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Abstract. It is known that the theory of linear and nonlinear elastic plates and shells is the most developed
part of the theory of elasticity. In this area, the necessary equations are obtained and the methods to solve
them are developed. At the same time, there are gaps in considering the viscoelastic properties of a material
in the problems of thin-walled structures dynamic calculations. It should be noted that in some publications
the viscoelastic properties of the material (i.e. the deviation of material test diagram from Hooke's law) were
taken into account according to the Voigt model, not confirmed by experiments. Ignoring viscoelastic
properties of the material significantly limits practical applicability of results. The first part of the paper
presents the statement and method of solution to the problem of axisymmetric vibrations of a physically
nonlinear viscoelastic cylindrical shell with concentrated masses. The function characterizing the deviation
of stress intensity curve from the Hooke straight line is taken in the form of cubic nonlinearity. A
mathematical model, solution method and computational algorithm were developed for the problem of
axisymmetric oscillations of a cylindrical shell with a concentrated mass, taking into account physically
nonlinear strain of the material under different boundary conditions in the frame of the Kirchhoff-Love
hypothesis. For the study of the effect of a concentrated mass the Dirac delta function was introduced. With
the Bubnov-Galerkin method, based on a polynomial approximation of deflections, the problem in question
is reduced to the solution, in the general case, of non-decay systems of nonlinear integro-differential
equations of Volterra type. To solve the resulting system with the Koltunov-Rzhanitsyn weakly singular
kernel, a numerical method was applied based on the use of quadrature formulas. A unified computational
algorithm has been developed to determine the deflection of a viscoelastic cylindrical shell with concentrated
masses.

1. Introduction

In modern technology, construction and other fields of industry, the structures of more and more
complex patterns are being used; to ensure their strength, reliability and high efficiency is a problem of great
importance. It is impossible to optimally design them without constructing mathematical models that account
for the maximum possible number of factors affecting the efficiency of such structures.

In literature there are a number of publications in which linear and nonlinear problems of thin-walled
structures dynamics are considered with and without a concentrated mass. An analysis of these publications
shows that little attention has been paid to the features of viscoelastic inhomogeneous systems inertial
behavior. In these papers, the problems were considered either using the Voigt's differential model or the
Boltzmann-Volterra integral model, where the exponential kernels that could not describe the actual
processes occurring in shells and plates at initial point of time were taken in calculations as the relaxation
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kernels [1]. The choice of the exponential kernel in calculations was not accidental. The systems of
integro-differential equations obtained in calculations were reduced by differentiation to the solution of
ordinary differential equations, which, in most cases, were solved by the well-known Runge—Kutta numerical
method.

Static studies of viscoelastic materials for creep and relaxation indicate an extremely high intensity of
relaxation processes at the initial stage of testing. The process velocity is so high that its direct measurement
at the initial moment turns out to be impossible. The processes are considered as dynamic ones and their
velocities are conditionally considered equal to infinity [1]. This fact can be described by weakly singular
functions, which provide finite strains and stresses, in contrast to strongly singular functions. Such weakly
singular functions describe well the velocities of relaxation processes if they contain a sufficient number of
parameters. Such kernels include the Koltunov-Rzhanitsyn three-parameter kernel [2].

In practice, the materials are found in which stress ¢ and strain ¢ relation is nonlinear at increasing
stress in the region of small strains, [3], i.e. the material has a physical nonlinearity. Physical nonlinearity can
be with a soft or hard characteristic.

The monograph [4] provides the fundamentals of a physically nonlinear theory of elasticity, in
construction of which Hooke's law is replaced by the nonlinear law of elasticity; geometrical linear relations of
the classical theory of elasticity are preserved. Along with this, nonlinear static problems of the theory of
elasticity under static load and the problems of nonlinear theory of oscillations are described in [4].

As shown by experimental studies, in most materials, namely, in soils, in polymeric materials, etc.,
physical nonlinearity manifests itself even at low stresses. Recently, the materials with nonlinear viscoelastic
properties, have been widely used in practice. To describe such processes, it is desirable that the physically
nonlinear viscoelasticity law has a simpler form and more accurately reflects physical properties of the
material.

For a wide class of nonlinear problems in the theory of viscoelasticity, an account for real physical
properties of a material allows revealing additional reserves of its strength and studying the effect of material
properties, size and type of loads on the stress-strain state. Despite the complexity of solving the problem of
nonlinear viscoelasticity, an account for the material features in the theory of viscoelasticity allows us to refine
the strength calculation and to choose reliable optimal parameters of structures [3, 4]. Physically nonlinear
problems relate to the complex problems of the theory of viscoelasticity and structural mechanics.

Various nonlinear viscoelasticity models were proposed by Yu.N. Rabotnov [1], A.A. llyushin [5].
However, some materials, depending on size and acting stresses duration, could not be described by one
model only.

In mechanical engineering, construction and aviation industries, thin-walled structures such as plates
and shells often play the role of a bearing surface, to which longitudinal and transverse ribs, linings and
machine units are attached. In theoretical consideration of such problems, the attached elements are
interpreted as an additional mass rigidly fixed to the systems and concentrated in points.

There is a number of papers in which linear and nonlinear problems of oscillations and dynamic stability
of thin-walled structures such as plates and shells with a concentrated mass are considered. The problems
were considered with and without account for inhomogeneous and viscoelastic properties of the material.

Analytical and experimental studies of dynamic instability of hinge-supported plates with an arbitrarily
located concentrated mass are considered in [6]. Differential equations obtained with the Karman theory are
solved by the Galerkin method. It is shown that a concentrated mass has a significant effect on dynamic
instability of a plate.

In [7], nonlinear forced oscillations of rectangular plates carrying a concentrated mass in the center were
investigated. It was assumed that the plate had rigidly fixed edges. The Karman non-linear theory of plates is
used. The problem is discretized into a system with a multitude of degrees of freedom using the power
approach and the Lagrange equations.

The eigenmodes of a rectangular plate, with two adjacent edges fixed, and the other two free
(CCFF-plate) are investigated in [8]. The sought for deflection function is selected as the sum of two hyperbolic-
trigonometric series. An analysis of the accuracy of calculations and comparison with known results are given.

In [9], orthotropic shallow shells with a double curvature are considered, as well as cylindrical panels
reinforced from the side of the concavity by an orthogonal grid of ribbed stiffeners. External transverse load
acting on the shell structure is uniformly distributed and linearly dependent on time. Calculations have shown
a significant increase in critical load of instability, when the shell is reinforced with ribbed stiffeners.
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To study free and forced axisymmetric oscillations of a cylindrical shell, two approaches were proposed
in [10], based on three-dimensional theory of elasticity and division of initial cylindrical shell by concentric
transverse circles.

A method for calculating natural oscillations of a cylindrical shell of an orthotropic material was proposed
in [11]. The shell is reinforced by a set of rather densely arranged transverse-longitudinal ribs. The problem is
reduced to a system of homogeneous algebraic equations, the number of which is equal to twice the number
of discrete ribs. Comparison of calculated and experimental data is given.

The effect of a small added mass on the frequency and mode of free oscillations of a thin shell is studied
in [12] using the theory of shallow shells. In proposed mathematical model it is assumed that the mass
asymmetry, even in a linear statement, leads to coupled radial bending oscillations.

The most recent advances in the mechanics of soft and composite shells and their nonlinear vibrations
and stability are presented in [13].

In [14], resolving equations were obtained and a calculation procedure was developed with account for
nonlinear creep of three-layer plates and shallow shells with lightweight aggregate. The problem was reduced
to a system of three differential equations for the stress function, displacement function and deflection.

Stability of rods, plates, and shells was investigated in [15], taking into account physical nonlinearity.
Critical state of thin-walled structures is determined using some limit dependencies.

Wide use of personal computers in calculations made it possible to develop and implement numerical
analysis methods for solving the problems of the hereditary theory of viscoelasticity and, thus, significantly
expand the class of solved problems of the hereditary theory of viscoelasticity [16—21].

Based on the above, the aim of the first part of this study is to build a mathematical model, to develop
a solution method and a unified computational algorithm for finding the deflection of the problem of
axisymmetric oscillations of a physically nonlinear viscoelastic cylindrical shell with a concentrated mass.

2. Methods
Consider a viscoelastic cylindrical shell carrying concentrated masses My at points with coordinates
(Xp), P=1,2,...,I, obeying the Kirchhoff-Love hypothesis. The cylindrical shell of radius Ri is under

axisymmetric external pressure (. It is believed that there is no tensile force T1 along the generatrix of
cylindrical shell [5].

Figure 1 shows the shell element and the forces acting on it. The x-axis is directed along the generatrix
of the middle surface, the y axis along the circumference and z-axis along the radius of the cylinder. The strain
of cylindrical shell is characterized by radial displacement W, which is considered positive if it is directed

towards positive direction of the z-axis and axial strain of the element of middle surface &1. Shell material is
taken as equally working in tension and compression. The directing stress and strain tensors coincide.

Figure 1. Element of cylindrical shell and the forces acting on it.

In accordance with the accepted assumptions and the axisymmetric nature of strain for any elementary
layer located at a distance Z from the middle surface, we get [5]:
o*w

gngl—z—axz, E=6 &=—(6+8), &=——"\ &s=6y3 =6, =0. (1)
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Here, relative elongations of the element of the middle surface as a result of shell strain are indicated

by: & :(gx)zzo, £y = (‘95)2:0'

The condition for the absence of axial force T1 = 0 is satisfied if and only if
&+ 1 & =0, g = w 2
1v56=0 4 2R (2)

According to [17], the initial physical equations are taken as

1 3 * 1 3 *
UX—EUS =§(1—R )’p(é‘i)gx, Oy —EO'X :E(l_R )’p(gi)gs, (3)
t
here R” f J-R dr where R(t — 7) is the relaxation kernel.
0

It is assumed that the shell strain is small; a nonlinear relationship is assumed between the intensity of
stresses oj and the intensity of strains &. The nonlinearity function ¢(&) is taken as

(p(gi)=c+d8i2, 4

here C, d are the constants, depending on the properties of shell material.

Calculate the strain rate [5, 16], taking into account (1) and (2)

1
2.2 |2
A =% %922 +z2[‘27‘f} | (5)
Solving (3) relative to stresses, and using (1) and (2), we get
- o%w * 3w o%w
o, =—221-R p(s)—. o =—[1-R (s ) ==+ 2—|. 6
X ( )‘0( |)8X2 Os ( )‘0( |{2 R, ze] (6)

Using the last formula for stresses (6), calculate the force and moment acting on shell element using
formulas [16]

h h
M; = jaxzdz, T, = Iasdz. 7
~h ~h

Substituting expressions (4)—(6) in (7) we get

3
M, =-D(1-R )Ziw 4323 (1-Rr") WZ%%WM@%"] : ®)
B, .. 3bh o (22w
T2=—El(1—R) ——1(1 R) w® 5R h?w (8)(2] , ©
where D = 4ah’ ; B=3ha; h is the shell half thickness.
Differential equation of element equilibrium (Figure 1) has the form

O’M; T,

pv; +El+q 0. (10)
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Adding inertial forces to the load g, according to the d'Alembert principle, and substituting (8) and (9) in
(10) we get

D(1-R )84W B(l R )w+ L;bhg(l—R*) 2 (@jzaz_ww(a?_wj s Waw |

ox* R_f 2 ox ) ox? ox? X o
12 0o, %[ Bw P wY otw| L otw
R h*| 2—- — |+ 5 T [ TW — ot (11)
5 oX“ | OX OX OX OX

3bh 4 o*w o*w
1-R +— R h2w +M———=0q(X,t).
1 R 9 (ax ] ot? a(x1)

The effect of a concentrated mass on viscoelastic shell is inertial in nature and is accounted in the
equation of motion (11) with the Dirac &function [22]:

!
m(x) = ph+ D M 5(x—x,)

p=1
where pis the density of the shell material.

Thus, the problem of axisymmetric oscillations of viscoelastic cylindrical shells in a physically nonlinear
statement is reduced to a system of partial integro-differential equations of the form (11) with appropriate initial
and boundary conditions.

Most of dynamic problems of viscoelastic thin-walled structures [17] after applying the Bubnov-Galerkin
method are reduced to solving non-decay systems of integro-differential equations of the following form:

N

t
(A + oWy ) = Zi (t Wy, .., Wy 7_[‘/’k (t, 7, Wy,..., Wy Jd7),
n=1 0 (12)

w, (0)= wp,, W, (0)=Vip,, n=1,2,...,N,
where W, = Wn(t) are the unknown time functions;

Zx, yx are the continuous functions in the domain of change of arguments;

Ckn, @Fkn are the given constant numbers.

Many nonlinear dynamic problems of viscoelasticity are reduced to system (12), in particular, problems
of oscillations and dynamic stability of viscoelastic structures such as rods, beams and cylindrical shells
bearing a concentrated mass.

Integrating system (12) twice over t, it is reduced to integral form. Assuming then that t = tj, tj = iAt,
i=1, 2, ... (4t = const is the interpolation step) and replacing the integrals with quadrature formulas to

W =W (L), . .
calculate ™M '”( ') we obtain the following system:

N N p-1
Z CnWin = zckn (WOn +Wopt ) +Z Aj (tp _tJ )x
n=1 n=1 j=0

(13)

s=0

i N
2

x{zk Ltj, Wig, ooy Wiy, By D (1, Wy, o WsN)j_zwknan}'

n=1
The next step in numerical method is the regularization of a system of nonlinear integro-differential

equations (13) with the singular Koltunov-Rzhanitsyn kernel [2]
rt)=Ae .t A>0, >0, O<a<l.
Using change of variables
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t > t)”
__Lzza, ngg(—j ,(0<a<1)
0 )

the integral at the Koltunov-Rzhanitsyn kernel with a singularity of the following form

t 7

AT (l—ija_le_ﬂ(w_w]w(r)dr
0

has the form

Note that after the change of variables, the integrand with respect to Z becomes regular. To numerically
solve the system (13), we apply the method of direct replacement of integrals entering the system with a
certain sum using some quadrature formula, in particular, using the trapezium formula

A{ st
—P k
—E B.e 7 kwi_,,
k=0
where the coefficients are:

s-3( 2] 8 -3(2] @-a-9

Bk%[%]a (k+D)* (k1)) k=Ti-1

Thus, due to twice integration of initial system (12) over time t and the use of the quadrature formula,
system (13) is obtained to find the deflections Wi, = Wi, (ti ) Solution (13) is found by the Gauss method.

3. Results and Discussion
Solution of equation (11) at initial conditions

w = y(x), W(x0) _ 0 (14)
ot
is sought in the following form [23, 24]
N
W(x,t) = 3 W, ()ya (), (15)
n=1

where (X) are the known coordinate functions that satisfy all the boundary conditions of the shell.
Substituting (15) into (11) and performing the procedure of the Bubnov-Galerkin method, we obtain
N aN ooN
D ay, W, + D(l— R )Zbknwn +ZB(1— R ) D Cair Wa WW, =0,
n=1 n=1 n,i,r=1 (16)
W, (0)=wy,, W, (0)=\iy,,

a

a |
where akn = J-[ph + Z M p5(x_ Xp )J VnaWk dX, bkn = J‘(Wr:\,/xxxx + 2Wr:\,/xxyy + Wrivyyyy )Wkdx'
0 p=1 0
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a
_ " m m " " 1\ m m "
Cknir - _[(6V/n,xxWi,xxxV/r,xxx + 3l//n,xxl//i,xx‘//r,xxxx + 3l//n,xxxlr//i,xxxWr,xx +
0

L4 n n 14 n L4 " 14 | V 14 " 14
+ ‘//n,xxyl//i,xxyl//r,yy + l//n,xxl//i,yyy‘//r,xxy + Wn,xx‘//i,yyl//r,xxyy + 6l//n,xyl//i,xyyl//r,xxy +

a
+ 3l//rq,xyl//i'txyer,\<<xyy )l//k dXv Qk = J‘q'//k dx.
0

Integrating the system of resolving equations (16) twice over t, we can write it in integral form. Then,
assuming thatt = tj, ti=i4t, i =1, 2, ... (At is the integration step) and replacing the integrals with the
quadrature formulas of the trapezium to compute the unknowns W, =W, (ti), we obtain the following
recurrence formula

N N p-1 N A q

_ i _ _ _n -pt
Zaknwpn - Zakn (WOn + antp) Aq (tp tq) Dzbkn an a Z Bze ZWq—z,n +
n=1 n=1 q=0 n=1 7=0

N A q (17)
-pt .
+2B z Cynir anququ _;z Bze ZWq—z,an—z,iWq—z,r — Ok >
n,i,r=1 z=0

W, (0) =W, Vi, (0) = Vi,

where Aq, B are the numerical coefficients that do not depend on the choice of integrands and take on different
values depending on the quadrature formulas used.

The dependence obtained makes it possible to study the axisymmetric oscillations of viscoelastic
cylindrical shells carrying a concentrated mass with account for physical nonlinearity.

4. Conclusions

In the first part of this study in physically nonlinear and geometrically linear statements the following
aspects were stated:

1. A boundary-value problem was formulated for the dynamic calculation of a cylindrical shell carrying
concentrated masses based on the cubic theory of viscoelasticity.

2. Using the Bubnov-Galerkin method, the main resolving equations were obtained in the form of a
system of non-decay integro-differential equations of the problem for dynamic calculation of a cylindrical shell
carrying concentrated masses.

3. A method for solving the obtained systems of non-decay integro-differential equations based on the
guadrature formula was proposed.

In the second part of the study, numerical results of the stress-strain state of a cylindrical shell with
concentrated masses will be presented in physically nonlinear and geometrically linear statements.
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HENWHEeNHOCTb, COCPEdOTOYEHHbIE MAacChbl, OCECUMMETpPUYHble KonebaHusi, HenuvHenHoe WHTEerpo-
andbdepeHumanbHoe ypaBHeHue, SApo penakcauum, Metod byGHoBa-ManépkmHa, YucneHHblin meToq

AHHOTaumA. M3BecTHo, 4TO Hambomnee paspaboTaHHOW YacTblo TEOpuM YMNPYrocTu SABNSETCA Teopus
NUHEWHBIX U HEMWHEWHbIX YNpyrux nnactmH n obonouek. B aton obnactm nony4veHbl BCce HeO6XOAMMbIE
ypaBHEHUS n pa3paboTaHbl METOAbI MX pelleHus. B To e Bpems, B obnactu yyeta BA3KOYNpPYrnx CBOWCTB
mMaTtepuana B 3ajayax MO AMHAMWYECKMM pacyeTaM TOHKOCTEHHbIX KOHCTPYKUMIA UMEKTCs npobernbl.
OTmeTM, 4YTO B HeKOTOpbIX paboTax BA3KOymnpyrMe CBOWCTBa MaTepuana, T.e. OTKIIOHeHMe AuarpamMmbl
UCNbITaHM MaTepuana oT 3akoHa [yka yuuTbiBanucb no mMoaenu donxrta, He noaTBepxaroLimecs
akcnepumeHTaMmu. He yveT BA3KOYNpyrmx CBOWCTB MaTtepuarna CyLeCTBEHHO OrpaHu4MBaeT npakTUYeCcKyto
NPUMEHNMOCTb pe3yrnbTaTtoB. B nepBoi 4Yactn paboTbl paccmaTpmBalOTCA MOCTAHOBKA U MeTo4 peLueHust
3ajayn 06 ocecUMMETPUYHbIX KonebaHusix U3NYeckn HenMHENHOW BA3KOYNPYron LMANHAPUYECKON
000noYKN C cocpenoToYeHHbIMM Maccamu. DPyHKUMSA, XapakTepusupylowas Mepy OTKIMIOHEHUSA KpPUBOW
WHTEHCMBHOCTM HanpsbkeHun oT npamon [yka, npuHsaTa B Buae Kybudeckon HenuHenHoctw. lMocTpoeHa
MaTemaTuyeckas mMogernb, NpeanoXeH METOA pelleHns 1 pa3paboTaH BblMMCAUTENbHbIA anropuTM 3agayvn
06 ocecMMMeETpUYHbIX KonebaHusx uunuHapudeckor oBOMnoYKkKM, Hecyllen cocpefoTOYEeHHble MacChbl, C
yyeToM PU3NYECKM HEerMHENHOro AedopMmnpoBaHUA mMaTepuana npu pasfuyHblX FPaHUYHbBIX YCMOBUSAX B
pamMkax runotesbl Kupxroga-Jisisa. ekt AeicTBUsi CocpeaoTOHEHHbBIX MacC BBOAUTCS C MCMONb30BaHNEM
aenbTa-pyHkuun Oupaka. C nomowbto metoga BbyGHoBa-ManépkmMHa, OCHOBAHHOIO Ha MHOTrOYf1EHHOW
annpokcumaumm npornboB, paccMaTpvBaemasi 3afjada CBOAMTCA K pelleHuto, B oblem cnyvae, He
pacnagatoLlLmMxcs CUCTEM HeNUHENHbIX UMHTerpo-anddepeHumnansHbiX ypaBHeHu Tuna BonbTeppbl. Ons
peLleHnst MOJTyYEHHOW CUCTEMbI, Npu crabo-cuHrynsapHoM sape KonTyHoBa-PxaHWublHA, NPUMEHEH
YNCMNEHHbIV METOA, OCHOBAaHHbLIA Ha MWCNONb30BaHUWM KBagpaTypHbix ¢opmyn. PaspabotaH eguHbIn
BbIYNCIIMTENBbHBIA  anropuTM  ANA HaxoXAeHus npornbda BA3KOYMNPYron LUUNIMHOPUYECKOW 000noykn c
COCpPeAOTOYEHHBIMM MaccaMu.
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