
Magazine of Civil Engineering. 2019. 89(5). Pp. 61–78 
Инженерно-строительный журнал. 2019. № 5(89). С. 61–78 

Tyukalov, Yu.Ya. Finite element model of Reisner’s plates in stresses. Magazine of Civil Engineering. 2019. 89(5). 
Pp. 61–78. DOI: 10.18720/MCE.89.6 

Тюкалов Ю.Я. Конечно-элементная модель в напряжениях для пластин Рейснера // Инженерно-строительный 
журнал. 2019. № 5(89). С. 61–78. DOI: 10.18720/MCE.89.6 

 This open access article is licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) 

 

 
ISSN 

2071-0305 
Magazine of Civil Engineering 

journal homepage: http://engstroy.spbstu.ru/ 
 

DOI: 10.18720/MCE.89.6 

Finite element model of Reisner’s plates in stresses 

Yu.Ya. Tyukalov 
Vyatka State University, Kirov, Russia 

Keywords: Reisner's plates, possible displacements, finite elements, bending plate 

Abstract. A method for calculating bending plates by the finite element method based on Reisner's theory is 
proposed. The method is based on the fundamental principles of minimum of additional energy and possible 
displacements. For discretization of the subject area, arbitrary quadrangular finite elements are used. Over the 
area of the finite element, the moment fields and shear forces are approximated by constant functions that satisfy 
the differential equilibrium equations in the area of the finite element in the absence of a distributed load. Using 
the principle of possible displacements, algebraic equilibrium equations of the nodes of the finite element grid 
are compiled. In accordance with Reisner's theory, vertical displacements and angles of rotation of the middle 
surface of the plate are taken as nodal possible displacements as independent. The proposed method of 
calculation allows you to calculate both thick and thin plates. There is no effect of «locking» of the solution for 
thin plates, which is confirmed by calculations of rectangular plates with different support conditions of side and 
different ratios of thickness to plate sizes. The solutions obtained by the proposed method for plates of various 
shapes are compared with analytical solutions. Sufficiently fast convergence and accuracy of the proposed 
calculation method for both thick and thin plates is shown. 

1. Introduction 
Bending plates are one of the main elements of the supporting structures for various construction 

objects. Often in construction, for example as a foundation, thick reinforced concrete slabs are used. When 
calculating thick plates, it is necessary to consider, in addition to bending deformations, transverse shear 
deformations of sections, which can significantly affect the stress-strain state of the plate. The theory of 
bending plates, based on the hypothesis of direct normals, does not allow to consider shear deformations. 
Finite elements, developed based on the Kirchhoff theory, can be used only for the calculation of thin plates 
[1–2]. 

The Reisner's bending plate theory is widely used for calculating thick plates [3–4]. In contrast to the 
classical Kirchhoff theory, in Reisner’s theory, the angles of rotation of the middle surface and vertical 
displacements are considered as independent variables. Such way makes it possible to lower the maximum 
order of derivatives in the strain energy functional and makes it possible to use first-order functions for 
approximating the displacement functions. As known, the direct use of Reisner’s theory for constructing finite 
elements in displacements leads to the «locking» effect which consists in the impossibility of using these finite 
elements for calculating thin plates, which limits their applicability only to the area of thick plates. In order to 
overcome the “blocking” effect, various additional coordination of the finite element’s unknowns is often used. 
For example, the hypothesis of direct normals is enforced gone at discrete points or high order shift theory is 
used [5–6]. The finite elements based on satisfying the hypothesis of direct normals in the middle of the sides 
of finite elements are widely used in software and demonstrate good accuracy. 

Various variational principles are successfully used to solve the stability and dynamics problems of 
various structures, including plates of variable stiffness [7–8]. A detailed analysis of the applicability of 
variational principles to the solution of a wide range of problems of the theory of elasticity by the finite element 
method is performed in [9–10]. In these works, the formulations of the variational principles of Lagrange, 
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Castilian, Reisner are considered in detail and the relevance of obtaining a two-sided estimate of the obtained 
approximate solutions is noted. 

When constructing analytical solutions of the problems of bending rectangular plates, high-order 
shear theories are applied. In this case, along the cross section the deformations change according to law 
different from linear principle [11–12]. To construct finite elements that consider shear deformations, the 
third-order shear theory is applied successfully [13–14]. In [14], quadrangular finite element is presented 
that has seven degrees of freedom at each node: three displacements of the middle surface along the axes 
of coordinates, two shear angles and two angles of rotation of the normals. Such an approach allows one 
to more accurately consider shear deformations, when the properties of the material are changing in 
different directions. In [15], an additional procedure is used to account for shear deformations in the finite 
elements already construct, which are used to calculate thin plates. Transverse shear deformations are 
calculated of based on the direct application of the equations of the three-dimensional theory of elasticity. 
To construct quadrangular finite element the Galerkin’s method is used in a weak form [16]. Also, the 
Galerkin’s method is used to construct triangular and quadrangular finite elements according to  
Reisner-Mindlin theory in [17]. In [18, 19], analytical solutions for rectangular plates, obtained based on 
Reisner's theory, are proposed. 

Mixed and hybrid variational formulations are also used to construct finite elements of plates with 
allowance for shear deformations [20–23]. On the one hand, such formulations simplify the inclusion of shear 
deformations by using both displacements and shear forces and moments as unknowns, but, on the other 
hand, matching of displacements and forces is required to ensure convergence. 

Thus, most of the developed methods for calculating plates with considering shearing deformations, in 
one form or another, are based either on approximations of displacement functions or on solving differential 
equations expressed in terms of displacement functions. In this case, stresses are determined as derivatives 
of displacements expressed by approximate functions, which leads to an inevitable loss of accuracy in their 
determination, although stresses are more important for assessing the strength of a structure. In addition, the 
accuracy of the solution depends on the selected finite element mesh and we cannot, in the general case for 
an arbitrary construction, determine the accuracy of the solution obtained. Therefore, it remains actual to build 
alternative models, to the finite element method in displacements, for considering shear deformations when 
calculating flexible plates based on Reisner's theory. If we have solutions obtained on an alternative basis, 
then by comparing two (or more) solutions we will be able to obtain a more reliable estimate of the accuracy 
of the solutions obtained. 

The purpose of this work is to develop a method for calculating plates with considering to the shear 
deformations of Reisner's plates, which based on the functional of additional energy and the principle of possible 
displacements, as well as comparing the solutions obtained for plates of various shapes and with different 
supporting conditions with solutions obtained by other methods. Such an approach for solving the plane problem 
of the theory of elasticity is used in [24], for rod systems in [25–26] and for bendable plates in [27–28]. In [28], a 
method for calculating thick bent plates with allowance for shear deformations based on the extended Castiliano 
functional is proposed. As additional terms, using the Lagrange multipliers method, algebraic equilibrium 
equations of nodes, obtained using the principle of possible displacements, are added to the functional. Possible 
vertical displacements of nodes causing bending and possible vertical displacements of nodes causing shear 
are used separately. As a result of the calculation, the rotation angles for the nodes are not directly determined. 
In this work, as possible displacements, both possible displacements in the form of vertical displacements and 
rotation angles will be used. In this case, as a result of the calculation, we can obtain both the magnitudes of the 
vertical displacements and the magnitudes of the rotation angles, which is more convenient. 

2. Methods 
Solving the problems of plate bending we obtain based on the functional of additional energy for an 

isotropic plate (for simplicity, we assume that there are no specified displacements) considering the shear 
deformations: 

( )( ) ( ) ( )2 2 2 2 2
3

2 11 12 12 2 1 d d min.2 2
c

x y x y xy x y
k

M M M M M Q QE tE t
ν

Π ν ν Ω Ω
+  = + − + + + + →   ⋅⋅   

∫ ∫  (1) 

E is the modulus of material elasticity;  

t is the plate thickness;  

ν is Poisson's ratio;  

k = 6/5 is coefficient considering the parabolic law of change of tangential stress across the plate thickness. 
The functional (1) is can written in matrix form that is more convenience for solving by the finite element method: 

62



Magazine of Civil Engineering, 89(5), 2019 

Tyukalov, Yu.Ya. 

{ } [ ] { } { } [ ] { }111 1d d min .2 2
T Tc

shM E M Q E QΠ Ω Ω−−= + →∫ ∫  (2) 

In expression (2) the following notation is entered: 
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 (3) 

In functional (2), the first addend is associated with the bending deformations of the plate, the second 
is due to shear deformations by transverse forces. 

 
Figure 1. An arbitrary quadrangular finite element. 

For discretization of the subject area, we use arbitrary quadrangular finite elements (Figure 1). Over the 
area of the finite element the moments and shear forces will be approximated by the constant functions. It is 
obvious that such functions satisfy differential equilibrium equations in the area of a finite element in the 
absence of distributed loads. 

For the finite element k in the global coordinate system, we combine the unknown internal forces into 
the vector {Fk}, and shall denote the flexible matrix as [Dk]. 
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 (4) 

Ak is the area of the finite element;  

n is number of finite elements. Then the expression of the functional (1) can be written in the following 
matrix form: 

{ } [ ]{ } { } [ ]{ }1
1 1 min;2 2

n T Tc
k k kk F D F F D FΠ

=
= = →∑  (5) 
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   (6) 
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In accordance with the principle of minimum of the additional energy, the functions for moments Mx, 
My, Mxy and shear forces Qx, Qy must satisfy the corresponding differential equilibrium equations (7) and 
static boundary conditions. 

0, 0, 0.xy y xy yx x
x y

M M M QM QQ Q qx y y x x y
∂ ∂ ∂∂ ∂

+ − = + − = + + =
∂ ∂ ∂ ∂ ∂ ∂

 (7) 

Dividing the region of problem into finite elements and using approximations for internal efforts, then we 
shall obtain a finite-dimensional analog of the differential equations (7). For this we use the method of weighted 
residuals. Then for the first differential equation, we can write the following equations for the method of 
weighted residuals: 

, d 0, 1,2, .
i

xyx
x x i

A

MM Q A i Nx y δθ
∂ ∂

+ − = = ∂ ∂ 
∫   (8) 

N is the number of nodes of the finite element grid;  

ix ,δθ  is weight functions;  

Ai is area of the region where the weight function is nonzero. We assume that the weight functions ix ,δθ  

are nonzero only in the region of finite elements adjacent to the node i under consideration. Such weight 
functions can be called “local” or “finite”. Using for (8) the integration procedure in parts, we obtain the following 
expression: 

( ) ( ) ( ) ( ),, , ,
, 0, 1, 2, , .

i i

xy x ix i x i x x i
x xy x x i

A A

MM
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   ∂∂ ∂ ∂
  − + − + + = =

∂ ∂ ∂ ∂      
∫ ∫   (9) 

The second integral in expression (9) can be transformed using the Gauss theorem [1] (integration by 
parts in the plane case) into the integral over the boundary of the region, then we get: 

( ) ( ) ( ), ,
, , d 0, 1, 2, , .

i i

x i x i
x xy x x i x x xy y x i

A

M M Q dA M l M l i Nx y
Γ

δθ δθ
δθ δθ Γ

 ∂ ∂
 + − − + = =

∂ ∂ 
 
∫ ∫   (10) 

iΓ  is the boundary of the area in which the weight function ix ,δθ  is nonzero;  

yx ll ,  are direction cosines of normal to the boundary of the region iΓ . If we shall give the weight 

functions ix ,δθ  a physical meaning and take them in the form of possible angles of rotation along the X axis, 
then expression (10) coincides with the expression of the principle of possible displacements. The first integral 
in (10) is the work of internal forces on possible displacements, the second integral is the potential of external, 
given moments on the boundary. Bending and torsional moments perform work on the corresponding 
curvatures, and shear forces perform work on shear angles. 

Performing similar transformations to the second and third equations (7), we obtain two more equilibrium 
equations: 
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i i
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sh sh
i i sh sh
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Q Q dA Q l Q l w d q w A i Nx y
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δ δ
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∂ ∂ 
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∫ ∫ ∫   (12) 

iy ,δθ  is possible displacement (weight function) in the form of a rotation angle along the Y axis;  

sh
iwδ  is possible displacement (weight function) in the form of a vertical displacement associated with 

a shear.  
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Thus, from differential equilibrium equations (7), for the Reisner plate, we obtained algebraic equilibrium 
equations (10)–(12) for nodes of the finite elements grid, which, when crushing the grid, will tend to differential 
equations. Note that expressions for derivatives of internal forces are not included in expressions (2),  
(10)–(12), so they can be accepted to be constant over the finite element region, and possible displacements 
can be taken as linear functions. 

To build a solution, instead of the three differential equilibrium equations (7), having completed the 
transformations, we can get only two: 

.0,02 2

22

2

2

=+
∂

+
∂
∂=+

∂
∂

+
∂∂

∂
+

∂
∂ q

y
Q

x
Qq

y
M

yx
M

x
M yxyxyx  (13) 

Obviously, the first equation is associated with bending deformations, and the second with shear 
deformations. For the second differential equation, algebraic equilibrium equations (12) are obtained above. 
For the first equation, we shall take the function b

iwδ  as a weight function. Then we get 

2 22

2 22 0, 1, 2, , .
i

xy y bx
i

A

M MM q w dA i Nx yx y
δ

 ∂ ∂∂
+ + + = =  ∂ ∂∂ ∂ 

∫   (14) 

For the convenience of recording transformations, we introduce intermediate notation: 

, ,, , , , , .
b b

y xy xyi i x
x i y i x y x y

M M Mw w MV V U Ux y x y x yδϕ δϕ
∂ ∂ ∂∂ ∂ ∂

= = = = = =
∂ ∂ ∂ ∂ ∂ ∂

 (15) 

Using (15) we get 

0, 1, 2, , .
i

y y bx x
i

A

U VV U q w dA i Nx y x y δ
∂ ∂ ∂ ∂

+ + + + = = ∂ ∂ ∂ ∂ 
∫   (16) 

Let us demonstrate the further transformations scheme by the example of the transformation of the first 
addend in (16). Using procedure of integration in parts we get: 

( ) ( )
1 .

i i i

b b
i x ibx

i x
A A A

w V wVI w dA V dA dAx x x
δ δ

δ
∂ ∂∂

= = − +
∂ ∂ ∂∫ ∫ ∫  (17) 

Next, using the Gauss theorem, we replace the second integral over the area by the integral along the 
boundary contour: 

( )
1 Γ.

i i

b
i b

x x x i
A

w
I V dA V l w dx
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δ
δ

∂
= − +
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Using (15), we replace the variables again: 

1 , Γ.
i i

bx x
x i x i

A

M MI dA l w dx x
Γ

δϕ δ
∂ ∂

= − +
∂ ∂∫ ∫  (19) 

To the first integral from (19), we also use integration by parts: 

( ) ( ), ,
1 Γ.

i i i

x i x x i bx
x x i

A A
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Γ

δϕ δϕ
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Applying the Gauss theorem to the second integral, we finally get 

( ) ( )2

1 2 Γ Γ.
i i i
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Using similar transformations for all terms and using the expression for the transverse forces from (7), 
we obtain the following expression for (16): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
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∂
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∂
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 (22) 

Equations (22) are equilibrium equations for nodes on possible vertical displacements, causing flexural 
deformations. In [27, 28], equilibrium equations like (22) were used in constructing a solution for Kirchhoff 
plates, which based on the functional of additional energy. Linear functions were taken as possible 
displacements in the finite element region. Therefore, in the triangular finite elements, the first integral was 
zero. For the rectangular finite elements in the first integral, only the term associated with the torsional 
curvature was nonzero. The fourth integral is zero, both at the boundaries between the finite elements and at 
the outer boundaries. The fourth integral is the work of transverse forces normal to the boundary. Therefore, 
if the external boundary is free, then the transverse forces are zero. If there are no displacements at the border, 
then there is also zero the possible displacement. The second and third integrals in (22) are the work of 
moments at the angles of rotation along the normal to the sides of the finite elements. With linear possible 
displacements, these angles get fractures (breaks) and therefore the third and fourth integrals will not be equal 
to zero. In papers [27, 28] for triangular finite elements, these integrals were calculated using geometric 
constructions. Note that when using this approach to the solution, it is impossible to use the approximations 
of forces constant over the finite element region, since in this case the second and third integrals will be equal 
to zero. 

Comparing the two options have considered above, we note that in the second version, the states of 
bending and shear are completely separated, and in the first version they are connected. But at the same time, 
it should be noted that the original differential equations equilibrium of are the same. 

In this paper, we will use the first version of the equilibrium equations construction, based on three 
independent possible displacements. In accordance with the minimum of additional energy principle the 
functions of moments and shear forces must satisfy the corresponding differential equilibrium equations and 
static boundary conditions. Since, in the general case, it is almost impossible to select such functions, we 
shall act as follows. Using the possible displacements principle, we shall compose algebraic equilibrium 
equations for the nodes of the finite element grid. In this case, in accordance with Reisner's theory we shall 
take, as the nodal possible displacements, the vertical displacements and rotation angles of middle surface 
independently. Further, the resulting algebraic equilibrium equations will be added to the functional (5) using 
the Lagrange multipliers method. This ensures the equilibrium of the selected stress fields in a discrete 
sense (in nodes) and the solution can be obtained by minimizing the resulting extended functional. It should 
be noted that the number of equilibrium equations must be less than the total number of unknown nodal 
forces. Since the forces in the domain of finite elements are approximated by constant functions, then small 
grids are necessary for obtaining sufficiently accurate solutions, therefore the above requirement will be 
fulfilled. For example, in a 4×4 square grid, the number of unknown nodal forces will already be greater than 
the number of equilibrium equations, even if the superposed supports are not taken into account. 

 
Figure 2. Possible displacements of the node 1 of finite element. 

To get the solution, we use the well-known transformation of an arbitrary quadrilateral (Figure 1a) into 
the square element (Figure 1b). Such transformation can be written in the following form: 

( ) ( ) ( ) ( )( ).11
4
1,,,,, ,

4

1,
4

1
ηηξξηξηξηξ iiikii ikii i NyNyxNx ++=⋅=⋅= ∑∑ ==

 (23) 

kix , , kiy ,  are coordinates nodes of finite element k in the global coordinate system. 

66



Magazine of Civil Engineering, 89(5), 2019 

Tyukalov, Yu.Ya. 

Displacements in the finite element area, caused by possible displacements of the node i, we shall 
express using the linear basis functions introduced above – ( )ηξ ,iN : 

( ) ( ) ( ) .δ,δ,δ,δ,δ,δ ,, iyiyixixii NNwNw θηξθθηξθηξ ===  (24) 

With the possible displacement 1=iwδ  only shear deformations occur in the plate: 

( ) ( ).,)δ(δ,,)δ(δ
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x
w i

yz
i

xz ∂
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=
∂

∂
=

∂
∂

=
∂

∂
=

ηξγηξγ  (25) 

Then, the work of the internal forces of finite element k by possible displacement is expressed in the 
following form: 

, , ,δ δ δ .
i

k k

w k x k xz y k yz
A A

U Q dA Q dAγ γ= +∫∫ ∫∫  (26) 

The work of external forces 

( ), , ,δ , .
i

r

w k z i i z k
A

V P N q dAξ η= + ⋅∫∫  (27) 

izP ,  is force which concentrated in a node;  

kzq ,  is load which is distributed over area of the finite element;  

Ak is area of the finite element. In accordance with the principle of possible displacements, we shall 
obtain the equilibrium equation for the node i 

∑ ∑
Ξ∈ Ξ∈

=+
i i

ii
k k

kwkw VU .0δδ ,,  (28) 

iΞ  is the set of finite elements adjacent to the node i. Equations (28) for all nodes can be written in the 
following general matrix form: 

{ } { } .,0,, wiiw
T

iw iPFC Ξ∈=+  (29) 

{ }iwC ,  is vector containing the coefficients before unknown forces of finite elements in the equilibrium 

equation of the node i;  

{ }iwF ,  is vector of unknown forces of finite elements adjacent to node i.  

iP  is generalized force equal to the work of external forces;  

wΞ  is set of nodes that have degree of freedom along the Z axis. The expressions for the elements of 
the vectors and the generalized forces will be given below. 

With the possible displacement in the form of rotation angle along the X axis 1δ , =ixθ , both bending 
and torsional deformations and shear deformations take place: 

( ) ( ) ( ).,δδ,,)δ(δ,,)δ(δ ηξθγηξθχηξθχ ixxz
ix

xy
ix

xx N
y

N
yx

N
x

−=−=
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∂
=

∂
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=
∂

∂
=

∂
∂

=  (30) 

In this case, the work of the internal forces for the finite element has the following form: 

, , , ,δ δ δ δ .
xi

k k k

k x k xz x k xx xy k xy
A A A

U Q dA M dA M dAθ γ χ χ= + +∫∫ ∫∫ ∫∫  (31) 

The work of external forces in the general case 

( ), , ,δ , .
xi x x

r

k i i k
A

V M N m dAθ θ θξ η= + ⋅∫∫  (32) 
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ix
M ,θ  is the moment of external forces concentrated in the node, which acting along the X axis; – acting 

along the X axis moment of external forces, which distributed over the finite element area;  

kA  is the area of the finite element. Equilibrium equation, like equation (29), will have the following form: 

{ } { }, , , 0, .
x x x

T
i i x iC F M iθ θ θΞ+ = ∈  (33) 

{ }ix
C ,θ  is vector containing coefficients before unknown forces of finite elements in the equilibrium 

equation of the node i;  

{ }ix
F ,θ  is unknown forces vector for finite elements adjacent to node i.  

ixM ,  is generalized moment equal to the work of external forces;  

xθΞ  is nodes set, which have degrees of freedom in the form turn angles xθ . 

For possible displacement, in the form a rotation angle along the Y axis 1δ , =iyθ , such expressions are 
written similarly: 
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Using the Lagrange multipliers, equations (29), (33) and (37) we shall add to the functional (5). Then we get 
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We introduce the notation for the nodal displacements global vector – {W}. The vector combines all 
unknown vertical displacement and rotation angles for the whole area: 

{ } ( )1 ,2 ,3 2 , 1 , .
T

x y m x m y mW w wθ θ θ θ− −=    

Then, equating to zero the derivatives of the functional (38) with respect to the vectors {W} and {F}, 
we shall obtain the following linear algebraic equations system: 
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The matrix [L] and vector {P} is formed from the coefficients of the equilibrium equations (29), (33) and (37). 

The matrix [D] is block diagonal form and easily analytically invertible. Therefore, we can express the 
vector {F} from first matrix equation: 

{ } [ ] { } [ ] [ ] { }WLDPDF T11 −− −=  (40) 

Then we express the vector {W} from the second matrix equation 

[ ]{ } [ ] { } [ ] [ ][ ] [ ] ., 11 TLDLKPDWK −− ==  (41) 

Note that the matrix [K] has tape structure of nonzero elements. 
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Consider the matrix [L] formation algorithm for a plate represented by arbitrary quadrangular finite 
elements. For partial derivatives of the function ( )ηξ ,iN  of the finite element with the number k, the following 
expressions can be written: 

.,
ηηηξξξ ∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂ y

y
Nx

x
NNy

y
Nx

x
NN iiiiii  (42) 

Index i denotes the local number of a finite element node (Figure 1a). Equations (42) are written in the 
matrix form: 
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Using relations (7), we obtain the expressions of the Jacobi [J] matrix’s elements: 
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From relation (43), we can obtain the expressions for the necessary derivatives: 
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The elements of matrix [ ] 1−J  have the following expressions: 
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Using the expression (45) and (7), we shall get 
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We shall get integrals on the area of arbitrary quadrilateral finite element, for function Ni(ξ, η) and it 

derivatives 
x
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Integrals (48) are calculated numerically using the four-point Gauss formula. 
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Using (48), we write the expressions (26), (31) and (35) for the possible displacements of the node i for 
the finite element with the number k in the following form: 
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We can introduce the vector – { } .
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From the matrices [ ]kiL ,  formed for each finite elements nodes, in accordance with the numbering of 

the nodes and finite elements, the global matrix [ ]L  is formed for whole system. If the boundary of the area is 
not parallel to one of the global axes, but lies at an angle α to the X axis, then the matrix should be multiplied 
by the matrix of direction cosines: 
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For the case of a load uniformly distributed on the finite element, the work of external forces on possible 
displacement is calculated by the following formula: 

( )∫∫ =⋅=
r

i

A
kikzkzikw cqAqNV .d,δ ,3,,, ηξ  (52) 

3. Results and Discussion 
It is well known that when using the theory of bending of Reisner plates for building finite elements in 

the form of the displacement’s method, the so-called problem of “locking” the solution arises. “Locking” is that 
such finite elements are unsuitable for the calculation of thin plates. Therefore, as first example, we shall obtain 
solutions for rectangular plates with different ratios of the plate thickness to its dimensions and for different 
variants of supporting the sides (Figure 3). 

 
Figure 3. Conditions of support and the sizes of the sides of bending Levi's plates. 
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In Figure 3 dashed line and the letter S denotes a simply supported side, the oblique hatching and the 
letter C denotes a clamped side, and the letter F denotes the free side. Table 1 presents the results of 
calculations of the plate denoted SS, given in [11] for various theories, and the results obtained by the 
proposed method — SFEM. The lengths of the plate sides were taking equal to 3 m or 1.5 m. The side 3 m 
long was divided into 30 finite elements, and the side 1.5 m — into 16 elements. Poisson's ratio is ν = 0.3. 
The load was taken evenly distributed over the plate area. The results of calculations in Table 1 are presented 
in dimensionless form: 

( )4
100 , .2 2

D a bw w
qa

=  (53) 

Table 1. Displacement of the center of the plate under the action of a uniformly distributed load. 
a b t/a Theory Boundary conditions 
    CC CS SS CF SF FF 

3 1.5 0.001 CRT 0.0163 0.0305 0.0633 0.1450 0.3810 1.3714 
   S-FSDT 0.0163 0.0305 0.0633 0.1450 0.3809 1.3713 
   [11] 0.0163 0.0305 0.0633 0.1450 0.3810 1.3714 
   SFEM 0.0161 0.0303 0.0632 0.1449 0.3808 1.3688 
  0.04 CRT 0.0178 0.0322 0.0647 0.1505 0.3880 1.3797 
   S-FSDT 0.0175 0.0318 0.0646 0.1476 0.3835 1.3770 
   [11] 0.0178 0.0322 0.0646 0.1504 0.3879 1.3795 
   SFEM 0.0176 0.0320 0.0646 0.1503 0.3890 1.3769 
  0.1 CRT 0.0256 0.0421 0.0725 0.1746 0.4111 1.4168 
   S-FSDT 0.0245 0.0386 0.0714 0.1614 0.3972 1.4070 
   [11] 0.0256 0.0407 0.0714 0.1721 0.4084 1.4130 
   SFEM 0.0254 0.0405 0.0715 0.1721 0.4100 1.4103 
  0.2 CRT 0.0524 0.0694 0.0958 0.2391 0.4688 1.5247 
   S-FSDT 0.0489 0.0630 0.0958 0.2105 0.4464 1.5141 
   [11] 0.0525 0.0695 0.0958 0.2395 0.4692 1.5248 
   SFEM 0.0524 0.0695 0.0960 0.2396 0.4712 1.5220 
          

3 3 0.001 CRT 0.1917 0.2785 0.4062 0.5667 0.7931 1.3094 
   S-FSDT 0.1917 0.2786 0.4062 0.5667 0.7931 1.3094 
   [11] 0.1917 0.2786 0.4062 0.5667 0.7931 1.3094 
   SFEM 0.1916 0.2786 0.4063 0.5663 0.7924 1.3068 
  0.04 CRT 0.1965 0.2830 0.4096 0.5737 0.7981 1.3154 
   S-FSDT 0.1955 0.2819 0.4096 0.5712 0.7975 1.3151 
   [11] 0.1965 0.2830 0.4096 0.5737 0.7981 1.3154 
   SFEM 0.1964 0.2834 0.4107 0.5732 0.7983 1.3128 
  0.1 CRT 0.2209 0.3059 0.4273 0.6065 0.8224 1.3459 
   S-FSDT 0.2128 0.2996 0.4273 0.5945 0.8208 1.3451 
   [11] 0.2209 0.3059 0.4273 0.6065 0.8224 1.3459 
   SFEM 0.2209 0.3065 0.4289 0.6061 0.8230 1.3432 
  0.2 CRT 0.3021 0.3827 0.4904 0.7139 0.9072 1.4539 
   S-FSDT 0.2759 0.3827 0.4904 0.6777 0.9041 1.4523 
   [11] 0.3021 0.3827 0.4904 0.7139 0.9072 1.4539 
   SFEM 0.3023 0.3837 0.4924 0.7135  0.9081 1.4512 
          

1.5 3 0.001 CRT 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887 
   S-FSDT 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887 
   [11] 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887 
   SFEM 0.8440 0.9256 1.0106 1.0564 1.1444 1.2804 
  0.04 CRT 0.8511 0.9330 1.0181 1.0664 1.1547 1.2938 
   S-FSDT 0.8497 0.9322 1.0181 1.0660 1.1551 1.2944 
   [11] 0.8511 0.9330 1.0181 1.0664 1.1547 1.2938 
   SFEM 0.8506 0.9323 1.0172 1.0623 1.1502 1.2855 
  0.1 CRT 0.8850 0.9637 1.0454 1.0981 1.1829 1.3228 
   S-FSDT 0.8770 0.9596 1.0454 1.0946 1.1837 1.3244 
   [11] 0.8850 0.9637 1.0454 1.0981 1.1829 1.3228 
   SFEM 0.8845 0.9638 1.0420 1.0940 1.1791 1.3145 
  0.2 CRT 1.0000 1.0704 1.1430 1.2090 1.2844 1.4283 
   S-FSDT 0.9746 1.0572 1.1430 1.1970 1.2861 1.4316 
   [11] 1.0000 1.0704 1.1430 1.2090 1.2844 1.4283 
   SFEM 0.9998 1.0712 1.1446 1.2050 1.2812 1.4199 
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The results presented in Table 1 demonstrate good accuracy of the solution according to the proposed 
method, both for thin and thick plates. Thus, the proposed solution method is free from the so-called “locking” 
effect and can be used to calculate plates of any thickness. 

To assess the accuracy of determining the bending moments, we consider the results of calculations of 
the SS plate for different aspect ratios. It is known that when the sides of plate are simply supported, the values 
of the bending moments don't depend on the plate thickness. Table 2 provides comparison of the values of 
moments in the center of the plate, obtained by the proposed method, with the results of analytical calculations 
according to the Kirchhoff theory [29]. The finite element grid was taken 21×21. 

Table 2. Moments in the center of the SS plate which loaded with a uniformly distributed load. 

b/a 
2/100 qaM x  

2/100 qaM y  

t/a = 0.001 t/a = 0.2 Exact [29] t/a = 0.001 t/a = 0.2 Exact [29] 

1.0 4.79 4.84 4.79 4.79 4.84 4.79 

1.1 5.55 5.60 5.54 4.93 4.98 4.93 

1.2 6.27 6.33 6.27 5.01 5.06 5.01 

1.3 6.94 7.00 6.94 5.03 5.08 5.03 

1.4 7.55 7.62 7.55 5.02 5.07 5.02 

1.5 8.11 8.19 8.12 4.98 5.03 4.98 

1.6 8.62 8.69 8.62 4.93 4.98 4.92 

1.7 9.08 9.15 9.08 4.86 4.90 4.86 

1.8 9.48 9.56 9.48 4.78 4.83 4.79 

1.9 9.85 9.92 9.85 4.71 4.75 4.71 

2.0 10.17 10.24 10.17 4.63 4.67 4.64 

Note that for thin plates, the proposed solution practically coincides with the analytical one, and for thick 
plates one, the resulting moments are more than analytical ones by about 1 %. 

Also, the rate of the solution convergence by the proposed method was tested when was crushing the 
finite element grid. The test showed fast convergence of displacements for all considered variants of plates. 
In Figure 4 shows graphs of solutions convergence for two variants of square plates, depending on the number 
side's divisions. 

 
Figure 4. Displacement the center of a square plate depending  

on the number of side divisions: a) SS plate; b) CS plate. 

In Figure 5 shows the graphs of the change in bending moments in the SS plate (Figure 3) for various 
sides ratios. The plate was crushed into 21 finite elements along each side. Therefore, the lengths of the finite 
element’s sides were in the same ratio as the lengths of the plate sides. Bending moments are constant values 
in the finite element region and so more accurately model the value in the finite element centers. Therefore, 
to more accurately determine the value of the moment in the clamped side middle My,2, linear extrapolation 
was used according to the moment values in the two finite elements nearest to the boundary. Obviously, with 
an increase in the ratio of the finite element sides, the error in determining the moment on the clamped side 
also increases. 
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Figure 5. Bending moments for a uniformly loaded square plate CC with different ratios of sides. 

xM ,1 = Mx,1/qa2 and yM ,1  = My,1/qa2 are bending moments in the center of the plate;  

yM ,2  = My,2/qa2 is bending moment in the middle of the clamped side. Designations:  

Red line is t/a = 0.001; Blue line is t/a = 0.2; Green line is the solutions for the Kirchhoff plate [29]. 

Graphs in Figure 5 shows the concurrence of the obtained moment values for thin plates with the 
analytical solution for Kirchhoff plates (the Green lines coincide with the Red lines). For thick plates (Blue line), 
only the moments 1,yM  coincide with the solution for Kirchhoff’s plates (Figure 5b). The values of the moments 

1,xM  and 2,yM  for thick plates differ by 10–20 % from the corresponding moments obtained for thin plates. 
For an additional estimation of the results accuracy obtained, square SS plate was calculated on the 
LIRA-SAPR program using volume finite elements. A quarter of the plate was divided into 12 elements in 
height and into 20 elements along the X and Y axes. A plate with thickness t = 0.6m was calculated. The 
dimensions of the plate quarter in plan are 1.5 m by 1.5 m. Poisson's ratio ν = 0.3. Load is q = 10 kN/m2. 
Modulus of elasticity is E = 10000 kN/m2. 

Table 3. Stresses in a square SS plate – (Figure 2). 

Solution Fiber of 
section 

Center of the plate Middle of the clamped side 

2
1, /, mkNxσ  2

1, /, mkNyσ  2
2, /, mkNyσ  

LIRA-SAPR top 41.85 43.39 88.11 

bottom 47.50 46.29 89.13 

mean 
value 

44.68 44.84 88.62 

SFEM  43.91 49.95 93.15 

Kirchhoff’s plate [29]  36.54 49.86 103.46 

Comparison of the results presented in Table 3 shows that the stress values obtained for thick plate 
based on Reisner’s theory agree well with the stress values obtained by solving three-dimensional elasticity 
theory problem. Stresses in the clamped side σy,2 were determined using linear extrapolation from the values 
in the two finite elements nearest to the boundary. Also note that the displacements of the slab center, obtained 
by the LIRA-SAPR program, are 8.5 % more than the displacements obtained by the proposed method. 

As next example the semiring was calculated on the acting of uniformly distributed load (Figure 6). 
The semiring has hinge supports along the lines DE and DB, and clamped support along the line EA. Line 
AB is the axis of symmetry, therefore, in the nodes lying on this line, the angles of rotation along the 
horizontal axis were excluded. In the calculations were taken the following data: E = 10000 kN/m2,  µ = 0.3,  
t = 0.1 m,  q = 10 kN/m2,  R = 6 m,  r = 3 m. In Figure 7 shows graphs of changes along the line AB: bending 
radial moments – yM ; moments directed perpendicular to the line AB – xM  and vertical displacements w
. 
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Figure 6. Finite element grids of the ring quarter. 
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Figure 7. Bending moments and deflections of the semiring along the AB line:  

Red line is scheme in Figure 6a; Blue line is scheme in Figure 6b. 

Table 4. Comparison of calculation results for the semiring with an analytical solution. 

Solution сw  CxM ,  CyM ,  AxM ,  AyM ,  

SFEM (Figure 6б) 0.357 0.0118 0.0387 –0.00436 –0.0167 

Analytical [30] 0.358 0.0118 0.0393 –0.00439 –0.0168 

The values of the moments at point C were determined as the middle value of moments in two finite 
elements adjacent to the point on both sides. The values of the moments at point A were determined by linear 
extrapolation from the values of moments in the two nearest finite elements. Graphs in Figure 7 illustrate the 
linear variation of moments near clamped side (y = 0). Thus, the graphs in Figure 7 and the data in Table 4 
show good convergence and accuracy of the proposed method and for this example. 

In the following example we use the finite element in the form of a parallelogram which have maximum 
inner angle of 120 degrees. A skewed plate was calculated (Figure 8). For such plate the finite difference 
solution is given in [29]. 

 
Figure 8. Skewed plate. Grid – 10×20 finite elements. 
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The following plate parameters were taken: E = 107 kN/m2, µ = 0.21, t = 0.1 m, q = 10 kN/m2. Sizes of 
the plate are shown in Figure 8. Calculations were performed for two finite element grids: 10 by 20 elements 
(Figure 8) and 20 by 40 elements. In addition, for comparison, calculations of this plate were performed using 
the LIRA-SAPR program. All results are given in Table 5. 

Table 5. Displacements and bending moments in the center of the plate (Figure 8). 

Solution (grid) w, mm Mx, kN ⋅ m/m My, kN ⋅ m/m 

SFEM (10×20) 9.074 3.371 8.635 

SFEM (20×40) 9.187 3.437 8.780 

LIRA-SAPR (10×20) 9.115 4.758 7.237 

LIRA-SAPR (20×40) 9.149 4.828 7.347 

Timoshenko [29] 9.719 – 8.712 

The values of the bending moments in the plate center (for SFEM and for LIRA-SAPR) were determined 
as the middle value of moments in two elements adjacent to the center point on one half plate. Note that the 
moments in the two finite elements differ by about 5 percent. The bending moments obtained by the proposed 
method are close to the corresponding values given in [29], and the value of plate center displacement is less 
than the corresponding value given in [29] by about 6 %, but almost coincides with the value obtained using 
the LIRA-SAPR program. The results of the skew plate calculations show a good accuracy of the proposed 
method for calculating the Reisner's plates with using finite elements in the parallelogram form. Note that the 
plate under consideration is thin, but nevertheless the solution “locking” effect is absent, as well as for the 
plate in the semiring form from the previous example. 

4. Conclusion 
1. A method for calculating of bending plates based on Reisner's theory by the finite element method is 

proposed. The method is based on the fundamental principles of additional energy minimum and possible 
displacements. The necessary relations for an arbitrary quadrangular finite element are obtained. 
Mathematically, the transition from differential equilibrium equations of bent plates to algebraic equilibrium 
equations for nodes of finite element grid. 

2. The bending moments, torques and shear forces are constant in the finite element area, which is 
necessary condition for ensuring the solution convergence, when the mesh is crushed. 

3. The proposed calculation method allows both thick and thin plates to be calculated. There is no effect 
of solution “locking” for thin plates, which is confirmed by rectangular plates calculations with different support 
conditions of side and different ratios of thickness to plate sizes. 

4. Comparison of solutions obtained by the proposed method for plates of various shapes with analytical 
solutions shows fast convergence and proposed method accuracy of calculating both thick and thin plates. 
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Аннотация. Предложена методика расчета изгибаемых пластин методом конечных элементов на 
основе теории Рейснера. Метод основывается на фундаментальных принципах минимума 
дополнительной энергии и возможных перемещений. Для дискретизации предметной области 
используются произвольные четырехугольные конечные элементы. По области конечного элемента 
поля моментов и поперечных сил аппроксимируются постоянными функциями, которые удовлетворяют 
дифференциальным уравнениям равновесия в области конечного элемента при отсутствии 
распределенной нагрузки. Используя принцип возможных перемещений, составляются 
алгебраические уравнения равновесия узлов сетки конечных элементов. При этом, в соответствии с 
теорией Рейсснера, в качестве узловых возможных перемещений принимаются, независимо, 
вертикальные перемещения и углы поворота срединной поверхности пластины. Предлагаемый метод 
расчета позволяет рассчитывать как толстые, так и тонкие пластины. Эффект «заклинивания» 
решения для тонких пластин отсутствует, что подтверждено расчетами прямоугольных пластин с 
различными условиями опирания и различными отношениями толщины к размеру пластины. 
Сравниваются решения, полученные по предлагаемой методике для пластин различной формы, с 
аналитическими решениями. Показана достаточно быстрая сходимость и точность предлагаемой 
методики расчета как для толстых, так и для тонких пластин. 
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