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Abstract. This paper aims to find the optimum cable spacing in terms of vertical deformation and cable stress 
for static and dynamic analysis. To achieve the objective of this study six models are developed using 
ABAQUS with six different cable spacing ((8.04 m, 30 cables), (9.42, 25), (11.11, 22), (13.72, 18), (15.56, 16), 
and (16.67, 15)). Firstly, a non linear static finite-element analysis is performed on the models; then pre-
tensioning forces are applied to cables, after that the shape modes for each model are presented. Secondly, 
a nonlinear dynamic analysis is performed on the models; the results obtained from the finite-element analysis 
are used in the optimization. The results show that the maximum vertical deflection decreased and the cable 
stress increased with the increasing of cable spacing for both static and dynamic analysis. As a result, the 
unsupported length increased with the cable spacing increasing; this will lead to larger deflection and greater 
stresses in the cables. Finally, the optimum cable spacing is 11.2 m based on static and dynamic deflection 
and cable stress. 

1. Introduction 
Many types of bridges are used these days. The simplest bridge, the beam bridge, consists of two piers 

and one beam. However, the need for spans with long distances proposed new alternatives such as 
suspension bridges and cable-stayed bridges. The cost of the suspension bridges is relatively higher than the 
cost of the cable-stayed bridges. The elastically supported girder is the main tool in the simulation of the 
behavior of a cable-stayed girder. The square of the spacing is proportional to the local bending moment 
between the cables. The newly proposed design necessity that all cables be independently expendable makes 
closely spaced cables more attractive. It is generally essential that one cable can be dismantled, detensioned, 
and replaced under reduced traffic loading. The small cable spacing will not increase extremely the additional 
bending moment in the girder. Accessibility of ever best computer tools helps the engineer to simulate and 
analysis of the complexity of structure [1–11]. 

Cable-stayed bridges have been constructed all over the world, are mainly used for medium-to-long 
spans and are part of important transportation networks. Besides their structural efficiency, they owe their 
popularity due to an elegant and transparent appearance. The bridges constructed in earthquake-prone areas 
must be designed to withstand the seismic action. Cable-stayed bridges present long vibration periods, due 
to the long spans and their flexibility, which theoretically makes them not sensitive to dynamic excitation [10]. 
However, they feature inherent low damping, and their dynamic behavior is highly dependent on the stiffness 
and mass distribution. Therefore, any attempt to minimize the inertia forces and to maximize the resistance 
leads to an undesired decrease in the vibration periods and consequently to higher seismic forces. 
Furthermore, although concrete bridges feature higher damping than steel or composite bridges, they are also 
heavier, which implies higher inertia forces.  

The dynamic behavior of cable-stayed bridges has been extensively studied by several authors. Abdel-
Ghaffar and Nazmy [12] considered a three-dimensional model, including the geometrical nonlinearities, to 
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study the dynamic behavior of long-span cable-stayed bridges under seismic loading. The cases of 
synchronous and non-synchronous support excitations were considered, and the effects of the non-dispersive 
traveling seismic wave on the bridge response were studied. Abdel-Ghaffar and Khaliffa [13] studied the 
dynamic behavior of cable-stayed bridges focusing on the importance of the cables’ vibrations in the overall 
dynamic response of these bridges. Soneji and Jangid [14] studied the influence of dynamic soil-structure 
interaction on the behavior of seismically isolated cable-stayed bridges. Caetano et al. [15] focused on 
modeling the dynamic behavior of cable-stayed bridges. The authors developed a three-dimensional finite 
element model that includes the cable transversal motion and were tuned based on repeated campaigns of 
vibration data acquisitions of a cable-stayed bridge. Camara and Efthymiou [16] studied the deck-tower 
interaction in the transverse seismic response of cable-stayed bridges. The authors considered the 
contribution of different vibration modes and the influence of the main span length, the tower shape, the cable-
system arrangement, the width and height of the deck, and the soil conditions. Concerning the optimization of 
cable-stayed bridges under seismic action only a few studies have been reported. Negrão and Simões [17] 
optimized steel cable-stayed bridges under seismic action considering both modal/spectral and time-history 
approaches. The cable areas and the cross-sectional dimensions of the deck and towers were considered as 
design variables. Fereira and Simões [18] presented an algorithm for the optimum design of steel cable-stayed 
bridges considering active devices to control the response of the structure subjected to earthquakes. 

Cable-stayed bridge design involves some complex problems, such as: defining the structural system, 
finding the members' cross-sections, the calculation of the cable forces distribution, the construction stages, 
and geometrical nonlinear effects. For concrete bridges, the time-dependent effects must also be considered. 
The seismic action adds more complexity to find an adequate mass and stiffness distribution that optimizes 
the dynamic bridge response. Therefore, optimization algorithms are particularly used to handle a large 
amount of information involved and thus, obtaining economical and structurally efficient solutions under both 
static and dynamic loading. Previous works concerning the optimization of cable-stayed bridges studied the 
cable forces calculation in steel [19, 20], composite [21, 22] and concrete bridges [23, 24]. The use of 
geometric and cross-sectional design variables was also reported in the optimization of steel and composite 
steel-concrete bridges [25] subjected to static loading. The main objective was to minimize the structural cost 
while ensuring that the stresses and displacements throughout the structure remain within allowable limits. 

We are faced with a large optimization problem given the number of design variables and objectives 
representing several load cases, the consideration of geometrical nonlinearities and the dynamic analysis to 
access the structural response under seismic action. A cable-stayed bridge needs, including the time-
dependent effects and poses additional difficulties to the optimization problem when formulating the 
sensitivities of the design objectives. This is due to the fact that the resistance of each cable-stayed bridge 
depends on the correspondent cross-sectional design variables. 

2. Methods 
The goal of this analysis is to determine the spacing of the optimum cable; the different models will be 

studied using ABAQUS. Eighteen models will be created and analyzed which have the same parameters 
except the cable spacing and the deck stiffness (three-deck stiffness and six cables spacing). The eighteen 
models are created based on design constants will be described later in this chapter, computer analyses will 
be conducted, then the optimum cable spacing and optimum deck stiffness will be calculated based on the 
results. 

2.1. Design constants 
A doubly symmetrical cable-stayed bridge about the two major axes with one middle span (500 meters 

long) and two side spans (250 meters each span) will be used; the bridge will have four towers (two at each 
side of the deck) as shown in Figure 1. The typical ratio which offers an economical solution for the design for 
the height to the main span ratio is 5, according to this ratio, the height of the towers is 100 m. The typical 
design range for the pylons to the towers' ratio is 2, so the height of piers is 50 m. The cross-section of the 
towers is (3.5 m × 5.5 m) of conventional concrete C30; this cross-section needs about 1.2 m2 longitudinal 
reinforcement. The cable's material is a seven-wired strand T15S 1770 which has a diameter of 20 cm, 
modulus of elasticity equal to 165 GPa and the Poisson's ratio of 0.3. Based on the history of the cable-stayed 
bridges, the most preferred layout of the cable's arrangement is the double-plane semi-fan system, which 
provides better support to the deck. A reinforced concrete (RC) deck is used, the deck consists of 0.25 m thick. 
The steel used for the girders has an elastic modulus of 200 GPa, and Poisson's ratio of 0.3 and the 
mechanical prosperities of the RC slab are f’c of 50 MPa, Poisson’s ratio of 0.15 and normal weight density 
of 2400 kg/m3. The deck has four traffic lanes, two lanes at each side and a pedestrian walkway at each side 
too, the width of the deck will be taken is 25 m. For the boundary, the towers are fixed at their ends, and the 
deck is pinned at its ends, the intersection between the towers and the deck are pinned too. 
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Figure 1. Bridge details and loading directions. 

2.2. Finite elements 
Thick shell element is suitable for the analysis of RC and sandwich shells (RC decks). Irregular 

meshes of S8R elements converge very poorly because of severe transverse shear locking; therefore, this 
element is recommended for use in usual mesh geometries for thick shell applications. As a conclusion, a 
S8R thick shell element with typical mesh geometries will be used for meshing the RC deck. The 3-node 
quadratic beam element (B32) will be used for meshing the Girders, the Cross-Beams, and the towers. 
Finally, the 2-node linear interpolation truss element (T3D2) will be used for meshing the cables. Truss 
elements (T3D2) are one-dimensional bars or rods that are assumed to deform by axial stretching. These 
elements pin jointed at their nodes, and so only translationally displacements and the initial position vector 
at each node are used in the discrimination. When the strains are large, the formulation is simplified by 
assuming that the trusses are made of incompressible material. There are two truss elements in Bequest: 
a 2-node linear interpolation truss and a 3-node quadratic interpolation truss. The quadratic interpolation 
version is in the library, mainly for compatibility with the quadratic interpolation elements of other types, 
such as a shell element S8R5. The same interpolation functions are used for both the Cartesian 
displacement components and for the Cartesian components of the initial position vector, so these elements 
are the simplest form of nonparametric elements.  

2.3. Models 
Table 1 shows the simulated models to be analyzed; every model has different spacing for the cables 

as results of six different models. It is common knowledge that the cables work more effectively when they 
form angles between (25–65°) with the deck, and it is very common for cable-stayed bridges to have been 
spacing between 8.04 m to 16.67 m between cables. The deck supported on three I-steel beams, as shown 
in Figure 1. All models arrangement leads to minimum and maximum angles of 22.7° and 66.12° respectively. 
The cable spacing and the number of cables in each side for the first, second, third, fourth, fifth, and sixth 
model will be taken (8.04 m, 30 cables), (9.42, 25), (11.11, 22), (13.72, 18), (15.56, 16), and (16.67, 15), 
respectively. The total number of cables for the model equals eight times the number of cables on each side. 
Shell elements were used to represent the RC slab; tie connections were used to connect the slab with the 
steel frame; the steel frame consists of the steel girders and cross beams. The cross beams have the same 
dimensions as the steel girders for simplification. Beam elements were used to represent the steel frame. The 
cables and girders are connected using MPC constraint's pin type, and the towers and cables are connected 
using MPC constraint's tie type. The cables are represented using truss elements, and beam elements were 
used for representing the towers. 
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Table 1. Details of simulated models and static results. 

Model 
Number 

Cable Spacing 
(m) 

Number of cables 
(Each Side) 

∆Max,B, 
m 

∆Max,A, m σMax,B, 
MPa 

σMax,B/σu, 
% 

σMax,A, 
MPa 

σMax,A/σu, % 

B1CS8.04 8.04 30 6.16 0.05029 641 40 173 9.8 
B1CS9.42 9.42 25 9.68 0.06195 723 64 191 10.8 

B1CS11.11 11.11 22 9.34 0.06155 829 62 190 10.7 
B1CS13.72 13.72 18 10.71 0.06135 1001 76 264 14.9 
B1CS15.56 15.56 16 7.08 0.0488 1365 52 457 25.8 
B1CS16.67 16.67 15 8.61 0.04419 1049 65 248 14.0 

Note: ∆Max, B: Maximum deflection before pre-tensioning; ∆Max, A: Maximum deflection after pre-tensioning; σMax, 

B: Maximum stress in cables before pre-tensioning; σMax,A: Maximum stress in cables after pre-tensioning; σu: Ultimate 
stress of cable.  

2.3.1. Static Loading 

In accordance to AASHTO, the load combination has been taken into account for the static case is 
“STRENGTH I”, which is equal to: 

.   1.25  .   1.5  . .   1.75  . ,T L D L S D L L L= × + × + ×  (1) 

where T.L is the factored total load;  

D.L is the dead load;  

S.D.L is the superimposed dead load,  

L.L is the live load. The static load applied as pressure on the deck surface in the gravity direction. 
Nonlinear analysis was performed to account for the nonlinear performance of the cables.  

2.3.2. Pre-tensioning 

The conventional «Zero-Displacement» method proposed by Wang et al. [21] was used to achieve the pre-
tensioning forces in the cables. Firstly, the towers were restricted from the vertical and horizontal movements, and 
then prestressing forces were applied to the cables until a zero vertical displacement at the center of the mid-span 
is achieved. After that, the towers were allowed to move in the vertical and horizontal directions. Finally, the 
prestressing forces were adjusted until we had zero vertical displacements at the span center.  

2.3.3. Earthquake Loading 
The earthquake – time history that has been used is the AQABA earthquake, as shown in Figure 2. 

AQABA earthquake happened on 22/11/1995 and the station that record the time history is “Eilat” station; the 
earthquake had peak ground acceleration (PGA) = 0.109g (Figure 2) in the vertical direction (UP) (Figure 1), 
0.086g (Figure 2) in the horizontal direction (North-South) (Figure 1) and 0.097g (Figure 2) in the horizontal 
direction (East-West) (Figure 1) and its lasted for sixty seconds. In accordance to AASHTO, the “EXTREME 
EVENT I” load combination has been taken into account for the dynamic case: 

.   1.25  .   1.5  . .   0.5  .  1.0  ,T L D L S D L L L EQ= × + × + × + ×  (2) 

where EQ is the earthquake loading. The earthquake loading was applied at the ends of the towers and the 
dead load, superimposed dead load, and the live load was applied as pressure on the surface of the deck.  

3. Results and Discussion 
3.1. Static analysis 

Table 1 shows the summary of static analysis results, and Figure 3 shows the deflection due to static 
loading along the bridge before and after pre-tensioning. Inspection of Table 1 reveals that the maximum 
deflections were more than the AASHTO allowable deflection of 0.625 m (L/800) in the middle of the mid-
span. In addition, the maximum cable stresses were less than the ultimate strength of the cables of 1770 MPa. 
After applying the pre-tensioning forces in the cables using the Zero-Deflection method, the maximum 
deflection was reduced to be less than the AASHTO allowable deflection of 0.625 m, as shown in Figure 3. 
Finally, the maximum stress in cables after pre-tensioning was less than the AASHTO allowable strength of 
708 MPa (40 % of the ultimate strength of the cable).  
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Figure 2. AQABA earthquake acceleration – time history. 

3.2. Modes of the bridge with the corresponding natural frequencies 
Figure 4 shows the typical ten modes of the bridge with the corresponding natural frequencies for the 

bridge. Mode one represents the symmetrical lateral movement of the towers; mode two represents an anti-
symmetrical lateral movement of the towers; mode three represents the cross movement of the towers; mode 
four represents symmetrical lateral movement of the towers – adjacent towers move in opposite direction; mode 
five represents the symmetrical torsion of the deck; mode six represents the symmetrical bending of the deck, 
mode seven represents the anti-symmetrical bending of the deck; mode eight represents the symmetrical torsion 
of the deck opposite of Mode five, mode nine represents the anti-symmetrical torsion of the deck, and finally 
mode ten represents the lateral planer bending of the deck. Inspection of Figure 4 reflected that all-natural 
frequencies are below 0.70 cycles/s. Moreover, mode ten had the highest natural frequency of 0.69564 cycles/s; 
while mode one had the lowest natural frequency of 1.1124 cycles/s. Finally, mode eight, which is the opposite 
of mode five, had a natural frequency of 1.55 times the natural frequency of mode five. Therefore, the sequence 
of natural frequency for the ten modes is classified as following from the strongest to the weakness: the lateral 
planer bending, the symmetrical bending, symmetrical torsion, and symmetrical lateral movement.  

Table 2. Summary of dynamic analysis results. 

Model Number ∆Max,S, m σMax,S, 
MPa 

σMax,S/σu, 
% 

∆Max,D, 
m 

σMax,D, 
MPa 

σMax,D/σu, 
% 

,

,
,Max D

Max S

∆
∆

% 
,

,
,Max D

Max S

σ
σ

% 

B1CS8.04 0.05029 173 9.8 0.1437 214 12.1 35.0 123.7 
B1CS9.42 0.06195 191 10.8 0.2187 250 14.1 28.3 130.9 

B1CS11.11 0.06155 190 10.7 0.1727 246 13.9 35.6 129.5 
B1CS13.72 0.06135 264 14.9 0.2091 341 19.3 29.3 129.2 
B1CS15.56 0.0488 457 25.8 0.1935 357 20.2 25.2 78.1 
B1CS16.67 0.04419 248 14.0 0.2151 383 21.6 20.5 154.4 

Note: ∆Max,S: Maximum deflection due to static loading; ∆Max,D: deflection due to dynamic loading; σMax,S: 
Maximum stress in cables due to static loading; σMax,A: Maximum stress in cables due to dynamic loading; σu: Ultimate 
stress of cable.  
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Figure 3. Typical deflection along the bridge before and after pre-tensioning. 

3.3. Dynamic analysis 
AQABA 1995 earthquake was applied on the bridge in three directions (UP, North-South, and East-West) 

as shown in Figure 2. Each direction had an acceleration-time history; the earthquake was applied to the 
supports. Table 2 shows the summary of dynamic analysis results, and Figure 5 shows the deflection along the 
bridge due to static and dynamic loading. Inspection of Figure 5 and Table 2 reveal that the maximum deflections 
due to static and dynamic loading were less than the AASHTO allowable deflection of 0.625 m. Also, the 
maximum cable stresses behave the same as maximum deflection, which is less than the AASHTO allowable 
strength of 708 MPa. In addition, Table 2 shows that the deflection and stress in the cable due to dynamic loading 
is more than static ranged from 20-35% and 78-154%, respectively. Therefore, the effect of dynamic loading had 
a higher impact on the maximum vertical deflection than maximum stress in the cables.  

3.4. Optimum cable spacing 

Figure 6 shows the maximum deflection due to static loading (∆Max,S), maximum deflection due to dynamic 
loading (∆Max,D); maximum stress in cables due to static loading (σMax,S); maximum stress in cables due to 
dynamic loading (σMax,A) were normalized with respect to value of bridge at cable spacing of 8.04 m. The 
inspection of Figure 6 reveals that the optimum cable spacing is 11.2 m. Figure 6 shows that the vertical deflection 
increased with the increasing of the cable spacing. Therefore, the maximum vertical deflection decreased, and 
the cable stress increased as the cable spacing increasing. As a result, the unsupported length increased with the 
cable spacing increasing; this will lead to larger deflection and greater stresses in the cables.  
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Mode One: Frequency = 1.1124 cycles/s Mode Two: Frequency = 0.12012 cycles/s 

  
Mode Three: Frequency = 0.1677 cycles/s Mode Four: Frequency = 0.20124 cycles/s 

  
Mode Five: Frequency = 0.32775 cycles/s Mode Six: Frequency = 0.36096cycles/s 

  
Mode Seven: Frequency = 0.46584 cycles/s Mode Eight: Frequency = 0.49956cycles/s 

  
Mode Nine: Frequency = 0.56496 cycles/s Mode Ten: Frequency = 0.69564 cycles/s 

Figure 4. Typical mode shape obtained from B1CS8.04. 

3.5. Optimization 
The relation between cable spacing and deformation of the bridge will be formed for each deck, and 

then the optimum cable spacing will be found from these equations. Secondly, the optimum deck stiffness for 
each cable spacing was found. The approximate equation that can be used to represent the deformation and 
the cable spacing is: 

2 3 4 5
0 1 2 3 4 5( ) ;   1, 2, 3, 4, 5, 6;i i i i i iu x x x x x x iα α α α α α= + + + + + =  (3) 
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Figure 5. Typical deflection along the bridge due to static and dynamic loading. 
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;  (4) 

{ } [ ] { }1 ,x uα −=  (5) 

where u(x) is the maximum deformation in meters and x is the cable spacing in meters. The constants α0, α1, 
α2, α3, and α4 can be solved using the values of Table 2. Using MATLAB for solving the previous matrices, 
the constants were calculated and the derived function becomes: 
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Figure 6. The normalized value of studied parameters with cable spacing (∆Max,S: Maximum 
deflection due to static loading; ∆Max,D: deflection due to dynamic loading; ∆Max,S: Maximum stress 

in cables due to static loading; ∆Max,A: Maximum stress in cables due to dynamic loading). 

Equation (6) is plotted in Figure 7, which reflected that a cable spacing greater than 15 m is not possible 
and less than 8.5 m is too dense. After differentiation once, at cable spacing of 11.2 m, the function has a local 
minimum, u = 0.11 m. In terms of bridge design, 22 cables with cable spacing of 11.11 m are needed on each 
side of each tower, by using Equation (6) the deformation equal to 0.1717 m. 
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Figure 7. Maximum deformation with cable spacing. 

3.6. Materials consumption and total cost 
Al-Rousan et al. [10] show that the initial cost of the FRP decks is significantly higher than the reinforced 

concrete decks; however, the life cycle cost of FRP decks is comparable to the cost of RC decks. Al-Rousan 
et al. [10] also indicated that the use of the FRP deck instead of the concrete deck would lead to fewer 
deformations and fewer stresses in the bridge because of the lightweight of the FRP material and the cost of 
FRP deck is acceptable than the concrete deck for long term stage. Also, the initial cost of the steel bridge 
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deck is significantly higher than the reinforced concrete bridge deck. However, the use of concrete in the 
bridge deck is probable to decrease the maintenance cost and increase the service life because the concrete 
does not exhibit corrosion problems than steel materials. 

4.  Conclusions 
This paper aims to find the optimum cable spacing in terms of vertical deformation and cable stress for 

static and dynamic analysis. To achieve the objective of this study six models are developed using ABAQUS 
with six different cable spacing ((8.04 m, 30 cables), (9.42, 25), (11.11, 22), (13.72, 18), (15.56, 16), and 
(16.67, 15)). The following conclusions are drawn based on the findings of this study:  

1. For static loading, the maximum vertical deflection decreased, and the cable stress increased with 
the increasing of cable spacing. 

2. The dynamic loading had more inverse effect on the vertical deflection and direct effect on the cable 
stress than static loading 

3. The cable stresses and the maximum deck deflection increased as the spacing between cables 
increased. As a result, the unsupported length increased with the cable spacing increasing; this will lead to 
more significant deflection and higher stresses in the cables. 

4. The cable stresses, and the maximum deck deflection increased as the spacing between cables 
increased. As a result, the unsupported length increased with the cable spacing increasing; this will lead to 
more significant deflection and more significant stresses in the cables. 

5. The cable spacing of 11.2 m is considered as optimum cable spacing in terms of static and dynamic 
deflection as well as cable stress. 
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