serret
frame), C is the photoelastic constant.

The solution of Egs. (14) in the linear approx-
imation can be represented as two ray integrals
along the ray [2, 3]:

2ycosy = Cﬁ:) (6.-0,,)d =

_ CH, (5,0), (2

ysiny = CIZ(S) G, dl =
—l(s) (16)
=CH, (S,G),
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where vy is the integrated optical retardation,  is
the isocline parameter [2].

These parameters can be measured experi-
mentally and form the physical foundation of the
tomography. The ray integral (15) is connected
with transversal interaction of the 2D tensor field
in the plane of transillumination and the other
one (16) is connected with transversal interaction
of the 2D vector field (o _, Gyz). The cylindrical
coordinate system is the most convenient for
solving the inverse thermoelastic problem of the
cylinder. Thus, we rewrite stress tensor compo-
nents in cylindrical coordinates:

G, =0, cos’B+o, sin’ B+2c, sinfcosp,
G,. =0_.cosB+o, sinf.

where [ is the angle between the normal to a ray
and the 0-axis.
Further, using the relations

T
BZV_EJ
sinf=-cosv, cosP=sinv

we transform them to the following form:

_ ) 2
G,, =0, sin" V+G,, Cos"V—
—20,,sinvcosv,

(17)

G, =0, 8InV—0C, cosV.

Let us rewrite stresses (17) in terms of stress
functions (12):

2
+cos’ v 8_2 (]D+sin2vi liq) s
or or| r o



o, (N)=2sin’ vi{li} —~

or| rop
—2C052V£ liN + (18)
or| rop

2
nn] 2[12] L2y
or|ror| r-op

G, =sinv i‘l:+liN -
or rooe

—COoSsV lir—iN .
rop or

The magnitude of quasi-torsion stresses is al-
most negligibly small in comparison with qua-
si-plane stresses, and below we consider the case of
quasi-plane deformation: N=0® (1) = 6®/or = 0.

The first ray integral in the space of angular
harmonics can be written as

A,(m.5)=6 & 4

zz

(19)
A(R
5 (S,m) :_2]'1?(1) cos[m ( ,S)] y
nn S \/RZ _S2
B 2
><{sin2 \% li—m—z}Dm +
\ror r
2
+cos’ v —Z}Q)m}Rdr—
| or
R() sin[mA(R, S)]
_2mL —RZ 5 X (20)

Xsin 2\/2{l D, } Rdr.
orlLr

Integrating by parts, we transform Eq. (20) to
the formula

R(1) COS [mA(R,S)]

6nn(S,m)=—2IS T
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cpmj[%n(r)jrdr_

_2mJ:(l) sin [mA (R, S)] X

S o [din(r)jdr,

2
R> "\ dr

S*( o
X —_— R
R*\ or
(21)

containing in an explicit form the term dn(r)/dr
depending on the curvature of the ray.

The second ray integral (16) is connected with
transversal interaction of the two-dimensional
vector field and coincides with Eq. (11) in a space
of angular harmonics:

H,(S,m)=6,(S,m)=w.(S,7), (22)

Thus, for stress reconstruction, we have four
equations: two differential (Egs. (13)) and two in-
tegral (Egs. (19), (22)) ones.

The problem of reconstructing the RSs in
the global and the local forms. Tomographic
measurements in the global inverse problem are
performed in a system of parallel planes over the
entire height of the cylinder. The layer-by-layer
reconstruction of stresses is possible starting from
the bottom of the cylinder, where the axial stress is
zero. Thus, we can determine T from Eq. (22), the
normal stress 6_ and @ using Eq. (13) and then
all stress components given by Egs. (12). The first
ray integral (15) is not used in this algorithm.

Although the presented algorithm includes,
as a special case, rectilinear propagation of rays,
numerical implementation of the algorithm may
differ for these cases. More detailed analysis
shows that the global approach allows for recon-
structing stresses completely [8].

Tomographic measurements in the local in-
verse problem are carried out in two closely
spaced sections orthogonal to the optical axis
for determining the height derivative of . Quasi-
plane stresses are determined based on two dif-
ferential Eqs. (13) and two ray integrals (19),
(22).

Reconstruction of the quasi-plane stresses in
the GRIN structures. For regularization of the
inverse problem, we use singular decomposition of
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the solution of Egs. (13). The angular decomposi-
tion using trigonometric functions and radial de-
composition using the Zernike polynomials were
applied to represent the stresses (see Appendix)
[8, 17]. MATLAB codes were developed to nu-
merically solve integral Egs. (19), (22) by the least
square method. This method has been previously
used for inversion of the Abel transform [18, 19].
We have three types of unknown coefficients:

2
ke,s a
zzm 2 azz zzm *

0

Gzzm s 82

ke,s ke,s

The second type of them can be determined
from Eq. (22). The integrals

. i cos[mA(R,S)]S dtt! (r)
wa(8)=2] JRE-st  dr

m sin[mA (R, S):|

+

+ - v, (r)dr,
() =556 ()01 ()]
% e ( )_;_; C;"(V)—Dlin(r):l

have to be calculated for the inversion Eq. (9).
According to the least-squares method [19],

ke,s
zzm

. . 0
in order to determine — o> we solved the fol-

0z
lowing equation:

where S are the n measured points, H (S, m) is
the measured ray integral.

The number of polynomials in the representa-
tion is connected with noise filtering. The second
derivative 0*c"* / 0z* can be approximately de-

zzm

termined by measuring integrals in two parallel
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closely spaced sections. Then we can determine

ke,s

o, using solution (21).
Two types of refractive index profiles have
been used in MATLAB codes [20, 21]. The pro-

file of GRIN structures

n(r/R) =n, l—g(r/R)2

is known as the parabolic refractive index profile
[21]. Here n is the refractive index on the axis
and g is a positive constant, R is the radius of the
cylinder.

In this case, the ray equation (1) has an ana-
Iytical solution:

a(r,s)=

S\/Rz—g(r2+sz)

= arccos| — > >
r R™—2gs

The Cartesian coordinates of these rays can be
expressed analytically in terms of the parameters
r, s

y(r,s):s\/Rz —g(r2+sz)’

R* —2gs’
2_ 2\(R? — oy
o )

It is clear that g < 0.5 here. These relations
are used for ray tracing and solutions (19), (22) if
m>0.

Another profile (parabolic) of the form

n(r)=n, [I—O.ng (r/R)ZJ

is typically used to approximate the index refrac-
tion of GRIN lenses [21, 22] and of multimode
fibers. The parameter g varies from 0.01 for fibers
up to 0.30 for GRIN rod lenses.

Ray tracing is given for the case g = 0.2
(Fig. 3). The angle (1) can be expanded using the
small parameter g. The expansion to within the
first two terms
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/R
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12410 0.5 0.0 0.5 1.0 x/R

Fig. 3. Ray tracing through the sample (its half-round cross-section of diameter 2R is shown)
when n (r/R) = n [(1 —0.2(r/R)*|'

(g = 0.2, x is the translucence parameter)

i
) 7
Gy /// O

/R

S
)

oy/
# o.
~

/
4/

-16 =

Fig. 4. The reconstructed principal components of the stress tensor
over the GRIN lense’s radius (the lense was made of zirconium-silicate glass)

. S ( s) dp This approximation can be used in practice to
G(F,S) = ij > =~ solve Egs. (19), (22) if g < 0.1 and m < 15. The
i p\/ [R(p) —I:S (S ):I algorithm of reconstruction is simplified [9] for
. sdp axial symmetric plane-strain state (m = 0). In this
~ =T J. —_— = case, all functions depend only on the radial co-
2 p\/[p]2 - [S]2 ordinates, and we take only Eq. (19):
2

=J_ro.5(%j NP -5 A, (s)=
= 2'[;[022 +I0r to, (1)dt Zz Ei; (%H x

R (r) dr (23)
S, (S) % R (r) -S> )
oL, = arccos , \ ’”) (S)
R (r)
R, ( r) =n, [ R*+0.5g°r° ] r, Optical retardation (23) consists of two terms:
) ) main retardation due to axial stress and addition-
S (S ) =n, [R +0.5g"s }S . al one due curving of the ray. It has an additional
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o(r), Ho(x), a.u.
1.0

X, r, mm

Fig. 5. The result of the residual stresses simulation
(an example for using
the polynomial datum on the sample of R = 3 mm);
in addition to the axial stress curve (/), the curves of optical
(2), additional (3) and main (4) retardations are presented

he. au.
15 |
1.0
0.5 ¢
0.0

-0.5 F

-1.0

0.0

Fig. 6. Integrals 4 (r) obtained
on a basis of the first seven Zernike polynomials

term connected with ray deflection. The above
algorithm is used for stress reconstruction

> [Au(s) = (5,)o%, ] =min.

The graphs for the reconstruction of stress-
es in GRIN lenses made of zirconium-silicate
(n, = 1.54) glasses are shown in Fig. 4 [23].

Fig. 5 shows the result of simulation of resid-
ual stresses by the polynomial datum for the case
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of R = 3 mm. Fig. 6 gives the retardations for the
first seven Zernike polynomials.

Summary

Inrecent years, there has been a growing inter-
est towards tomographic reconstruction of vector
and tensor fields in the refracting medium [5, 6,
22]. We present the algorithm for reconstruc-
tion of residual stresses in GRIN Ilenses. From
an experimental standpoint, implementation
of the given method of reconstruction does not
pose any particular difficulties and is conducted
similarly to the case of the constant refractive in-
dex. The simplest examples of applications of this
algorithm for the axial symmetric distribution of
stresses are presented. The inversion algorithm
provides a comparatively smooth stress distribu-
tion, produced by the ion-change technique. In-
cluding the radial dependences of the photoelas-
ticity coefficients and elastic constants in GRIN
structures in the algorithm for reconstructing
stresses is the subject for further research.

Appendix

SCD of quasi-plane stresses

Let us consider a representation of quasi-
plane stresses in terms of Zernike polynomials
R (r) [12],m > 0:

o.(r.ez)=

=2 2o 05 (2) cos(mg) +

+ot (z)sin(me) R, (r)] ,

d)(r, (p,z) =
=2 LS (rz) cos (mep) +
+ fk (r, z)sin(m(p)] ,

t(r,¢,z) =

= Zm=1 Z:zl[rﬁf (,z)cos(me)+

+ ‘r’;f (r, z)sin(m(p)} ,
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o, (re.z)=
_Zm IZk 1[0% r,z)cos(me)+

+op (7, z)sm(mq))].

In the following, as evident from the context
of the notation, the trigonometric functions are
not written out:

fkc,s (r,z) _
“Ler(r)+or (1)]o (2),

T, (p.2)=

2m

1 m m 8 c,s
- Cy ( )+ Dy (r)}gclz‘zm (Z),
S (122) =
1 m
(m-1)D;" (r :IGzzm
_L m o kcs]
2m[c (] ot

Sp (r2) =
1 m
=t (m+1)C7 (7)

m a c|s
— D (r):lgclz(n[n](z)’

sz[ni] (r,z)=

1
=$5 Ck (l")-l—

sin (mo)

Lotz {[COS(WP)],

+D’”

where

m r

C = @
k(r) (2k+m+1)><
X[ R (1) = Rin (7))

m r

Dir(p)= (2k+m+1)><

[R:n"ék 1( ) R;fékn( )]

In the case of an axial symmetric plane strain
state (m = 0), the solution of the inverse thermo-
elastic problem can be represented in terms of
Zernike polynomials R}, (r):

cszz (r):Z:O zzR;)k( )
Zk 1 ZZ PP
Zk 1 ZZ ‘P‘P

1
=p—2IOPtR§k (£)dr =

_ m[@kﬂ (P)—Ryi (P) .

G]q(xp (r) = ng _G];p (r)
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