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Introduction

The problem of individual risk assessment, related to a person’s behavior, arises in several
areas.

Some problems in epidemiology and public health concern the interpersonal transmission
of incurable diseases, like HIV. Transmission of such diseases is possible only via a person’s
participation in certain types of episodic risky behaviors [1, 2]. The Bell — Trevino model [3]
combines the number of episodes for each type of such hazardous behavior with the cumulative
risk of disease transmission in the population, which is used for the decision making. We note
also that the main difficulty of using such models as the Bell — Trevino one is collecting the
behavioral data, since deviant behaviors cannot be observed directly [2] and the interviews are
highly prone to different types of cognitive biases [4].

© CronsipoBa B. @., TyayneeB A. JI., 2014. Usnarenb: Cankr-IlerepOyprckuii mojiurexHuyeckuii ynuBepcutet Iletpa
Benukoro.
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Estimation of the behavior characteristics with self-reported data on episodes is relevant
not only for behavioral risk assessment, but also for modelling health risks related to common
behavior. There exists the concept of health-related behavior patterns [6] in the area of
behavioral epidemiology [5]. For example, the patterns of alcohol and food consumption are
related to depression [7]. Physical activity, screen time and eating habits are correlated with
health-related quality of life in children [8] and adults [9, 10]. Some common behavioral
patterns are related to the risk of cardiac attacks [10], diabetes mellitus [11]. The problem of
behavioral data collection arises in this setting too. The common behaviors can be observed
directly, but collecting such data takes some time, while the estimates may be needed in real
time, e.g., during a routine visit to a primary care physician. For this reason, measures based on
self-reporting are used. These measures allow to determine the behavior pattern and the related
risk. Examples include the AUDIT score [12] and the Facebook Use Intensity Scale [13]. We
note here that the frequency of behavior is estimated in such scales in any case, but questions
like “How often did you do that?” are highly prone to cognitive biases [14].

The problem of behavioral simulation arises in the area of cybersecurity. An Internet user’s
behavioral pattern [15] includes several characteristics like the frequency of password change,
the frequency of clicking on external links, the frequency of providing access to the user’s
account to third parties [16]. These peculiarities can be exploited by intruders to gain access
the critical documents of an organization [17]. Therefore, the problem of user profiling is an
important component of the organizational cybersecurity program. The problem with collecting
data on episodic behavior also arises in this setting, as episodes of some behaviors are difficult to
observe directly (e.g., sharing a password with third parties), and the estimates of the potential
employee trustworthiness are required in the hiring process being limited in time.

Thus, several research areas deal with the problem of estimating episodic behavior
characteristics, and the frequency (intensity) of the behavior is the main of those characteristics.
Mathematical models of a person’s behavior are proposed for assessing the risk associated with
episodic behavior with limited and incomplete data.

The goal of the paper is formalizing the existing gamma Poisson mathematical model of
personal behavior in terms of point stochastic processes [28] and deriving the maximal likelihood
function for estimating the behavioral characteristics (the frequency of behavior) with data on
several latest episodes of a person’s behavior.

In the paper, we use the data on three last episodes for all respondents, but the proposed
model can be adapted to any number of episodes. The problem setting lies within an analysis of
recurrent event process [29] and a survival analysis [30]. The proposed formalization allows to
use regression analysis to estimate behavioral characteristics, accounting for those affecting the
behavior intensity. Application of regression analysis is illustrated for the problem on estimating
the frequency of public posting in social media.

We note that although the gamma Poisson model was proposed earlier, the point process
formalization with the possibility of including external factors is a novel approach in modelling
personal behavior. This formalization extends and improves the existing Poisson process
formalization, introducing a class of mixed Poisson processes. Practically speaking, the regression
model approach accounting for external factors is novel.

Research methods

Estimation of episodic behavior characteristics with limited data (existing approach). Cheap
and fast estimates of behavioral characteristics associated with a person’s behavior are required
in certain research areas. Sometimes the data on episodes of behavior is unavailable (e.g., in
situations dealing with deviant behavior), sometimes the cheapest is the best (risk assessment
during a check-up visit to a physician). The main characteristic of episodic behavior is its
frequency (or intensity). This characteristic is often a component of existing risk scales, like
the AUDIT score or Facebook Use Intensity Scale, and it can be directly related to a certain
risk, like the frequency of physical activity. Due to cost and time limitations, it is preferable to
rely on self-reports to gather the data on episodes of a person’s behavior, subsequently using
mathematical models to build desired estimates.

Various methods are used to extract a person’s knowledge about their behavior. The Timeline
Followback (TLFB) is one of the most widely used methods [18]. The individual is asked
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to outline the most memorable episodes in their behavior consulting a calendar. Holidays
and events are marked too. This method is used to characterize different risky behaviors,
like modelling consumption patterns of nicotine and alcohol [19], drugs [20], assessing HIV
transmission patterns [21], and is considered to be reliable [22]. We note here that although the
information on several memorable episodes is important in the context of behavioral pattern
modelling, it has limited usage for estimating the frequency of behavior and is nevertheless
prone to cognitive biases [23].

Refs. [24, 25] describe the method for behavior frequency estimation with limited data on
several last consequent episodes and record intervals. The information extraction approach is
similar to the TLFB method, and originally was implemented in the area of HIV transmission
modelling to estimate the number of episodes of hazardous behavior and cumulative risk in the
population [2]. The last episodes’ methodology relies on answers to questions like “When was
the last time (or earlier times) you participated in this behavior?” The answers to such questions
are less prone to cognitive biases than answers to questions like “How many times did you
participate in such behavior?”. The information on several consequent episodes can be used to
build the frequency estimates via the mathematical model of behavior.

The natural mathematical model for an episodic behavior is a point process, specifically,
the Poisson one [26] that assumes that the sample is homogeneous with respect to the behavior
in question. The gamma Poisson model was proposed to include additional interpersonal
variability for heterogeneous samples [25]. In the latter case, Bayes Belief networks can be
used to estimate the risky behavior characteristics [27]. We now proceed to formalization of the
Poisson mathematical model of behavior.

Poisson model of person’s behavior formalization. Let us assume that the episodes of a
person’s behavior occur in continuous time and only a finite number of episodes can occur in
a finite interval of time. Several episodes cannot occur simultaneously. This property is natural
when considering the person’s episodic behavior.

The point process is defined via its intensity function [29]. Let us denote the starting point
of the process as ¢ = 0, moments of episode realizations as 0<7 <7, <.... We exploit the
property (1) here: two episodes cannot occur simultaneously; N(s,f] is the number of episodes
that occurred in the interval (s,?], let N(0,7) = N(#), and H(¢) ={N(s),0<s <t} is the history
of the process up to time ¢ > 0.

The intensity function of a point process is the limit of the probability of episode realization
in the infinitely small interval Af:

m PHAN() =1 HO),

Mt H(@)) = Y

(1

This function is supposed to be bounded and continuous almost everywhere.

All characteristics of the process can be defined via its intensity function [29], including the
distribution of the interval between two subsequent episodes, the distribution of the number
of episodes N(s, ] in the interval (s, ¢], joint distribution of numbers N(s t) in the disjoint
intervals (s, ], j = 1,2, ..., m, the mean function p(z) = E{N(¢)}, the dispersion function var
{N(t)}, etc.

Now we will use write out the formalization of the Poisson model of the person’s behavior
in the terms of its intensity function. This model assumes that all individuals are equal in their
behavior proneness and is useful when dealing with homogeneous samples.

If the realization of episodes for some type of behavior does not depend on the process history
(see property (1)), then the Poisson point process is the basic model for such episodic behavior.
The intensity function in that case is assumed to be a non-negative integrable deterministic
function (1):

Apoiss (2 H (1)) = p(2), 2> 0. ()

Note. In the homogeneous case, the intensity function of the Poisson process A, .. (¢ | H(¢)) =p
is called ‘intensity’ and in the one-dimensional case it is ‘rate’.
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The Poisson model of behavior was a starting mathematical model for the problem of
behavior characteristics estimation with limited data on several last episodes [1, 2, 24, 25]. Ref.
[26] is dedicated to the maximum likelihood estimation of these characteristics.

The intensity function in the form (2) allows writing out different characteristics of the
person’s episodic behavior process in closed form [29]. Let us define the cumulative intensity
function as

u(s,0) = [ p(v)av,

where p(s, ?) is continuous and finite # > 0 (we denote p(¢) = p(0, 7).

Then the following statements hold.

(i) The number of points N(s,?] in the interval (s,?] follows the Poisson distribution with the
mean pu(s, 1) = u(s) — w(@), 0<s<t

. . )"
Pr(n episodes in (s,¢]) = @exp {—u(s,0)};
n!

(ii) For the Poisson model of the person’s behavior, the mean number of episodes in the

interval equals its variance:

E{N()} = var{N ()} = w@);

(iif) Numbers N(s,, ¢,) and N(s,, ¢,) in the disjoint intervals [s ,¢,), [s,,t,) are independent of
random variables;

(iv) For the homogeneous Poisson process with intensity p, the interval lengths between
the times of subsequent episodes W =T — T, j =1, 2, ... are independent and identically
exponentially distributed random variablés with the same intensity p:

Pr(W, > w) = exp(-pw), w>0.

The Poisson model of the person’s behavior can be used for estimating the behavioral
characteristics in the following settings:

all individuals can be considered homogeneous in their behavior; they have identical intensity
of the episode realization process;

as numbers of episodes in every two disjoint intervals are independent, the data on episodes
can be collected in every moment.

However, the Poisson model of behavior has limited use in real-life applications. In
particular, the property (i7) is often violated. Gamma Poisson model of behavior was formulated
to incorporate this overdispersion with the random intensity function that can model inter-
individual variability of the intensity function.

Results obtained

Formalization of gamma Poisson model of the person’s behavior. This mathematical model
describes the person’s episodic behavior assuming that the episodes occur for every individual
according to the Poisson point process and the intensity parameter varies between individuals in
the population. This parameter is modelled with the gamma distributed variable. The assumptions
of the gamma Poisson model are listed below.

1. Episodes of the person’s behavior occur in continuous time and only a finite number of
episodes can occur in a finite interval of time. Several episodes cannot occur simultaneously.

2. The time of realization of the episode for every individual does not depend on the times
of realization of the previous episodes.

3. All individuals vary in their behavior proneness that remains constant in time.

The second assumption may be verified with statistical data (e.g., with methods of a
dependency analysis), but as we consider the situations with lack of such data, we have to
state it as the assumption. The third assumption describes the natural heterogeneity of the
sample, and the requirement that behavior proneness be constant in time may be relaxed with
appropriate mathematical considerations (not covered in Ref. [29]).
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It is assumed in the gamma Poisson model that the behavior intensity varies between
individuals [25], and it cannot be observed directly. The mixed Poisson process is a background
for this model. The episodes of the process for a particular individual occur according to the
standard Poisson process, but the intensity of this process varies between individuals in the
population and is modelled with the random variable [31].

Historically, the mixed Poisson distribution emerged in a similar setting in insurance studies
[32, 33]. The authors proposed to take into account an individual accident proneness when
modelling the number of insurance claims in some period of time. This accident proneness is
assumed to have a gamma distribution.

Now we proceed to the gamma Poisson model of behavior formalization. We introduce
unobserved random covariates u, i = 1, 2, ..., m to model (1) to take into account inter-
individual differences in the behavior. Conditioned on u,, the intensity function of the episode
realization process N,(¢), t 20 has the form

7“;’(”“1’ :7\’1'9H(t)):}\’ipi(t)9 (3)

where u_ is a random variable with the distribution function G (u) and finite expectation, A, is
the behavior proneness for an individual i and is the realization of u_ for a current individual.

We assume that all u, are independent and identically distributed ‘random variables with the
probability density function (PDF) G(u). For simplicity of calculations, in this paper we assume
that G(u) has the gamma distribution

“exp(-u/¢)
¢‘T(k)

(usk,9) = , u>0, C))

where k> 0 is the shape parameter, ¢ > 0 is the scale one.

The gamma distribution is frequently chosen for modelling different real-life values that
are skewed and positive, e.g., the inter-episode time intervals. The usefulness of the gamma
distribution for the purpose of this study is the property of the gamma mixture of the Poisson
distribution: it has a closed form. Moreover, it is widely used as the conjugate prior in Bayesian
statistics.

Now we write out some properties of the mixed gamma Poisson process that is the
foundation, for the gamma Poisson model of the person’s behavior. In the following, we denote
m(s.0)= [ p, ().

GP. 17*Conditioned on u, the number of episodes in some interval has the Poisson
discrete distribution

POV (50) =, =) = PR g 5,0,

and without this condition it has a negative binomial distribution:

PN, 5.0y =) = [ D e 5. s 1 =

_ e Lup, (s, 01" “exp(-u/ L
= [ e (s 0) TS
(S t)” n+k—1 _
= o T j exp(—u(p, (s,6)+1/ §))du =
B, (s, 0)" " C(n+k)  [op,(s,0)]"

T(n+k)=

) n|(|)kr(k) [(I)Hi(s,t)+1]n+k n'l_'(k) [1+¢u (S t)]n+k _09 1’ see .

The negative binomial distribution has an additional parameter compared to binomial,
incorporating the overdispersion emerging due to inter-individual variability.
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The negative binomial distribution has an additional parameter compared to binomial,
incorporating the overdispersion emerging due to inter-individual variability.

GP. 2. Using the fact that the expectation of the gamma distributed random variable (4) is
E{u.} =k¢ and the formulae for the complete expectation and complete variance, we derive
that the expectation of the number of episodes in some interval for the gamma Poisson model

of behavior is
E{N,(s,0)} = E{E{N,(s,0) |u;} } =, (s,0)k,

and the variance is:
var{N, (s,0)} = E(var[N,(s,1) | u,]) + var(E[N,(s.1) | u,]) =

= E(u; 1, (s,0)) + var(u, 1, (s,1)) = Mi(Saf)kd)Jrk(H[(S,f)d))z-

GP. 3. The number of episodes in the disjoint intervals for this model is not independent.
Lets <t <s,<t,, then we have:

cov{N, (s, 1,), N,(s,, t,)} =E(N,(s,.1,)- N,(5,,1,)) —EN,(5,,4,)EN,(s,,1,) =
= E[E(N,(s,,4)- N,(s,,1,) | ui)]_(k¢)zui(slatl)ui(szﬂt2) =
= B Y, (5, 1)1 (55,1) = (k) 1, (51, 1)1, (5,,1,) = kO W, (51,11, (55, 1)
GP. 4. (gamma Poisson Unconditioned Intensity function). The unconditioned intensity
function for the gamma Poisson process has the form:
N.(t)+k

7»,-(1|H,-(t)):{ 1+p.(6)¢

}d)p,—(t), t>0. (&)

Theorem. The unconditioned intensity function for the gamma Poisson process has the following
Jform in the assumptions of the gamma Poisson model:

N(t)+k

}(I)pi(t), 1>0.

P r o o f. Now we proceed to the derivation of Eq. (5). Let us consider an individual episode
realization process with conditioned (for every individual) intensity:

Me | H(t),u) = up(?),

where u has gamma distribution (4) with the cumulative distribution function (cdf) g(u; k, ¢).
Based on the full expectation rule, following definition (1) and bearing in mind that it is
impossible for episodes to occur simultaneously (the property according to gamma Poisson
assumption (1)), in that case we have

P{N(t,t +At) =1| H(t),u} = Mt | H(t),u)At + o(A?),

we derive

PIN(t,t+A) =1 H(1)} _

P{N(t,t+At)=1| H(t)} = P(H(1))
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j: P{N(t,t + At) =L, H(t) |u} g(u)du
[ PCH (@) 1) g ()
j: P{N(t,t+ A =1 [u} PLH (1) [u} g(w)du | :[u p(t)At + o(AE)| PLH (1) |u} g (u) du

[ PCH () ) g () du [ PCH (@) | w)g(w)du

Further we note that N(#)lu is a standard Poisson process with the intensity up(f), and,
therefore,
P(H(t)|u)=P(N(t")|u)~ Poisson(up(?)).

As g(u) follows a gamma distribution, _[:P(H (t)|u)g(u)du is the probability of the
variable

with a negative binomial distribution [31] equal to N(¢):

[ P(H @) | ) g(u)du = Py (N()),

where P, denotes the probability mass function of the negative binomial distribution.
Then we write:

Nt )+1

fw[up(t)At +o(AD]P{H (1) | u}g(u)du =
’ (o)

Therefore, the intensity function has the form

B (N )+1).

(¢ H (1)) = lim PN+ A) =1 H@) N{T )+ RN +1) p(t) =
At—>0 At u(t) P (N (t ))

N(t-)+1 k
. CY (“(t)d’} ( L J )
Z(N(t )+1]. 1+p()9 Leud) o {N(f >+k}¢p(t).

) CN(:)+1<1( wio)o JN(”( 1 j
1+ p()d 1+ p()o
Q. E. D.

1+ p(0)é
If the behavior proneness u# has the gamma distribution with the expectation 1 (one) (in that
case E(u)=k¢=1), then the intensity function has the form:

1+ON(@)

Mt H() = {m

}p(t), t>0. (6)

Therefore, the gamma Poisson model of the person’s behavior reflects the following properties:

a) all individuals in the population vary in their behavior proneness and the intensity of the
episode’s realization;

b) gamma Poisson model takes into account the overdispersion in the number of episodes
that occurs due to inter-individual variability;

¢) as k, >0, it follows from (GP. 3) that the numbers of episodes in the disjoint intervals are
clustered; this means that the probability for N(s ,z,) and N(s,,t,) to take simultaneously large
(or small) values is greater than in the Poisson case;

d) in the homogeneous case, according to (i7) and Eq. (2), the expected intensity of episode
realization in the population is

k+n

BN =m= 1
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(this follows from GP. 4), which is close to the classical notion of the rate as the number of
episodes per unit time.

Note on the concept of behavior intensity. The notion of behavior intensity is introduced to
deal with the characteristics of episodic types of behavior. This notion is sometimes overloaded,
and the proposed formalization of the gamma Poisson model forms the following system of
notions.

The intensity function A(z| H(¢)) is the probability limit of the realization for one episode
in the infinitely small unit of time A¢. If the intensity function is constant (the case of standard
homogeneous Poisson process), it is called ‘intensity’; the notion of ‘rate’ can be used in the
one-dimensional case.

Gamma Poisson model of the person’s behavior: the likelihood function for
estimating the behavior characteristics with the data on several last episodes

Therefore, the proposed formalization allows interpreting the estimation of episode frequency
as a problem on intensity function restoration and estimation of the parameters of gamma
distribution that models individual behavior proneness. The data on several last consequent
episodes are less prone to cognitive biases and are easy to extract [2].

We also note that it is important to take into account external factors that influence the
person’s behavior. Regression analysis allows to combine the mathematical gamma Poisson
model of behavior and available additional data on external factors. To use regression analysis,
we derive the maximum likelihood function for the realization of several last episodes.

We observe m individuals from the moment =1, up to 7. Next, we extract self-reported
data on the times when the latest episodes of some type of behavior occurred (the available
number of episodes can be 0 or 3 — 4 for different respondents). Therefore, we observe several
epochs of the point stochastic process

(N.(1),0<t},i=1,2, ..., m

in the interval T, — .

Let us denote as H,(#) ={N,(s):0<s <t} the history of a point process for an individual i.
Such process has an intensity function of the form (3) in the gamma Poisson model.

Let us assume that p external covariates (e.g., age, sex, etc.) influence the process of episode
realization:

X, (1) =(x,(2), x,(t), ..., xl.p(t))', i=1,2, ..., m

There exist several methods for incorporating these factors to the intensity function, one of
them is the assumption of proportional hazards that is the foundation for the Cox proportional
hazards model [36]. In that case, all external factors are included to the deterministic factor of
the intensity function (3):

p(1) = py(t; )exp(x, (H)B), (7

where p (#;a) is the baseline intensity function for the individuals with x (¢) = 0; B is the vector
of regression coefficients.

If there is no assumed form of the function then the regression estimation method is
semiparametric. The semiparametric method for the recurrent events data is called the Andersen —
Gill model [29, 30]. The semiparametric derivation allows to simplify the overall maximum
likelihood function using gamma distribution (4) with 1 (one) expectation E(u,)=k¢p =1:

s* T exp(—s/ )
0) = - , 0. 8
g,(s;0) ¢¢ T(1/6) s > (8)

Therefore, in order to restore the intensity function (3) we should estimate the parameters
0=(a,B,¢) from data. The likelihood function is comprised from the episode realization
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likelihoods for every individual in the sample:
L®)=]]L®).
i=l

If u, were observed, then the individual likelihood function of the realization of data
(n,t , 1. ,u) (see Ref. [30]) is

s e
L(0)=P(N,(t,y,7,) =n;u,) = Huipi(tl.j) exp {—I: up, (s)ds} .
Jj=1

However, u, represent an individual proneness and are therefore unobserved. The likelihood
function of the data (n, ¢, ..., ¢, ) is the gamma mixture of the individual functions LiO (0):
1

L(®) = [ L)(0)dG(u,¢) = [, [Hu,-p,-(t,-,)exp [ wp,(9)ds} G, ¢).
=l
Using the formula for the realization probability for n episodes of mixed Poisson distribution,

we derive
e Po(t;) [ T +97") (9n,(r.)"
L(6,)= ' ' o
09 {H Ho (Ti)} T 1+ dp, (1, )"

The EM (Expectation-Maximization) algorithm is used to estimate the parameters [29]. The
main assumption of this method is the proportional hazards assumption (7) that defines the
multiplicative form of the dependency between intervals between subsequent episodes in the
gamma Poisson model and external factors.

Program realization. The data were gathered for 1,500 random users of the ‘VKontakte’
social network who have written at least three public wall posts during the last year from their
last visit. The data included information on the times when the posts were made, sex and
age listed in the profile, and the number of friends. As the main purpose of the data analysis
was illustrating how to apply the regression methodology to the problem of behavior intensity
estimation, only full observations were included.

Table 1 demonstrates the survival data on behavioral episodes in regression analysis. The

Table 1
The survival data for public posts
The interval
Start End Posting
Start End episode
(UNIX time format)
Feb. 1, 2021 Feb. 21, 2021
17:45:11 14:55-11 1612190711 | 1613908511 0
Feb. 1, 2021 Feb. 1, 2021
17:15:07 174511 1612188907 | 1612190711 1
May 31, 2020 Feb. 1, 2021 1612188907
16:02:00 17:15:07 1530930120 !
Feb. 21, 2020 May 31, 2020
14:55:11 16-02-00 1590930020 | 1590930120 1

Footnote: user ID = 22.
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Table 2
The coefficients obtained for the fitted Cox regression
. Coefficient | Standard | z-score with
Variable . D

exponentiated error significance
Sex (male) 0.745 0.079 —=3.71%
Age 1.03 0.006 5.08%
Number of friends 1.00 0.000 6.98%

Footnote: ® denotes that p-value is less than 0.01.

intervals between public posts for user ID 22 are given: the last visit was at 1613908511 (2021-
02-21 14:55:11 MSK), and the times of public posts were 1612190711 (2021-02-01 17:45:11
MSK), 1612188907 (2021-02-01 17:15:07 MSK), 1590930120 (2020-05-31 16:02:00 MSK).

The general regression model for estimating the behavior characteristics with the data on last
episodes accounting for the user profile data is as follows:

Surv. (Start, End, Posting episode) ~
Cluster (ID)+ Sex + Age + Number of friends.

This model reflects the dependency between the interval, starting at Start, ending at End,
and other characteristics from the user’s profile. We used the emfrail [35] R package for
semiparametric regression fitting. The fitted model is presented in Table 2.

The overall regression performance is good: the p-value for the likelihood ratio test is lower
than 0.01, so that the model describes the data better than the saturated model, the Commenges —
Andersen test for the frailty significance p-value is lower than 0.01. Regression fitting allows
estimating the parameter of gamma density: 0.769 (95% confidence interval (0.691, 0.861)).
Furthermore, all three characteristics (Sex, Age, Number of friends) of the user’s profile are
statistically significant in the regression. The negative regression coefficient for the sex variable
can be interpreted to indicate that women are more likely to write public posts. Other variables
have positive valued coefficients, meaning that an increase in those values results in an increase
in the length of intervals between subsequent episodes.

Discussion of the results

The proposed methodology allows using the Poisson model of behavior in heterogeneous
samples. The assumptions made are that the realization process of an individual episode follows
the Poisson model, and the proportional hazards assumption holds. The former assumption
does not hold for some types of behavior, e.g., planned behavior. The gamma Poisson model
can be used in situations when episodes are more or less spontaneous, like deviations from the
dietary plan. The latter assumption can also be violated, and there exist several other forms of
dependency between behavioral episodes and other influencing factors [29].

Summary

The paper addresses the problem of estimating risky behavioral characteristics with data on
several latest episodes accounting for external factors that influence how the episode unfolds.
The novel formalization of the gamma Poisson model of behavior via the process intensity
function is presented. The proposed formalization extends the existing one, developed for the
Poisson model of behavior, allowing to include external factors (like age or sex) and take into
account the interpersonal variability in the behavior proneness. The gamma Poisson model has
some limitations as it was developed to model occasional (unplanned) behavior. The practical
application of the proposed formalization includes the survival analysis regression model: the
Cox proportional-hazards regression. Although the proportional-hazards assumption can be
violated too, other approaches exist. The Cox regression usage was demonstrated on the public
posting data.

The factors that influence how episodes evolve can have a complex dependency structure.
This peculiarity can be addressed with probabilistic graphical networks that may also be used
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for decision making under uncertainty and incorporate different types of uncertainties in the
domain.
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