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Abstract. A method for calculating bending plates by the finite element method based on Reisner's theory is
proposed. The method is based on the fundamental principles of minimum of additional energy and possible
displacements. For discretization of the subject area, arbitrary quadrangular finite elements are used. Over the
area of the finite element, the moment fields and shear forces are approximated by constant functions that satisfy
the differential equilibrium equations in the area of the finite element in the absence of a distributed load. Using
the principle of possible displacements, algebraic equilibrium equations of the nodes of the finite element grid
are compiled. In accordance with Reisner's theory, vertical displacements and angles of rotation of the middle
surface of the plate are taken as nodal possible displacements as independent. The proposed method of
calculation allows you to calculate both thick and thin plates. There is no effect of «locking» of the solution for
thin plates, which is confirmed by calculations of rectangular plates with different support conditions of side and
different ratios of thickness to plate sizes. The solutions obtained by the proposed method for plates of various
shapes are compared with analytical solutions. Sufficiently fast convergence and accuracy of the proposed
calculation method for both thick and thin plates is shown.

1. Introduction

Bending plates are one of the main elements of the supporting structures for various construction
objects. Often in construction, for example as a foundation, thick reinforced concrete slabs are used. When
calculating thick plates, it is necessary to consider, in addition to bending deformations, transverse shear
deformations of sections, which can significantly affect the stress-strain state of the plate. The theory of
bending plates, based on the hypothesis of direct normals, does not allow to consider shear deformations.
Finite elements, developed based on the Kirchhoff theory, can be used only for the calculation of thin plates
[1-2].

The Reisner's bending plate theory is widely used for calculating thick plates [3—4]. In contrast to the
classical Kirchhoff theory, in Reisner’'s theory, the angles of rotation of the middle surface and vertical
displacements are considered as independent variables. Such way makes it possible to lower the maximum
order of derivatives in the strain energy functional and makes it possible to use first-order functions for
approximating the displacement functions. As known, the direct use of Reisner’s theory for constructing finite
elements in displacements leads to the «locking» effect which consists in the impossibility of using these finite
elements for calculating thin plates, which limits their applicability only to the area of thick plates. In order to
overcome the “blocking” effect, various additional coordination of the finite element’s unknowns is often used.
For example, the hypothesis of direct normals is enforced gone at discrete points or high order shift theory is
used [5-6]. The finite elements based on satisfying the hypothesis of direct normals in the middle of the sides
of finite elements are widely used in software and demonstrate good accuracy.

Various variational principles are successfully used to solve the stability and dynamics problems of
various structures, including plates of variable stiffness [7—8]. A detailed analysis of the applicability of
variational principles to the solution of a wide range of problems of the theory of elasticity by the finite element
method is performed in [9-10]. In these works, the formulations of the variational principles of Lagrange,
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Castilian, Reisner are considered in detail and the relevance of obtaining a two-sided estimate of the obtained
approximate solutions is noted.

When constructing analytical solutions of the problems of bending rectangular plates, high-order
shear theories are applied. In this case, along the cross section the deformations change according to law
different from linear principle [11-12]. To construct finite elements that consider shear deformations, the
third-order shear theory is applied successfully [13-14]. In [14], quadrangular finite element is presented
that has seven degrees of freedom at each node: three displacements of the middle surface along the axes
of coordinates, two shear angles and two angles of rotation of the normals. Such an approach allows one
to more accurately consider shear deformations, when the properties of the material are changing in
different directions. In [15], an additional procedure is used to account for shear deformations in the finite
elements already construct, which are used to calculate thin plates. Transverse shear deformations are
calculated of based on the direct application of the equations of the three-dimensional theory of elasticity.
To construct quadrangular finite element the Galerkin’s method is used in a weak form [16]. Also, the
Galerkin’s method is used to construct triangular and quadrangular finite elements according to
Reisner-Mindlin theory in [17]. In [18, 19], analytical solutions for rectangular plates, obtained based on
Reisner's theory, are proposed.

Mixed and hybrid variational formulations are also used to construct finite elements of plates with
allowance for shear deformations [20-23]. On the one hand, such formulations simplify the inclusion of shear
deformations by using both displacements and shear forces and moments as unknowns, but, on the other
hand, matching of displacements and forces is required to ensure convergence.

Thus, most of the developed methods for calculating plates with considering shearing deformations, in
one form or another, are based either on approximations of displacement functions or on solving differential
equations expressed in terms of displacement functions. In this case, stresses are determined as derivatives
of displacements expressed by approximate functions, which leads to an inevitable loss of accuracy in their
determination, although stresses are more important for assessing the strength of a structure. In addition, the
accuracy of the solution depends on the selected finite element mesh and we cannot, in the general case for
an arbitrary construction, determine the accuracy of the solution obtained. Therefore, it remains actual to build
alternative models, to the finite element method in displacements, for considering shear deformations when
calculating flexible plates based on Reisner's theory. If we have solutions obtained on an alternative basis,
then by comparing two (or more) solutions we will be able to obtain a more reliable estimate of the accuracy
of the solutions obtained.

The purpose of this work is to develop a method for calculating plates with considering to the shear
deformations of Reisner's plates, which based on the functional of additional energy and the principle of possible
displacements, as well as comparing the solutions obtained for plates of various shapes and with different
supporting conditions with solutions obtained by other methods. Such an approach for solving the plane problem
of the theory of elasticity is used in [24], for rod systems in [25-26] and for bendable plates in [27-28]. In [28], a
method for calculating thick bent plates with allowance for shear deformations based on the extended Castiliano
functional is proposed. As additional terms, using the Lagrange multipliers method, algebraic equilibrium
equations of nodes, obtained using the principle of possible displacements, are added to the functional. Possible
vertical displacements of nodes causing bending and possible vertical displacements of nodes causing shear
are used separately. As a result of the calculation, the rotation angles for the nodes are not directly determined.
In this work, as possible displacements, both possible displacements in the form of vertical displacements and
rotation angles will be used. In this case, as a result of the calculation, we can obtain both the magnitudes of the
vertical displacements and the magnitudes of the rotation angles, which is more convenient.

2. Methods

Solving the problems of plate bending we obtain based on the functional of additional energy for an
isotropic plate (for simplicity, we assume that there are no specified displacements) considering the shear
deformations:

1( 12 1 2k (1+v ]
Hc:f(ﬁ)I(Mf+M5—2vMXMy+2(1+v)Mfy)dQ+§[%JJ‘(Qf+Q§)dQ—>mIn. &)

E is the modulus of material elasticity;
t is the plate thickness;

vis Poisson's ratio;

k = 6/5 is coefficient considering the parabolic law of change of tangential stress across the plate thickness.
The functional (1) is can written in matrix form that is more convenience for solving by the finite element method:
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In expression (2) the following notation is entered:

M Q tr 12(1+v)[1 0
M _ _ +
Mp=dM, b Q=1 b [ET =22 v 1 0 | [E =TT @
Q, E.t 5E-t |01
M, 0 0 2(1+v)

In functional (2), the first addend is associated with the bending deformations of the plate, the second
is due to shear deformations by transverse forces.
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Figure 1. An arbitrary quadrangular finite element.

For discretization of the subject area, we use arbitrary quadrangular finite elements (Figure 1). Over the
area of the finite element the moments and shear forces will be approximated by the constant functions. It is
obvious that such functions satisfy differential equilibrium equations in the area of a finite element in the
absence of distributed loads.

For the finite element K in the global coordinate system, we combine the unknown internal forces into
the vector {F«}, and shall denote the flexible matrix as [Dx].

12 -12.
E-t3 E‘t;, 0 0 0
vk 24(1+v)
{Fk}: Moy k [Dk]zAk 0 0 E—t3 0 0 ) (4)
ka
' 12(l+v)
g o0 0 HEr 0
12(1+v)
o o o SET

Ax is the area of the finite element;

N is number of finite elements. Then the expression of the functional (1) can be written in the following
matrix form:

1° =330 (R [D{R} =3{F} [D]{F} - min; )

[51] tR)
[D]= B , {F}=9 © i (6)
[On] tFo)
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In accordance with the principle of minimum of the additional energy, the functions for moments My,

My, Myy and shear forces Qx, Qy must satisfy the corresponding differential equilibrium equations (7) and
static boundary conditions.

8Ivl"+6lley—QX:0, 6My+6MXy 0 +&

OX oy oy OX ox oy

Dividing the region of problem into finite elements and using approximations for internal efforts, then we
shall obtain a finite-dimensional analog of the differential equations (7). For this we use the method of weighted
residuals. Then for the first differential equation, we can write the following equations for the method of

weighted residuals:
oM oM _
;A':( aXX-|— ny—QXJéHXYIdAIO, |:1’2’.“N' (8)

-Q, =0, +q=0. )

N is the number of nodes of the finite element grid;

60, ; is weight functions;

Ai is area of the region where the weight function is nonzero. We assume that the weight functions 59x,i

are nonzero only in the region of finite elements adjacent to the node I under consideration. Such weight
functions can be called “local” or “finite”. Using for (8) the integration procedure in parts, we obtain the following
expression:

(M, 58,;) (M50, ;)
ox ' oy

O Mxﬁ((;ix,i),,vl 0(50,,) Q,50,; {dA+ | dA=0, i=1 2, ..., N. (9)
A

Xy
% A

The second integral in expression (9) can be transformed using the Gauss theorem [1] (integration by
parts in the plane case) into the integral over the boundary of the region, then we get:

8(50, (50,
1 ) (axx")ﬂley (ayx")—Qx&%,i dA—I[(MXIX+Mxyly)5¢9X1idF=O, i=1,2,..,N. (10

I} is the boundary of the area in which the weight function 66, ; is nonzero;

|x,|y are direction cosines of normal to the boundary of the region I . If we shall give the weight

functions 5:9X'i a physical meaning and take them in the form of possible angles of rotation along the X axis,
then expression (10) coincides with the expression of the principle of possible displacements. The first integral
in (10) is the work of internal forces on possible displacements, the second integral is the potential of external,

given moments on the boundary. Bending and torsional moments perform work on the corresponding
curvatures, and shear forces perform work on shear angles.

Performing similar transformations to the second and third equations (7), we obtain two more equilibrium
equations:

f Mya(gaiy'i)“\/'xya(gazy'i)‘vay'i dA- [ (M), +M,1,)50,,dr=0, i=12,..,N. @

A T
(w")  ofow"

fla 5, & )dA—.[(Qx|x+Qy|y)5thdF_,[q5WiShdA=O’i=1’2""’N' 12
A ‘i A

59y’i is possible displacement (weight function) in the form of a rotation angle along the Y axis;

&th is possible displacement (weight function) in the form of a vertical displacement associated with

a shear.
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Thus, from differential equilibrium equations (7), for the Reisner plate, we obtained algebraic equilibrium
equations (10)—(12) for nodes of the finite elements grid, which, when crushing the grid, will tend to differential
equations. Note that expressions for derivatives of internal forces are not included in expressions (2),
(10)-(12), so they can be accepted to be constant over the finite element region, and possible displacements
can be taken as linear functions.

To build a solution, instead of the three differential equilibrium equations (7), having completed the
transformations, we can get only two:
O*M O°M,  O°M a
K2 YT V4= Q, Qy+q 0. (13)
OX oxoy oy ox oy
Obviously, the first equation is associated with bending deformations, and the second with shear
deformations. For the second differential equation, algebraic equilibrium equations (12) are obtained above.

For the first equation, we shall take the function &N,b as a weight function. Then we get

M, _0°M,, 0°M :
J' axzx_l_z axa;y+ ayzy +q WibdA=0, 1=12,...,N. (14)

A
For the convenience of recording transformations, we introduce intermediate notation:
owp owp M, M, oM,, oM,,
é‘¢X‘| aX 1 5¢y‘| 8y H VX ax H y ay H UX 6X 1 Uy 8y . ( )
Using (15) we get
aVx aUx ou y avy b _ F_
j[aer Y + o + Ry +q ow;dA=0, i=12,...,N. (16)

Let us demonstrate the further transformations scheme by the example of the transformation of the first
addend in (16). Using procedure of integration in parts we get:

|1=j—5wdA— jv ( )dA+jMdA (17)

Next, using the Gauss theorem, we replace the second integral over the area by the integral along the
boundary contour:

—jv ( )dA+_[VI5WdF (18)

I

Using (15), we replace the variables again:

— X X b
_I 50 olAIa |, swPdr. (19)
To the first integral from (19), we also use integration by parts:

I _J‘M q)XI J‘ Mé‘wxl

Applying the Gauss theorem to the second integral, we finally get
0% (owp)

b
Ilz/l[MxTZidA—;[ Ml a(givi )dr+1{ agf(x | SwPdr (21)

A+ j —= 2l owdr. (20)
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Using similar transformations for all terms and using the expression for the transverse forces from (7),
we obtain the following expression for (16):

o% (swP % (swP ?(ow! oow?
/{MX%+2MW%+My%dA j( +Mxyly)%dl“

(22)

b
—[ (Ml + Mxy|x)%r+ [(Qdi+Q)l, Jowpdr + [ q.owPdA=0, i=12,...,N.
T T A

Equations (22) are equilibrium equations for nodes on possible vertical displacements, causing flexural
deformations. In [27, 28], equilibrium equations like (22) were used in constructing a solution for Kirchhoff
plates, which based on the functional of additional energy. Linear functions were taken as possible
displacements in the finite element region. Therefore, in the triangular finite elements, the first integral was
zero. For the rectangular finite elements in the first integral, only the term associated with the torsional
curvature was nonzero. The fourth integral is zero, both at the boundaries between the finite elements and at
the outer boundaries. The fourth integral is the work of transverse forces normal to the boundary. Therefore,
if the external boundary is free, then the transverse forces are zero. If there are no displacements at the border,
then there is also zero the possible displacement. The second and third integrals in (22) are the work of
moments at the angles of rotation along the normal to the sides of the finite elements. With linear possible
displacements, these angles get fractures (breaks) and therefore the third and fourth integrals will not be equal
to zero. In papers [27, 28] for triangular finite elements, these integrals were calculated using geometric
constructions. Note that when using this approach to the solution, it is impossible to use the approximations
of forces constant over the finite element region, since in this case the second and third integrals will be equal
to zero.

Comparing the two options have considered above, we note that in the second version, the states of
bending and shear are completely separated, and in the first version they are connected. But at the same time,
it should be noted that the original differential equations equilibrium of are the same.

In this paper, we will use the first version of the equilibrium equations construction, based on three
independent possible displacements. In accordance with the minimum of additional energy principle the
functions of moments and shear forces must satisfy the corresponding differential equilibrium equations and
static boundary conditions. Since, in the general case, it is almost impossible to select such functions, we
shall act as follows. Using the possible displacements principle, we shall compose algebraic equilibrium
equations for the nodes of the finite element grid. In this case, in accordance with Reisner's theory we shall
take, as the nodal possible displacements, the vertical displacements and rotation angles of middle surface
independently. Further, the resulting algebraic equilibrium equations will be added to the functional (5) using
the Lagrange multipliers method. This ensures the equilibrium of the selected stress fields in a discrete
sense (in nodes) and the solution can be obtained by minimizing the resulting extended functional. It should
be noted that the number of equilibrium equations must be less than the total number of unknown nodal
forces. Since the forces in the domain of finite elements are approximated by constant functions, then small
grids are necessary for obtaining sufficiently accurate solutions, therefore the above requirement will be
fulfilled. For example, in a 4x4 square grid, the number of unknown nodal forces will already be greater than
the number of equilibrium equations, even if the superposed supports are not taken into account.

ow,

Figure 2. Possible displacements of the node 1 of finite element.

To get the solution, we use the well-known transformation of an arbitrary quadrilateral (Figure 1a) into
the square element (Figure 1b). Such transformation can be written in the following form:

x=3" N(ED) Xy, Y=20 N(En) -y Ni(&n)= (1+§§)(1+?7.) (23)

X «» Yi are coordinates nodes of finite element K in the global coordinate system.
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Displacements in the finite element area, caused by possible displacements of the node I, we shall
express using the linear basis functions introduced above — N, (é‘,?]):

oW = Ni(flﬂ)BWiv 00, = Ni(égln)Bex,i' 66, = Ni(flﬂ)wy,i- (24)

With the possible displacement &Ni =1 only shear deformations occur in the plate:

5y _a(dw) _ N, (&) 57 _ow) _ N (&)

T ox oX T ay oy

Then, the work of the internal forces of finite element K by possible displacement is expressed in the
following form:

(25)

38Uy, = Qi [[ 37,0 8A+Qy . [[37,,0A .
A A
The work of external forces
Ny k = Py +” N;i (&,77)- G, dA 27)
Ar

P, ; is force which concentrated in a node;

Q,x is load which is distributed over area of the finite element;

Ax is area of the finite element. In accordance with the principle of possible displacements, we shall
obtain the equilibrium equation for the node i

keza;isuwi,k + k;&vwi'k =0. (28)

=, is the set of finite elements adjacent to the node i. Equations (28) for all nodes can be written in the
following general matrix form:

[ {F.iJ+P =0, icE, (29)

—w

o

{vai} is vector containing the coefficients before unknown forces of finite elements in the equilibrium

Wi

equation of the node i;

{Fw,i} is vector of unknown forces of finite elements adjacent to node |.

P, is generalized force equal to the work of external forces;

—
(=
o

w is set of nodes that have degree of freedom along the Z axis. The expressions for the elements of
the vectors and the generalized forces will be given below.

With the possible displacement in the form of rotation angle along the X axis 86, ; =1, both bending
and torsional deformations and shear deformations take place:

2(36,) _oN (&) o(86,) _ oN;(&,m)

Sy =t =00 g, =] TS5y =50, =-N,(&,7). 30
T == s n =", o y (&) (30)

In this case, the work of the internal forces for the finite element has the following form:
8Uﬁxi,k = Qx,k Ij87xsz+ M %,k J] 51 wdA+M Xy, k J-J 8nydA' (31)

A A A
The work of external forces in the general case
Vo, k =My +_U N; (&, U)‘mex,de (32)
A
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M, ; is the moment of external forces concentrated in the node, which acting along the X axis; — acting

along the X axis moment of external forces, which distributed over the finite element area;

A< is the area of the finite element. Equilibrium equation, like equation (29), will have the following form:

T vl - p—
{Coi} {Foi}+Myi =0, i€z, (33)
{ngyi} is vector containing coefficients before unknown forces of finite elements in the equilibrium
equation of the node i;

{Fa i } is unknown forces vector for finite elements adjacent to node |.

M, ; is generalized moment equal to the work of external forces;

E, is nodes set, which have degrees of freedom in the form turn angles 6, .

For possible displacement, in the form a rotation angle along the Y axis 8«9in =1, such expressions are
written similarly:

_9(36,) _ oNy(&.m)

0(89,) _ N, (&)
Sy, ==y , Sy, =-80, =-N,(&7)
Zyy ay ay ny ox ox 7yz y i (é: 77) (34)
8U g,k = Qi [[37,,dA+ M, [[ 37, dA+M,  [[37,,dA (@5)
A A A
Vo = Mo, + [[ N (&) my 1 OA (36)
A

Using the Lagrange multipliers, equations (29), (33) and (37) we shall add to the functional (5). Then we get

11° =3 (FY" [D}{F}+ X w({Cus) {Rui} + R+

lezy

ZX 0,, ({chvi VRl Mx,ij+ % 0, ({ng,i V(R i)+, j > min.

(38)

iEEg

We introduce the notation for the nodal displacements global vector — {W}. The vector combines all
unknown vertical displacement and rotation angles for the whole area:

.
{W}Z(Wl b2 Oy " Wop O ey,m) '

Then, equating to zero the derivatives of the functional (38) with respect to the vectors {W} and {F},
we shall obtain the following linear algebraic equations system:

e

The matrix [L] and vector {P} is formed from the coefficients of the equilibrium equations (29), (33) and (37).

The matrix [D] is block diagonal form and easily analytically invertible. Therefore, we can express the
vector {F} from first matrix equation:

{Fi=[DI"Pj-[DI*[L] W} (40)

Then we express the vector {W} from the second matrix equation

[Klw}=[DI"{P} [K]=[LIDI*LT. (42)

Note that the matrix [K] has tape structure of nonzero elements.
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Consider the matrix [L] formation algorithm for a plate represented by arbitrary quadrangular finite
elements. For partial derivatives of the function N, (f, 77) of the finite element with the number K, the following
expressions can be written:

ON, 0N, ox 0N, oy oN; _oN; ox N, oy
0 X 0 oy o' on  Ox On oy on

Index i denotes the local number of a finite element node (Figure 1a). Equations (42) are written in the

matrix form:

(42)

oN,| [ox ey](an x oy
o | _|0& 0& ) ox o0& o0&
6Ni - % 6l 6N| ’ [\]]_ % g (43)
on on on|lon on on

Using relations (7), we obtain the expressions of the Jacobi [J] matrix’s elements:

Gi (L+n7; -
1, :g_g: 24_1 i ( 7 I)XI ) :% (1_;7)(x2‘k _Xl,k)+(1+77)(x3,k —X4k)]
4 é:| 1+7777|
Jio =%=Zi:1 ( 2 ) %_(1_77)<y2,k _yl,k)+(1+77)(y3,k_y4k):|' 44
7 (1+ 86 -
- By Al ) ') Y T R
1 (1+65 -
s 2o BB 3y )14
From relation (43), we can obtain the expressions for the necessary derivatives:
oN, oN,
X 1| 08 by by
=[J , I = . 45
Fpbriay el 49
on on
The elements of matrix [J ]71 have the following expressions:
detd =J,,J,,—J,d,0, by = b, = L O R (46)
nhe T b detJ 2 detd’ P detd’ P detd
Using the expression (45) and (7), we shall get
ON; S 1+nn U 1+§§
aX. bll |( |) b12 I( |), 4
N, éi(1+m7.)+b n(2) 0
ay — M1 4 22 4 '

We shall get integrals on the area of arbitrary quadrilateral finite element, for function Ni(&, #) and it

ox oy’
Cix = ”%dA:%J‘_llf_ll(thfi (1+7777i)+b1277i (1+§§i ))det Jdédn,
C2| __U IdA 1." J. 21§| 1+7777| +b2277| (1+§§|))det~]d§d77, (48)

cg,i,k = NidA=ZLL(1+ &) (1+nn, )detJ d&dn.
A

Integrals (48) are calculated numerically using the four-point Gauss formula.
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Using (48), we write the expressions (26), (31) and (35) for the possible displacements of the node i for
the finite element with the number K in the following form:
OU,, « = QuCrik +Qy ok
0U, « =M, Cix + M Coy — Qi Caixs (49)
8U0yi,k = Mxy,kcli,k +M y.kCaik _Qy,kcsi,k-

U, |
We can introducethevector—{SULK}: 8U9xivk . Then
8U9yi,k
0 0 0 Ci k Caix
{8Ui,k}:[Li,k]{Fk}’ [Li,k]: Cyi k 0 Coiiv  —Caik 0 | (50)
0 C2i,k Cli,k 0 _C3i,k

From the matrices [Li,k] formed for each finite elements nodes, in accordance with the numbering of

the nodes and finite elements, the global matrix [L] is formed for whole system. If the boundary of the area is
not parallel to one of the global axes, but lies at an angle « to the X axis, then the matrix should be multiplied
by the matrix of direction cosines:

1 0 0
[ ]=[sIL.) [s]=|0 cose sine| (51)
0 —sina cosa

For the case of a load uniformly distributed on the finite element, the work of external forces on possible
displacement is calculated by the following formula:

Ny k = ” N (&,77)- 0, dA =0, Cqi - (52)
A

3. Results and Discussion

It is well known that when using the theory of bending of Reisner plates for building finite elements in
the form of the displacement’s method, the so-called problem of “locking” the solution arises. “Locking” is that
such finite elements are unsuitable for the calculation of thin plates. Therefore, as first example, we shall obtain
solutions for rectangular plates with different ratios of the plate thickness to its dimensions and for different
variants of supporting the sides (Figure 3).

Y Y
5 Y
//////////////////Il LLLLLLLLLLLEL L LLYL
[ 1 1 rF===-="==7==== r
| | | 1 | I
I | | | | |
| | | | | I
b | I I I I I
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I Il x I I x e Il x
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Figure 3. Conditions of support and the sizes of the sides of bending Levi's plates.
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In Figure 3 dashed line and the letter S denotes a simply supported side, the oblique hatching and the
letter C denotes a clamped side, and the letter F denotes the free side. Table 1 presents the results of
calculations of the plate denoted SS, given in [11] for various theories, and the results obtained by the
proposed method — SFEM. The lengths of the plate sides were taking equal to 3 m or 1.5 m. The side 3 m

long was divided into 30 finite elements, and the side 1.5 m — into 16 elements. Poisson's ratio is v=0.3.

The load was taken evenly distributed over the plate area. The results of calculations in Table 1 are presented
in dimensionless form:

—_ 100D, [(a b
" ga’ W(Z’ 2)' (53)
Table 1. Displacement of the center of the plate under the action of a uniformly distributed load.
a b t/a Theory Boundary conditions
CC CS SS CF SF FF
3 1.5 0.001 CRT 0.0163 0.0305 0.0633 0.1450 0.3810 1.3714
S-FSDT 0.0163 0.0305 0.0633 0.1450 0.3809 1.3713
[11] 0.0163 0.0305 0.0633 0.1450 0.3810 1.3714
SFEM 0.0161 0.0303 0.0632 0.1449 0.3808 1.3688
0.04 CRT 0.0178 0.0322 0.0647 0.1505 0.3880 1.3797
S-FSDT 0.0175 0.0318 0.0646 0.1476 0.3835 1.3770
[11] 0.0178 0.0322 0.0646 0.1504 0.3879 1.3795
SFEM 0.0176 0.0320 0.0646 0.1503 0.3890 1.3769
0.1 CRT 0.0256 0.0421 0.0725 0.1746 0.4111 1.4168
S-FSDT 0.0245 0.0386 0.0714 0.1614 0.3972 1.4070
[11] 0.0256 0.0407 0.0714 0.1721 0.4084 1.4130
SFEM 0.0254 0.0405 0.0715 0.1721 0.4100 1.4103
0.2 CRT 0.0524 0.0694 0.0958 0.2391 0.4688 1.5247
S-FSDT 0.0489 0.0630 0.0958 0.2105 0.4464 1.5141
[11] 0.0525 0.0695 0.0958 0.2395 0.4692 1.5248
SFEM 0.0524 0.0695 0.0960 0.2396 0.4712 1.5220
3 3 0.001 CRT 0.1917 0.2785 0.4062 0.5667 0.7931 1.3094
S-FSDT 0.1917 0.2786 0.4062 0.5667 0.7931 1.3094
[11] 0.1917 0.2786 0.4062 0.5667 0.7931 1.3094
SFEM 0.1916 0.2786 0.4063 0.5663 0.7924 1.3068
0.04 CRT 0.1965 0.2830 0.4096 0.5737 0.7981 1.3154
S-FSDT 0.1955 0.2819 0.4096 0.5712 0.7975 1.3151
[11] 0.1965 0.2830 0.4096 0.5737 0.7981 1.3154
SFEM 0.1964 0.2834 0.4107 0.5732 0.7983 1.3128
0.1 CRT 0.2209 0.3059 0.4273 0.6065 0.8224 1.3459
S-FSDT 0.2128 0.2996 0.4273 0.5945 0.8208 1.3451
[11] 0.2209 0.3059 0.4273 0.6065 0.8224 1.3459
SFEM 0.2209 0.3065 0.4289 0.6061 0.8230 1.3432
0.2 CRT 0.3021 0.3827 0.4904 0.7139 0.9072 1.4539
S-FSDT 0.2759 0.3827 0.4904 0.6777 0.9041 1.4523
[11] 0.3021 0.3827 0.4904 0.7139 0.9072 1.4539
SFEM 0.3023 0.3837 0.4924 0.7135 0.9081 1.4512
1.5 3 0.001 CRT 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887
S-FSDT 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887
[11] 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887
SFEM 0.8440 0.9256 1.0106 1.0564 1.1444 1.2804
0.04 CRT 0.8511 0.9330 1.0181 1.0664 1.1547 1.2938
S-FSDT 0.8497 0.9322 1.0181 1.0660 1.1551 1.2944
[11] 0.8511 0.9330 1.0181 1.0664 1.1547 1.2938
SFEM 0.8506 0.9323 1.0172 1.0623 1.1502 1.2855
0.1 CRT 0.8850 0.9637 1.0454 1.0981 1.1829 1.3228
S-FSDT 0.8770 0.9596 1.0454 1.0946 1.1837 1.3244
[11] 0.8850 0.9637 1.0454 1.0981 1.1829 1.3228
SFEM 0.8845 0.9638 1.0420 1.0940 1.1791 1.3145
0.2 CRT 1.0000 1.0704 1.1430 1.2090 1.2844 1.4283
S-FSDT 0.9746 1.0572 1.1430 1.1970 1.2861 1.4316
[11] 1.0000 1.0704 1.1430 1.2090 1.2844 1.4283
SFEM 0.9998 1.0712 1.1446 1.2050 1.2812 1.4199
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The results presented in Table 1 demonstrate good accuracy of the solution according to the proposed
method, both for thin and thick plates. Thus, the proposed solution method is free from the so-called “locking”
effect and can be used to calculate plates of any thickness.

To assess the accuracy of determining the bending moments, we consider the results of calculations of
the SS plate for different aspect ratios. It is known that when the sides of plate are simply supported, the values
of the bending moments don't depend on the plate thickness. Table 2 provides comparison of the values of
moments in the center of the plate, obtained by the proposed method, with the results of analytical calculations
according to the Kirchhoff theory [29]. The finite element grid was taken 21x21.

Table 2. Moments in the center of the SS plate which loaded with a uniformly distributed load.

o/a 100M, /ga® 100M, / ga’
t/a = 0.001 t/a=o0.2 Exact [29] t/a = 0.001 t/a=0.2 Exact [29]

1.0 4.79 4.84 4.79 4.79 4.84 4.79
1.1 5.55 5.60 5.54 4.93 4.98 4.93
1.2 6.27 6.33 6.27 5.01 5.06 5.01
1.3 6.94 7.00 6.94 5.03 5.08 5.03
1.4 7.55 7.62 7.55 5.02 5.07 5.02
15 8.11 8.19 8.12 4.98 5.03 4.98
1.6 8.62 8.69 8.62 4.93 4.98 4.92
1.7 9.08 9.15 9.08 4.86 4.90 4.86
1.8 9.48 9.56 9.48 478 4.83 4.79
1.9 9.85 9.92 9.85 471 4.75 471
2.0 10.17 10.24 10.17 463 4.67 4.64

Note that for thin plates, the proposed solution practically coincides with the analytical one, and for thick
plates one, the resulting moments are more than analytical ones by about 1 %.

Also, the rate of the solution convergence by the proposed method was tested when was crushing the
finite element grid. The test showed fast convergence of displacements for all considered variants of plates.
In Figure 4 shows graphs of solutions convergence for two variants of square plates, depending on the number
side's divisions.

w w
035 0.45
t/a=0.2
0.3.\° . (J.fll\ﬂz_.—<
]
0.25 0.35
t/a=0.001
0.2 , 03 t/2=0.001
¥—‘k—_‘—“—1l
0.15 n 0.25 &
10 20 30 10 20 30
a) b)

Figure 4. Displacement the center of a square plate depending
on the number of side divisions: a) SS plate; b) CS plate.

In Figure 5 shows the graphs of the change in bending moments in the SS plate (Figure 3) for various
sides ratios. The plate was crushed into 21 finite elements along each side. Therefore, the lengths of the finite
element’s sides were in the same ratio as the lengths of the plate sides. Bending moments are constant values
in the finite element region and so more accurately model the value in the finite element centers. Therefore,
to more accurately determine the value of the moment in the clamped side middle My 2, linear extrapolation
was used according to the moment values in the two finite elements nearest to the boundary. Obviously, with
an increase in the ratio of the finite element sides, the error in determining the moment on the clamped side
also increases.
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Figure 5. Bending moments for a uniformly loaded square plate CC with different ratios of sides.
MXJ: |\/|x,1/qa2 and I\Wy’1 = I\/Iy,llqa2 are bending moments in the center of the plate;

Myyz
Red line is t/a = 0.001; Blue line is t/a = 0.2; Green line is the solutions for the Kirchhoff plate [29].

= My,zlqa2 is bending moment in the middle of the clamped side. Designations:

Graphs in Figure 5 shows the concurrence of the obtained moment values for thin plates with the
analytical solution for Kirchhoff plates (the Green lines coincide with the Red lines). For thick plates (Blue line),

only the moments M v coincide with the solution for Kirchhoff’s plates (Figure 5b). The values of the moments

I\WX’1 and I\Wy’2 for thick plates differ by 10—20 % from the corresponding moments obtained for thin plates.

For an additional estimation of the results accuracy obtained, square SS plate was calculated on the
LIRA-SAPR program using volume finite elements. A quarter of the plate was divided into 12 elements in

height and into 20 elements along the X and Y axes. A plate with thickness t = 0.6m was calculated. The
dimensions of the plate quarter in plan are 1.5 m by 1.5 m. Poisson's ratio v=0.3. Load is ( = 10 kN/m?2.
Modulus of elasticity is E = 10000 kN/m2.

Table 3. Stresses in a square SS plate — (Figure 2).

Center of the plate Middle of the clamped side
Solution Fibe_r of
secion |g, [,kN/m* o, kN /m’ o, kN /m?
LIRA-SAPR top 41.85 43.39 88.11
bottom 47.50 46.29 89.13
mean 44.68 44.84 88.62
value
SFEM 43.91 49.95 93.15
Kirchhoff's plate [29] 36.54 49.86 103.46

Comparison of the results presented in Table 3 shows that the stress values obtained for thick plate
based on Reisner’s theory agree well with the stress values obtained by solving three-dimensional elasticity

theory problem. Stresses in the clamped side oy,2 were determined using linear extrapolation from the values
in the two finite elements nearest to the boundary. Also note that the displacements of the slab center, obtained
by the LIRA-SAPR program, are 8.5 % more than the displacements obtained by the proposed method.

As next example the semiring was calculated on the acting of uniformly distributed load (Figure 6).
The semiring has hinge supports along the lines DE and DB, and clamped support along the line EA. Line
AB is the axis of symmetry, therefore, in the nodes lying on this line, the angles of rotation along the

horizontal axis were excluded. In the calculations were taken the following data: E = 10000 kN/m?2, = 0.3,
t=0.1m, g=10kN/m2, R=6m, r=3m. In Figure 7 shows graphs of changes along the line AB: bending

radial moments — M y moments directed perpendicular to the line AB — I\WX and vertical displacements W
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Figure 6. Finite element grids of the ring quarter.
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Figure 7. Bending moments and deflections of the semiring along the AB line:
Red line is scheme in Figure 6a; Blue line is scheme in Figure 6b.
Table 4. Comparison of calculation results for the semiring with an analytical solution.
Solution W, I\nyC My,c I\WX’A I\Wy’A
SFEM (Figure 66) 0.357 0.0118 0.0387 —0.00436 —-0.0167
Analytical [30] 0.358 0.0118 0.0393 —0.00439 —0.0168

The values of the moments at point C were determined as the middle value of moments in two finite
elements adjacent to the point on both sides. The values of the moments at point A were determined by linear
extrapolation from the values of moments in the two nearest finite elements. Graphs in Figure 7 illustrate the
linear variation of moments near clamped side (y = 0). Thus, the graphs in Figure 7 and the data in Table 4
show good convergence and accuracy of the proposed method and for this example.

In the following example we use the finite element in the form of a parallelogram which have maximum
inner angle of 120 degrees. A skewed plate was calculated (Figure 8). For such plate the finite difference
solution is given in [29].
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Figure 8. Skewed plate. Grid — 10x20 finite elements.
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The following plate parameters were taken: E = 107 kN/m?, x£=0.21, t = 0.1 m, ¢ = 10 kN/m?2. Sizes of
the plate are shown in Figure 8. Calculations were performed for two finite element grids: 10 by 20 elements
(Figure 8) and 20 by 40 elements. In addition, for comparison, calculations of this plate were performed using
the LIRA-SAPR program. All results are given in Table 5.

Table 5. Displacements and bending moments in the center of the plate (Figure 8).

Solution (grid) W, mm My, kN - m/m My, kN - m/m
SFEM (10x20) 9.074 3.371 8.635
SFEM (20x40) 9.187 3.437 8.780
LIRA-SAPR (10x20) 9.115 4,758 7.237
LIRA-SAPR (20x40) 9.149 4.828 7.347
Timoshenko [29] 9.719 - 8.712

The values of the bending moments in the plate center (for SFEM and for LIRA-SAPR) were determined
as the middle value of moments in two elements adjacent to the center point on one half plate. Note that the
moments in the two finite elements differ by about 5 percent. The bending moments obtained by the proposed
method are close to the corresponding values given in [29], and the value of plate center displacement is less
than the corresponding value given in [29] by about 6 %, but almost coincides with the value obtained using
the LIRA-SAPR program. The results of the skew plate calculations show a good accuracy of the proposed
method for calculating the Reisner's plates with using finite elements in the parallelogram form. Note that the
plate under consideration is thin, but nevertheless the solution “locking” effect is absent, as well as for the
plate in the semiring form from the previous example.

4. Conclusion

1. A method for calculating of bending plates based on Reisner's theory by the finite element method is
proposed. The method is based on the fundamental principles of additional energy minimum and possible
displacements. The necessary relations for an arbitrary quadrangular finite element are obtained.
Mathematically, the transition from differential equilibrium equations of bent plates to algebraic equilibrium
equations for nodes of finite element grid.

2. The bending moments, torques and shear forces are constant in the finite element area, which is
necessary condition for ensuring the solution convergence, when the mesh is crushed.

3. The proposed calculation method allows both thick and thin plates to be calculated. There is no effect
of solution “locking” for thin plates, which is confirmed by rectangular plates calculations with different support
conditions of side and different ratios of thickness to plate sizes.

4. Comparison of solutions obtained by the proposed method for plates of various shapes with analytical
solutions shows fast convergence and proposed method accuracy of calculating both thick and thin plates.
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KoHe4HO-anemMeHTHaa Modernb B HanpsXKeHUsX Ans nnacTuH
PeincHepa

FO0.51. Trokanoe
Bsamckuti eocydapcmeeHHbIl yHusepcumem, 2. Kupos, Poccus

KnioueBble cnoBa: nnacTuHbl PeﬁCCHepa, BO3MOXHble nepemMelleHnda, KOHe4YHble 3N1IEMEHTHI, narmbaemole
nnacTUHbI

AHHoOTaumA. lNpegnoxeHa MeToaMka pacyeTa M3rmbaembiX MAAacTMH METOOOM KOHEYHbIX 3J1EMEHTOB Ha
ocHoBe Teopun PencHepa. MeToa ocHOBbIBaeTCcs Ha yHAAMEHTanbHbIX MNPUHUMAAX MUHUMYMa
OOMOSHUTENbHON 3HEepPrMm W BO3MOXHLIX MepemelleHnn. [Ona guckpetmsaumm npegMeTHon obnactu
NCMNONb3YTCHA NMPOU3BOJIbHbIE YETbIPEXYrOfIbHbIE KOHEYHbIE 3n1eMeHThbl. 1o o6nacTtn KOHEYHOro afemMeHTa
nosnst MOMEHTOB U NOMEPEYHbIX CUM annPOKCUMUPYHTCS MOCTOSIHHBIMU OYHKLMSIMI, KOTOPbIE YOOBIETBOPSIIOT
anddepeHumnanbHbiM - YpaBHEHMAM paBHOBECUS B 0O0MacTM KOHEYHOro 3fieMeHTa npu  OTCYTCTBMM
pacnpedeneHHon  Harpy3ku. Mcnonb3yss  NpuHUMN  BO3MOXHbIX  MEPEMELLEHUN,  COCTaBMSIOTCS
anrebpaunyeckne ypaBHEHNS PaBHOBECUS Y3OB CETKM KOHEYHbIX 3reMeHTOoB. [1pn 9TOM, B COOTBETCTBUU C
Teopuen PeliccHepa, B KayeCcTBe Y3MOBbIX BO3MOXHbIX MepeMeLleHnn NPUHNMaoTCH, He3aBUCUMO,
BepTMKanbHble NepeMeLLeHs U Yribl NOBOPOTa CpeaMHHON NOBEPXHOCTM NnacTuHbl. [peanaraemelil MeToq
pacyeTa no3BOJIAEeT pacCyYUTbiBaTb KaK TOJICTbl€, TaK W TOHKME MNACTUHbI. 3(b(beKT «3aKNMNMHNMBaHUA»
peweHna ana TOHKUX nnacTUH OTCYTCTBYET, YTO noATBepXAeHO pacdeTaMu NpPpAMOYrosibHbIX MaCcTuH C
pas3nnyHbiMK  yCcrnioBuaMu onupaHma un pasfindyHbiMM  OTHOLUEHUAMU TONWUHBbI K pasMepy nnacTuHbI.
CpaBHMBaOTCA peLleHnsi, NoSyYeHHble Mo npeanaraeMo MeToauke Ofis NNacTUH pasnuyHon opmel, ¢
aHanuMTudeckuMmn peweHnamn. NokaszaHa [OCTaToOYHO ObiCTpasi CXOAMMOCTb M TOYHOCTb Mnpeasiaraemomn
MEeTOOMKN pacyeTa Kak st TONCThbIX, TakK 1 AN TOHKUX MAacTyuH.
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