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The article reviews the problem of ensuring the security of storage, processing, and
transmission of images based on a cryptographic method using chaotic maps. The encryption
algorithm is based on a three-dimensional mapping. The encryption algorithm strength when
using systems with chaotic dynamics depends on the value of the largest (positive) Lyapunov
characteristic exponent. Therefore, the problem of increasing resistance to various kinds
of attacks is reduced to determining the control parameters, at which the leading Lyapunov
characteristic exponent increases. The authors propose a procedure for changing the chaotic
map characteristics (entropy and Lyapunov characteristic exponents) based on introducing
feedback into the system. The procedure is developed using the modal control method based
on reducing the system to the canonical Frobenius form. The use of the proposed algorithm is
considered on the example of the Rossler system. The test results confirmed an increase in the
strength of the proposed encryption algorithm against statistical and differential analysis due to
an increase in the Lyapunov characteristic exponent.
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AJITOPUTM LUUDPOBAHUA U3OBPAXXEHUN
HA OCHOBE YMPABJISEMbIX XAOTUYECKUX OTOBPAXXEHUM

B.H. lWlawiuxuH, A.B. TypyauH, C.B. bydHuk

CaHKT-MeTepbyprckuii NoAMTEXHMYECKMI YHUBEpPCUTET MeTpa Benunkoro,
CaHKT-MNeTepbypr, Poccuiickaa Pepepaumn

PaccmoTpeHa 3amaua obecrieueHsT 0€30IMaCHOCTU XpaHEeHUs, 00pabOTKU U TIepeJauyn M30-
OpakeHUit Ha OCHOBE KPUNTOrpachUueCKOro METoAa C MCII0Ib30BaHUEM XaOTUYECKUX OTOOpa-
KEHU. AJITOpUTM IMGPOBaHUS TTOCTPOEH Ha 0a3ze TpexMepHOro otoopaxkeHust. CTOMKOCTh
aJroput™Ma IMdpoBaHUs MPHM UCIOJb30BAHUU CUCTEM C XaOTMYECKOW NTMHAMMKOM 3aBUCHUT
OT BEJIMYMHBI CTapiiero (MOJIOXKMTEILHOIO) XapaKTepHCTUYECKOro ITokaszartesis JIsamyHoBa.
ITosToMy 3amaua MOBHIIIIEHUS] CTOMKOCTH K pa3JIMYHOTO pojia aTaKaM CBOIMTCS K OIpeae/ICHUIO
ImapaMeTpOB YIIpaBJIeHUs, TP KOTOPOM CTapIINil XapaKTepUCTUIECKUI moKa3aTenb JISmyHoBa
yBenuumBaeTcs. [IpemmoxkeHa mporneaypa N3MEHEHHSI CBOMCTB XaOTUIECKOTO OTOOpaKeHMS (IH-
TPOIIUM U XapaKTePUCTUYCCKUX IToKa3areseil JIsmyHoBa) Ha OCHOBE BBEIEHUsI B CUCTEMY 00part-
Hoii cBsa3u. IIpoueaypa mocTpoeHa Ha UCIOJb30BaHUU METO/Ia MOJAJIbLHOIO YIIPABICHUs Ha OC-
HOBE MPUBEACHMS CUCTEMBI K KaHOHNYecKoit hopme DPpobennyca. PaccMoTpeHO TTpUMeHeHME
MpeIjiaracMoro aJropuTMa mMudpoBaHUS IUIsT CUCTeMBI Pecciepa. Pe3ynbraThl TeCTMPOBaHUS
MMOITBEPIVIIN YBEIMICHNE CTOMKOCTH IPEAJIOKEHHOTO alTOpUTMa TG POBaHMUS K CTATUCTAYC-
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ckoMy U auddepeHINaIbHOMY aHAIU3y 3a CUeT YBEJMUYEHUsI CTApIIEro XapakKTepUCTUIeCKOro
nokasarens JIsmmyHoBa.

KiioueBbie cioBa: 1mpoBaHue U300paXkeHU, XaoTuueckKue oTodpaxkeHus1, yrpaBjieHue CleK-
TPOM XapaKTepUCTUYECKUX IToKa3aTesieil JIsimyHoBa, MOOajlbHOE YyIIpaBlIeHUEe, KAHOHUYECKast
dopma dpobeHnyca.
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Introduction

The problem of ensuring the security of image transmission is currently becoming more and more ur-
gent in connection with the increasing flow of information transmitted over open communication lines.
Reliable encryption methods for storing and transmitting digital images are required in various fields:
medical information systems, confidential video conferencing, government and military communications
systems.

Cryptographic methods stand out among various methods of protecting information and ensuring its
integrity. However, traditional encryption algorithms, for example, AES and DES, were developed with-
out taking into account the specific requirements for image encryption [1, 13] (a large amount of memory
occupied, limited processing and transmission time) [2]. Therefore, it became necessary to create new
encryption algorithms based on the use of nonlinear functions [3, 14].

One of the promising directions in modern cryptography is the development and research of data en-
cryption algorithms based on dynamic chaos [4—7, 15, 16]. Such properties of chaotic systems as the
exponential divergence of trajectories, ergodicity, and randomization are useful in the development of
encryption schemes for digital images [8, 17—20]. Modern approaches to encryption use various chaotic
maps and algorithms based on the composition of two maps that implement the operation of randomiza-
tion and entanglement [9, 21, 22].

The paper considers an image encryption algorithm based on a chaotic mapping, which simultaneously
implements the operation of randomizing and confusion. To improve the cryptographic stability of the
algorithm, a procedure is proposed for changing the chaotic map characteristics (entropy and Lyapunov
characteristic exponents) based on introducing feedback into the system. A procedure for changing the
spectrum of Lyapunov characteristic exponents of a chaotic map is developed using the modal control
method based on reducing the system to the canonical Frobenius form.

Image encryption problem statement

Mathematical model of the image. Let the raster model of the original rectangular image be represented
by the following map:

I:[a,b]x[c.d]— L(R™), (1)

where L(RNXM ) is the space of numerical dimension matrices of N x M size.
The N, M values are related to the dimensions of the pixel grid:

A" ={(i.j):i=LN =[W].j=1.M =[H]}, (2)

where [*] is the integer part of the number.



4 V.N. Shashikhin, A.V. Turulin, S.V. Budnik, DOI: 10.18721/JCSTCS.14101 >

With the help of digitalization and quantization operations, the description of digital images is reduced
to a set of samples, which can be represented in the form of a matrix:

N.M

I:(]ij )i,j=1 € L(RNXM)’ 3)

whose eclements are realizations on a discrete grid of continuous functions of two variables

I :(O, W) ® (0, H ) —> R . The elements of these matrices take integer values from the [0; 255] interval
when coding the pixel intensity with an eight-bit code.

Mathematical model of a system with chaotic dynamics. A nonlinear differential equation with a given

initial state is considered as an evolutionary operator for the implementation of the encryption algorithm:

x(t)=F(x(1)), x(t,)=x,, (4)

where x(t) € P c R" is the phase vector of the system; region P — phase space of the system; ¢ — time
function, £ :R" — R" — vector function with f; (x(t)), i=1,n components.

Among the set of nonlinear dynamical systems S = {P, F } , we will consider systems with a chaotic
mapping for which the following conditions are satisfied.

1. The f map has an essential dependence on the initial data or it is sensitive (if there is such a number
d > 0, that for any € > 0 and any x’ € X point there is a x" € X and the m € M number such that
p(x',x") <&, but p( ()= (x')ﬁz 3).

2. The f'map p is transitive (for any U, V pair of open sets there is m >0, that f° (m) (U ) NV =0).

The problem of controlling the spectrum of Lyapunov characteristic exponents. The mathematical model
of a chaotic system in the synthesis of an encryption algorithm is a heterogeneous differential equation
with a control

x(t)=F(x(t))+ Bu(z), x(t5) = x,. (5)

Lyapunov spectrum of the original nonlinear system (4)

G(F)z{Xi(F)>i=1’_”}

consists of n various Lyapunov characteristic exponents (F ) 2%s (F ) 2.2, (F ) in descending
order.

The problem of controlling the Lyapunov spectrum is to determine the feedback from the phase vector
of the nonlinear system:

u(t)=K"x(t) (6)
such that the closed nonlinear system
x(t)=F(x(¢))+BK"x(1), x(ty)=1x, (7)
had the following spectrum
0(F+BK*>:{xi(F+BK*),i:1,_n}, 8)

equal to the required spectrum
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I
o(G)={%:(G).i=1.n}. 9)

The encryption algorithm strength when using systems with chaotic dynamics depends on the value of
the largest (positive) Lyapunov characteristic exponent. Therefore, the problem of increasing resistance to
various kinds of attacks is reduced to determining the control parameters (6), at which the leading Lyapu-
nov characteristic exponent (9) increases in the closed-loop system (7). Besides, the feedback factor will
expand the “keyspace” of the encryption algorithm.

Evaluation of the encryption algorithm strength. It is necessary to build a grayscale image encryption
algorithm based on a chaotic map and to carry out a comparative assessment of the algorithm’s strength
with and without control action.

As a result of statistical cryptanalysis, it is necessary:

- to assess the uniformity of the distribution of pixels by brightness values, construct a histogram of this
distribution;

- to calculate the pairwise correlation between two adjacent pixels horizontally, vertically, and diago-
nally;

- to calculate informational entropy.

To assess the strength of the algorithm to differential analysis, calculate:

- the percentage of pixels that changed the brightness value;

- the average change in gray intensity.

Encryption algorithm based on a 3D chaotic map

Chaotic map and its properties. In the process of image encryption, a three-dimensional chaotic Rossler
map is used as a model of a nonlinear system (4)

X3 =b+x3(x —c).

Fora=0.2,b=0.2, ¢ = 5.7 values of the parameters, this map has a spectrum of Lyapunov characte-
ristic exponents equal to

o(F)={x;(F)=0.1016;, (F)=0.0922; %5 (F)=—-5.6953}, (11)

and a trajectory in three-dimensional phase space, which has the form shown in Fig. 1.

The spectrum of Lyapunov characteristic exponents and a strange attractor indicate the presence of
chaotic dynamics in system (10).

Encryption algorithm. The grayscale image encryption algorithm of N X M size using nonlinear map
(10) has the following steps in one round of encryption.

Step 1. Based on the original image, a raster model of the original image (1) with a matrix of the form
(3) is formed:

1=(1,),,. =L (R™),

where i is the number of pixel in the vertical row; j — the number of pixel in the horizontal row; [l i pixel
with the 7, j number brightness value; N — number of rows, and M — number of columns of the pixel matrix
determined by the grid size (2).

10
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Fig. 1. Trajectory of the Rgssler system

Step 2. For some initial state x(O) = (xl (O) , X, (0) ) X3 (O)), determined by the point of exit of the
chaotic system trajectory (10) to a strange attractor, three sequences are generated:

}, s=NxM; (12)

Sequences X1 and X2 define the randomization of pixels, and the X3 sequence defines the scattering
(brightness changes) of pixels.
Here, the elements of sequences (12) are formed according to the rule:

1)), & x(t)=F[x(1)], (13)

where F[x(t)] :(fl(x(t),f2 (x(t),jg(x(t)))))T is a vector function whose components are the

functions on the right-hand side of equations (10).
Step 3. A chaotic matrix of the encrypted image of the first round is formed using the third equation

(13):

dl d) .ol
E(l) — egl,]) egl,; egl,;/[ c RNXM , (14)
el el el ]

11
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where el(ll) = [x3 (t) mod 255] is the intensity of gray pixel with the i = [xl (t)mOdM ] row number and

the j = I:x2 (t)rnod N :I column number; [*] is the integer part of number.

Further, repeating steps 2—3 for the image (14) for p rounds, we get an encrypted image E (r) of the
following form:

EO — ( Al(l/) )lN]M cRVM. (15)

The number of rounds is determined by the required cipher strength indicators.

Cryptanalysis of the encryption algorithm. The assessment of the algorithm strength is carried out using
statistical and differential cryptanalysis [2]. The 512 x 512 gray-scale Lena photo is used as the source
image.

To determine the distribution of pixels of the encrypted image EW (15) in grayscale, the following
probability is calculated:

P(m )= (16)

where m_is the number of pixels e for the gray intensity takes on s € [0; 255] values. The distribution of
pixels by gray intensity values for the original image is shown in Fig. 2, and for the encrypted image — in
Fig. 3.

Pairwise correlation between two adjacent pixels horizontally, vertically and diagonally of the original
and encrypted images is calculated by the formula:

2o (w=0)(v=7)

NxM (17)

)’ [E oy [

NxM NxM

NxM NxM
U Zi:l U = Zi:l Vi

NxM NxM '’

where u, v, | — the intensity of the i gray pixel and the pixel adjacent to it, U = {”1: Uy ooillyy oo Uy s } ,
V= {v1 A A N M} — a series of gray intensity values of pixels in the image and a series of gray in-
tensity values of neighboring pixels.

Information entropy is determined by the expression:

H(mS)ZZi:P(mS)IOgZ (1/P(ms))’ (18)

where P(ms) is the probability of the gray intensity belonging to the s € [0; 255] level.
To assess the strength of the algorithm against the differential analysis, the following are calculated:
- number of changing pixel rate (NPCR):

22D (i)
x M

H(]l,lz)— N

x100%, (19)

12
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Fig. 2. Original image histogram
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Fig. 3. Encrypted image histogram

where

D(i,j)= ' . Vi=LN, Vji=1M,

I, — the original image, /, — the original image with the gray level of one pixel being changed;

A

El(p ). Egp )_ the encrypted images corresponding to the /|, 1, original images;

13
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él(p ) (i, Jj ), é? ) (i, j) — the value of the gray level for the pixel with the (i, j) number in the El(p ) and

E'ép ) images;
- unified averaged changed intensity (UACI)

1 s e la.] —é€ la.]
C(El,Ez)szszflf‘j_l|l( )2552( L 100%. (20)

The results of calculating the strength criteria after two rounds of encryption using the chaotic map with
and without control are shown in Table 1.

Table 1
Encryption algorithm strength criteria
Chaotic | Largest Correlation coefficient NPCR, | UACI,
Image - - : Entropy
map LCE Horizontal | Vertical | Diagonal % %

— — original 0.0293 0.0263 0.0653 7.55 — —

No
control 0.1016 | encrypted | 0.000175 | 0.000192 | 0.000380 7.76 99.54 33.42
c?r:lttr}gl 0.2862 | encrypted | 0.000101 | 0.000186 | 0.000117 7.96 99.55 33.45

Control of Lyapunov characteristic exponent of chaotic map

To increase the strength of the proposed image encryption algorithm, a control action is introduced
into a system with chaotic dynamics to increase the positive Lyapunov characteristic exponent and infor-
mation entropy. Control is sought in the form of linear feedback in phase coordinates.

The solution to the problem of changing the spectrum of characteristic exponents of a nonlinear system
is based on the Grobman-Hartman theorem [11]. Any system in a neighborhood of a hyperbolic singular
point is locally topologically equivalent to its linear approximation. Thus, the behavior of a nonlinear sys-
tem in the neighborhood of a hyperbolic singular point is similar to the behavior of a linearized system. A
singular point is hyperbolic if the Jacobi matrix has no eigenvalues in it on the imaginary axis. A change in
the characteristic exponents of a linearized system, which coincides with the real part of the eigenvalues of
the Jacobi matrix, entails a change in the characteristic exponents of a nonlinear system.

Synthesis of linearized system control. It is possible to provide the desired eigenvalues of the Jacobi
matrix of the linearized system using the method of synthesis of a modal controller based on a reduction to
the canonical Frobenius form [12].

Let the equations of state of the linearized system have the form:

p(t)=Ay(t)+bu(t), y(to)= o, (1)

where y(f) € R" is the vector of state coordinates; u(f) € R' — the control action; 4 € R™" — the Jacobi
matrix of the nonlinear system (10) at the hyperbolic singular point.

It is required to determine the k = (k,, k,, ... k )" parameters of the linear feedback control law u(t) =
= kx(t) providing the given eigenvalues V;, i =1,...,n of the matrix of the closed system A = 4 + bk.
From the expression for the matrix of the AC = A + bkT closed system, it is impossible to directly obtain

14
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the values of the feedback coefficient, since the matrix is unknown. Therpfore , such a change of variables
y =y is used that the mathematical model of the transformed system y = (A +bk" ) ¥ has the canoni-
cal Frobenius form with the A matrix and the b vector of the following form:

0 1 0 0

| y |0

Lo 0 Lol
-a, —a,, -4 1

where a, are the coefficients of the characteristic polynomial of the matrices A and 4 =
To bring the matrix of the system to the canonical form, the matrix 7 formed from the coefficients of
the characteristic polynomial of the matrix A4 is used as follows:

an—l an—Z 1
T: an—Z an73 0

an—3 l 0 .

1 0 0

The similarity transformation y = Qy uses the matrix Q = SyT , where S is the system controllability
matrix. If this similarity transformation is performed in system (21):

y=07"407+0"'bk" 05
and the following notation is introduced
k=0"k, b=0"b, A=0"40,
then the system model will take the following form:
y= (;1 +bk" ) 7.

Considering the peculiarities of constructing the () matrix, the matrix of the system will have the Frobe-
nius matrix form, and the b vector will be reduced to the simplest form:

;Izlil)—enaT, b=e,,

where 17(11) is a matrix of n x n size, having unities over the main diagonal, and the remaining elements
being zero; e is a unit vector of 7, the n'™ coordinate of which is equal to unity, and the rest are equal to
zero;a=(a,a_,..,a)".
n n
The closed-loop matrix will take the form:

~ ~ T

A, = A+bk" :],(ll)—en (a—lg)

For this matrix to have the required eigenvalues, the coefficients of its characteristic equation must

est est

T
correspond to the a,, = (an Ay ”) vector, where a are the coefficients of the characteristic

15
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polynomial of the matrices 4 and A~c. Then a,, =a— lg, and the coefficients of the controller for line-
arized system (21) are determined by the relation:

k=(0") (a-a,). (22)

Synthesis of a nonlinear system control. Let the Jacobian matrix equal J* at the singular point x* of
system (4) in the absence of control, and the vector of its eigenvalues is equal to v*. Let us set the vector of
the desired eigenvalues vV * of the Jacobian J * of the nonlinear system (5) in the form:

v, =v +aRe(v), (23)

where a is the coefficient selected according to the graph in Fig. 4.
For the Jacobian J * of system (21) to have given eigenvalues, we choose a control in the form:

u(t)=hkx(t), (24)
then the Jacobian of system (21) with control (24) will be equal to
J*=J*+Bk, (25)

where k € R is the feedback coefficient, which is found by the method of synthesis of modal control
according to formula (22).

The largest Lyapunov characteristic exponent of system (5) with control (24) will differ from the largest
Lyapunov characteristic exponent of uncontrolled nonlinear system (4). It is necessary to increase the larg-
est Lyapunov characteristic exponent to increase chaos in the system, which is achieved by the appropriate
choice of the a coefficient in formula (23).

A graph of the dependence of the largest characteristic exponent of the nonlinear system with control
from the o coefficient is built to select the o (see Fig. 4). Based on this graph, the o* coefficient is selected
that satisfies the desired value of the largest characteristic exponent of the nonlinear system.

After choosing the o* coefficient, the corresponding feedback coefficient k* is substituted into formula
(24) instead of k.

We will illustrate the control synthesis technique for the Rossler system, the model of which in dimen-
sionless variables and parameters has the following form:

X, :—(x2 +x3)

X, = X, +ax, <:>5c(t)=F(x(t)).
X =b+x(x,—c)
The Rossler system, with the a = 0.2, b= 0.2, ¢ = 5.7 values of the parameters, has two singular points:
xl* = (0.0070 —0.0351 0.0351),
x2" = (5.6930 —28.4649 28.4649),

and the Jacobi matrix equals:

16
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Y:0.1016 7__7./

P E—— N
X:0
Y:0.00222

— N
X:0.08
Y: 0.002666

lambda
R
1

— lambdat
— lambda2
3 lambda3

I | | | I I |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
alfa

Fig. 4. Dependence of the largest Lyapunov characteristic exponent y, on o

0o -1 -1
J=|1 a 0

x 0 x-c
Eigenvalues of the Jacobi matrix calculated at singular points are:

v, =0.0970 +0.9952i
v(J(xl* )) =1y, =0.0970 - 0.9952i,

vy =5.6870
v, =5.4280i
v(J(xz*))= v, =—5.4280i.
vy =0.1930

We will change the eigenvalues of the Jacobian at the hyperbolic singular point x1*. The desired eigen-
values of the Jacobian (25) of the closed system calculated at x1* point are determined by equality (23).
Fig. 4 shows the graph of the dependence of the largest Lyapunov characteristic exponent of the nonlinear
system (7) on d.

According to the graph shown in Fig. 4, we select the a* = 0.08 value of the coefficient at which the
condition XT > % (F ) is fulfilled. Using the selected a* = 0.08 value, we calculate the required eigenval-
ue of the Jacobian, and using formula (22) we calculate the feedback coefficient in the nonlinear system:

k" =(1.0426 —0.4943 -22.8945).

Spectrum (8) of a nonlinear system (7) with synthesized control is equal to:

17
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G(F + bk*) = {x, =0.2862; %, =0.0026; 5 = —3.8931}.

The largest indicator of a closed system is 2.82 times higher than the largest indicator of the original
system, which indicates an increase in chaos in the system.

Properties of an encryption algorithm based on controlled chaos

The strength of the encryption algorithm based on a chaotic feedback system is estimated according to
the same criteria of statistical and differential cryptanalysis that were used when testing the algorithm with
no control, namely: the probability of gray intensity distribution was calculated by formula (16); correla-
tion coefficients — according to formulas (17); information entropy — according to formula (18), and the
percentage of changed pixels and average change in gray color intensity — according to formulas (19) and
(20), respectively. The results of testing the encryption algorithm with control are shown in Table 1.

It follows from the above test results that all the compared cryptographic strength criteria are improved
when using an encryption algorithm with the control in comparison with an algorithm with no control.

Conclusion

An algorithm for encrypting a grayscale image based on the use of a three-dimensional chaotic map,
which implements simultaneous randomization and scattering, is presented. To increase the cryptographic
strength of the algorithm, a method for synthesizing feedback on the phase vector of a nonlinear system is
proposed, which ensures an increase in the largest Lyapunov characteristic exponent responsible for the
degree of chaos. The synthesis technique is based on the modal control method using the canonical Frobe-
nius form, which is extended to nonlinear chaotic systems.

The use of the proposed algorithm is considered using the example of the Rossler system. The test
results confirmed an increase in the strength of the proposed encryption algorithm against statistical and
differential analysis due to an increase in the Lyapunov characteristic exponent, which is achieved by in-
troducing feedback into the chaotic system used for encryption.
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