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In the paper, it has been established that the sum of stress-energy tensors of the electromagnetic and 
gravitational fields, the acceleration and the pressure ones inside a stationary uniform spherical body 
vanishes within the framework of relativistic uniform model. This fact significantly simplifies a solution 
of the equation for the metric in the covariant theory of gravitation (CTG). The metric tensor compo-
nents inside the body were calculated, and then they were combined with those of external metric tensor 
on the body’s surface. The latter procedure also allowed us to exactly determine one of two unknown 
coefficients in the metric outside the body. The comparison between the CTG metric and the Reissner 
– Nordström one in general theory of relativity clearly demonstrated their difference caused by discrep-
ancy between equations for the metric and a difference in formulations of the cosmological constant.
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О МЕТРИКЕ КОВАРИАНТНОЙ ТЕОРИИ ГРАВИТАЦИИ  
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В работе доказывается, что сумма тензоров энергии-импульса электромагнитного и гра-
витационного полей, поля ускорений и поля давления внутри неподвижного однородного 
сферического тела обращается в нуль в рамках релятивистской однородной модели. Это об-
стоятельство существенно упрощает решение уравнения для метрики в ковариантной теории 
гравитации (КТГ). Вычисляются компоненты метрического тензора внутри рассматривае-
мого тела, а затем на его поверхности они «сшиваются» с компонентами внешнего метриче-
ского тензора. Последняя процедура позволяет точно определить один из двух неизвестных 
коэффициентов в метрике за пределами тела. Сравнение метрики КТГ с метрикой Рейсснера 
– Нордстрёма в общей теории относительности наглядно показывает их различие, которое 
обусловлено несовпадением уравнений для метрики, а также различием формулировок кос-
мологической постоянной.
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Introduction

In modern physics, the space-time metric of a certain physical system is completely defined by the 
corresponding metric tensor. The metric definition is of particular importance in the general theory 
of relativity, where the metric describes an action of gravity. In contrast, in the covariant theory of 
gravitation (CTG), gravity is an independent physical interaction. In this case, the metric of CTG is 
required mainly to describe the additional effects, associated with the interaction of electromagnetic 
waves with the gravitational field in the processes of space-time measurements by means of these 
waves. Accordingly, the metric form depends significantly on the theory of gravitation used.

Despite the success of the general theory of relativity in describing various gravitational phe-
nomena, the theoretical foundation of this theory is still unsatisfactory. First of all, this is due to 
the absence of a generally recognized energy-momentum tensor of the gravitational field itself, the 
search for which has continued to this day [1 – 3]. Accordingly, the energy and momentum of a 
system becomes ambiguous or not conserved [4 – 6]. Other problems include emerging singulari-
ties, the need to interpret the cosmological constant, dark matter, dark energy, etc. In this regard, 
the search for alternatives to the general theory of relativity remains relevant, in particular, among 
vector-tensor theories [7 – 9].

The CTG refers to vector theories and has a well-defined energy-momentum tensor of the gravi-
tational field. Outside a fixed spherical body, the metric tensor components within the framework of 
CTG were determined in Ref. [10]. Only the gravitational and electromagnetic fields exist outside 
the body, therefore only these fields exert their influence on the space-time metric here. Using this 
metric, it was possible to calculate the Pioneer effect, which has no explanation in the general theory 
of relativity [11]. CTG formulas describing the gravitational time dilation, the gravitational redshift of 
the wavelength, the signal delay in the gravitational field, lead to the same results as the general theory 
of relativity [12].

Next, we will calculate the metric of CTG inside a spherical body. In the presence of the matter, 
we should take into account the pressure field, which we consider in a covariant form as a vector field. 
Similarly, the concept of the vector acceleration field [13, 14] is used to calculate the energy and mo-
mentum of the matter, and its contribution into the equation for the metric. It is the representation 
of these fields in the form of vector fields that made it possible to find a covariant expression for the 
Navier – Stokes equation [15]. In contrast, in the general relativity, the pressure field and the accel-
eration one are almost always considered as simple scalar fields. Consequently, we can assume that 
CTG represents the contribution of the fields to the energy and momentum more accurately, as well 
as it does to the metric of the system.

In order to simplify the solution of the problem, we will assume that the matter of the body moves 
chaotically in the volume of the spherical shape, and it is kept from disruption by gravitation. The 
gravitational force in such macroscopic objects, as planets and stars, is so strong that it is sufficient to 
form the spherical shapes of them. This force is counteracted by the pressure force in the matter and 
the force from the acceleration field. One of the manifestations of the force from the acceleration field 
is the centrifugal force arising from that component of the particles’ velocity, which is perpendicu-
lar to the radius-vector of the particles. We can also take into account the electromagnetic field and 
the corresponding force, which usually leads to repulsion of the charged matter in case of the excess 
charge of one sign. We will also assume that the physical system under consideration is a relativistic 
uniform system, in which the mass and charge distributions are similar to each other. This will allow 
us to use the expressions found earlier for the potentials and field strengths.

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https://creative-
commons.org/licenses/by-nc/4.0/)
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The need to determine the metric inside the matter arises as a consequence of the fact that the 
comparison of expressions for the components of the metric tensor inside and outside the matter 
makes it possible to unambiguously determine one of the unknown coefficients in the external metric. 
As a result, we obtain a more accurate expression for the CTG metric, suitable for solving more com-
plex problems and considering small gravitational effects.

The equation for the metric

The use of the principle of least action leads to the following equation for the metric in CTG [14]:

where c is the speed of light; k is the constant, which is part of the Lagrangian in the terms with the 
scalar curvature R and with the cosmological constant Λ;     is the Ricci tensor with the mixed indi- 
ces;     is the unit tensor (the Kronecker symbol);    ,     ,     and     are the stress-energy tensors  
of the gravitational, electromagnetic, the acceleration and the pressure ones, respectively.

As was shown in Ref. [16] all the quantities in Eq. (1) should be averaged over the volume of the 
system’s typical particles, if Eq. (1) is used to find the metric inside the body. We will further assume 
that such averaging has already been carried out in Eq. (1). Another conclusion in Ref. [16] is that, 
within the framework of the relativistic uniform model, the scalar curvature inside a stationary body 
with the constant relativistically invariant mass density and charge is a certain constant quantity   .  
In this case, the relation         holds in CTG, where    is the averaged cosmological constant for 
the matter inside the body.

Acting in the same way as we did in Ref. [10], we will use the spherical coordinates

related to the Cartesian coordinates by the relations:

For the static metric, the standard form of the metric tensor of the spherical uniform body is as 
follows:
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where B, K, E are the functions of the radial coordinate r only and do not depend on the angular 
variables.

And there are four nonzero components of the metric tensor:

By definition, the Christoffel coefficients      are expressed in terms of the metric tensor and its 
derivatives:

If we denote the derivatives with respect to the radius r by primes, then the nonzero Christoffel 
coefficients, expressed in terms of the functions B, K, E in the metric tensors (2) and (3), are equal, 
according to Eq. (4), to the following:

With the help of coefficients (5) we will calculate the components of the Ricci tensor with the co-
variant indices using the standard formula:

This will give four nonzero components:

Eq. (1) contains the components of the Ricci tensor with the mixed indices, which can be found 
by multiplying the components of this tensor with the covariant indices by the metric tensor using the 
             formula. By application of components (6) and metric tensor (3), we find:

Using formulas (6) and (3), we will calculate the scalar curvature as follows:
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The field tensors

The stress-energy tensors of the gravitational field [17, 18], the electromagnetic, the acceleration 
and the pressure ones [14], located on the right-hand side of the Eq. (1) for the metric, can be ex-
pressed as follows:

Here Φμλ, Fμλ, uμλ and fμλ are the tensors of the gravitational, the electromagnetic, the acceleration 
and the pressure fields, respectively; G, ε0, η and σ are the gravitational, the electric, the acceleration 
and the pressure fields’ constants, respectively.

The stress-energy tensors in Eqs. (9) were derived from the principle of the least action under the 
assumption that all the physical fields in the system under consideration were described as vector 
fields that had their own 4-potentials [13]. Due to the fact that the field tensors have the same form, 
it was possible to combine all the fields into a single general field [19, 20].

Let us express the 4-potentials of the fields in terms of the corresponding scalar and vector poten-
tials of these fields:

for the gravitational field,

for the electromagnetic field,

for the acceleration field,

for the pressure field.

The gravitational tensor is defined as the 4-curl of the 4-potential [17]. Similarly, the electromag-
netic tensor, the acceleration tensor and the pressure field tensor [14] are calculated and have the 
following form:
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In the system under consideration, the vector potentials D, A, U and Π of all the fields are close 
to zero because of the random motion of the matter’s particles. This is due to the fact that the vector 
potentials of individual particles are directed along the particles’ velocities, and therefore they change 
each time as a result of interactions.

The global vector potential of each field inside the body is calculated as the vector sum of the corre-
sponding vector potentials of the particles. At each time point, most of the particles in the system have 
oppositely directed velocities and vector potentials, so that the vector sum of these potentials tends to 
zero on the average. The more particles are present in the system, the more exactly the equality to zero 
holds for the global vector potentials of the fields. We will not also take into account the proper vector 
potentials of individual particles. As was shown in Ref. [21], the energy of the particles’ motion arises 
due to all these potentials, which is approximately equal to their kinetic energy. Thus the inaccuracy, 
arising from equating the vector potentials D, A, U and Π to zero, does not exceed the inaccuracy in 
the case when only the rest energy is taken into account in the system’s energy and the kinetic energy 
of the particles is neglected.

As for the scalar field potentials ψ, φ, ϑ and ℘, in the static case for a stationary spherical body, they 
must depend only on the current radius r and must not depend on either time or angular variables.

Assuming that D ≈ 0 and neglecting the contribution of the vector potential D, in the spherical 
coordinates

we find, from tensors (10) and (3), the nonzero components of the gravitational tensor:

In Eq. (11) the quantity Dr in the spherical coordinates is the projection of the vector potential on 
the radial component of the 4-dimensional coordinate system. In this case, the quantity

is the projection of the gravitational field strength on the radial component of the coordinate system.
The nonzero components of the electromagnetic field tensor, the acceleration one, and the pres-

sure field tensor are obtained similarly to Eq. (11):

In the Minkowski space-time, the special theory of relativity is valid, so that the potentials and 
the field strengths can be calculated exactly. For the case of the relativistic uniform model, the field 
strengths, which are part of the field tensors’ components inside a spherical body, in the static case 
have the following form [22]:
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In Eqs. (13) γc is the Lorentz factor of the typical particles that are moving at the center of the 
body; ρ0 and ρ0q denote the invariant mass and charge densities of the typical particles, respectively.

These mass and charge densities are obtained in the reference frames, which are comoving with 
the particles. It follows from Eqs. (10) – (13) that the field tensors inside the body are proportional to 
each other:

Let us sum up all the stress-energy tensors in formulas (9) and use Eq. (14):

As was found in Ref. [23] from the equation of the particles’ motion and in Ref. [24] from the gen-
eralized Poynting theorem, the following condition holds for the sum of the field coefficients inside 
the body:
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only on the radial coordinate. In the flat Minkowski space-time this function must be equal to unity, 
Z = 1, so that Eq. (13) is satisfied, which does not contain Z function.

Indeed, the equations for calculating the tensors of all the vector fields coincide with each other 
in their form, according to Refs. [13, 18, 25], and hence, the field tensors can differ from each other 
only by the constant coefficients at constant mass density ρ0 and charge density ρ0q. Therefore, if we 
multiply the tensor of each field, found in the Minkowski space-time, by the same function Z, in 
order to find this tensor in the curved space-time, relation (14) would not change, and an additional 
factor   would appear on the right-hand side of Eq. (15). Since condition (16) always holds true, then, 
in the system under consideration, the sum of the stress-energy tensors in Eqs. (15) and (17) will also 
be zero in the curved space-time.

Calculation of the metric inside the body

Eq. (1) for the metric, in view of Eq. (17), is significantly simplified:

Substituting here (7) and (8), we get three equations:

Substituting Eq. (20) in Eqs. (18) and (19) gives the same equation:
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Comparing this expression with Eq. (20), we obtain:

Next, we will substitute here the value of             according to Eq. (22):

Now we need K from Eq. (22) and the relation      from Eq. (21):

Let us substitute expressions (25) into Eq. (20):
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The constant C
2
 in expressions (27) represents the value of the scalar curvature, averaged over the 

volume of a typical particle, which is constant inside the body, so that   
In Ref. [16] we found the relation for the value of the cosmological constant    averaged over the 

volume of a typical particle:

Expanding the sine by the rule

in view of Eq. (16), we find:

where k is the factor,

(β is a certain constant of the order of unity); 

                        is the scalar potential of the gravitational field on the surface of the body at r = a; 

                       is the scalar potential of the electric field (a is the radius of the body); mg, qb are the  

gravitational mass and the total charge of the body; γc is the Lorentz factor of the particles at the 
center of the body; ℘c is the potential of the pressure field at the center of the sphere; the mass 

                        and the charge                         are auxiliary quantities.

In the brackets, on the right-hand side of Eq. (28), there is the sum of the volumetric energy den-
sities of the particles in the scalar field potentials: the first and second terms are from the gravitational 
field, the third one is from the acceleration field, the fourth and fifth terms are from the electric field, 
and the sixth one is from the pressure field. 

The third term is the greatest, it is proportional to the rest energy density of the body. If we take into 
account only this term, then, in the first approximation, the constant C
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 will be equal to
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Comparison of the metric tensor components inside and outside the body

At r = a the current radius reaches the surface of the spherical body, and here the internal metric 
becomes equal to the external one. It means that we can equate the components of the corresponding 
metric tensors at r = a. According to Ref. [10], the metric tensor components outside the body in the 
covariant theory of gravitation are equal to

Comparison of Eqs. (30) and (27) shows that the components g
22

 and g
33

 coincide both inside and 
outside the body.

Equating g
00

 in Eqs. (27) and (30) under condition that r = a, taking into account Eqs. (28) and 
(29), we find the constant A

3
:

According to Ref. [22], the gravitational mass mg of the body and the total electric charge qb are 
determined as follows:

Since γc > 0, it turns out that mg > m and qb > q.
Now we will substitute Eq. (31) into the expression for g

00
 (see Eq. (30)) and take into account  

Eq. (29):

In this expression             and            denote the scalar potentials of the gravitational 

and electric fields outside the body, respectively. 
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We can also determine the quantities γс and ℘с more exactly. In Ref. [21] we found the expression 
for the square of the particles’ velocities    at the center of the spherical body; using it we can estimate 
the value of the Lorentz factor in Eq. (33):

According to Ref. [26], the scalar potential of the pressure field at the center of the body is approx-
imately equal to

while the acceleration field constant η and the pressure field constant σ are given by the formulas

In Eq. (33) we see the complex structure of the metric tensor components, in which additional 
terms appear as compared to the Minkowski spacetime metric, where in the spherical coordinates

The main addition in Eq. (33) is the term

and if we take into account Eq. (32), then this addition will become approximately equal to               

The second important addition includes square brackets in Eq. (33), which, by the order of magni-
tude, determines the energy of the gravitational and electric fields, as well as the pressure one. In these 
brackets, we can also use the approximate relation of the masses in expression (32). For the metric 
tensor components outside the body all this leads to the following expression:

On the right-hand side of Eq. (34), in the round brackets, there are quantities with the dimension 
of energy. For large cosmic bodies, the main quantity here is the negative energy associated with grav-
itation. In this case we can see that the third term, containing c4 in the denominator, is distinguished 
by a sign from the second term, containing c2 in the denominator.

Comparison with the metric of the general theory of relativity

In order to compare with the metric tensor components (30) and (34), we will consider the Reissner 
– Nordström metric in the spherical coordinates, which describes the static gravitational field around 
a charged spherical body in the general theory of relativity. We will use our notation for the field po-
tentials:
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As we can see, the second and third terms in the component g
00

 in the Reissner – Nordström 
metric (35) differ significantly from the corresponding terms in the component g

00
 in the CTG metric 

(34) outside the body. For example, we can see that the metric in Eq. (35) does not reflect the energy 
of the pressure field inside the body in any way, whereas in Eq. (34) the energy m℘c is associated with 
the pressure field and makes its contribution to the metric. Taking into account Eq. (28), the energy 
m℘c also defines the metric (27) inside the body.

This difference in the form of the metric is due to the difference in the equations for determining 
the metric in both theories. While Eq. (1) is used in CTG, the equation for the metric with the cos-
mological constant Λ in the general theory of relativity has the following form in the matter with the  
stress-energy tensor     

According to the approach of the general theory of relativity, the action of gravitation must be 
described by the metric tensor, and therefore    does not include the stress-energy tensor of the  
gravitational field. There is no matter and no pressure field outside the charged body; only the electro-
magnetic field is left on the right-hand side of Eq. (36), so that we have          As a rule, the term 
with the cosmological constant Λ in Eq. (36) is neglected due to its smallness, and then the solution 
for the metric (35) is obtained.

Since the cosmological constant is taken into account in CTG fully, it turns out that the solution 
of Eq. (27) in view of (28) for the CTG metric inside the body and the solution of Eq. (33) outside 
the body are more precise and informative than the solution of Eq. (35) in the Reissner – Nordström  
metric. Moreover, in CTG, the cosmological constant    is not equal to zero and is proportional to 
the potentials of all the fields acting inside the body. If in Eq. (28) only the main term with rest energy  
density is taken into account, then with the relation (29) we can estimate the value   :

If we substitute here the average mass density of the cosmic space matter of the observable uni-
verse, we shall obtain the value    ≈ 10–52 m–2. The smallness of the cosmological constant    inside  
cosmic bodies is associated with the large factor (29) in Eq. (37). To this end we recall that the issue of the 
cosmological constant in the general theory of relativity has not yet been resolved unambiguously [27], 
especially with respect to correlation with vacuum energy. Here it is implied that a very large vacuum 
energy makes little contribution to the metric for some reason and to the small cosmological constant.

In CTG, the greater is the mass density in Eq. (37), the larger is Λ inside the body. However if we 
distribute the matter of all cosmic bodies over the space, then the mass density will be very low, which 
leads to insignificantly small value    ≈ 10–52 m–2. We should also pay attention to the fact that the  
cosmological constant outside the body is assumed to be zero due to its gauging in CTG [16]. Inside 
the bodies, as well as inside the observable universe as some global body,    has a certain value. In the  
approximation of the relativistic uniform body model,    is determined in Eq. (28).

In contrast, in the general theory of relativity, in Eq. (36), the nonzero value of the cosmological 
constant outside the body is admitted. The latter follows from the possibility of influence of the zero 
vacuum’s energy on the metric through the cosmological constant.
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Summary

In Section 3 we have shown that the sum of the stress-energy tensors of all the four fields inside 
the body is zero. With this in mind, the metric tensor components were calculated as functions of 
the current radius in Eq. (27). As a result, on the surface of the body at r = a it became possible to 
compare the metric inside and outside the body and to determine the unknown coefficient A

3
 in the 

external metric (30).
The metric tensor components g

00
 and g

11
 outside the fixed spherical body in the covariant theo-

ry of gravitation (CTG), that were presented in Eq. (30), were specified by us in Eqs. (33) and (34). 
It turns out that these components are the functions of the scalar potentials of all the fields, so that, 
for example, the pressure field inside the body also influences the metric outside the body. How-
ever, the main contribution to the metric is made by the scalar potential of the gravitational field 

            Apparently this is due to the fact that the expression for the scalar potential ψ includes  

the gravitational mass mg that characterizes the source of the field and the gravitation force. At the 
same time the relativistic energy is proportional to the inertial mass M, while for an external observer 
the mass M is the rest mass and characterizes the system with respect to the forces acting on it. Both 
of these masses differ from each other by the mass-energy of the particles’ binding by means of the 
fields [26]. As for the electromagnetic field, its contribution is secondary. The body’s charge is only 
indirectly included in the rest mass of the body and is not directly included in the gravitational mass. 
The electric field potentials vanish in neutral bodies in Eq. (34). Thus, the gravitational field is the 
main factor that distinguishes the curved space-time metric from the Minkowski flat one.

Our calculations allowed us to calculate the metric CTG inside the body and to refine the metric 
outside the body, but there was one more unknown adjustable coefficient β in the metric tensor com-
ponents. Its appearance can be due to the assumption that the coefficient (29) has an exact value, so 
that the coefficient β is intended to ensure the correct value of the metric. The value of the coefficient 
β can be determined in the gravitational experiments, in which the space-time metric should be taken 
into account.

.gGm
r

ψ = −
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