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Abstract. Variational formulation of stability problems for thin-walled beams is presented. Geometrical
stiffness matrix is derived from the stability functional. Shear deformation is taken into account by using
V.I.Slivker’'s semi-shear theory of thin-walled bars. Quadratic Hermite polynomials were considered as
approximation for all the internal forces and displacements functions. The exact analytical solutions to some
particular eigenfrequency and stability problems for thin-walled beam are obtained. The effect of «spurious»
frequencies in thin-walled beam spectrum is discussed. Comparison of the numerical results from the finite
element methods is presented. Approximation by quadratic functions turns out to be faster in cases where the
buckling has a flexural-torsional form.

1. Introduction

Classical finite element method (FEM) applied to structural mechanics has a serious drawback
concerning accuracy of stress calculation. As displacements are the only unknown functions approximated by
some polynomials, the process of evaluating stresses appears to be secondary to the main problem of solving
system of linear equations. Due to the necessity of taking derivative, the degree of polynomials forming the
Ritz sum in stress expression decreases which means that calculation precision suffers.

Thin-walled beam, because of its specific properties, has a unique internal force factor — bimoment,
which in certain cases can cause large normal stresses in cross-section. In order to determine that stresses
with good accuracy mixed FEM can be used.

The first mixed formulation in classic calculus of variations was presented by Hellinger. However, only
after the work [1] by Reissner the mixed variational principle has become a common tool for variational
formulations of problems in structural mechanics. The main property of the Reissner’s functional is that it
includes stress functions along with displacements, which gives an advantage of choosing the approximation
functions for every unknown value independently.

The first theory of thin-walled beams of open cross-section was developed by Vlasov in [2], and since
that work many researches have been devoted to the application of this theory to a variety of static and
dynamic problems of thin-walled structures. The problem of free vibrations of thin-walled beam with open
cross-section was solved in [3]. In this article, based on the solution of ordinary differential equations governing
the static problem, stiffness and consistent mass matrixes were derived. In addition, some numerical
experiments were carried out in order to prove sufficient accuracy of the lumped mass matrix formulation. In
[4] another finite element model, based on Vlasov’s theory, was introduced. In this work special attention was
paid to the computational problems arising when coefficients of stiffness matrix vanish whilst compiling the
global governing system of equations. The influence of boundary conditions on coupled vibrations of thin-
walled bar was investigated. Galerkin’s method was used for spectrum analysis in article [5], which showed
sufficient accuracy of results even for the problems that do not have analytical solution. An anisotropic
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composite material of thin-walled bar considered by author has led to introduction of nonclassical parameters
such as warping restraint, transverse shear flexibility and structural couplings.

In [6] author clarified Vlasov's equations of motion for thin-walled beams taking into account torsional
shear deformation in middle surface. In addition, that paper introduced some experiments on thin-walled beam
resonant frequency and verification with the theoretical results. Simply supported thin beams were numerically
and empirically investigated in [7]. This work presented so-called “engineering” theory of bars based on analogy
with elastic behavior of thin plates. Due to its relative simplicity, this theory could be applied in designing practice,
although it is not valid for other boundary conditions. The method of trigonometric series used in this article to
approximate stress function is suitable for finite element analysis as well.

The expressions describing thin-walled rod vibrations in [8] were presented as four partial, linear integro-
differential equations. The complex formulation allowed to take into account the effect of longitudinal inertia and
shear flexibility. Moreover, the application area of the generalized theory is not limited to open cross-section
beams with uniform mechanical and geometrical properties. Vlasov's and Timoshenko’s equations of motion for
thin-walled beam appear to be special cases of this theory if relevant hypotheses are accepted.

The influence of shear deformation and rotational degree of freedom on thin-walled beam vibrations
were considered in [9]. The governing equations were derived from Vlasov’s theory but with some additional
modifications concerning shear ductility. One advantage of the proposed theory is that it allows obtaining
dynamic characteristics of beams made out of viscoelastic material.

One important type of load that could be applied to a thin-walled structure is an impact load. Mechanical
behavior of thin-walled beam under such load was discussed in [10], where six differential equations of motion
suitable for some particular dynamic problems were presented. For the case when the center of inertia
coincides with the shear center approximate solution for engineering use was obtained.

Generally speaking, the problems of natural and forced oscillations of any structural element are more
complex than corresponding static problem and that is why many different engineering techniques were
presented by researchers in order to keep up with the growing tendency of high accuracy stress-strain
calculations [11-17]. For example, method of additional energy functional, viscoelastic models for parametric
nonlinear oscillation problems, response-spectra method for non-proportional damping systems.

The behavior of elastic stress waves in structural elements under dynamic impact, including seismic
load, was discussed in [18-20]. In terms of mechanics, the main feature of the problems solved by the authors
is the significant influence of forces of inertia applied to flexible bodies. This fact leads to increasing complexity
of the governing equations due to their time-dependency and it should be considered whilst solving similar
problems with thin-walled bars.

As FEM is discretization method, in most cases its result accuracy depends on the number of elements in
specific model. For the vibration problem of thin-walled beam this drawback could be avoided by using dynamic
stiffness method presented in [21]. The main idea of this method is to use frequency-dependent shape functions
allowing to obtain vibration modes with a higher accuracy than with a classical way of approximation. In this
paper it was shown that the curvature of thin-walled beam requires a denser finite element mesh, which makes
dynamic stiffness method even more valuable for these kinds of problems.

In [22] mass matrix and stiffness matrix of thin-walled beam in non-shear theory were developed. In this
work it was pointed out that FEM matrixes of vibrating rod do not consist of blocks corresponding to different
types of deformation, in other words, bending and twisting problems of thin-walled beams are not independent
and must be solved simultaneously.

One perspective theory of thin-walled beams of both open and closed cross-section is semi-shear Slivker’'s
theory presented in [23]. The main idea of this theory is to split shear deformation on two groups: torsional and
transverse (bending) shear. The last one is neglected just like in Euler-Bernoulli beam theory. Compared to non-
shear Vlasov's one this theory has obvious advantage of improved accuracy achieved by shear accounting.
Transverse shear neglecting in its turn simplifies governing equations considerably compared to other theories
based on Timoshenko’s beam model. The only drawback of this theory is more complicated process of sectorial
properties calculation, which can be solved by using modern technical computing systems.

The first works devoted to Slivker's semi-shear theory combined with finite element method applied to
structural mechanics were [24] and [25]. In this papers with the use of quadratic and linear approximations of
twist angle and warping functions several stiffness matrixes of thin-walled beam elements were obtained.
Presented numerical and analytical results could be applied for both open and closed cross-sections for rods
with different boundary conditions. Moreover, the problem of finding internal forces in thin-walled beam under
several types of load were solved in this works.

Fundamental research of all aspects of semi-shear theory in FEM implementation was presented in
thesis [26]. The peculiarity of this work, among other things, is that it is supplied with the computer algorithm
designed to solve static problems with thin-walled beams.
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In work [27] constrained vibrations of thin walled-beams under impulse and short-term loads were
discussed. The contact force parameters were determined by means of Hertz's theory, and derived integral
equation is solved numerically by Euler's method. With the use of obtained results strength and stiffness of
thin-walled beams under dynamic pressure could be determined.

Very important problem concerning thin-walled bars in FEM is connection between finite elements of
different types. In [28] it was proposed to model the joints by classical shell elements, whereas the main parts
of thin-walled bars are modeled by element with 7 degrees of freedom in each node.

Numerical analysis of spatial thin-walled bar system under torsional loads was carried out in [29, 30].
Specific properties of stiffness matrices of thin-walled rods with opened cross-section were shown and
discussed. In addition, the influence of structural steel joints on warping of cross-section was examined.

The equations of motion in TImoshenkao's, Vlasov’s and Slivker’s theories were obtained and compared
with each other in work [31]. It was shown that semi-shear theory has an important property of revealing optical
dispersion waves in thin-walled beams while the other two theories have only acoustic ones in corresponding
spectrum. Optical part of frequencies comes from pure warping vibrations of thin-walled beam which do not
show up when shear deformation is neglected. However, mass and stiffness matrixes obtained in this works
have a good convergence only if quadratic and hyperbolic approximations are used.

Another work devoted to convergence problem of finite element models of thin-walled beams is [32]. In this
article It was shown that linear approximation of both twist angle and warping functions gives a very poor
convergence to analytical solutions. One way to improve convergence is to use a higher degree of approximation
polynomial. Increasing finite elements mesh density could make numerical results more precise as well. However,
this approach has a serious disadvantage of stiffness and mass matrixes enlargement leading to computational
expenses. In addition, lack of accuracy problem when calculating stress values still remains.

A detailed review of analytical and numerical calculation methods for static, dynamic and stability
problems of thin-walled beams was presented in [33].Due to sufficient computational speed and simplicity of
method implementation, FEM was proved to be one of the most perspective techniques for solving different
thin-walled beam problems in structural mechanics. In addition, the mentioned article showed that semi-shear
theory is the most versatile and mathematically straightforward theory among all the others.

The aim of this research is to construct a finite element model based on mixed variational formulation
in order to improve convergence and provide an explicit way to calculate internal forces and stresses in thin-
walled bar.

The main objectives of the research are:

1. Writing of the initial mixed functionals of thin-walled bar for static and dynamic problems within semi-
shear theory.

2. Derivation of stiffness and mass matrixes with nodal forces vector for single finite element of thin-
walled bar.

3. Assembly of global stiffness and mass matrixes with nodal forces vector. Construction of the
governing equations of equilibrium and motion.

4. Solving of test static and dynamic problems by mixed FEM with comparison to classical method and
analytical solution.

2. Methods

In order to obtain stiffness and mass matrixes based on mixed FEM we need write down Reissner-like
functional (see [1]) for thin-walled beam taking into account shear deformation. For the sake of simplicity, we
will consider only cross-sections with two symmetry axes. For static problems desired functional can be written
as follows:

(Mg Br  MJ o ,
cDR,stat_.I’: ZG|X+2E|Q+ZG|9_MXQ _Bﬂ _Ma)(e _ﬂ)+mx6+ba)ﬁ dL, (1)

here |l is sectorial moment of inertia, smé;
Ix is pure torsional moment of inertia, sm#;
lg is constrained torsional moment of inertia, sm* (see [26, 31]);
E is elastic modulus, MPa;
G is shear modulus, MPa;

L is beam length, m;
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Ois twist angle, rad;
s warping, rad/m;
My is pure torque, N-m;
Mo is constrained torque, N-m;
B is bimoment, N-m2;
My is distributed torque, N;

bw is distributed bimoment, N-m;

Similarly for the case of natural oscillations of thin-walled bar:

(Mg B2 M. . , pa’l, o patl,
@R'dy”_{[ZGIX+2EIw+ZGIg MO =B M, (0= p)e 0 el @)
here p is material density, kg/m3;
o is natural frequency, rad/s;

Iy is polar moment of inertia, sm#;

In order to obtain stiffness and mass matrixes and force vector, one should define the shape functions for all
the unknown values in functionals (1) and (2). From now on, we will use only linear approximation functions:

Nl(x)=%; Nz(x)zl—%. (3)
For each function f(x): Mx(x), B(X), Ma(X), &X), B(X) we can write:
f(x)=Ny(x) fy+N,(x) f,, (3a)

here f1, f2 are the values of function f(X) in the first and second node, respectively.

Substituting all the internal forces and displacements in (1) and (2) by their expressions in terms of
shape functions and unknown nodal values (3a), we can use Hamilton's principle to obtain equations of
equilibrium and motion. For convenience, we denote (4)—(7):

[ pLI LI
pL, o L,

3 6
M = 3 6, @
pLI pLl
pLI, pL,
L 6 3
here M is mass matrix block;
C L L _
3Elw 0 6Elw 0
_L L
0 3Gl 00 6GI, 0
L L
0 0 3Gl 0 0 6GlI
F: L X L X ] (5)
6EI, o 0 3EIl, o 0
L L
° 6GI, o0 3GI, 0
L L
] ° Y g, ©° 3Gl |

here F is standard stiffness matrix block;
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here P is nodal forces vector block;

Vector blocks of unknown nodal displacements and internal forces are denoted as follows (8)—(9):

, 8
B, ®

here W is nodal displacements vector block;

(9)

here V is nodal internal forces vector block, index numbers 1 and 2 correspond to the first and second node
of finite element, respectively;

With presented designations, functional (1) will look like:

@Rmxz%VTFV—VﬂwV+W”P. (9a)
Similarly, for expression (2):
@RanéVTFV—VPwV+%ﬂfW”AﬂV (9b)
Hamilton’s principle for functionals (9a) and (9b) can be written down as follows:
0Dy 0Dy
v = O%aw O o)

Conditions (9c) yield the equations of equilibrium and motion of thin-walled bar. In case of static
problem, governing system of linear equations will look like:

s'v=p
' 10
{—FV+SM/:O. (10)
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Likewise for natural vibrations of thin-walled bar:
STV = w*MW,
(11)
-FV +SW =0.

The first obtained system of equations can be written down in a more general way:

o

Corresponding matrix form of the second system of equations:

[ 2 )

Thereby, the governing systems of equations for static and dynamic problems of thin-walled beam were
obtained.

Now we can introduce the vector of unknown values:

B
o
B,
Ma)l
M
Uetement = ﬂ;(l (14)
0,
B,
Ma)Z
_Mx2_
Corresponding stiffness matrix of thin-walled beam element will look like:
R 1L
0 O > 3 0 0 O > 5 0
211 ~1 1
0 O 0 5 > 0 0 O 5 >
_1 —L 1 —L
5 0 3 - 0 0 5 0% - 0 0
L1 —L L1 —L
3 2 0 3Gl, 0 6 2 0 6Gl 0
1 —L 1 —L
< ~ 0 -5 0 0 3Gl 07 0 0 6Gl, s
element — 0 0 l _L 0 0 0 l _L 0 (15)
2 6 2 3
1 1 1 1
0 O 0 > > 0 0 O > >
1 —L 1 —L
2 0 6El,, 0 0 2 0 3El,, 0 0
L1 —L L1 —L
6 2 ° 6GI, ° 32 © 3GI, 0
1 L 1 —L
0 2 0 0 6Gl 0 2 0 0 3Gl
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Similarly, the mass matrix of the element can be denoted as:

0 M
M etement = 00l (15a)

Expressions (12) should be treated as a system of linear equations while (13) is classic eigenvalue
problem.

In order to give formulas (12) and (13) more traditional FEM look we can do some mathematical
transformations:

(STEISW =P, (STFIS)W = 0’MW. (16)
We can denote:
K =(STF!9), (17)

here K is shortened version of mixed stiffness matrix.

Therefore (16) will look like:
KW =P (18)
and:

(K-’M)w =0, (18a)
Expressions (18) and (18a) coincide with traditional FEM equations of linear statics and dynamics, but
with stiffness matrix based on formula (17).

Obtained matrixes can be used to determine stress-strain state and natural frequencies of thin-walled
beam with arbitrary boundary conditions and under any uniformly distributed load.

In order to get exact analytical solutions of static and dynamic problems we have to derive Euler
equations using expressions (1) and (2).

In order to apply Hamilton’s principle we need to calculate the following values for each function f(x):

MX(X)! B(X)! Ma)(X), H(X), ﬂ(X):

oDy,
—R_-0.
o (X) (19)
For the static case expression (19) gives:
M, +M; =-m,
B'+M,=-b,,
g%+ﬂ—aza
’ (19)
B _p_
El, p=0
M, .
Gu—H—Q

Similarly, for the case of natural vibrations:

M. +M. =-a’pl,0,
B'+M, =-0’pl p,
g%+ﬂ—ﬂza
9 (20)
B _p-
Ela) ﬁ Ol
M,
Gu—e_o
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Equations (19) and (20) will be used to obtain exact solutions of thin-walled beam problems in order to
compare with numerical results.

3. Results and Discussion

Static analysis of thin-walled beam under uniformly distributed torque (Figure 1) will be carried out to
examine accuracy of obtained equations (12).

The value of distributed torque My is 10 N-m.
Geometrical and mechanical characteristics of the beam are presented in Table 1:
Table 1. Geometrical and mechanical properties of thin-walled beam.
E, Pa G, Pa Ix, m* lw, mé A, m2 L, m p, kg/m3 Iy, m* lg, m*

2.06-10** 7.9-10° 1.11-10° 1.48-101' 3.51.10* 10.0 7850.0 1.41-10" 1.85.10°

Corresponding thin-walled cross-section is depicted on Figure 2.

40 T
1 R
| o
3
|3
i ] N
40 L
I‘
Figure 1. Thin-walled beam Figure 2. Thin-walled cross-section
under uniformly distributed torque. (dimensions in cm).

The exact analytical solution of equations (19) for the value of bimoment in cross-section of thin-walled
beam with boundary conditions on Figure 1 can be written down as follows:

kL
chlkx—"=
_ My ( 2 )_
B‘”(X)_GIX ch(k'-) 1|El,, (21)
2

here

k= (22)
For example, we can calculate bimoment value in the middle of beam’s span:
m, El
B, (&)= Tere| A1,
2)” Gl Ch(kl_) (23)
2

Substituting beam properties into (23) we can calculate bimoment, which equals 0.348 kN-m?

For the comparison of mixed and classical FEMs to be correct the finite element mesh of thin-walled
beam must be chosen in the way that the number of unknown values for both methods approximately equaled
to each other. For mixed FEM we have chosen 8 elements which corresponds to 45 unknown values, and for
classical FEM — 21 elements (44 unknown values). The first method gives the value of bimoment 0.327 kN-m?2,
while the second one — 0.298 kN-m?2.
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It appears that mixed FEM has much more accurate results of internal force analysis of thin-walled
beam compared to classical method. The relative errors can be calculated as follows:

By — B 0.327-0.348

5mixed = —BE>/(gCt 100% = WIOO % =-6.03 0/0,
Bi3" — By 0.298—0.348

5class = BE)/(gCt_loo % = WlOO 0% =-14.37 %.

here BX*0, Bfla® B®a are bimoments calculated by mixed FEM, classical FEM and analytical formula
(23), respectively.

Modal analysis of thin-walled beam depicted on Figure 3 will be carried out to examine convergence
properties of (13).

77
Figure 3. Boundary conditions of thin-walled beam

The exact analytical solution of equations (20) for the acoustic eigenfrequencies of thin-walled beam
with boundary conditions on Figure 3 will look like:

a, — «/azz -4y, (21)

= )

204
here
2
_rh
oy GIgE’ (22)
2 2 11
pn” Pl Plrlg
a, = + + 23
© B Gl (1+1,)El, (3)
Gllgn*
O3 = +n, 24
T, )EL, 24
n:”Tn, neN. (25)

Performing numerical calculations using expression (13) and matrixes (4)—(6) and (8)—(9) followed by
determination of the exact solution for the first acoustic frequency by means of (21)-(25) we can draw Table 2:

Table 2. Fundamental frequency by mixed FEM, classical FEM and analytical solution.

Number of finite elements 2 4 8 16 32 64 128

Mixed FEM 1%t frequency, rad/s 291.01 135.84 94.81 89.57 88.60 88.47 88.47

Classical FEM 1%t frequency, rad/s 636.89 287.10 158.47 109.85 94.26 89.96 88.85
Exact 15t frequency, rad/s 88.48

Graphical visualization of the numerical results is presented on Figure 4.
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—a==lixed FEM

300 Classical FEM

Exact solution

18t frequency, rad/s

200

100 \____

2 4 8 16 32 64 128
Mumber of finite elements

Figure 4. Convergence of fundamental frequency by mixed
and classical FEM to analytical solution.

Table 2 and Figure 4 show that mixed FEM gives much more accurate value of the first eigenfrequency
of thin-walled beam compared to classical FEM. For example, 16 finite elements produce only 1.23 % error:

mixed _ exact
5= a’lTloo op = 89.57-88.48105 0 —1.23 %,
88.48
@y
While classical FEM with 16 elements gives 24.15 %:
class _ _exact

5= B 10009 -10985-88.48,00 05 — 24,15,

! 88.48

here @™, o™ »™® are fundamental frequencies calculated by mixed FEM, classical FEM and

analytical formula (21), respectively.

Comparing these values to the results of work [31], where classical FEM with linear approximation and 32
finite elements has given an error of 23.3 % for similar eigenfrequency problem of thin-walled beam, we can see
that developed mixed FEM model produces a much more precise outcome and has a better convergence.

The other important property of mixed FEM applied to dynamic problems of thin-walled beam is that the
vibration modes include not only warping and twist angle functions, but internal torques and bimoment as well.
The first mode shape of the examined beam with 16 finite elements is presented on Figures 5-9.

Besides the advantages of high accuracy of calculations and explicit output of internal forces, there is
also one drawback concerning dynamic analysis of thin-walled beam using mixed FEM. If not only the
fundamental mode shape is considered, the effect of “spurious” high frequencies in thin-walled beam spectrum
occurs. In other words, the frequencies are not arranged in the ascending order if mixed FEM is used. For the
examined beam with 16 finite elements, it appears that the third and seventh mode shapes are presented by
high-frequency vibrations (Figures 10, 11).

1.50 350
100 3.00
5 250
g 050 2
3 @200
2 2
S 0.00 =150
= 0.0 100 Z
Z 050 T 100
0.50
-1.00
0.00
150 0.0 2.0 4.0 6.0 8.0 10.0
’ Length, m Length, m
Figure 5. The first warping mode Figure 6. The first twist angle mode
of thin-walled beam. of thin-walled beam.
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Bimoment, N-m?2
Constrained torgue, N-m

-0.40
1.20 Length, m Length, m
Figure 7. The first bimoment mode Figure 8. The first constrained torque mode
of thin-walled beam. of thin-walled beam.

Pure torque, N-m

-4.00
Length, m

Figure 9. The first pure torque mode of thin-walled beam.

0.40
0.20
0.00

0.20

Twist angle, rad
Twist angle, rad

-0.40

-0.60

Length, m Length, m

Figure 10. The 3" twist angle mode Figure 11. The 7" twist angle mode
of thin-walled beam. of thin-walled beam.

The presented effect can bring some difficulties in modal analysis of thin-walled beam as the “spurious”
frequencies distort the spectrum, making it necessary to filter them out.

The observed problem could be easily solved in practical application by means of simple visual analysis
of oscillation modes, since the “spurious” frequency can always be detected by many sign alterations of the
corresponding mode.

It should be noted that the proposed model of thin-walled rod based on mixed formulation could be
generalized for more complex spatial bar systems. Although, the matrix for transformation from local
coordinate systems to the global one should in some way take into account the dependence between relative
angle positions of rods and warping of cross-sections. At the present time, the problem of bimoment and
warping “rotation” in nodal parts of thin-walled bar systems stays unresolved. This is very perspective scientific
challenge and when some progress in this direction is achieved the results of the article could be applied to
flat and spatial thin-walled bar systems.

4. Conclusions

Mixed variational formulation of static and dynamic problems of thin-walled bars has many advantages
compared to classical approach. The main ones can be summarized as follows:

1. Mixed FEM gives more accurate results of stress analysis of thin-walled bar under static load. For
example, the value of bimoment in the middle of the bar under uniform torque matches the analytical solution
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with relative error of only 6.03 %, while classical FEM gives the tolerance of 14.37 %, whereas the number of
unknown values is 45 and 44, respectively.

2. The internal forces evaluation proceeds simultaneously with the main operation of solving system of
linear equations, which obviates the need to perform additional calculations.

3. Natural mode shapes and eigenfrequencies of thin-walled bar are determined with a higher accuracy,
which allows to reduce the number of finite elements in the model. For example, the value of fundamental
frequency of the examined bar with 16 finite elements matches the analytical solution with relative error of only
1.23 %, while classical FEM gives the tolerance of 24.15 %.

However, mixed FEM has a drawback of revealing “spurious” high-frequency vibration modes distorting
spectrum of thin-walled beams.
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AHHOTauus. lNpeacrtasneHa BapuauMoHHasi NOCTaHOBKA 3aday YCTOMYMBOCTU TOHKOCTEHHLIX CTEPXKHEMN.
MonyyeHa maTpuua reoMeTpuYecKon >KECTKOCTU KOHEYHOro 3femMeHTa Ha OCHOBe yHKUMOHana
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