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Abstract. Constructively nonlinear problems with unilateral constraints are frequent in the calculation of
various structures. At the same time, certain difficulties cause problems with the contact friction, as well as
with the dynamic action of the load. In such cases, the contact problem becomes more complicated in terms
of mathematics and its numerical solution becomes more complicated as well. This article is devoted to the
construction of calculation models and methods for solving problems with non-ideal unilateral constraints
under dynamic loading. As a result, a numerical algorithm has been developed based on the finite element
model of contact and the step-by-step analysis method, which allows simultaneous integration of the motion
equations and the realization of contact conditions with Coulomb friction. At the same time, to comply with the
limitations under the conditions of ultimate friction-sliding, the method of compensating loads is applied. Using
the proposed approach, numerical solutions of some problems of contact of a structure with a base have been
obtained and analyzed. The reliability of the calculation results is confirmed by comparing them with the
solution obtained by the alternative iteration algorithm. It can be concluded that the step-by-step analysis
algorithm is more efficient in terms of computation time, showing satisfactory convergence, stability, and
accuracy of the solution in a fairly wide range of time integration steps.

1. Introduction

Problems with unilateral constraints and friction between contacting surfaces are often encountered in
the calculation of various types of structures. The solution of such problems under the action of static loads
and different contact conditions was considered in some works [1-12]. At the same time, it is quite typical
when it is necessary to take into account the dynamic loads on the structure [13-15].

When solving constructively nonlinear contact problems, both iterative (successive approximations) and
incremental (step-by-step) methods are used. In particular, for the numerical solution of the dynamic contact
problem, the variant of the iterative Schwartz method (with the finite-element discretization of the problem) is
proposed in works [16, 17]. In works [18, 19] the iterative algorithm of the speeds correction of the Udzawa
type is used for the finite-difference discrete model. In works [20-22] different versions of the method of
iterations on the ultimate friction forces are applied on the basis of variational formulations of contact problems.
As mentioned in these and other works, the application of the method of successive approximations allows
one to build effective iterative algorithms that have a computational stability and guarantee the fulfillment of
contact conditions for ideal unilateral constraints. However, the fulfilment of friction-sliding conditions on the
contact here has certain difficulties and cannot always be realized.

In [23, 24], to fulfill the contact conditions, the weak formulation in the form of an elliptic quasi-
variational inequality is used. The numerical solution of the variational problem is based on the finite element
method and the implicit time integration scheme. The construction of various schemes for the numerical
integration of the equations of motion is considered in works [25, 26]. In the first work the Lagrange multipliers
and the minimum work principle are used at each time step, in the second one, the non-convex linear
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complementarity problem is solved at each step. The advantage of the step-by-step methods is that the
solution of the contact problem can be obtained at any time point and at any stage of dynamic impact by using
them. At the same time, there is an opportunity to satisfy the friction-sliding conditions more precisely, since
the solution of the problem taking friction into account depends on the history of structure loading [1, 2]. The
constructive nonlinearity in the case of dynamic loading will be manifested in the change of the working
schemes of the structure in time — switching on and off unilateral constraints, both in normal and tangential
direction. It is assumed that between two consecutive events on the contact, i.e. within the limits of each fixed
working scheme, the character of the structure deformation is linear.

This paper is devoted to the development of a numerical model and algorithm for solving contact
problems with unilateral constraints and friction under the dynamic load action. The immediate solution of the
dynamic contact problem is made on the basis of time discretization using the direct schemes of integration
of the equations of motion [27]. After each time step, the boundary conditions on the contact are checked. If

within a certain step At there is a change of the working scheme, the time point of changing of the contact
state (occurrence of the next event) is determined by the means of the step-by-time analysis of the contact
state with the use of appropriate approximating expressions for displacements, speeds and accelerations on

the time interval At. In this case, the integration step size is corrected and the current step is recalculated. As
a result, a new state of contact is established at the given time point and, thus, the current working scheme of
the structure is changed [7, 10]. Based on the step-by-step analysis of the dynamic loading process, the given
approach has a clear physical nature and makes it possible to track the current state of the calculated system
at any time point.

2. Methods

Let's consider the dynamic problem of interaction of linearly elastic bodies V* and V-, which may be,

for example, the structure and base, with contacting surfaces, S: and S; correspondingly. To calculate this

system we use a discrete computational model FEM, for which the following matrix equation of motion with
initial conditions is true [27]:

[M]{Ut+At}+[C]{Ut+At}+[K]{Ut+At}:{Pt+At}; {U}L:o:{UO}’ {U}L:o:{uo}' 1)

Taking into account that the displacement at time point t + At can be represented as

UM =U' + AU Jet us convert equation (1) in the form that allows the solution of a constructively

nonlinear dynamic contact problem to be reduced to the solution of the sequence of linear dynamic problems
on the basis of step-by-step on time analysis of the contact state [28]:

[M]{U”M}+[C]{U t+At}+[K]{AUt+At}:{Pt+At}_[K]{Ut}; {U}L:o:{UO}, {U}L:O:{UO}. 2)

Here [M], [C] and [K] are the mass, damping, and stiffness matrices of the finite element system

respectively, at the same time, the proportional damping model is adopted [C] = oc[M] +ﬂ[M]; {UH‘“},
{U'Hm}, {UHAt} and {Pt““} are the vectors of nodal displacements, speeds, accelerations, and the
external nodal load at time point t + At; {AU Hm} is the vector of displacements increment at step At. In

addition, on the part of the outer boundaries Sg, for V* and V™ correspondingly, boundary conditions on the

forces, and on Sf —in the displacements should be given. It is assumed that at the initial time t = 0 the vectors

of displacements, speeds and accelerations are given and it is necessary to find a solution (2) during the time
interval from 0 to some value T.

For the numerical integration of the motion equations (2), the implicit Newmark finite difference scheme

is used, which is based on the assumption of a linear change of accelerations in the At interval. In this case,
the following dependencies between the increments of displacements, speeds and accelerations for the time

point t + At are used:

L)t :ﬁ(étunm_mut)_(%_ljut; g tat :Ut+((1_ﬂ)Ut+ﬂUt+At)At. 3)
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Here « and [ are the parameters determining the accuracy and stability of integration [27]. Let us take
a=1/4, = 1/2, which correspond to the case of the constant average acceleration at each of the intervals
At. In this case, the Newmark integration scheme for linear problems is unconditionally stable, i.e. the solution
does not grow indefinitely at large values of the step At.

Substituting the expression (3) in the equation (2), thereby excluding U™ and U™ from the number

of unknown ones, after simple transformations, we obtain the following matrix equation to determine AU trat.

[k a0 fprs).

where {ﬁ“m}:{PMHM](az{z'ﬂ}+a3{Ut})+[c](a4{Ut}ms{zjt})—[zq{ut}; [K]=[K]+

+ 0y [M] + oy [C] The coefficients oo — a5 depend on the step At and the parameters @ and

- 7 M= P ; azzi; 0‘3:i_1; 0‘4:£_1; 0‘5:@_&"
a(At) aAt adt 20 a 20

)

The system of algebraic equations (4) is solved by the LDLT factorization method, taking into account

U t+At

the sparsity of the symmetric matrix [K] and its variable profile. After finding A and, correspondingly,

1t+4at
U t+At U

for the calculation of accelerations U™ and speeds , equations (3) are used. In their turn, at

any time point t' within the interval At (t <t' <t -+ At), the values of accelerations U (t'), speeds U (t") and
displacements U (t') can be calculated with by the following formulas:

U(t') =U't+(t'A—tt) (U‘t+At_U‘t); U(t')=Ut+(t,2_t) (Ut+U't’);
i 2 (5)
U(t')=ut+(t'—t)ut+%(ut+U't').

The first of the equations (5), according to the Newmark scheme, expresses the linear law of change of
acceleration on the interval At, the second and third ones are obtained from the expressions (3) with the value
substitutions o = 1/4, = 1/2, and the replacement of the value t + At by the value t".

Furthermore, when taking into account unilateral constraint with Coulomb friction in addition to the initial
conditions at t = 0 and boundary conditions on S, SJ‘r, the conditions on the contacting surfaces SCJ‘r should

be satisfied. The contact interaction will be modeled using frame-rod contact finite elements (CFE) [4, 10]. The
CFE data provide a discrete contact between the nodes of the finite element grid located on the boundary
surfaces of the contacting bodies.

Let us write conditions on the contact in terms of forces and displacements for each discrete unilateral
constraint K (i.e. the K CFE), for the time point t:

Wy 20, NL<O; ufNi=0, ke, ©
W< T 20 @E-Tiouk =0, kes,. @

Here u;k, uik are mutual displacements of the opposite nodes for unilateral constraint K in the normal
and tangential direction, Uik :8u£k /ot is the speed of mutual tangential displacement on the contact K;
Nli, Tkt are contact forces in the normal and tangential direction (forces in kK CFE); Tdk =—f, le is ultimate
Coulomb friction force for the contact k; fx > 0 is the coefficient of friction-sliding.

The last of the conditions (6) means that upon contact u’, =0, N <O0; upon separation U}, >0,

NIE =0. The last two conditions (7) establish the correspondence between the speeds of the mutual slippage
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of the opposite nodes on the contact Kk and the magnitude of the force Tkt at the time point t. Under the

conditions Uik =0 and |Tkt|<|TUtk| there is a state of clutching (pre-ultimate friction); when L'Izk #0,

|Tkt| :|TJk| is the state of slippage, while the direction of the slip rate is in line with the direction of the shear

force. Changing the current state, namely the moment of transition from one state to another, is an event —
correspondingly, it will be the events of slippage, clutch, separation (switching off unilateral constraint), or
contact (switching on it).

Let's briefly discuss the sequence of actions implementing a step-by-step algorithm for solving the
dynamic problem with unilateral constraints and Coulomb friction. The General case is considered when the
normal forces of interaction and, accordingly, the ultimate friction forces on the contact change in the process
of dynamic loading, i.e. in time, as it often occurs in practical tasks.

It is believed that at the current time point { the state on the contact is known. The values of mutual

displacements u;k, uik, speed Uik and contact forces le, Tkt, lek are determined for each unilateral
constraint K. Let part of the constraints (kK € S;.) be in the state of clutching, the other part (K € S,.) —in
the state of contact with the slip and, finally, the third part (keS3C) — in the state of separation,

S, =S5, US,, US,,. Atthe beginning of the calculation, at t = 0, the displacements, as well as the speeds
and accelerations, are assumed to be zero.
1. The current time step At is performed, in the process of calculation its value can be changed in

accordance with the established moment of occurrence of the next events on the contact. From the solution

t+A4t Aut+At t+4t t+4t st+At

(4), the increments Au,, ™, & » then the values of displacements u, =, U;"~, speeds U, ", and

contact forces NIE““, k”m, JE‘" for the time point t + At are determined.

2. The traversal of all discrete constraints is performed, therewith for each constraint K there is (within
the current step At) the time point ﬂ( of occurrence of the next, i.e. the closest in the time event. The
expression for determining the time point of slippage for the constraint K that was previously in the state of the
clutching has the following form:

To =Ty
O -TH-05" 150 )

t, =t+4t €Sy ®)

The time point of clutch for the constraint K that was previously in the state of the sliding

.t
- —-u
b =t+at] —%—1, keS,. 9)

<t+at
urk - urk

The time point of separation or contact for the constraint K that, respectively, was previously in the state
of the contact or separation

t t

- —N - -u
t, =t+at —th , keSy, Syo; fo=t+at| —% | keS,. (10)

t+at t+at t

K K Uy —Unk

Since the change of displacements, speeds, and, therefore, forces, within the step At does not actually
follow the linear law, then, additionally, using the expressions (4), an iterative refinement of the time point ﬂ(
can be performed, the time consumption increases slightly in this case [28].

3. Of all the values f, having been found using the formulas (7) and being in the interval (t, t + At), the
smallest one corresponding to the moment of occurrence of the nearest time event on the contact is selected:
t =min(t,), keS,. Incase t >t+ At the next basic integration step At is executed, i.e. transition to p.1
is performed.

4.1n case t <t <t+ At — the recalculation of updated in such a way step with value At =t —t is
performed. Herewith, the method of compensating loads is applied to comply with the conditions of the ultimate

Jlykamesuu A.A.
170



Magazine of Civil Engineering, 89(5), 2019

friction [10, 28]. Changing of the ultimate friction forces on the contact is taken into account by the application
of compensating forces to the opposite nodes

lftk = _A-I:Uk = A

o ~T5), keS,,. (11)

The value of the transverse force on the contact K is corrected by the same quantity: Tkt = Tkt + Afuk-

As a result of the step recalculation, the values of displacements, speeds and forces on the contact in
the time point t are determined. The conditions of the expected event are checked; in case of slippage it will

be a condition Tk = Uk; in case of clutching — k =0, in case of detachment — Nk— 0, in case of

contact — unk = 0. If the corresponding condition does not work, the time point t should be updated once
again but in the interval (t, t) or (t, t+A4t).

5. In case of occurrence of the next on time event on the corresponding support the state of contact
changes — thereby the current working scheme of the construction changes too. Therewith the results of the

recalculated step are considered final for the time point t. Then all the above actions are repeated, but for
the next integration step At.

The given algorithm is implemented by the author in the computer program [29]. The program is
intended for doing numerical research and comparative analysis of various models of contact interaction of
the deformable systems, methods and algorithms of their calculation. For the purpose of comparative
evaluation of the results obtained, the program also implements the well-known methods for calculating
systems with unilateral constraints and friction, in particular, the method of iterations on ultimate friction forces
[21, 22].

Let us demonstrate the considered approach using the example of calculation of a plane framed system,
which, for example, can simulate a pipeline section with a difference of relief under dynamic loading
(Figure 1, a). Itis considered that the system is fixed from lateral displacements, i.e. from the Xy plane. On the
rigid supports K = 1, 2 the conditions of Coulomb friction-sliding with the possibility of separation on the contact
operate. The structure is in the state of rest, then a horizontal impulse load P(t) is applied at the left end. The
law of change of the pulse has a triangular shape with the duration of 0.1s, the amplitude of 100 kN
(Figure 1, b).

The longitudinal stiffness of the rods EA = 9108 kN, bending stiffness El = 2-106 kN-m2, the linear mass
m = 0.4 t/m. The damping matrix here simplistically computed as [C] = & - [M], the damping coefficients were
taken to be the following: & = 0.2z, £ = 0. Contact interaction was modelled with frame-rod CEF [4, 10],
connecting the support nodes of the framed system with fixed supports.

a) b)

X 1
20m . 10m 20m
= Fa

i

Figure 1. Framed system under the action of pulsed load P(t).

At the initial time point t = 0 on all supports the clutch state was set. The normal forces of interaction

Nl? on the contact of the structure nodes with the corresponding supports were taken to be equal to the

reactions from the own weight of the structure. In the future, as a result of the action of the dynamic load,
slippage, and the subsequent clutch on the contact is possible, as well as the switching off (separation) and
the switching on of unilateral constraints during the considered time period. At the same time, due to the

geometry of the framed system, the normal forces of interaction ng also change over time.

The next was the problem of interaction of the water-fight slab of the dam with ground base at
hydrodynamic effect of the water flow discharged from the headwater of the dam. The calculation scheme of
the slab (Figure 2) corresponds to one of the objects of the Volzhsky hydroelectric complex. The purpose of

Lukashevich, A.A.



WmxeHepHo-cTpouTenbHbIi xypHai, Ne 5(89), 2019

the calculations was to assess the impact of the pulsating component of water pressure in the discharge flow
for the contact interaction of the water-fight slab of the dam with the base ground. The criterion condition for
determining the ultimate values for the slab thickness in this case is to prevent the slippage or separation of
the slab from the ground base.

finite elements B
of the slab
)

X qlt
B A —
L N . finite elements

of the ground base

1\ h

[

1

e

L=36m

L

Figure 2. Scheme of the water-fight slab and applied loads.

The calculation took into account loads stipulated by the own weight of the slab, the hydrodynamic
acting from the water flow, the filtration backpressure. The following characteristics of the slab material were
taken: volume weight 24 kN/m?3, modulus of elasticity E1 = 40000 MPa, Poisson's ratio v1 = 0.2. The considered
area of the ground base was 64x20 m, volume weight 18 kN/m3, modulus of elasticity and Poisson's ratio
E2 =600 MPa, V2 = 0.25, the friction coefficient f = 0.31.

The pulsating component of the water pressure in the discharge flow was taken into account as a
dynamic impulse load. The amplitude of the pulsating pressure g and the correlation of its distribution over the
slab surface, depending on the position of the pulse center, were taken into account according to the
recommendations from [30]. Taking into consideration the demonstration nature of the calculation, the
accounting for damping is performed using a simplified scheme — similar to the previous example.

To study the dependence of the solution on the characteristics of the hydrodynamic acting, the behavior

of the water-fight slab at different positions of the impulse on the slab (X/1), likewise at its different directions
and duration of the action was calculated.

3. Results and Discussion

3.1. The problem of interaction of the framed system with rigid supports

The numerical solution of the considered problem, both by the proposed and, for comparative
evaluation, by an alternative method, was carried out using the computer program [29]. The purpose of the
calculations was to estimate the effect of the friction coefficient (the value f in the calculations varied from 0 to
1.5) on the behavior of the framed structure under dynamic loading. Figures 3 and 4 shows the horizontal and
vertical displacements of the frame on one of the supports depending on the time at different values of the
coefficient f, the integration step here was taken 0.0002 s.
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Figure 4. Vertical displacements (separation) on support 1 depending on time.

Figure 5 represents the dependencies between the amplitude values of the horizontal (slippage) Urand

vertical (separation) Un displacements on the supports and the specified values of the friction coefficients f on
the contact.
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Figure 5. Amplitude values of displacements U and Un on supports at different values
of friction coefficient .

The reliability of the obtained results is confirmed by the software check of the fulfilment of the
equilibrium conditions and the compatibility of the system deformations after each time step. Besides, for the
comparative evaluation of the results, the calculation of system was performed using an alternative algorithm
where the contact conditions at each time step are realized by means of the method of iterations on ultimate
friction forces (Figure 5 shows this solution by dotted line). As it can be seen, the results of the calculations by
the proposed and alternative methods correspond each other, however, the algorithm of iterations on the
ultimate forces requires much more calculation time (for the considered problem almost twice).

From the given graphs (Figures 3-5) it follows, that with an increase in the coefficient f, the separation
of the structure from the supports as a result of the dynamic loading decreases significantly. Moreover, in the
example considered here, there is a certain threshold value of the coefficient f (0.6-0.7), where the effect of
contact friction on the value of maximum separation is extreme.

In order to study the dependence of the solution on the value of the integration step over time, the
behavior of the framed structure for different values of At in the range from 0.0001 to 0.0064 s, with the
successive doubling of the step length, was calculated. The comparison of the obtained results allows us to
conclude that the proposed numerical approach shows satisfactory internal convergence in a rather wide
range of integration steps on time. Thus, the values of horizontal and vertical displacements on the supports
do not differ much when assigning the basic step in the range from 0.0001 to 0.0008 s. With a further increase

in At, there is some deterioration in the convergence, especially at large values of the friction coefficient.

Note that, in the general case, the choice of the optimal integration step is a rather complex problem
[27]. In this regard, basing on conducted numerical studies, it can be recommended to choose the value of the
basic integration step in such a way that when it is increased, for example, twice, the change in the results
does not exceed some specified error of calculation.
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3.2. The problem of interaction of the water-fight slab with ground

As the results of the calculations show, the possible separation of the water-fight slab from the ground
base in all cases occurs only at its edges (first from the left edge). The moment of separation depends on the
position and direction of the impulse of pressure. The most dangerous, from the point of view of the separation
slab from the base, is the pressure pulsation with the pulse duration of from 0.46 s (at the location of the pulse
closer to the edges of the slab) to 0.5s (for the middle of the slab). Figure 6 shows the change of contact
stresses on the left edge of the slab base in time — to the moment of separation of the sole from the base.
Here t/ Timp is the ratio of the current time t to the duration of the impulse of pressure Timp, X/ L is the ratio of
the X coordinate that defines the position of the impulse at the water-fight slab, to the slab length L. The slab

thickness in these cases was taken to be slightly less than the ultimate values for separation hpr.
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-14 LY
\
-12 %
0.\ ‘
-10 -
. {NxL=0.1
\
-8 \ “
xIL=0.2" -\
-6 i v,
.. \.
-4 N,
RS xIL=0.4
_2 Py, " s.-‘ P .
e N AIL=06 g w xIL=0.8
EEE Ry, “1"1 Yy, 0..
E — wirl } \ \..
0 0.2 0.4 0.6 t/ Time

Figure 6. Contact stresses on the left edge of the slab base before the moment of separation.

Figures 7 and 8 demonstrate the deformed pattern of the slab-base system at the moment of maximum
slab separation from the ground base. Here the slab thickness h = 2.5m — less than the ultimate one by
separation, pulse position X/L = 0.4. Yellow and light blue points-markers indicate the zones of slippage or
separation of the slab from the base.
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Figure 7. Isopole of horizontal displacements of the slab on the base.

Figure 8. Isopole of vertical displacements of the slab on the base.
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Using numerical experiments, dependencies for the ultimate values of the water-fight slab thickness on
the pulse position on it have been obtained (Figure 9). A solid line shows the envelope relative values of slab
thickness, satisfying the condition its non-separation and shear from the base. Here her = 3.48 m is the critical
depth corresponding to the design specific discharge of water. The dotted line corresponds to the ultimate slab
thickness when only static loads are applied — pressure deficit and own weight of the slab. The given
dependence can serve as a guide in the appointment of the thickness of the water-fight slab on the condition
of preventing its slippage and separation from the ground base — you can take h = her.

hpr‘!hcr
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/AR
0.7 J‘L ——
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\
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0 0.2 04 0.6 0.8 1.0 x/L

Figure 9. Dependence of the maximum slab thickness hpr on the pulse position X/ |.

4. Conclusion

1. The problem of the contact interaction of elastically deformable systems under dynamic loading is
considered in the article. To solve it, we propose the numerical algorithm combining in one step-by-step
process with the integration of the equations of motion with step-by-time analysis of the contact state. For
more accurate compliance with the limitations under the conditions of ultimate friction-sliding, the method of
compensating loads has been applied.

2. The basis of the above algorithm is a step-by-step analysis method that has a clear physical
interpretation. It is shown that this approach provides the possibility of analyzing the contact interaction of
structures with the base under dynamic loading and has the advantage in cases when the solution of the
problem depends on the history of loading, in particular, when accounting for friction-sliding in unilateral
constraints.

3. The discrete calculation model of the FEM is used, upon that for the modeling of unilateral constraints
with Coulomb friction, the contact finite elements in the form of frame-rod system has been used. The CFE
data providing a discrete contact between the boundary surfaces of the interacting elastic bodies, allows you
to determine the forces and displacements in the contact zone with the same and high accuracy, to apply an
inconsistent finite element grids, to take the physical and geometric properties of the contact seam into
account.

4. The carried out of test calculations allow us to conclude about the efficiency and reliability of the
proposed algorithm, taking into account the complicated contact conditions and dynamic loading, which are
essential for solving applied problems of structural mechanics. The comparison with the well-known algorithm
of iterations on ultimate forces shows in our case a significant saving of calculation time. Using the analysis of
the calculation results of the water-fight slab, proposals concerning the constructive solutions of the considered
structure, taking into account the nature and position of the dynamic loads acting on it, were made.

5. In conclusion, we note that the account of complicated conditions of contact interaction contributes
to the approximation of the calculation scheme to the real working conditions of structure and, thus, allows us
getting more accurate and complete information about its strength and reliability.
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CaHkm-lNemepbypackull 20cydapcmeeHHbIl apXumeKmypHO-CmMpoumesibHbIU yHuUgepcumem,
CaHkm-lNemepbype, Poccus

* E-mail: aaluk@bk.ru

KnioueBble crnoBa: KOHCTPYKUMA, OCHOBaHuWe, KOHTakKTHoe B3anMOAENCTBUE, OAHOCTOPOHHME CBA3MN,
OVHaMKU4YeCKoe HarpyxeHue, JUCKpeTHaAa Moaesib, MeTo KOHEYHbIX 3J1eMEHTOB

AHHOTaumA. KOHCTPYKTMBHO HeNMHENHble 3aJayn ¢ OOHOCTOPOHHUMMK CBSI3SIMM 4acToO BCTpevalTcsl npu
pacyeTe pa3nUyHOro pofa KOHCTPYKLUMIA U COOpYXXeHWid. Mpu 3ToM onpefeneHHble TPYAHOCTU B peLLeHum
NpeacTaBnsAloT 3a4aumn Npy y4eTe TPEeHUSI Ha KOHTaKTe, a Takke Npu AUHAMUYEecKoM AeicTBuM Harpysku. B
9TUX Cryyasix KOHTaKTHasl 3afjadva YCIIOXKHAETCS B MaTeMaTMYeCKOM OTHOLIEHWM U YCMOXHSeTcsi ee
yMCrneHHoe pelleHne. HacTtosiwasi cTaTbsl MOCBsiLLEHA MOCTPOEHMI0 pacyeTHbIX Modeneid U MeTogoB
pelleHunst 3aday C HempaeanbHbIMU OQHOCTOPOHHMMU CBA3SIMW MPU UHAMUYECKOM HarpyxeHun. Ha ocHoee
KOHEYHO-3/1EMEHTHOM MOJENN KOHTaKTa M MeToda MoLLaroBoro aHanmsa paspaboTaH YNCNEHHbIN anropuTMm,
MO3BOSSAOWMIA  BbINOMHATE OOHOBPEMEHHO WHTEIpUPOBaHME YPaBHEHWA [OBWKEHUS W peanusaumio
KOHTaKTHbIX YCroBWi ¢ TpeHueM KynoHa. Ons cobnogeHus orpaHuyYeHuid B YCrOBUAX MO MpeaerisHOMYy
TPEHUIO-CKOSIBXXEHUIO MPUMEHEH CNocoG KOMMEHCUPYIOLLMX Harpy3ok. C NoMOLLbH0 NPeanoXeHHOro noaxoaa
nonyyeHbl W NpoaHanM3MpoBaHbl YUCMEHHbIE pELUeHVs HEeKOTOpbIX 3ajay KOHTaKTa COOPYXEHUs C
OCHOBaHVeM. [J0CTOBEPHOCTL PE3YNbTAaTOB NPOBEAEHHbIX pacYeTOB NOATBEPXKAAETCS CONOCTABIIEHNEM KX C
peLleHneM, MNomnyYeHHbIM anbTepHaTMBHbIM MTEePaLMOHHBIM MeToaoM. [py 3TOM anroputM MOLIAaroBoro
aHanusa asnsetca 6onee aPEKTUBHLIM MO BPEMEHW BbIYMCMEHWI, NOKa3bliBas YO4OBNETBOPUTENbHYIO
CXOAUMOCTb, YCTOMYMBOCTb U TOYHOCTb PELLEHNS B 4OCTATOYHO LUMPOKOM AManasoHe LWaros MHTerpupoBaHms
Mo BPeMEHW.
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