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Abstract. The article deals with the control problem for a large-scale nonlinear system with 
chaotic dynamics based on a centralized and decentralized controller structure. The control 
is based on the feedback principle, which makes it possible to implement in a closed system a 
given spectrum of Lyapunov characteristic exponents to suppress chaotic dynamics and transfer 
the system to stable periodic movements or to a state of equilibrium. To change the spectrum, a 
modal control procedure is proposed, generalized for nonlinear large-scale systems. An example 
of the application of this technique to suppress chaotic oscillations in a system consisting of three 
synchronous generators is considered. Computational experiments confirm the workability of 
centralized and decentralized management. The article considers the use of the proposed method 
for the synthesis of decentralized control through the example of a system consisting of three 
synchronous generators. The results of the study confirmed the suppression of chaotic oscillations 
and the provision of a regular mode in a closed system. The advantage of the proposed decentralized 
control is the reduction of computational costs for the synthesis and implementation of control 
systems for large-scale systems.
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Аннотация. Рассмотрена задача управления нелинейной крупномасштабной системой 
с хаотической динамикой на основе централизованной и децентрализованной структу-
ры регулятора. Управление строится по принципу обратной связи, позволяющей реали-
зовать в замкнутой системе заданный спектр характеристических показателей Ляпунова 
для подавления хаотической динамики и перевод системы к устойчивым периодическим 
движениям или в состояние равновесия. Для изменения спектра предложена процедура 
модального управления, обобщенная для нелинейных крупномасштабных систем. Опи-
сано использование предлагаемой методики синтеза децентрализованного управления на 
примере системы, состоящей из трёх синхронных генераторов. Результаты исследования 
подтвердили подавление хаотических колебаний и обеспечение в замкнутой системе регу-
лярного режима. Преимущество предлагаемого децентрализованного управления состоит 
в уменьшении вычислительных затрат на синтез и реализацию систем управления круп-
номасштабными системами. Синтезированная обратная связь обеспечивает подавление 
хаотических колебаний не в малой области фазового пространства, а в области существо-
вания решения уравнений динамики нелинейной системы.
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Introduction

One of the most important problems in the modern theory of nonlinear systems is the development of 
methods for the analysis and synthesis of controls for chaotic dynamics. Systems of this class are of interest 
not only because of the abundance of new mathematical problems but also in connection with the broad 
applications of the theory of control of chaotic systems in solving practical problems. In some systems, the 
modes of deterministic chaos are useful, for example, in cryptography [1, 2], for others – harmful (vibra-
tions of various structures [3, 4], chaotic oscillations in power systems [5, 6]). Therefore, one of the most 
important tasks of the theory of nonlinear dynamic systems is the development of methods for controlling 
chaos [7–9].

At present, approaches based on the development of methods of the theory of automatic control are 
used to solve control problems in nonlinear systems with deterministic chaos. Papers [10, 11] consider 
the application of the method of analytical design of aggregated controllers to the synthesis of nonlinear 
systems with chaotic dynamics. The synthesis of adaptive control as applied to systems of this class is pre-
sented in [12].
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The study of chaotic regimes in electric power systems is considered in works [13, 14]. The synthesis of 
stabilizing control in small energy systems is considered in [15, 16]. The work [17] is devoted to the elimi-
nation of voltage and frequency deviations and the suppression of chaotic oscillations in electrical systems. 
Robust stabilization as applied to power systems was proposed in [18].

The method of decentralized control of large-scale linear systems is considered in [19, 20]. Methods 
for suppressing and amplifying chaos based on modal control generalized for nonlinear systems are pre-
sented in [21]. This paper is devoted to the suppression of chaotic oscillations using decentralized control 
in large-scale nonlinear systems. Large-scale systems are understood as systems that: are described by 
differential or difference equations of high dimension; consist of subsystems that interact with each other.

Formulation of the problem of distributed control of nonlinear large-scale systems

Mathematical model of a nonlinear system. Let the disturbed motions of a nonlinear dynamic object 
be described by a vector differential equation:

where                    is a state vector,                     is a control vector, m ≤ n,                                                     

                is a vector function,                              are real functions that are defined and continuous in a  

domain                                                                                                and have continuous partial derivatives  

in it, which are bounded in a closed domain    

The set of admissible controlled processes Ξ is defined as the set of triples                                    that 
satisfy the conditions:

1)  the functions                      are defined on an interval                        is continuous and piecewise dif-
ferentiable,           is piecewise continuous;

2)  the functions                      satisfy differential connection (1);

3)  for all                    the pair    

4)  the values   

The state of the i-th isolated (non-interacting) subsystem is determined by the expression:

Here                is the state vector of the i-th subsystem,                                                                – vector  

functions that determine the state of isolated subsystems; N – the number of subsystems in the system.

The functions                                          equal to

describe the relationship of the i-th subsystem with other subsystems.
The behavior of the i-th interacting subsystem can be represented by the equation:

Equation (3) describes the relationships between isolated subsystems (2), and equation (4) – the be-
havior of large-scale system (1), represented in the form of interacting subsystems. Large-scale systems 
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include systems with a large dimension of the state vector, represented as subsystems interacting with each 
other.

Linearization of nonlinear system. Let equation (1) describe the deviations of the phase coordinates of a  
nonlinear object from a certain trajectory xS, on which it is held by the control action uS. Using the Taylor  

formula under the assumption that the components of the function                                                                   

are differentiable in a neighborhood                            equation (1) can be transformed to the quasilinear 
form:

In system (5), the coefficients              and              are calculated at a point        by the following for-
mulas:

Suppose for all

the following estimates are true

If the Jacobian matrix is calculated by formula (6a) and condition (7) is satisfied, then equation (5) 
takes the form of a linearized system (or equations in variations):

System (8) can be used to design a control that stabilizes system (1) in the vicinity of a particular 
solution. The real parts of the eigenvalues of the Jacobian matrix determine the geometric picture of the 
behavior of the trajectories of the original nonlinear system.

Statement of the control problem. The type of trajectories of system (1) is determined by the Lyapunov 
characteristic exponents. A nonlinear system in the presence of chaotic dynamics is Lyapunov unstable 
in the small and Poisson stable in the large (in asymptotic). The Lyapunov characteristic exponents are a 
quantitative measure of instability. Among the entire set of Lyapunov characteristic exponents, the larg-
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est (senior) exponent χ1 = χmax is the most important. The characteristic exponents, in descending order 
χ1 ≥ χ2 ≥ ... ≥ χn, define the Lyapunov spectrum of a nonlinear dynamic system.

In nonlinear systems, in addition to stable singular points and limit cycles, strange attractors can be 
attractors as well. In n-dimensional nonlinear systems, the signature of the Lyapunov spectrum can take 
the following form:

The problem of chaos stabilization (suppression) consists in transforming the chaotic mode of system 
(1), which is characterized by Lyapunov spectrum (9c), into a regular mode with a spectrum of character-
istic exponents (9a) or (9b), that is, to provide an attractor in the form of a singular point or limit cycle.

To solve this problem, let us look for control in the form of feedback over the phase vector of the non-
linear system (1)

which will provide in a closed system

a spectrum of Lyapunov characteristic exponents

that is equal to the desired (required) spectrum

The desired spectrum (12) is determined by the required character of the regular motion of system (1).
To reduce the computational costs of synthesis, the control of nonlinear system (1) must be implement-

ed in the form of controller (10) with a decentralized structure

A decentralized regulator is a set of local regulators (13) that implement feedback on the phase vector 
of subsystems (2).
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Synthesis of control of chaotic dynamics of a nonlinear system

Synthesis of control over the spectrum of Lyapunov characteristic exponents. Synthesis of control of a 
nonlinear system by introducing feedback consists in changing the spectrum of Lyapunov characteristic 
exponents to achieve the desired result – the transition to regular motion.

To solve the problem of changing the spectrum of Lyapunov characteristic exponents, the fact that they 
are determined by the eigenvalues of the Jacobian matrix of the linearized system is used. A change in the 
eigenvalues of the Jacobian matrix, the real parts of which determine the characteristic exponents of the 
linearized system, entails a change in the Lyapunov characteristic exponents of the nonlinear system. The 
desired eigenvalues can be assigned to the Jacobian matrix using the modal control synthesis technique 
based on solving the matrix algebraic Sylvester equation.

The validity of this approach is substantiated by the theorems on structural stability (roughness) of non-
linear dynamical systems, formulated in [22], and the topological equivalence of a nonlinear system and 
a hyperbolic linearized model [23, 24]. The theorems imply that if a linearized system is hyperbolic (has 
no purely imaginary eigenvalues), then the nonlinear system has stable or unstable manifolds, which are 
smooth analogs of stable or unstable spaces of the linearized system. Otherwise, the nonlinear system and 
the linearized system have the same number of singular points and limit cycles.

The feedback synthesis algorithm for a nonlinear large-scale system (11) includes the following steps [25].
1.  The phase space is divided into small cells Ei and the invariant measure pi is calculated (the proba-

bility of a trajectory visiting a nonlinear system of a cell Ei):

here, Ni is the number of trajectory points in the cell Ei; N is the total number of points on the trajectory of 
a nonlinear system, which is considered for a sufficiently long time interval after it hits a strange attractor.

The size of the cells is selected as follows:

where T
0
 is the time of the beginning of the calculation of the invariant measure, T is the time of the end 

of the calculation; S(t) is the step number corresponding to the time t. Thus, for each phase coordinate xj, 
the cell size hj is chosen so that its side is equal to the difference between the coordinate values xj for each 
next and previous point of the trajectory, averaged over time.

2.  Nonlinear system (11) after linearization in the center of each cell with side (15) has the form:

3.  The required eigenvalues of the Jacobian matrix corresponding to the center of each cell are calcu-
lated by the formula:

where                    are the eigenvalues of the Jacobian matrix of the original system, calculated in the center 
xi of the cell Ei; α is a coefficient that affects the shift of the eigenvalues of the matrix along the real axis 
of the complex plane and depends on the problem of chaos control being solved. When chaotic dynamics 
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are suppressed, the coefficient α is selected to be less than or equal to zero; when chaos is amplified, the 
coefficient α is greater than zero to increase the entropy of a nonlinear system.

4.  Based on the required eigenvalues of the Jacobi matrix of each cell, the feedback coefficients are 
calculated                        which provide a given location of the eigenvalues of the Jacobian matrix of the 
closed-loop system (16). The calculations are carried out according to formula (23) given in the next pa- 
ragraph of this section.

5.  The feedback coefficient (10) of a nonlinear system is defined as the average value over all cells Ei. 
The average value is found taking into account the invariant measures (14):

6.  Let us check the spectrum of Lyapunov characteristic exponents of the nonlinear system (11) for 
compliance with one of the spectra (9a) or (9b), depending on the control problem being solved.

Synthesis of control of a linearized system. The problem of positioning the poles of the system is con-
sidered, in which the determination of the controller parameters is reduced to solving the matrix Sylvester 
equation.

Centralized administration. For system (8), it is necessary to find a stabilizing controller in the form of 
feedback on the state vector

such that the spectrum of the closed system

coincides with or is a subset of the prescribed spectrum given by the sequence    

here,                                          is the matrix, on the main diagonal of which the numbers μi are located,  
which are chosen on the basis that the spectra of the matrices Ay and (–F) coincide;                                   

                      and                                                                                  are the spectra of matrices Ay and (–F).

For systems with several inputs m > 1, the solution to the pole placement problem is not unique, and 
the question arises of describing the set of stabilizing controllers. The problem of finding the matrix L  
that determines the “depth” of the feedback from the full state vector is reduced to solving the Sylvester 
matrix equation:

with respect to a matrix                  with an arbitrary matrix                   and solving the matrix equation

For dynamical system (8), the conditions for the existence of a solution to the pole placement problem 
and the method for synthesizing a stabilizing control are contained in the theorem given in [19].
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The parameters of the controller (19), ensuring the fulfillment of condition (21) in closed-loop system 
(20), are determined from relation (23), where the matrix P is the solution to Sylvester’s equation (22).  
Matrix                  – Jacobian matrix.

Decentralized control. Implementation of control in a centralized structure requires complete infor-
mation about the system, which is a serious limitation due to the increase in memory and computer time 
costs, the complexity of organizing the transmission of information about the state of subsystems in the 
event of their geographic dissociation. In addition, centralized control is not resistant to structural distur-
bances (changes in connections between subsystems).

Let us represent the matrix                    the matrix of parameters of system (8), as a sum                          

where                                          is the block diagonal matrix, the elements of which characterize the para- 

meters of isolated subsystems;                                                                is the block nondiagonal matrix, each  

block Aij of which determines the intensity of the effects of the j-th subsystem on the i-th subsystem; 

                                                     is the block diagonal input matrix.
Based on the structural decomposition, system (8) is represented as a set of interacting subsystems:

here,                is the state vector of the i-th subsystem;                                    is the vector of control actions  

of the i-th subsystem;                          is a vector function characterizing the influence on the i-th sub- 

system of all other subsystems;                      is the matrix of controls of the i-th subsystem.

Let us choose matrices G and F with a structure similar to the matrix A:                        and                          

Here,                                                                                                                                                                         

Then Sylvester’s equation (22) takes the form:

This equation is equivalent to two equations: the equation for diagonal blocks

and the equation for nondiagonal blocks

With a diagonal structure of block matrices AD, FD, B and GD included in equation (25), it is equi- 
valent to the N equations:

which correspond to isolated subsystems.
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and regulator (19) is the desired decentralized structure.
Decentralized control ensures the equality of the closed-loop system spectrum to the spectrum of the 

reference matrix:                                Reducing computational costs is achieved by decomposing the Syl- 
vester equation of dimension n into N equations of dimension                          corresponding to the subsys-
tems, and implementing local controllers in the form of feedback on the phase vector of the subsystems.

Research of processes in the system of synchronous generators

The proposed method for the synthesis of control of a nonlinear large-scale system is considered 
through the example of control of chaotic oscillations arising in the operation of an electric power system, 
presented in the form of a system of three interconnected synchronous generators. 

Model of a three-machine system. To analyze the chaotic behavior of the electric power system, the 
classical model of a synchronous generator is used, which allows for a qualitative and quantitative analysis 
of the processes, indicating the irregular nature of the deviation of the rotor angle and frequency.

The equations of the mathematical model of the three-machine electric power system, which has une-
qual inertia of the rotors of the generators included in it, has the form [26]:

where δ1, δ2, δ3 – deviations of the angle of rotation of the rotor of the generator relative to the synchro-
nously rotating axis; ω1, ω2, ω3 – deviation of the angular frequency; Pc13, Pc21, Pc31 – synchronizing 
power between generators; P1, P2, P3 – change in the power supplied to the network by generators; 
ε01, ε02, ε03 – the initial values of the power supplied to the network by the generators in the event of a 
network disturbance;

The studies were carried out at the following values of the model parameters:
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Introducing the phase vector of system (27)

it can be written as

Chaotic properties of a system without control. The study of system (27) for the presence of chaotic 
oscillations was carried out under the initial conditions:

The singular point of system (27) has coordinates:

For the indicated values of the parameters and initial conditions, the Lyapunov characteristic expo-
nents of system (27) are:

Fig. 1 shows the projection of the phase portrait of system (27) onto the plane x3 = δ2 and x4 = ω2.
Since the spectrum contains positive Lyapunov characteristic exponents, there is therefore a chaotic 

regime in system (27). Fig. 1 shows that the projection of the trajectory of the system in the phase space is 
a strange attractor, which is also inherent in the irregular regime.

Research of processes under centralized control. Let us introduce into the system the control of the 
frequency of each generator; then the control vector has a dimension of 6×3 and the matrix B is equal to

and the equations of system (27) with centralized control take the form:
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The Jacobian matrix of system (27) has the form:

where

Fig. 1. Projection of the phase portrait of the system onto the plane x
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The feedback coefficient calculated by the method of synthesis of the centralized controller taking into 
account (16) and (17) is equal to

The spectrum of Lyapunov characteristic exponents has the form:

The senior characteristic exponent is zero, the remaining characteristic exponents are less than zero; 
this indicates that the system is brought to regular movement – the limit cycle.

Fig. 2 shows the projection of the phase portrait of the system with centralized control on the coordi-
nate plane x3 = δ2 and x4 = ω2.

Research of processes in decentralized management. Let us decompose system (27) into subsystems that 
correspond to the equations of one generator with phase coordinates – deviation of the rotor angle of ro-
tation and deviation of the generator frequency. The mathematical model of subsystem (24), in this case, 
is, for example, equation (27a). That is, there are three subsystems of dimension two.

Jacobian matrices for each of the subsystems:

Formulas for calculating partial derivatives                                                          are given in the previous 
paragraph. The Jacobian matrices for each of the subsystems are the diagonal blocks of the Jacobian matrix 
for the system as a whole.

For each of the subsystems, the feedback coefficient is calculated using the decentralized control syn-
thesis technique when solving equation (26)
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Lyapunov characteristic exponents in a system closed by a decentralized controller are equal to

Fig. 3 shows the projection of the phase portrait of a nonlinear system with decentralized control on a 
plane x3 = δ2 and x4 = ω2.

The spectrum of Lyapunov characteristic exponents and the projection of the phase portrait of a system 
closed by decentralized control are calculated using a mathematical model (27) that takes into account the 
mutual influence of generators. The spectrum of Lyapunov characteristic exponents and the projection of 
the phase portrait of a system closed by decentralized control indicate the presence of a regular regime.

Conclusion

A technique for the synthesis of control for suppressing chaotic oscillations in a nonlinear large-scale 
system using phase vector feedback is presented. The feedback coefficient providing a given spectrum of 
Lyapunov characteristic exponents is calculated by the modal control method based on the solution of the 
matrix algebraic Sylvester equation extended to nonlinear large-scale systems with chaotic dynamics.

The article considers the use of the proposed method for the synthesis of decentralized control through 
the example of a system consisting of three synchronous generators. The results of the study confirmed 
the suppression of chaotic oscillations and the provision of a regular mode in a closed system due to the 
formation of a spectrum with negative Lyapunov characteristic exponents.

The advantage of the proposed decentralized control is the reduction of computational costs for the 
synthesis and implementation of control systems for large-scale systems. The synthesized feedback pro-
vides suppression of chaotic oscillations not in a small region of the phase space, but in the region of exist-
ence of solutions to the equations of the dynamics of a nonlinear system.

1 2 3 4 5 60, 0, 0.0896, 1.0628, 3.9880, 6.8304.λ = λ = λ = − λ = − λ = − λ = −

Fig. 3. Projection of the phase portrait of a closed-loop decentralized control system  

onto the plane x
3
 = δ

2
 and x

4
 = ω
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