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Abstract. The loss of bearing capacity of some compressed self-framing metal structures elements occurs with
a general buckling and for some of them there is no analytical solution. That is why consideration of the problem
variational statement and its numerical solution is particular interesting. In this study, the stiffness and geometric
stiffness matrices were obtained for Hermite polynomials quadratic variation that approximate the functions of the
twist angle and deplanation functions. The dependences of the critical load on the number of finite elements for
different geometric and kinematic boundary conditions are obtained. The inconsistency of the approximation by
forms linear functions is shown in comparison with the quadratic approximation, which turns out to be optimal. The
reason is that it almost immediately reaches the exact analytical solution, with a flexural-torsional form of buckling.
For a purely torsional or flexural form of buckling, it is shown that functions of the twist angle and deplanation
functions approximation for different Hermite polynomials does not give faster convergence.

1. Introduction

The evaluation of the building structures reliability is the main task in civil engineering. So, in [1] authors
considered the applying of probabilistic method for bearing capacity criterion estimation. Planar frame rod
model was presented in [2-3]. They determined forces equations in the most compressed elements,
depending upon the amount of panels in grid. This has enabled elements strength [4] and general stability
determination. However, this kind of Self-framing metal application in frame constructions must have a strict
evidence. So in [5] they showed the benefits of using Self-framing metal for pitched roofs major repairs.

In [6] they analyzed buckling modes depending on various cases of the rod stress state and its
geometrical and physical characteristics. Stability losses bending modes of axially-loaded bars depend on the
face sections stiffness correlation. After the study of flexural-torsional stability losses modes of the non-axially
compressed, variable stiffness, constant chords width I-shaped bars the following was found. Bending modes
for bars with any unilateral end-point eccentricity combination and same chords slopes are not differ
significantly; they might be taken to be equal. However, torsional modes are very different, they depend on
the chords slopes. The study of bending-torsional buckling modes of variable stiffness non-axially compressed
I-shaped beams which have different chords width and high, showed: modes depend on chord slope and
narrowing combination. Constraint of warping impact on the critical force and the buckling mode. In [7], the
deformation calculation and eccentric stability with eccentricity around two axes, compressed combined
section bars, taking into account the warping links, were investigated. This study is based on the equations
proposed by E.A. Beilin. The differential equations system solution by combining exact integration methods
with the Bubnov-Galerkin’s method with exact satisfaction of different boundary conditions shows us the
reason to use a Self-framing metal bar compressed with a biaxial eccentricity. It is confirmed that in the
particular case of the cross section geometry and the application of a longitudinal load, a bifurcation of the
equilibrium modes is possible and the problem of compression with biaxial eccentricity in general form is not
bifurcation. The problem of deformation and calculation for the arbitrary profile bar stability of with warping
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bonds distributed along the length is investigated, and a change in displacements and forces is revealed
depending on the compliance of the warping links. A natural study of combined profile warping connections
bars constrained torsion was carried out. The difference between experiment and the analytical solution is
16 % Methods for approximating the local and general buckling modes and cross section stability, with
perforations, were provided in [8-9]. According to the results, the total loss of stability of elements with holes
can be approximated by applying a "weighted-average" approach in determining the geometric characteristics
of the section. The loss of the local shape of the stability of elements with holes is approximated using careful
modifications of the models of the end strips of the cross section. Since the hole effect is different, in each
case of buckling new model is required. In [10], the stability of the cross-sectional shape depending on the
load is investigated using the example of monosymmetric I-beams. According to the results, the nature of
buckling changes with a change in the length of the monosymmetric I-beam. In [11-12], the features of
determining the bearing capacity of Self-framing metal structures are considered using the North American
design standards and Eurocode 3. A loss of local stability in the both standards is taken into account equally,
by the effective cross section. These standards are based on the methods for determining the parts of the
section that are turned off from work because of the secondary buckling.

Works on numerical methods for calculating Self-framing metal bars.

The practical contribution was made in the works [13-15], where, based on the core model of
calculation, analytical solutions for the displacement functions and internal force factors according to the semi-
shear theory by V.I. Slivker were given. Solutions are given for three most popular structures that are often
encountered in practice with kinematic boundary conditions given in the paper, i.e. practically determine the
field of the stress-strain state (SSS). Finite elements of three types are constructed for the numerical solution
of the constrained torsion of Self-framing metal bars problem in a variation formulation using the Ritz method
with approximating polynomials of the chosen order according to V.l. Slivker's semi-shear theory. Iterative
calculations were carried out, and then recommendations were given on choosing the sizes of finite elements
depending on the type of the finite element and its interpolation polynomials. A database was created for
correlation of the open and / or closed profile form for displacement and internal force factors.

The system of equations of the dynamics [16] of a Self-framing metal bar for the theory by V.I. Slivker
was derived. In this system: one equation describes only longitudinal vibrations, while the remaining system
of joint equations describes flexural-torsional warping oscillations. The dispersion dependences and phase
velocities of torsional-warping waves in bisymmetric. Self-framing metal bar was analyzed according to the
theory by V.I. Slivker. As a consequence, it was possible to conclude about the second optical dispersion
branch, which, according to analysis of the eigenmodes of oscillations, corresponds to high-frequency warping
oscillations. The formula was obtained that approximates the frequency of warping oscillations and the formula
that determines the lowest frequency. Also matrices of masses were agreed, which differ in the type of
displacement functions approximation, the twist angle functions of the warping measures for solving static
problems with any kinematic boundary conditions. It certainly has great practical use. The automated algorithm
has been developed for solving the spatial structures of Self-framing metal elements of both a closed and
open profile in a dynamic formulation.

In the paper [17-18], stiffness matrices for various types of approximation of displacement functions
with different numbers of freedom degrees of finite elements were determined. The greatest value in the
operation of structures is the justification for taking into account nodal stiffness, compliance, or taking into
account initial imperfections when calculating Self-framing metal bars for strength and stability. For example,
[19] is about taking into account the initial imperfections of tubular nodal on their bearing capacity. The results
showed the possibility of neglecting the negative effects caused by geometric imperfections during the
operation of the structure. Influence of knot stiffness on the Self-framing metal rods stability were considered
in [20]. The influence of the torsional stiffness of the beam-wall connection and the dependence of these
characteristics on the number of floors of the rack were noted. In fact, the nodal mates of crossbars with
columns occupy some intermediate value, which has a certain compliance, the magnitude of which is
influenced by the constructive nodal solution. The work [21] shows the need to use the scheme with nodes
that perceive some of the bending moments.

In [22], the bifurcation stability problem was solved numerically, much of which was written on solving
it, including [23-25], a thin-walled rod on the Vlasov’s theory and analytically on the Euler’s theory. A significant
difference was revealed in the value of the critical load according to two theories, a greater value is obtained
by numerical calculation using the V.Z. Vlasov’'s no-slip theory.

In [26] they consider the stability of straightened from the plane thin-walled cold-formed beams with two
types of finite element models. They took into account the geometric nonlinearity and material properties which
were built in the ABAQUS software package. Model with two elements: two beams, through panels and hot-
rolled pipes. Model with one element: one beam, and the other component, which was designed using the
appropriate boundary conditions. It was found that the results for the two models are similar, but the simplified
model is certainly computationally more attractive. It was also found that strain hardening does not affect the
behavior of cold-formed beams.
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This research is a continuation of the work [27] on the application of the finite element method in solving
problems of stability of thin-walled rods according to the semi-shear theory by V.I. Slivker [23, 24].

A stiffness matrix and a geometric stiffness matrix for a quadratic approximation of the torsion functions
and the warping measure were obtained in this research. Several problems with different forms of buckling
are considered, the problem domain is defined in which approximation of torsion functions and warping
measures by quadratic functions are faster than approximation by linear Hermite polynomials used in [27].

2. Methods

Equilibrium stability functional of a squeezed-curved thin-walled rod according to a semi-shear theory
by V.1. Slivker [27]:

L
S =%I[G|X9'2 +Gl 40 - B)° +El,p" +EL L™ +El B2+ KO+ N('? +{7%) +
0

1)
+2(M,n" =M £")0]dx.
A detailed description of the functional integrand is presented in the previous article [27]:
Consider the I-th finite element of a thin-walled rod:
-~
r r - rf z
r}i.?}f,f:f»fi,@f,ﬁi r
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Figure 1. Finite element with 14 degrees of freedom.
Nodal displacements of a single finite element column;
T
U=lmn & & 6 B 9| 1 ﬁi+1 Mt M S i Ga Biaa | (2)

2 2

where 77 is bending center movement along Y;
77" is rotation angle about the axis Z;
{'is bending center movement along Z;
' is rotation angle about the axis Y;
Ois torsion angle;

[ is warping measure in the corresponding nodes.

We write the functional V.1. Sliver in the matrix form, the process is given in [27]:
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The columns of the nodal values of the transverse displacements are formed from the same elements
as in our previous work [27]:

[U ,7] =(m 1 Ma 77i,+1)T ; (4)

[U§]=(§i Sgi, §i+1 égi'+1)T- (5)

Columns made up of twist angles and warping measures have a different look - they are added to an
intermediate value in the middle of the finite element.

[Ua]:(‘gi 6’”1 ‘9i+1)T? (6)
2
[Uﬂ]:(ﬂi & ﬂ”l)T; ©
[Ue[,»}:(@i Bl 1B Ou :Bi+1)T' @)
2 "2

Hermite polynomials for the functions of transverse displacements are assumed to be similar to our
previous work [27]:

3 3
H1=|£3x3—|32x2+1; H2=:(—2—ng2+x; H3=—£x3+%x2; H4:X——|}x2. ©)

The strings composed of the given Hermite polynomials looks like:

dH, dH, dH, dH
[H ,] _ 1 2 3 4 | (10)
7 dx dx dx dx
d’H, d’H, d*H; d°H
[H"],. = 21 22 23 24 : (11)
75| dx® dx® dx® dx
The Hermite polynomials for the torsion and warping functions in this paper will be quadratic [27]:
2 2 2
H5=1_%+2i2? Hfﬁ_dfiz? 7=_§+2L2 (12)
I I I I .
and the corresponding lines are denoted as:
[H]gﬁ:(HS H6 H7); (13)
dH. dH, dH
Hr — 5 6 7 : 14
[ ]gﬁ ( dx dx dx j (14)
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(2), we get:

P is concentrated load applied at the end of the rod along the x axis at an arbitrary section point with
coordinates (ey, €;), matrixes [K] and [G] consist of matrices blocks, which we numbered in accordance with

dHg

—5 _H, —% —H, — L -H

dx

dH,
6

dx

s =ZIUT (K1—P[EDIV]

the numbering of nodes of a finite element (Figure 1):

[

z

where
]I-_gEIZ I%EIZ 0
IEZEIZ ;iEIZ 0
0 0 %EI
Kii 0 0 I%Ely
0 0 0
0 0 0
0 0 0
0 —]I'—EEI
0 —I%EI
0 0
Kijis = 0 0
—%Glﬂ 0
—%EI +1|—56Iﬁ 0
0 0
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Calculating the integrals in (3) by grouping them in accordance with the vector of nodal displacements

Magazine of Civil Engineering, 89(5), 2019

j

8

3l

Bal

3l

I
30

Gl, -

2
5615

X

X

16
— Gl
31 7

1
<Gl

—Gl,

2

1

+—El,

3l

56l

(15)

(16)

(17)

8

~ Gl
3l #

119



K

i+Li+l =

WmxeHepHo-cTpouTenbHbIi xypHai, Ne 5(89), 2019

PribaxoB B.A., Jlanun B.B., MBanos C.C., AzapoB A.A.

EEIQ+8—IGIﬁ 0 0 0 0 EGI/; —§E|w+I—GIﬂ
3l 15 3 3l 15
12 6
0 I—3EIZ —|—2E|Z 0 0 0 0
0 —I%EIZ iEIZ 0 0 0 0
12 6
0 0 0 I_3E|y —I—ZEIy 0 0
6 4
0 0 0 —I—EIy I—EIy 0 0
2 7 1
=Gl 0 0 0 0 —(GI, +Gl =Gl
37 31 (Gl +Gly) 2/
—EEIQ+LGI,H 0 0 0 0 lGlﬁ 2—|G|ﬂ+1Elw
| 15 2 15 3l
e, -z
) 1 0 0 ——( : %) 0 0
51 10 I
1 2 0 0 —geZJrgzp 0 —gez+gzIO
10 15 3 3 3 3
e —
0 0 ) L —( v~ Yp) 0 0
51 10 I
1 2l 2 2 2 2 ;
0 0 — — —e,—— 0 —e,——
10 15 3 3 3 3
(e,-z,) 2 2 (e-Yy,) 2 2 7 16
- -—e,+—Z —e,—— —C 0 -—¢C
| 3° P | 3 30 3l 6l
0 0 0 0 0 0 0
0 —ge +gz 0 ge —gy _16 Ec
3% 3° 37 3°° 6l 6l
e, —z
0o -2 L 0 0 (€, ~2) 0
51 10 I
e,—z
0 _1 L 0 0 (&, ~2p) 0
10 30 3
e J—
0 0 0 8 1 &Y
51 10 I
G-- - e — 1
i+l 0 O 0 _i _l_ ( y yp) 0
10 30 3
0 (ez_zp) _(ez_zp) _(ey_yp) (ey_yp) E 0
I 3 I 3 6l
0 0 0 0 0 0 0
0 0 2(ez Zp) _ 2(ey - yp) 16¢ 0
3 3 6l

120



0 0 0 0
6 21 0
51 10
0o -1 2 0
10 15
6
G'Jr i+ = 0 O 0 —
i+1i+1 5|
0 0 0 —i
10
o &%) 2 2 (&Y
| 3° 3° |
0 0 0 0

2
c=(rIO +e,b, +eb, +wAba))'

Magazine of Civil Engineering, 89(5), 2019

Matrices [K] and [G] are symmetric therefore equalities (19) are fulfilled:

[Ki,i+l] = [Ki+1,i ]T ; [Gi,i+1:| = I:Gi+1,i ]T :

3. Results and Discussion

For the numerical solution of the problem, we consider a thin-walled rods of open profile (warped (Figure
2) and non-warped (Figure 3)) and closed profile (Figure 4). Rod length L1 =5 m for profile 1 and rod length

L23 =3 m for profiles 2 and 3.

Kinematic boundary conditions:

0 0
e, -7
Ezy)
|
2 2
gez—gzp 0
e —
(e, —yp) ol:
|
2 2
—§Ey+§yp 0
ey
3l
0 0
(18)
(19)

In the first case: 71 = {1 = 61 = 17n = ¢n = 6h = 0 (hinge support, prohibitive translational motion (non-
axial longitudinal rods) u rotational motion relative to the rods longitudinal axis;

In the second case: 77, =m, =¢; =¢, =6, = B, =0 (hard pinch at one end).

s, £

~ =\|R_‘:

250

& >
15 Z
L J 250
Y VY
Figure 2. Shape 1. Figure 3. Shape 2.

Rod material - steel C245:

Physical characteristics of steel C245: E = 20600 kN/cm?2, G = 7920 kN/cm?2,

Table 1. Geometric characteristics of the rod section.

100

ERY N
\V4

Figure 4. Shape 3.

I; ly Ix [P Is €; ey Zp Yp bo b: by rpz
cm? cm? cm? cmS® cm? cm cm cm cm cm cm cm cm?
Shape 1
18.767 152.964 0.034 1137 203 0 0 -2.8 0 0 8.253 0 45,5
Shape 2
651 651 0.133 0 0 0 0 0 0 0 0 0 130
Shape 3
947 324 745 1553 78 0 0 0 0 0 0 0 72
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Solve the basic resolving stability equation for compressed rods:
det((K]-P[G])=0. (20)

Determine the smallest solution that corresponds to the critical force for the given number of FE and for
given kinematic boundary conditions. The tables below compare the results obtained in the numerical solution
of problems with different types of approximation to each other. The numerical solutions are compared with
analytical solutions. Numerical solutions for linear approximation are obtained based on the results in [27].

Table. 2 Magnitude of critical forces pil (i — shape, | — anchor) for two types of approximation
of the functions of the twist angle and the 8 and B deplanation with a different number of FE.

2 4 8 16 32 64
Phlnl [27], kKN 15.373 15.250 15.180 14.955 14.378 13.636
quulad, kN 13.548 13.154 13.065 13.044 13.0413 13.039
Analytical solutions
P kN
an
Euler» KN 15.247
an
Vasov: KN 13.039
Phlnz [27], kKN 3.817 3.815 3.813 3.808 3.797 3.785
Poeds KN 3.788 3.780 3.778 3.777 3.777 3.777
Analytical solutions
P12 kN
an
Euler» KN 3.811
an
Viasov: KN 3.777
21(22
2122) 1571, kN
21(22) 8.1028
Pquad , kN
Analytical solutions
P21(22), KN
an
Euler+ KN 1469.146
an
Vlasov' KN 8.1028
F’”3n2 [27], kN 183.076 182.988 182.983 182.983 182.983 182.983
quuzad , kN 183.076 182.988 182.983 182.983 182.983 182.983
Analytical solutions
P32, kN
an
Euler kN
182.983
an
Vlasov kN
P"3n1 [27], kKN 737.436 732.305 731.954 731.931 731.930 731.930
Pqilad, kN 737.436 732.305 731.954 731.931 731.930 731.930
Analytical solutions
P31 kN
an
Euler kN
731.930
an
Vlasov kN
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Figure 5. Graph of P11 versus the number of finite elements
and the type of approximation of functions @and S.
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Figure 7. Graph of P32 versus the number of finite elements
and the type of approximation of the functions @and .
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P kM
|
L
[7x]

2 4 & 16 32
Amount of finite elements

g 1 iN1 = g= P1quad P1Euler P1Viasov

Figure 8. Graph of P31 versus the number of finite elements
and the type of approximation of the functions @and .

Determination of the critical force of a hinge-supported [28] rod having a profile 1:

2 2 2 2 2
(P, ~P)(P, ~P)(P, —P)-r —y2-P2.(P,~ P) 22 -P.(R,~P) =0, (21)
where
2
2 2 % -El,+Gl,
P, =" El,=15.262 kN; P, =" El, =124273xN; P,=t—— =26220 \; 2
L L r

p

I'p, Yp, Zp are polar radius of inertia relative to the center of the bend and coordinates of the center of
the bend

From (21) Pmin = 13.039 kN.

The critical forces obtained in the calculation of thin-walled rods having a profile of 1 under two types of
kinematic boundary conditions correspond to the flexural-torsional form of buckling. Approximation by
guadratic functions turns out to be faster in cases where the buckling has a flexural-torsional form. At 2 finite
elements, the quadratic approximation reaches a value more precisely than at 64 finite elements, the linear
approximation.

Analyzing the results of calculating the L-profile, we conclude that the values of the critical forces
obtained by linear and quadratic approximations coincide in magnitude with the analytical value according to
Vlasov [24] under any kinematic boundary conditions. The shape of the loss of stability in such a profile and
at such geometric dimensions is a purely torsional (Figure 9). The value of the critical force according to Euler
corresponds to the bending form of buckling and is given for reference.

Figure 9. Purely torsional form
of stability loss of the rod(L-section).

According to the results obtained, it is clear that the form of buckling of the box-shaped profile is purely
bending. The order of approximation of the functions of the torsion forms and measures of deplanation is
unimportant.
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The critical load values were also compared with the Euler buckling loads. The results showed that
taking warping into account reduces the critical load for the open cross sections (C-section, L-section) but
doesn’t have a significant impact on the closed cross-section (rectangular pipe).

The problem of spatial problems for systems of thin-walled rods has not been solved to date, and
therefore the results obtained today cannot extend to spatial and even planar problems. However, as soon as
the problem of turning the deplanation and bimoment measures is resolved, the results presented in the article
will automatically be transferred to thin-walled rod systems.

4. Conclusions

1. A geometric stiffness matrix of a thin-walled rod was obtained for a cubic approximation of the
functions of transverse displacements and quadratic approximation of the torsion functions and deplanation.

2. With the help of the constructed matrix, using FEM the critical load was determined for the bar with
both ends pinned and different types of the cross section (C-section, L-section and the rectangular pipe).

3. The critical load values were also compared with the Euler buckling loads. The results showed that
taking warping into account reduces the critical load for the open cross sections (C-section, L-section) but
doesn’t have a significant impact on the closed cross-section (rectangular pipe).

4. Approximation by quadratic functions turns out to be faster in cases where the buckling has a
flexural-torsional form. At 2 finite elements, the quadratic approximation reaches a value more precisely than
at 64 finite elements, the linear approximation. In cases where the form of buckling is purely torsional or
flexural, there are no advantages in no approximation method.

5. The constructed geometrical stiffness matrix is acceptable to solve buckling problems of the thin-
walled bars for both open and closed cross sections.
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AHHOTauuA. [ockonbky NoTeps Hecyllenh CroCOBHOCTU HEKOTOPbIX CXKaTbIX 3NEMEHTOB KOHCTPYKUUNA M3
JICTK nponcxoguTt npu obLLer notTepe YCTOMYMBOCTU M AN HEKOTOPbIX U3 HUX HET aHaNUTUYECKOrO peLLeHus,
npegcraeBnsieTcd ocobo MHTEPECHBIM PacCMOTPEHUE BapuauMOHHOW MOCTAHOBKW 3a4ayn U YUCIIEHHOE ee
peweHune. B gaHHOM nccnegoBaHum Obinv NonyyYeHbl MaTpULLbl XKECTKOCTU Y TEOMETPUYECKON XKECTKOCTU NpU
KBagpaTU4HOW BapuauMvM MNOMMHOMOB JpmMuTa, annpoKCUMMPYIOLWMX (YHKUMM Yria 3akpyydMBaHus W
gennaHaumun. [lonyyeHbl 3aBWCMMOCTM KPUTUYECKOW Harpy3km oOT konudectBa KO pgna  pasHbix
reoMeTpuyeckux U KMHemMaTUyeckux rpaHmyHbIX YCnoBui. [lokazaHa HeCOoCTOATENbHOCTb annpoKCcMMaumm
NUHENHBIMU PYHKUNAMU POPM MO CPaBHEHUIO C KBaApaTMYHOW annpoKcumauuen, KOTopas OkasbiBaeTcsl
ONTUMAarbHOW, TaK Kak NpakTU4Yeckn cpasy OOCTMraeT TOYHOro aHanuTUYeCcKOro pelleHus, npu usrnmbHo-
KpyTUnbHON dopme noTepu YCTOMYMBOCTWU. [NA 4UCTO KPYTUNBHOM MM U3rMBHOM OpPMbI NoTepU
YCTOMYMBOCTU MOKa3aHO, YTO annpoKCcMMaLuns hyHKLUA yrna 3akpydnBaHUA U AennaHauum npu pasnmnyHbIxX
nonuHomax dpmuta He gaet bonee BbICTPON CXOANMOCTH.
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