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Abstract. In this paper, we present a hierarchical Pareto optimization approach for an optimal
control system of a complex dynamic hierarchical oil refinery system. Due to the hierarchical
structure of the oil refinery, the standard Pareto principle can solve the multi-objective optimization
problem of one process without considering the impact of the results on the other processes, since
our goal is to achieve the optimal control for the whole system. Each subsystem contains a process,
which is considered as a sequence of processes leading to production based on the previous process.
The hierarchy Pareto principle is used to select the optimal control variables in the control system.
The application of the hierarchical Pareto principle to the process of oil refining is more significant
in the selection of control variables used in the system. The results of the system are presented
in the form of a set of configurations described as the Pareto front of a system with hierarchical
structure. The Pareto principle in this work can be used as a tool for control systems in complex
and dynamic systems. The proposed approach is part of a larger project using a multi-agent system
based on Deep Reinforcement Learning that allows each agent to adapt to the process.
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Annoramus. [IpencraBneH noaxoa uepapxuueckoii [TapeTo-onTuMusanmnu aist ONTUMAaIbHOM
CUCTEMbI yIIpaBJeHHUS CI0XHOU IMHAMUYECKON MepapXruuecKol cucTeMoil HedTernepepadoTKM.
M3-3a nepapxuueckoil CTpyKTypbl HedTenepepadboTKu cTaHAapTHINM npuHuum [lapeTo MoxeT
PEeLIUTh MHOTOLIEJIEBYIO 3a/1a4y ONITUMU3AIUU OJHOTO TMpoliecca 6€3 yueTa BIUSHUS Pe3yJIbTaTOB
Ha JIpyrue TPOIECCHl, ITOCKOIBbKY HaIlleil IeIblo SIBIICTCS JOCTIKEHNE OITUMAaIbHOTO yIIpaB-
JICHWST TS Beeit cucteMmbl. Kaxkmast moacucTeMa cogepKuT Ipoliecc, KOTOPBIi pacCMaTpUBaeTCsI
KaK MOoCJIe10BaTeIbHOCTD MPOIIECCOB, BEAYIIMX K ITPOU3BOACTBY Ha OCHOBE MPEABIAYIIETO PO~
necca. IMpunuun uepapxuu [Mapero Mcrob3yeTcs A BhIOOpa ONMTUMANBHBIX YIIPaBJISIOIINX
MepeMeHHbBIX B cucTeme ynpasiaeHus. [IpumeHenue npuHuuia uepapxuu [lapeto K mpoueccy
HedTernepepabOTKM BaXXHO MPU BEIOOPE YIIPABISIONINX TEPEMEHHBIX, UCTIOJb3YEMbIX B CUCTEME.
PesynbraTtel paboTHl CUCTEMBI TIPEACTABICHBI B BUIe Ha0Opa KOH(UTYpaIrii, OMMMCAHHBIX KaK
dponrt [lapeTo cucTeMbl ¢ nepapxuaeckoi cTpykTypoid. [IpuHmun [TapeTo MOXET MPUMEHSITHCS
B Ka4eCTBE MHCTPYMEHTA JUISI CUCTEM YIIPaBJICHUS B CJIOXKHBIX M IMUHAMUYeCKUX cucTemax. [Ipen-
JIOXKEHHBIN MOAXOM SIBJISIETCS] YacThlo 00Jiee KPYIMTHOTO MPOeKTa, UCIOJIb3YIOLIEro MHOTOareHT-
HYIO CHCTEMY, OCHOBaHHYI0 Ha IIyookoMm o0ydyeHuu c¢ nomkperuieHueM (Deep Reinforcement
Learning), mo3BOJISIIOLLYIO KaXKIOMY areHTy afanTUpoBaThCs K MPOLECCy.
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Introduction

In most practical optimization problems, several criteria must be considered to obtain a satisfactory
solution [1—5]. As the name suggests, multi-objective optimization aims to optimize multiple objectives
simultaneously. These objectives are usually in conflict with each other: the improvement of one objec-
tive leads to the deterioration of another objective. Consequently, the final result of the optimization is
no longer given by a single solution, but by a set of solutions, each representing a trade-off between the
different objectives to be optimized. Given a finite set of solutions, all solutions can be compared pairwise
according to the dominance principle, and we can deduce which solution dominates the other [6—9]. In
the end, we obtain a set in which none of the solutions dominates the other. This set is called the set of
non-dominated solutions [4, 10—12].
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Oil production is a complex, hierarchical, dynamic system that begins with crude oil, which is divided
into products through a complex process. The main objective of oil production is to produce high quality
oil and maximize productivity to achieve high profit. Since an increase in productivity eventually leads to a
decrease in quality, Pareto optimality is used to obtain the optimal configuration for each process to maxi-
mize profit. Since each process has a subprocess, the optimality of each subprocess alone does not lead to
the optimal process [13—15]. To further illustrate this, suppose that each sub-process is a player in a team
game, namely oil production. The individual player is at a high level, but the teamwork is not optimal, that
is, in order to synchronize the whole team perfectly, each player should cooperate with the rest of the team.

Problem statement

The hierarchy structure of a system consists of levels called subsystems. Each subsystem has its charac-
teristics (process) and its control factors. The goal of each subsystem is to achieve its objectives. We consid-
er our system optimal when all its subsystems are optimal considering the higher-level system.

Let S'be our system S = <Sl, S,y S, >, where 7 is the number of sub-systems, then:

S, G, () =[ € (), (), 810 ()]

Each sub-system Sl, has its objectives Gi(u) (where m is the number of objectives) and control factor
vector u

u ueR(”Gp Git (u,- )”) = min.

The objectives are to minimize the error of each subsystem so that there are optimal solution results for
each objective.

To solve the Pareto optimality of the hierarchy in a system, all the objective functions of the subsystems
and the constraints are raised to the upper system with the vector of decision variables [16].

Method notation

Let S be a sub-system inherited from system § = <S1 3, S, > , where the solution of the multi-ob-
jective optimization for each sub-system Sn:

min/max f,, (x) m=12,..,M;

| e etz
" R (x)=0  k=1,2,..,K;
xh<x, <x i=12,..10

and

(Lo (2)s S (2): o £ (3))
(1(x). 8 (x). - g, (x))
H5<h1k(x) ( ) ’hnk(x)>

X! =lower <x|,Xxy, ..., X,

F
G

>
l
X! =Upper <xi,x5, ..., x>

for all the equations above will give us:

63



4Intellectual Systems and Technologies

Oil Manufacturing
Level 1 ‘

Level 2

ED-101 H-101/1
ED-102 I:‘ Rl l:‘ H-101/2

Fig. 1. Hierarchical Pareto communication structure
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Each subsystem Sn is solved individually using standard Pareto optimization. Then, the results are
transferred to the higher-level system so that each subsystem can be compared, resulting in the bounds of
each objective being reduced to the subsystem. A lower level of the system (the subsystem) can be analyzed,
and the knowledge gained can be applied to the upper subsystems. It is possible to optimize each subsystem
individually, regardless of the complexity of the system, to find solutions for that subsystem. Integration
of subsystems is done by synchronizing variables that are adjusted at a higher level to achieve the optimal
solution for the system. Certain optimality requirements can be reduced at the lower level to obtain opti-
mal solutions for certain subsystems, which can then be reapplied at the higher level to achieve subsystem
equality. The important feature of hierarchical Pareto optimization is that it simplifies the complex systems
by reducing the dimensionality of each subsystem so that an efficient mathematical framework can be cre-
ated. It is possible to apply several optimization methods to find an optimal solution based on the structure
of the system.

Hierarchical Pareto optimization is based on communication between levels. It starts with these steps:

« Determine the Pareto set at each lower level of the system based on their respective objectives.

» Update the solution and its parameters at the upper level.

* Cumulate the new solutions from all subsystems and compare it with the previous solutions to obtain
the optimal parameters for the system.

» Return the parameters that give an optimal solution for the system (even if it is not the optimal solu-
tion for the subsystem).

» Repeat these steps until no more changes are possible.

Fig. 1 illustrates the communication process between levels, where the subsystem at level 2 (desalina-
tion plant) receives the Pareto set of its subsystem at level 3. Then it compares the results obtained from it
with the previous results and these parameters are also updated at level 1, up to a certain criterion where
there are no changes in the parameters used in the Pareto optimization algorithms. Fig. 2 describes the
hierarchy of Pareto optimization algorithms.
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Case of study and experimental results

Oil manufacturing

The oil manufacturing is composed of more than 100 components, which are:

2 compressors;

7 filters;

5 atmospheric columns;
14 tanks;

25 pumps;
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» 38 heat exchangers;

+ 8 air coolers;

1 furnace;

* 10 refrigerators;

» 2 electric hydrators;

* and other reserve components.

Oil refining is divided into four main processes: Desalting Process, Atmospheric Column, Stabiliza-
tion, and the 2" Atmospheric Column (Fig. 3). Each of these systems consists of subsystems, each of
which has its own control factors and objectives.

Most components, such as the filters, cannot be controlled. They filter the oil with a fixed property
uncontrollable by the control system.

Fig. 4 shows the subsystems of desalination, but the major components are:

 ED-101, ED-102: the electro-dehydrator, which separates water and salt from the oil.

* V-101: the gas separator, which separates the gas from the liquid.

« H-101: the furnace that heats the oil and prepares it for the next process, atmospheric columns (rep-
resented by C-101 in Fig. 4).

Note that C-101 (the atmospheric column) is not part of the desalination process, but a process of the
atmospheric column system.

Furthermore, the furnace in our study consists of two separate sections, namely H-101/1 and H-101/2.

From Table 1 you can see that all processes are controlled by temperature and pressure. Due to great
influence of these factors on the manufacturing process, on the other hand, the goal of each process is
determined by the quality and productivity of that process.

The quality of the process varies according to the process. In the case of the electric dehydrator (ED-
101/ED-102), the quality depends on the percentage of water and salt extracted from the oil. The produc-
tivity of the process is the quantity of the production.
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Table 1
Control factors and objective of each process
Process Control factors Objectives
Temperature . ..
ED-101 Quality Productivity
Pressure
Temperature ) o
ED-102 Quality Productivity
Pressure
Temperature ) o
V-101 Quality Productivity
Pressure
Temperature . ..
H-101 Quality Productivity
Pressure
Method of analysis

As mentioned in the notation of the method, each process determines its local Pareto front, which is
used in our hierarchical Pareto optimization. For this reason, we use the provided data as a learning phase
to determine the approximation function of each process using a neural network.

Each model of these models is optimized using Bayesian hyperparameter optimization, since each
process has its own neural network model.

Moreover, since the system is dynamic, the approximation function will change over time as the process
continues to learn.

Fig. 5 shows the output of our neural network as a red line. This is the approximation function used as
the optimized approximation function in our proposed approach.

Table 2
Comparison between the boundaries obtained from standard and hierarchical Pareto optimality

Standard Hierarchical
. . Pareto . . Pareto
Process Control factors optimality optimality
Lower Upper Lower Upper
Temperature 80 100 94.99 99
ED-101
Pressure 0.9 1.4 1.0761 1.12
Temperature 80 100 96.28 99.83
ED-102
Pressure 0.9 1.4 1.0703 1.089
Vo101 Temperature 110 130 128.62 129.61
Pressure 0.1 0.3 0.143 0.1458
Temperature 700 820 746 748
H-101/1
Pressure 0.9 1.75 1.40 1.53
Temperature 700 820 759 761.40
H-101/2
Pressure 0.9 1.75 1.22 1.35

From the Table 2, notice that the boundaries of each process are smaller using the hierarchical Pareto
optimality compared to a local Pareto optimality, which means the hierarchical Pareto optimality will give
us a more precise result that the standard local Pareto optimality.
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Fig. 6. Pareto front of the electro dehydrator (ED-101/ED-102)

Fig. 5 illustrates the changes in productivity and quality caused by the temperature and pressure in elec-
tro dehydrator (ED-101/ED-102). The red line demonstrates the approximated function of the processes.

Depending on the approximated function, we can set the boundaries of a standard process using the local
Pareto optimality as showed in Table 2.

Table 3 shows the Pareto optimality hierarchy results obtained by each of the configurations of the
Pareto optimality hierarchy shown in Fig. 4.
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Table 3
Pareto front of the electro dehydrator process (ED-101/ED-102)

ED-101 ED-102

};?(r)i[to Temperature, °C Pressure, MPa P;zrl(r)(:ltto Temperature, °C Pressure, MPa
1 96.0093078613281 1.06980288028717 1 96.2793731689453 1.07028067111968
2 97.3932571411133 1.07608544826508 2 96.2870025634766 1.07076907157898
3 99.00830078125 1.09186339378357 3 99.8252563476563 1.08780181407928
4 97.1836853027344 | 1.07648158073425 4 97.4791946411133 1.08474445343018
5 94.9846267700195 1.11944007873535 5 96.9774322509766 1.08872640132904
6 97.7228775024414 1.09258782863617

In Fig. 6, the red line represents the Pareto set of each process, the green line is the obtained Pareto
front, and the blue dots are possible configurations for these processes.

From Tables 2 and 3, you can see that these configurations are in the range of the optimal configura-
tion, depending on the real data used for this experiment. They are clearly better too: the results gave us a
smaller bandwidth of configuration data, and minimal bandwidth means better results.

Conclusion

In this paper, we illustrated the hierarchical Pareto optimality approach in an oil manufacturing for an
intelligent control system and compared its results with a standard Pareto optimality. The reason is that for
each process, all processes must be optimal, not just the main process. For example, the electric dehydra-
tor removes water and salt in the range of 2 to 4 % (sometimes above 4 %). However, our research shows
that maximum extraction is not always good, because sometimes a lower extraction is needed for the next
process, depending on the crude oil (if it contains a high percentage of water and salt). This research is part
of a larger research project where an agent uses Deep Reinforcement Learning to adapt the process and
each agent uses the hierarchy of Pareto optimality to obtain the optimal configuration. Since this research
has been applied to oil production, it can be extended to other fields.
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