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AnHoTanmusa. PaccMoTpeHa 3amava yrpaBlieHUs HEJIMHEHHOM KpyITHOMAaCIITaOHOM CUCTeMOIA
C XaOTUYECKOW NUHAMMUKOW Ha OCHOBE LIEHTPAJIM30BAHHOW U JACLEHTPAJIU30BAHHON CTPYKTY-
pbI peryyustopa. YrnpaBjieHUe CTPOUTCS MO MPUHILIMITY OOpaTHOM CBSI3U, MO3BOJISIONIEH peain-
30BaTh B 3aMKHYTOU CHUCTeME 3alaHHBIN CIEKTP XapaKTepPUCTUUYECKUX MoKa3aTeneit JIssmyHoBa
IIJISI TIOJABJICHUST XaOTUIECKOM TUHAMMWKHU M TIEPEBOJ CUCTEMBI K YCTONIUBBIM IIEPUOINIECKIM
IBVDKCHUSIM WUIM B COCTOSTHME paBHOBecus. JIJIst M3MeHEHUs CIIeKTpa MpemiokeHa Ipolieaypa
MOJAJbHOTO yIpaBJeHUs, 0000IIeHHAs ISl HEIMHEHHBIX KPYITHOMACIITaOHBIX cucTeM. Omu-
CaHO MCIOJIb30BaHKE MpeaaraéMoil MeTOAMKU CHUHTEe3a NeleHTPAJIM30BaHHOTO YIIpaBJIeHUS Ha
MpUMepe CUCTEMBbI, COCTOSIIIEN U3 TPEX CUHXPOHHBIX TeHEpaTOPOB. Pe3ynbraThl Mccae1oBaHUS
MOJATBEPIVIIU MOIaBJICHUE Xa0TUUECKUX KOJIe0aHU 1 oOecrieyeHre B 3aMKHYTOI CUCTEME peTy-
JIIPHOTO pexXuMa. [IpenMyIiecTBo MmpeajiaraceMoro IeeHTPaIN30BaHHOTO YIIPABICHUSI COCTOUT
B YMCHBIIICHNN BBIYMCIUTEIBHBIX 3aTpaT Ha CUHTE3 M peajn3alliio CUCTEeM YIIPaBICHUS KPYII-
HoMacIITaOHBIMU cucTeMaMu. CHHTe3MpOBaHHAsI 00paTHasl CBSI3b 0OecIieYyrBaeT MOIaBICHIE
XaOTUYECKUX KOoJIeOaHMi1 He B Majioii 00J1acT (ha30BOro MPOCTPAHCTBA, a B 00JIaCTH CYILECTBO-
BaHUS pellIeHUs ypaBHEHU I TMHAMUKY HEJIMHEWHON CUCTEMBI.

Kirouesbie ¢j10Ba: HeIMHEHHbBIE KPYITHOMACIITAOHbIE CUCTEMBI, IeTEPMUHUPOBAHHBIIA Xa0C, yIIpaB-
JIEHHE CIIEKTPOM XapaKTepUCTUUECKMX ToKa3zartesieil JIsimyHoBa, MoaabHOE yIIpaBlIeHUe, MaTpUd-
Hoe airedpanyeckoe ypaBHeHUe CHibBecTpa
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CTtaThst OTKPHITOTO A0cTyna, pactipoctpansiemas mo jutieHaun CC BY-NC 4.0 (https://creative-
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Introduction

One of the most important problems in the modern theory of nonlinear systems is the development of
methods for the analysis and synthesis of controls for chaotic dynamics. Systems of this class are of interest
not only because of the abundance of new mathematical problems but also in connection with the broad
applications of the theory of control of chaotic systems in solving practical problems. In some systems, the
modes of deterministic chaos are useful, for example, in cryptography [1, 2], for others — harmful (vibra-
tions of various structures [3, 4], chaotic oscillations in power systems [5, 6]). Therefore, one of the most
important tasks of the theory of nonlinear dynamic systems is the development of methods for controlling
chaos [7-9].

At present, approaches based on the development of methods of the theory of automatic control are
used to solve control problems in nonlinear systems with deterministic chaos. Papers [10, 11] consider
the application of the method of analytical design of aggregated controllers to the synthesis of nonlinear
systems with chaotic dynamics. The synthesis of adaptive control as applied to systems of this class is pre-
sented in [12].
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The study of chaotic regimes in electric power systems is considered in works [13, 14]. The synthesis of
stabilizing control in small energy systems is considered in [15, 16]. The work [17] is devoted to the elimi-
nation of voltage and frequency deviations and the suppression of chaotic oscillations in electrical systems.
Robust stabilization as applied to power systems was proposed in [18].

The method of decentralized control of large-scale linear systems is considered in [19, 20]. Methods
for suppressing and amplifying chaos based on modal control generalized for nonlinear systems are pre-
sented in [21]. This paper is devoted to the suppression of chaotic oscillations using decentralized control
in large-scale nonlinear systems. Large-scale systems are understood as systems that: are described by
differential or difference equations of high dimension; consist of subsystems that interact with each other.

Formulation of the problem of distributed control of nonlinear large-scale systems

Mathematical model of a nonlinear system. Let the disturbed motions of a nonlinear dynamic object
be described by a vector differential equation:

)'c(t):dx(t)/dt:(p(x(t),u(t)), x(0)=x,, (1)
where x(t) e R" is a state vector, u(t) e R" is a control vector, m < n, (p(x(t), u(t)) = ((pi (x(t),

u(t)))n 1 is a vector function, @, (x(t), u(l)) are real functions that are defined and continuous in a

i=

domain Q= {(x,u)|||x|| + ||u|| <, g =const > 0} < R" ® R™ and have continuous partial derivatives

in it, which are bounded in a closed domain €, = {(x,u)|||x|| + ||u|| <, < go} cR"®R™.

The set of admissible controlled processes Z is defined as the set of triples & = (x(t) ,u (t), t) that
satisfy the conditions:

1) the functions x(t), u (t) are defined on an interval [0,00), x(t) is continuous and piecewise dif-
ferentiable, u (t) is piecewise continuous;

2) the functions x(t ) , U (t ) satisfy differential connection (1);

3) forall t € [0,00) the pair (x(t), u(t)) eQcR"®R";

4) the values x, = x(0) € Q; = R".

The state of the i-th isolated (non-interacting) subsystem is determined by the expression:

LN. 2)

)'ci:gl.(t,xl.), xl.(O)le.O, gl.(t,O)EO, i

N
Here x, € R™ is the state vector of the i-th subsystem, Zni =n, g (t,xi):R xR" —R" — vector
i=1

functions that determine the state of isolated subsystems; N — the number of subsystems in the system.

The functions #, (t, x) :RxR" — R"equal to

hi(t,x):]i(t,x)—gi(t,xi), i=1L,N, 3)

describe the relationship of the i-th subsystem with other subsystems.
The behavior of the i-th interacting subsystem can be represented by the equation:

)'ci:gi(t,xi)+hi(t,x), i=1,N. 4)

Equation (3) describes the relationships between isolated subsystems (2), and equation (4) — the be-
havior of large-scale system (1), represented in the form of interacting subsystems. Large-scale systems
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include systems with a large dimension of the state vector, represented as subsystems interacting with each
other.

Linearization of nonlinear system. Let equation (1) describe the deviations of the phase coordinates of a
nonlinear object from a certain trajectory x°, on which it is held by the control action 5. Using the Taylor

formula under the assumption that the components of the function (p(x(t) , U (t)) = ((pl. (x(t) , U (t)))ll

are differentiable in a neighborhood &S = (xS,uS ), equation (1) can be transformed to the quasilinear
form:

i(1)= A(8%)x(t)+ B(&" Ju(t)+ £ (&%), x(0)=x, (5)

In system (5), the coefficients A(&S ) and B (ﬁs) are calculated at a point &° by the following for-
mulas:

aq>1 [ox, ... 09 /ox,
, (6a)
acpn / ox, .. 00,/0x, |s=-
u(t)=u®
8([)1 [ou, ... 09 /ou,
. (6b)
6([) /8u1 6(pn /8um x(t)=x"

Suppose for all

g’ eS(xS,uS,p)=
:{(xs,us):”x—xS”Jr”u—uS||£p,p>0}cR"@R’”,

the following estimates are true
7 (&) <alel )

If the Jacobian matrix is calculated by formula (6a) and condition (7) is satisfied, then equation (5)
takes the form of a linearized system (or equations in variations):

y(t)=Ay(t)+ Bu(r). (8)

System (8) can be used to design a control that stabilizes system (1) in the vicinity of a particular
solution. The real parts of the eigenvalues of the Jacobian matrix determine the geometric picture of the
behavior of the trajectories of the original nonlinear system.

Statement of the control problem. The type of trajectories of system (1) is determined by the Lyapunov
characteristic exponents. A nonlinear system in the presence of chaotic dynamics is Lyapunov unstable
in the small and Poisson stable in the large (in asymptotic). The Lyapunov characteristic exponents are a
quantitative measure of instability. Among the entire set of Lyapunov characteristic exponents, the larg-
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est (senior) exponent x, =y _ is the most important. The characteristic exponents, in descending order
X, =%, = - =X, define the Lyapunov spectrum of a nonlinear dynamic system.

In nonlinear systems, in addition to stable singular points and limit cycles, strange attractors can be
attractors as well. In n-dimensional nonlinear systems, the signature of the Lyapunov spectrum can take
the following form:

N ’:," - ~ — equilibrium status; (%a)

n

(07 Ty T s eeey Ty Ty _)

——— —— — limit cycle; (9b)
n—1
+ ., 1 0,— ...y 0)
— — strange attractor, s > 1. (9¢)

The problem of chaos stabilization (suppression) consists in transforming the chaotic mode of system
(1), which is characterized by Lyapunov spectrum (9¢), into a regular mode with a spectrum of character-
istic exponents (9a) or (9b), that is, to provide an attractor in the form of a singular point or limit cycle.

To solve this problem, let us look for control in the form of feedback over the phase vector of the non-
linear system (1)

u(t)=—Lx(t), LeR™", (10)
which will provide in a closed system
)'c(t):(p(x(t),Lx(t)), x(O):xO, (11)
a spectrum of Lyapunov characteristic exponents
o(0)={x:(0), i=Ln},
that is equal to the desired (required) spectrum
o(G)={x,(G), i=1Lnj. (12)

The desired spectrum (12) is determined by the required character of the regular motion of system (1).
To reduce the computational costs of synthesis, the control of nonlinear system (1) must be implement-
ed in the form of controller (10) with a decentralized structure

u, (xi) =—Lx,i=LLN=u (x) =-L,x,

i

L, =blockdiag{L,}" . "

A decentralized regulator is a set of local regulators (13) that implement feedback on the phase vector
of subsystems (2).
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Synthesis of control of chaotic dynamics of a nonlinear system

Synthesis of control over the spectrum of Lyapunov characteristic exponents. Synthesis of control of a
nonlinear system by introducing feedback consists in changing the spectrum of Lyapunov characteristic
exponents to achieve the desired result — the transition to regular motion.

To solve the problem of changing the spectrum of Lyapunov characteristic exponents, the fact that they
are determined by the eigenvalues of the Jacobian matrix of the linearized system is used. A change in the
eigenvalues of the Jacobian matrix, the real parts of which determine the characteristic exponents of the
linearized system, entails a change in the Lyapunov characteristic exponents of the nonlinear system. The
desired eigenvalues can be assigned to the Jacobian matrix using the modal control synthesis technique
based on solving the matrix algebraic Sylvester equation.

The validity of this approach is substantiated by the theorems on structural stability (roughness) of non-
linear dynamical systems, formulated in [22], and the topological equivalence of a nonlinear system and
a hyperbolic linearized model [23, 24]. The theorems imply that if a linearized system is hyperbolic (has
no purely imaginary eigenvalues), then the nonlinear system has stable or unstable manifolds, which are
smooth analogs of stable or unstable spaces of the linearized system. Otherwise, the nonlinear system and
the linearized system have the same number of singular points and limit cycles.

The feedback synthesis algorithm for a nonlinear large-scale system (11) includes the following steps [25].

1. The phase space is divided into small cells El. and the invariant measure p, is calculated (the proba-
bility of a trajectory visiting a nonlinear system of a cell £):

pi= N (14)
here, Nl is the number of trajectory points in the cell El,; N is the total number of points on the trajectory of
a nonlinear system, which is considered for a sufficiently long time interval after it hits a strange attractor.

The size of the cells is selected as follows:

S(T-1)
hy=————— | k+1)-x; (k)

, 15
j S<T> e (>

where T is the time of the beginning of the calculation of the invariant measure, 7'is the time of the end
of the calculation; S() is the step number corresponding to the time ¢. Thus, for each phase coordinate X,
the cell size /. is chosen so that its side is equal to the difference between the coordinate values X, for each
next and previous point of the trajectory, averaged over time.

2. Nonlinear system (11) after linearization in the center of each cell with side (15) has the form:

j/l.(t):J(xi)yi(t)+B(xi)Liyi(t). (16)

3. The required eigenvalues of the Jacobian matrix corresponding to the center of each cell are calcu-
lated by the formula:

V(j(xl.)):v(J(xi))+a-Re(v(J(xi))), (17)
where v (J (xi )) are the eigenvalues of the Jacobian matrix of the original system, calculated in the center

X, of the cell El.; o is a coefficient that affects the shift of the eigenvalues of the matrix along the real axis
of the complex plane and depends on the problem of chaos control being solved. When chaotic dynamics
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are suppressed, the coefficient a is selected to be less than or equal to zero; when chaos is amplified, the
coefficient o is greater than zero to increase the entropy of a nonlinear system.

4. Based on the required eigenvalues of the Jacobi matrix of each cell, the feedback coefficients are
calculated L;, i =1, N, which provide a given location of the eigenvalues of the Jacobian matrix of the
closed-loop system (16). The calculations are carried out according to formula (23) given in the next pa-
ragraph of this section.

5. The feedback coefficient (10) of a nonlinear system is defined as the average value over all cells Er
The average value is found taking into account the invariant measures (14):

N
L=>Lp. (18)
i=1

6. Let us check the spectrum of Lyapunov characteristic exponents of the nonlinear system (11) for
compliance with one of the spectra (9a) or (9b), depending on the control problem being solved.

Synthesis of control of a linearized system. The problem of positioning the poles of the system is con-
sidered, in which the determination of the controller parameters is reduced to solving the matrix Sylvester
equation.

Centralized administration. For system (8), it is necessary to find a stabilizing controller in the form of
feedback on the state vector

u(y(1))=-Ly(1) (19)
such that the spectrum of the closed system
p(t)=(4-BL)y(t)=A4,y(t) (20)
coincides with or is a subset of the prescribed spectrum given by the sequence L = {},tl ) eees un}

p(4,)=p(-F), (21)

here, F' = diag(;,tl. )::1 € R™" is the matrix, on the main diagonal of which the numbers p. are located,
which are chosen on the basis that the spectra of the matrices Ay and (—F) coincide; p (Ay) = {}H (Ay ) ,
v A, (Ay )} and p(—F) = {Kl (—F) =, A, (—F) = —pn} are the spectra of matrices 4 and (—F).

For systems with several inputs 72 > 1, the solution to the pole placement problem is not unique, and
the question arises of describing the set of stabilizing controllers. The problem of finding the matrix L
that determines the “depth” of the feedback from the full state vector is reduced to solving the Sylvester
matrix equation:

AP+ PF = BG (22)

with respect to a matrix P € R™" with an arbitrary matrix G € R™" and solving the matrix equation
LP=G, L=GP". (23)

For dynamical system (8), the conditions for the existence of a solution to the pole placement problem
and the method for synthesizing a stabilizing control are contained in the theorem given in [19].
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The parameters of the controller (19), ensuring the fulfillment of condition (21) in closed-loop system
(20), are determined from relation (23), where the matrix P is the solution to Sylvester’s equation (22).
Matrix 4 € R™" — Jacobian matrix.

Decentralized control. Implementation of control in a centralized structure requires complete infor-
mation about the system, which is a serious limitation due to the increase in memory and computer time
costs, the complexity of organizing the transmission of information about the state of subsystems in the
event of their geographic dissociation. In addition, centralized control is not resistant to structural distur-
bances (changes in connections between subsystems).

Let us represent the matrix 4 € R™", the matrix of parameters of system (8), asasum A=A, + 4,

where 4, =blockdiag {Aii }iv is the block diagonal matrix, the elements of which characterize the para-
meters of isolated subsystems; A4, = block {A[j };Nj:] , 4; #0, i # j isthe block nondiagonal matrix, each
block Aij of which determines the intensity of t,he effects of the j-th subsystem on the i-th subsystem;
B =blockdiag{B, }iv € R™" is the block diagonal input matrix.

Based on the structural decomposition, system (8) is represented as a set of interacting subsystems:

i

N
X = Ax, +Bau+hy, x,(0)=xy, b= Ax, (24)
Jj=1

J#I

N

here, x, € R" is the state vector of the i-th subsystem; Z n, =n; u, € R™ isthe vector of control actions
i=1

of the i-th subsystem; hi :R" — R" is a vector function characterizing the influence on the i-th sub-

system of all other subsystems; B, € R"™™ is the matrix of controls of the i-th subsystem.

Let us choose matrices G and /' with a structure similar to the matrix 4: G = G, + G, and F = F, + F,.

Here, G, = blockdiag (G, },, G, =block{G,}" . F, =blockdiag{F;},, F, =block{F,}" .
Then Sylvester’s equation (22) takes the form:
(A, +4,)P+P(F,+F,)=B(G,+G,).
This equation is equivalent to two equations: the equation for diagonal blocks
A,P+ PF, =BG, (25)

and the equation for nondiagonal blocks
A, P+ PF, =BG,

With a diagonal structure of block matrices 4 D F b B and GD included in equation (25), it is equi-
valent to the N equations:

AP +PF =BG, i=1N, (26)

1 il i i’

which correspond to isolated subsystems.
Under these conditions, equation (23) takes the diagonal form:
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LP=G, < (L,P,=G,,i=LN),

and regulator (19) is the desired decentralized structure.

Decentralized control ensures the equality of the closed-loop system spectrum to the spectrum of the
reference matrix: p(Ay) = p(—F ) Reducing computational costs is achieved by decomposing the Syl-
vester equation of dimension » into N equations of dimension #, (nl. << n) , corresponding to the subsys-
tems, and implementing local controllers in the form of feedback on the phase vector of the subsystems.

Research of processes in the system of synchronous generators

The proposed method for the synthesis of control of a nonlinear large-scale system is considered
through the example of control of chaotic oscillations arising in the operation of an electric power system,
presented in the form of a system of three interconnected synchronous generators.

Model of a three-machine system. To analyze the chaotic behavior of the electric power system, the
classical model of a synchronous generator is used, which allows for a qualitative and quantitative analysis
of the processes, indicating the irregular nature of the deviation of the rotor angle and frequency.

The equations of the mathematical model of the three-machine electric power system, which has une-
qual inertia of the rotors of the generators included in it, has the form [26]:

ds,
1 — 0)1,
dt 274)
a
%:—B1 -sin((l+%j'81 +%-83]—C13 -sin(§, - 8,)+ B,
as, _
a7
do 1 1 (27P)
dtz :—B2 Sln[(l-%ﬁjﬁz +$'63J—C21 'Sin(82 _81)+f)2,
ds,
3 — 0)3’
dt
27¢)

do . 1 1 .
Tt3=—Bg -s1n([l+$j-51 +$-53]—C31 -sin(8; - 8,)+ PR,

where 81, 82, 63 — deviations of the angle of rotation of the rotor of the generator relative to the synchro-

nously rotating axis; ,, ®,, ®, — deviation of the angular frequency; Pcl3’ Pch’ PC3 L synchronizing

power between generators; Pv Pz, P3 — change in the power supplied to the network by generators;
€y €yp» €3 — the initial values of the power supplied to the network by the generators in the event of a
network disturbance;

The studies were carried out at the following values of the model parameters:

B=b_i ¢ -fu_gy ptu_qy4
7, 7, 7,
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B=t2=1, ¢, =tan_o1 p=tr_qg4,
T T T
Jj2 Jj2 Jj2
B=b 1 ¢ -fa_gy p-tu_o3
T, T, T,

Introducing the phase vector of system (27)

x(l):(x1 (t):81, X, (t):(x)], x3(t):62, x4(t):(02, xs(t)=83, X, (t):(x)S)T eR’

it can be written as

x(1)=F(x(1)).

Chaotic properties of a system without control. The study of system (27) for the presence of chaotic
oscillations was carried out under the initial conditions:

8,(0)=0.6; » =0.3; 8,(0)=0.6; ®,=0.3; 8,(0)=0.6; w, =0.3.

The singular point of system (27) has coordinates:

~10.1818; 0;  —6.5625;)
X, = :
0 0; 1.8609; 0

For the indicated values of the parameters and initial conditions, the Lyapunov characteristic expo-
nents of system (27) are:

A, =0.0036; A, =—0.0054;
A, =0.0027; A, =—1.0456;
A, =0.0012; A, =-3.1895.

Fig. 1 shows the projection of the phase portrait of system (27) onto the plane X, = 82 and x, = @,.

Since the spectrum contains positive Lyapunov characteristic exponents, there is therefore a chaotic
regime in system (27). Fig. 1 shows that the projection of the trajectory of the system in the phase space is
a strange attractor, which is also inherent in the irregular regime.

Research of processes under centralized control. Let us introduce into the system the control of the
frequency of each generator; then the control vector has a dimension of 6x3 and the matrix B is equal to

T

o]

Il
oS o O
- o O
oS o O
o = O
oS o O
o o =

and the equations of system (27) with centralized control take the form:
x(t)=F(x(t))- BLx(t).
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Phase portrait projection

14

12r

08

0.6

04 r

phase angle

0z

-1 08 06 04 02 0O 02 04 06 08 1
angular frequency

Fig. 1. Projection of the phase portrait of the system onto the plane x, = 3, and x, = w,

The Jacobian matrix of system (27) has the form:

o 1 0 0 0 0
ofJax, 0 0 0 of.fox, 0

o 0 0 1 0 0

J= ,
of.Jex, 0 of.fox, 0 of,/ox, 0

o 0 0 0 0 I

o fox, 0 0 0 ofjox, 0]

where

%=_—COS(81_83)—(L+IJCOS ) (L+lj+i

ox, 10 J2 V2 2)

%:—COS(SI ~5) —QCOS(S (L+lj+ij
1 b

Ox 10 2 2 2

5

of, _cos(d,-3,)
1

Ox 10

of,  cos(8 -38,) (1 j (1 j 5
o2 +41]cos| §,| —=+1|+—F= |,
ox, 10 2 (V2 V2

%z—ﬂcos{éiz(i+lj+i}

ox, 2
%=—COS(81_83)— L+l cos ES[L+IJ+i
ox, 10 J2 V2 2)
%=_—COS(8‘_83)—QCOS 8(L+lj+i .

2 V2

Oox. 10

5

47



4 System Analysis and Control
| -

The feedback coefficient calculated by the method of synthesis of the centralized controller taking into
account (16) and (17) is equal to

L=(-5.8045; —9.0067; -7.1735)".

The spectrum of Lyapunov characteristic exponents has the form:
Ay =0, A, =-4.5682, A, =-5.2761, A, =-7.5076, A; =—10.2082, A, =—15.8423.

The senior characteristic exponent is zero, the remaining characteristic exponents are less than zero;
this indicates that the system is brought to regular movement — the limit cycle.

Fig. 2 shows the projection of the phase portrait of the system with centralized control on the coordi-
nate plane x, = 6, and x, = @,.

Research of processes in decentralized management. Let us decompose system (27) into subsystems that
correspond to the equations of one generator with phase coordinates — deviation of the rotor angle of ro-
tation and deviation of the generator frequency. The mathematical model of subsystem (24), in this case,
is, for example, equation (27a). That is, there are three subsystems of dimension two.

Jacobian matrices for each of the subsystems:

0 1 0 1 0 1
Jn=An= o F Jn=4dn=0 ok Ju=A4=10 |
8x1 ax3 axS

Formulas for calculating partial derivatives Jf / ox,, j=2,4,6, k=1,3,5 are given in the previous
paragraph. The Jacobian matrices for each of the subsystems are the diagonal blocks of the Jacobian matrix
for the system as a whole.

For each of the subsystems, the feedback coefficient is calculated using the decentralized control syn-
thesis technique when solving equation (26)

Phase portrait projection

phase angle

0.4 0.3 0.2 -0.1 0 0.1 02 03 04
angular frequency

Fig. 2. Projection of the phase portrait of a system with centralized control onto a plane x, = §, and x, = ®,
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Phase portrait projection

phase angle

-0.8 0.6 -0.4 0.2 0 02 04 06 08
angular frequency

Fig. 3. Projection of the phase portrait of a closed-loop decentralized control system
onto the plane x, =6, and x, = o,

Lyapunov characteristic exponents in a system closed by a decentralized controller are equal to
A =0, A, =0, Ay =-0.0896, A, =—1.0628, A5 =-3.9880, A, =—6.8304.

Fig. 3 shows the projection of the phase portrait of a nonlinear system with decentralized control on a
plane x, = 8, and x, = ,.

The spectrum of Lyapunov characteristic exponents and the projection of the phase portrait of a system
closed by decentralized control are calculated using a mathematical model (27) that takes into account the
mutual influence of generators. The spectrum of Lyapunov characteristic exponents and the projection of
the phase portrait of a system closed by decentralized control indicate the presence of a regular regime.

Conclusion

A technique for the synthesis of control for suppressing chaotic oscillations in a nonlinear large-scale
system using phase vector feedback is presented. The feedback coefficient providing a given spectrum of
Lyapunov characteristic exponents is calculated by the modal control method based on the solution of the
matrix algebraic Sylvester equation extended to nonlinear large-scale systems with chaotic dynamics.

The article considers the use of the proposed method for the synthesis of decentralized control through
the example of a system consisting of three synchronous generators. The results of the study confirmed
the suppression of chaotic oscillations and the provision of a regular mode in a closed system due to the
formation of a spectrum with negative Lyapunov characteristic exponents.

The advantage of the proposed decentralized control is the reduction of computational costs for the
synthesis and implementation of control systems for large-scale systems. The synthesized feedback pro-
vides suppression of chaotic oscillations not in a small region of the phase space, but in the region of exist-
ence of solutions to the equations of the dynamics of a nonlinear system.
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