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The electricity grid is developing fast today, with more renewable energy sources (RES) penetrating
the industry. The traditional optimal reactive power dispatch (ORPD) is a complex and non-linear
optimization problem and one of the sub-problems of the optimal distribution of the power flows
in an energy system. The incorporation of RES further exacerbates this complex problem. In this
paper, the ORPD problem solved as a single-objective as well as a multi-objective optimization
problem in a power system comprising RES. This paper aims to minimize the active power loss and
improve voltage profile by introducing renewable energy sources, such as wind and solar sources,
in addition to the existing traditional sources. The optimization in a power system is achieved by
adjusting control variables, such as generator voltages, tap ratios of a transformer, shunt capacitors,
without violating technical constraints that are presented as equalities and inequalities. A multi-
objective particle swarm optimization (MOPSQ) algorithm is proposed to obtain the optimal
values of the control variables of the power system. In the first stage, the modified PSO (MPSO)
used to determine the optimal location of RES for IEEE 14 bus and IEEE 30 bus test systems.
In the second stage, MPSO and genetic algorithm (GA) were used for individual optimization of
objectives, and in the third stage, the objective functions are treated as competing objectives and
optimized simultaneously in a single run. Finally, the best compromise solution was extracted from
the optimal Pareto set and supplied to the decision-maker by fuzzy set theory. Also, the results of
MOPSO are compared to MPSO, GA, and multi-objective GA.
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CoBpeMeHHBIe 2JIEKTposHepreTudeckue cucteMsl (DDC) BechMa OBICTPO Pa3BMBAIOTCS B HAIIpaB-
JICHUM MCITOJIb30BaHMS BO30OHOBIISIEMBIX UICTOUYHUKOB 3Hepruu (BN D). 3agaya mourcka ontTuMaib-
HOTO pacIpeaesieHrs peaKTUBHOU MOIIHOCTU SIBJISIETCS CJIOKHOM M HEJIMHEMHOM ONTUMU3AaLIMOH -
HOW 3amaveil, a TakxKe OAHOM M3 Moj3anay ONTUMAJbHOTO paclpeneeHUs TOTOKOB MOIIHOCTHU
B OOC. Beenenue B 99C BUD ene 0oJbliie ocaoXHIET mpodaemMy. B 1aHHOi ctaThe mpobiiema
OINTUMAJIBHOTO pacIpene/icHNsT PeaKTUBHON MOIIMHOCTH paccMaTpHBaeTCs U KaK OTHOIIeIeBasd,
M KaK MHOToIle/IeBas 3agaya onTuMmu3anu. CTaThsl HaIlpaBjieHa Takke HAa MUHUMU3AILMIO TT0-
Tepb aKTUBHOM MOIIHOCTU U yJIydllleHue Mpoduist HanpskeHuit y3moB DDC myTeM BHEApPEeHUS
Takux BB, kak BeTpoBbIe U COJIHEUHbIE UICTOUHUKU. OnTuMu3anus pexuma DD C mponu3BOaUTCS
IyTeM HaWJIydIIIero BIOOpa yIpaBJISTIOIINX ITEPEMEHHBIX, TAKMX KaK HaIlPSLKEHUs TeHEpaTOpPOB,
n3MeHeHue KoaGhGULIMEHTOB TpaHchopMallMi TpaHC(GHOPMATOPOB, JAOMYCKAIOIINX PeryJIrupoBa-
HUE MO/ HATPy3KOi, BSIMIMH ITYHTUPYIOIINX KOHAeHCATOPOB. ONTUMM3aIs BBITIOTHSICTCS 0e3
HapyIICHUSI TeXHUYECKNX OTPaHMYCHUI, KOTOPBIC IIPEACTABICHBI B pab0OTe B BHUIE PABCHCTB U
HepaBeHCTB. [IpenioxxeHo UCIOIb30BaHUE AJITOPUTMA MHOTOLIEJIEBOM ONTUMM3AIIMU POSI YaCTUIL
(MOPSO) nng nosydyeHus1 ONTUMAIbHBIX 3HAYEHUI YIPABJISIOLIUX MEPEMEHHBIX 9HEPTrOCUCTE-
Mbl. Ha mepBoM 3Tane MmoauUuUMpOBaHHBIN OgHOLEAeBOIN aaropuTMm pos dactul (MPSO) uc-
MOJIb3yeTCs s OIpeaeeHUs] onTUuMaibHOro MectornojoxeHuss BUD pis rectoBbix cxem 1EEE,
conepxamux 14 u 30 mmH (y3noB). Ha Bropom ataie MPSO u renetnueckuii anroputm (GA)
WCITIONIB3YeTCS IJIST pa3meIbHOM ONTUMMU3AIINM 1IeJieid, a Ha TPEeTheM 3Tale liejieBble (PYHKIIUU 00-
pabaThIBalOTCS KaK KOHKYPUPYIOLIME e U ONTUMU3UPYIOTCS COBMECTHO ¢ moMoiibio MOPSO.
HakoHel1, ¢ moMolIiibio TEOpUU HEUETKUX MHOXKECTB M3 ONTUMaIbHOro MHOXecTBa [1apeTo ObL10
M3BJICUEHO HaWJIydlllee KOMIIPOMMCCHOE peIlieHre ISl TIPeIOCTABICHUS JIUILY, TIPUHUMAOIIEeMY
peteHue. Takke pesynsraThl padoTel MOPSO cpaBHuBatotcs ¢ MPSO, GA 1 MHoroliesneBbiM GA.

Knroueswvie crosa: anropuT™ MHOTOLICJIEBOM ONTUMM3AIIMU, aJITOPUTM POST YaCTUIL, (POTOINEKTPU-
YyecKue MmaHe 1, BO30OHOBJISIEMble UCTOUYHUKM SHEPTUU, IHEPIUs BeTpa, MOTepU aKTUBHOMN MOIII-
HOCTH, OTKJIOHEHWE HAMIPSIKCHMUST.
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Introduction. Renewable energy sources (RES) are now playing a major role in the performance of the
integrated power system. They not only minimize harmful greenhouse gas emissions and fossil fuel reli-
ance, but also reduce the cost of electricity production over the long term. There are two goals of economic
operation on the power grid, one is active power control, and another is reactive power dispatch. By incor-
porating RES into the system, both goals can be improved [1, 2].

However, renewable distributed generation, i.e., wind and solar, are of an intermittent nature. Many
challenges in the distribution system are introduced by this intermittent generation and load variance.
These challenges include voltage drops and rises, power oscillations, problems in voltage stability, and
increased power losses, so the ORPD study becomes necessary to incorporate both wind and solar energy
in the power system [2, 3].

The ORPD problem is a sub-problem of optimal power flow which helps determine the optimal values
to the control variables such as the generator voltage, tap changing transformer setting, and the optimal
reactive power injected into the system, to minimize the active power loss and enhance voltage stability
simultaneously [4, 5].

However, The ORPD problem is a complex and non-linear problem, and many traditional optimiza-
tion methods have failed to solve it, such as the Newton method, linear programming, interior-point, and
quadratic programming methods, because these techniques have low precision, high complexity, and fail-
ure to find the local and global optimum and thus result in unsafe convergence [6—8]. in order to overcome
these disadvantages, many modern meta heuristic techniques have been applied: particle swarm optimiza-
tion (PSO), evolutionary programming (EP), the genetic algorithm (GA) [4, 9—11].
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Recently, the problem of ORPD has been presented as a multi-objective (MO) problem of optimiza-
tion. The problem is not, however, viewed as a true problem with multiple goals. With a weighted sum of
objectives, it was transformed into a single objective problem. Unfortunately, there is no logical basis for
adequate weight determination and the objective function established in this way will lose importance be-
cause of mixing non-appropriate objectives [12, 13]. In addition, this requires multiple runs as many times
as the number of desired Pareto-optimal solutions (POS). Therefore, traditional optimization approaches
can at best find one solution in one simulation run which makes those methods inconvenient to solve
multi-objective optimization problems [4, 14].

To avoid this difficulty, in this work, the concept of MOPSO for Multi-objective optimization was
presented because of their ability to find a range of Pareto-optimal solutions in a single simulation run [4].

This paper aims to minimize power loss and voltage deviation by setting the control variable and inte-
gration of renewable energy sources in the network. Therefore, MOPSO is suggested to obtain the optimal
control variable of the power system. As a test system, the IEEE 14 and IEEE 30 bus systems were used to
demonstrate the applicability and efficacy of the proposed process.

Problem formulation

The problem can be mathematically formulated as a nonlinear constrained multi-objective optimiza-
tion problem as follows [15]:

Minimize f =| F, ,Fy, |, (1)
Equality constraint g (x,u) =0, (2)
Inequality constrain H (x,u) <0, 3)

where x is the dependent variables comprised of voltages of load bus Vu (PQ bus), reactive power of gener-
ators Q ;» generator actual power at slack bus P ;- It is possible to express x as follows:

x =[PV Vs OO | (4)

where u is the control variables comprised of generator bus voltages VGi (PV bus), tap ratios of transformer
Ti, and reactive power injection ch We can express u as follows:

" =[VoyVyo oo Ty s Ocr - Ocne | (5)

A. Objective functions

In this work, the objective functions are the active power loss minimization and voltage profile improve-
ment for power system optimized simultaneously in a single run.

1) Minimization of active power loss (Ploss)

One of the main objective functions of the reactive power optimization is to minimize the active power
losses in the transmission lines, which can be expressed as follows:

F, =§G,{Vf +V? =2V, cos (S, —@)], (6)

where G, is the conductance of the k™ line; NE is the transmission line number; V, and Vj are the voltage
at i andj bus.
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2) Minimization of Voltage deviation (VD)

NLB

Fp = Z|VL1' -1
i=1

; (7

where N, , is the number of load buses and ¥, actual voltage magnitudes at bus i.

B. Problem Constrains

1) FEquality constraints

The equality constraints are active and reactive power balance at each bus, which can be formulated by
power flow equations as follows:

Ny

Py =By =V, 2V,| Gycos(5,~5,)+ B;sin(5,-8,) |=0, (8)
j=1
Np

O =0 =V, 2.V, | Gysin(8, = 8, )+ B, cos(5, -5, ) |= 0, )
j=1

where N » is the number of buses; P ; and QG[ are the generator real and reactive power, respectively; PD[
and QDI_ are the load active and reactive power, respectively.

C. Inequality constraints

The inequality constraints represent the system operating constraints as follows.

1) Generation constraints:

Vél;in SVGi SVGI‘l;axa izle""’NG’ (10)
QC[:'in SQGi < én'iaxo izla""ﬁNG’ (11)

where N G is total number of generators.
2) Transformer constraints:

T <T <T™,i=1,..,N,, (12)

where N, is the number of transformers.
3) Switchable reactive power sources constraints

oM <Q. <O™ i=1,..,N,. (13)

a. Security constraints:
o<y, <V i=1,..,N,,, (14)
S, <S8/, i=1,..,N,, (15)

where V/,_is the voltage of the PQ bus and S, is transmission line loading of i*" branch.
Best Compromise Solution (BCS)

Fuzzy set theory has been implemented to derive efficiently a candidate Pareto optimal solution for the
decision makers. The fuzzy sets are defined by equations (16) called membership functions [4, 16].
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1 F; SF;mm,
Fmax _F .
P ) Y R R 16
ﬂFl F;max _F;mln 1 1 1 ( )
O Flv Z F;max,

where F™ and Emin are the maximum and minimum values of the /™" objective function, respectively.
In relation to all M non-dominated solutions, the efficiency of each M solution can be evaluated by
normalization of its performance relative to sum of the performances of the M solutions as follows:

Nob

Z /le«ii
_ i=1

M —Tbk, k=1,....,M, (17)

where Nobj is the number of objectives. The BCS is that having the maximum value of z*.
Wind Energy Modeling

The output power from a wind power unit is assigned in terms of the wind speed as expressed in (18) [3].

0 forv, <v,  and v, 6>v, ;
P _ P vw — vcin < < . 18
w(vw) - wr fOr vcin _vw - vwr’ ( )
Vwr — Vein
Pwr for vwr S VW S vcout >

where PW is the rated power of the wind turbine, v, _is the rated wind speed of the wind turbine, v . is
the cut-in wind speed of the wind turbine, and v, is the cut-out wind speed. The numerical values of
the speed considered are: v =3 m/s,v = 16 m/s and v =25 m/s, same as the data of 3 MW turbine
model Enercon E82-E4.

ut

Photovoltaic energy modeling

In this paper, the power output of the solar photovoltaic (PV) arrays is determined by using the sim-
plified method of estimating the output of the PV modules under different operating conditions. The PV
module cannot generate a bulk amount of electrical power. Therefore, a large number of PV modules are
connected in series and parallel to the design PV array. Series and parallel connection of PV modules boost
up voltage and current to tailor PV array output [1, 17, 18]. If there are NS number of series and NP num-
ber of parallel PV modules, then the array power output is given by

IDA:NSNPPmax' (19)

The maximum power output of the PV module is given by [19].

P =FFV, I, (20)

max

where FF is the fill factor of PV module, Voc and ISC are the open circuit voltage and short circuit current.
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Simulation results

The algorithm is tested on IEEE 14-bus and IEEE 30-bus test systems for two different cases for each
system. The system line and bus data as well as the system constraints are found in reference [4]. The num-
ber of control variables for the IEEE-14 system are 9, and the number of control variables for the IEEE 30
system are 12.

A. Calculate Power Output from renewable energy sources

Egypt possesses an abundance of land, sunny weather, and high wind speeds, making it a prime location
for renewable energy projects. Egypt enjoys prominent wind resources in the Gulf of Suez, which is con-
sidered one of the best locations in the world with high and regular speeds. Therefore, in this paper, wind
speed and solar radiation data from sites in Egypt were used to calculate the power generated in wind farms
as well as solar power plants [20]. The locations for wind farms in this work are Gabal Al Zeit and Zafaran,
while the locations for solar power plants are Benban and Kuraymat.

1) For IEEFE 14 bus

The optimal locations of renewable energy sources for this system obtained by using MPSO are buses
4, 5, and 14. In bus 4, there is a wind farm and annual average wind speed from the location of Gabl Al
Zeit in Egypt 8.8194 m/s in the year 2010 and this farm consists of 50 wind turbines. The power generation
for each wind turbine in this location is calculated by equation (19) and the total power generation for this
wind farm is 67.147 MW. In bus 5, there is a wind farm consisting of 25 wind turbines with annual average
wind speed of 7.536 m/s from the location of Zafaran in Egypt in 2010. The power generation for each
wind turbine in this location is calculated by equation (19) and the total power generation for this wind
farm is 26.1715 MW.

In addition, in bus 14, there is a solar power plant with annual average radiation of 508.6 W/m? from
the location of Benban in Egypt. The total power generation for this plant in this location is calculated by
equation (20) and equals 11.377 MW.

2) For IEEFE 30 bus

The optimal locations of renewable energy sources for this system obtained by using MPSO are buses
6, 7, 19 and 30. There is a wind farm in the location of Gabl Al Zeit in Egypt on bus 6 consisting of 60
wind turbines. The overall power output for this wind farm is 80.57 MW. In bus 7, there is a wind farm in
the location of Zafaran in Egypt, which consists of 35 wind turbines with the total power generation of
31.41 MW. In bus 19, there is a solar power plant in the location of Benban in Egypt: the total power gen-
eration for it is calculated by equation (20) and equals 14.153 MW. Moreover, there was a solar power plant
added to bus 30 in the location of Kuraymat in Egypt, with the annual average radiation from this location
of 474.762 W/m?2. The total power generation for this plant in this location is calculated by equation (20)
and is equal to 10.377 MW.

B. The results of IEEFE 14-bus system

1) Case 1: Minimization of active P, _without RES for IEEE 14 bus

Fig. 1 shows a reduction of Ploss after adjusting the control variables such as generator voltages, trans-
former tap-settings and capacitor banks by using MPSO and GA. The initial active Ploss was 13.3933 MW.
After optimization with MPSO, the minimum PlOSS is 12.488 MW, and after optimization with GA, the
minimum P, by is 12.492 MW.

2) Case 2: Minimization of active P, with RES for IEEE 14 bus

In this case, two wind farms were added on Bus 4 and 5, and a solar power plant was added on bus 14.
The PIOSS by MPSO and GA are 5.0054 MW and 5.0127 MW, respectively. The characteristics of conver-
gence of MPSO and GA for PlOSS are shown in Fig. 2.

3) Case 3: Minimization of VD without RES for IEEE 14 bus

In this case, the voltage deviation was reduced by using MPSO and GA, and without the addition
of RES. The base value for VD is 0.4036 pu and the value of VD by MPSO and GA are 0.0327 pu and
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0.0332 pu, respectively. Fig. 3 shows a comparison between the base value voltage profile and that obtained
by MPSO and GA. The convergence characteristics for VD are shown in Fig. 4.

4) Case 4: Minimization of VD with RES for IEEE 14 bus

The value of VD after optimization by MPSO and GA are 0.02077 pu and 0.0212 pu, respectively.
Fig. 5 shows a comparison between the base value voltage profile and voltage profile with the presence of
RES obtained by MPSO and GA. The convergence characteristics for VD are shown in Fig. 6. Table 1
provides a comparison of the results for the individual optimization with and without RES obtained by
MPSO and GA for case (1—4).

5) Case 5: Minimization of P, and VD without RES for IEEE 14 bus

In this case, the active PloSS and the VD were minimized simultaneously by MOPSO and MOGA with-
out the presence of the renewable energy sources in the grid. Fig. 7 shows Pareto-optimal front by MOPSO
and MOGA without RES.

6) Case 6: Minimization of P, _and VD with RES for IEEE 14 bus

In this case, the active PloSS and the VD were minimized simultaneously with the presence of the renew-
able energy sources in the grid. Fig. 8 shows Pareto-optimal front with RES. Table 2 compares the BCS
with the best value for each objective from MO optimization obtained by MOPSO and MOGA for cases
(5, 6).
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Fig. 2. Convergence of Ploss with RES for IEEE 14 bus for case 2
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Fig. 5. Voltage profile with RES for IEEE 14 bus for case 4

C. The results of IEEE 30-bus system

1) Case 7: Minimization of active P, without RES for IEEE 30 bus

Fig. 9 shows a reduction of P__ after adjusting the control variables such as generator voltages, trans-
former tap-settings and capacitor banks by using MPSO and GA. The initial P, was 17.557 MW and after
optimization by using MPSO and GA the minimum P__are 16.348 MW and 16.399 MW, respectively.
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Table 1

Comparison results for the individual optimization with and without res for case (1—4) for IEEE 14 bud

P . Base MPSO without RES GA without RES MPSO with RES GA without RES
arameter
value BestP, | Best VD | BestP__ | Best VD | Best P | Best VD | Best P, | Best VD
P . (MW) 13.393 12.488 14.03 12.492 14.23 5.0054 5.611 5.0127 5.659
VD (pu) 0.4036 0.4 0.0327 0.3957 0.0332 0.4017 | 0.02077 | 0.3425 0.0212
Table 2

A comparison of result for the MO optimization with and without res for cases (5, 6) for IEEE 14 bus

Parameter MOPSO without RES MOGA without RES MOPSO with RES MOGA with RES
P, (MW) | VD(u) [P, (MW)| VD(@uw | P, (MW | VD(u | P, (MW) | VD (pu)
BCS 12.6389 0.1185 12.805 0.1057 5.0465 0.1186 5.1591 0.0976
Best P, 12.5325 0.2045 12.545 0.1461 5.0233 0.2123 5.0336 0.1426
Best VD 13.794 0.03857 13.717 0.03877 5.5702 0.0234 5.5711 0.0291
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Fig. 10. Convergence of Ploss with RES for IEEE 30 bus for case 8

2) Case &: Minimization of active P, with RES for IEEE 30 bus

In this case, two wind farms were added on Bus 6 and 7, and two solar power plants were added on bus
29 and 30. The P, by MPSO and GA are 4.6738 MW and 4.685 MW, respectively. The characteristics of
convergence of MPSO and GA for P__ are shown in Fig. 10.

3) Case 9: Minimization of VD without RES for IEEE 30 bus

Fig. 11 shows optimal voltage profile by using MPSO and GA. Voltage deviation after optimization by
using MPSO is 0.1379 pu and by GA is 0.1508 pu. The initial voltage deviation was 0.6256 pu. The conver-
gence characteristics for VD are shown in Fig. 12.
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4) Case 10: Minimization of VD with RES for IEEFE 30 bus
The value of VD after optimization by MPSO and GA are 0.0697 pu and 0.0770 pu, respective-
ly. Fig. 13 shows a comparison between the base value voltage profile and voltage profile with the
presence of RES obtained by MPSO and GA. The convergence characteristics for VD are shown in
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Fig. 14. Table 3 provides a comparison of the results for the individual optimization with and without

RES obtained by MPSO an
5) Case 11: Minimization
In this case, the active P

los

d GA for case (7—10).
of P, . and VD without RES for IEEE 30 bus

S

and the VD were minimized at the same time by MOPSO and MOGA with-

out the presence of the renewable energy sources in the grid. Fig. 15 shows Pareto-optimal front without

RES.

16



DHepreTuKa U 3NeKTPOTEXHMKA

6) Case 12: Minimization of P,__and VD with RES for IEEE 30 bus

In this case, the active P, and the VD were minimized simultaneously by MOPSO and MOGA with
the presence of the renewable energy sources in the grid. Fig. 16 shows Pareto-optimal front with RES.
Table 4 compares the BCS with the best value for each objective from MO optimization obtained by
MOPSO and MOGA for cases (11, 12).

Table 3
Comparison results for the individual optimization with and without res for IEEE 30 bus for case (7—10)

P ¢ Base | MPSO without RES | GA without RES | MPSO with RES | GA without RES
arameter
value | Best P, | BestVD | Best P_ | Best VD | Best P | Best VD | Best P, | Best VD
P . (MW) | 17.557 | 16.348 | 18.093 | 16.399 | 17.60 | 4.6738 | 5.638 4.685 | 5.4711
VD (pu) |0.6256 | 0.857 0.1379 0.825 | 0.1508 | 0.996 | 0.0697 | 0.984 | 0.0770
Table 4

A comparison of result for the MO optimization with and without res for cases (5, 6) for IEEE 14 bus

Parameter MOPSO without RES MOGA without RES MOPSO with RES MOGA with RES
P, MW | VD(u [P (MW) | VD(u [P (MW) | VD(u |P (MW | VD (pw
BCS 16.5304 0.3287 16.5427 0.3001 4.7504 0.296 4.7245 0.3091
BestP_ | 16.4518 0.6736 16.4665 0.4359 4.6859 0.8862 4.7009 0.6806
Best VD 17.4218 0.176 17.3869 0.1924 5.4249 0.0785 5.2875 0.1024
Conclusion

In this work, we proposed a multi-objective particle swarm optimization (MOPSO) for solving the opti-
mal reactive power dispatch (ORPD) problem. We incorporated renewable energy sources and considered
the power loss and voltage profile improvement. The algorithm is tested on IEEE 14-bus and IEEE 30-bus
test system for two different cases for each system. The MPSO for the optimal placement of renewable
sources of test systems is used in the first stage. In the second stage, the active power loss and voltage devi-
ation objectives are optimized individually with and without renewable energy sources in power systems by
using MPSO and GA algorithms. In the third step, the objective functions are optimized simultaneously
in a single run with and without renewable energy sources in power systems by using both MOPSO and
MOGA algorithms. The results show that MOPSO could find high-quality solutions with more reliability
and efficiency. The results also show that when the renewable energy sources are introduced into the net-
works with adjusting the control variables in the system with the algorithm, a decrease in active power loss
and the deviation in voltage is much better than the absence of renewable energy sources.
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