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likelihood function for the estimates was derived. This formalization allowed to use the Cox 
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Аннотация. В работе предлагается расширение и уточнение существующей модели 
оценки характеристик поведения индивида по неполным данным о нескольких 
последних эпизодах его рискованного поведения за счет учета ряда особенностей 
предметной области и иных факторов, в частности пола, возраста и т. п. Представлена 
формализация гамма-пуассоновской модели поведения в терминах случайных 
процессов. Выведен общий вид функции правдоподобия для построения искомых 
оценок. Привлекается модель регрессии Кокса для построения оценок максимального 
правдоподобия параметров интенсивности процесса при условии наблюдения лишь 
трех последних эпизодов с учетом индивидуальных особенностей и внешних факторов. 
Возможности этого подхода продемонстрированы на данных о публикации постов в 
социальной сети.
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Introduction

The problem of individual risk assessment, related to a person’s behavior, arises in several 
areas.

Some problems in epidemiology and public health concern the interpersonal transmission 
of incurable diseases, like HIV. Transmission of such diseases is possible only via a person’s 
participation in certain types of episodic risky behaviors [1, 2]. The Bell – Trevino model [3] 
combines the number of episodes for each type of such hazardous behavior with the cumulative 
risk of disease transmission in the population, which is used for the decision making. We note 
also that the main difficulty of using such models as the Bell – Trevino one is collecting the 
behavioral data, since deviant behaviors cannot be observed directly [2] and the interviews are 
highly prone to different types of cognitive biases [4].
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Estimation of the behavior characteristics with self-reported data on episodes is relevant 
not only for behavioral risk assessment, but also for modelling health risks related to common 
behavior. There exists the concept of health-related behavior patterns [6] in the area of 
behavioral epidemiology [5]. For example, the patterns of alcohol and food consumption are 
related to depression [7]. Physical activity, screen time and eating habits are correlated with 
health-related quality of life in children [8] and adults [9, 10]. Some common behavioral 
patterns are related to the risk of cardiac attacks [10], diabetes mellitus [11]. The problem of 
behavioral data collection arises in this setting too. The common behaviors can be observed 
directly, but collecting such data takes some time, while the estimates may be needed in real 
time, e.g., during a routine visit to a primary care physician. For this reason, measures based on 
self-reporting are used. These measures allow to determine the behavior pattern and the related 
risk. Examples include the AUDIT score [12] and the Facebook Use Intensity Scale [13]. We 
note here that the frequency of behavior is estimated in such scales in any case, but questions 
like “How often did you do that?” are highly prone to cognitive biases [14]. 

The problem of behavioral simulation arises in the area of cybersecurity. An Internet user’s 
behavioral pattern [15] includes several characteristics like the frequency of password change, 
the frequency of clicking on external links, the frequency of providing access to the user’s 
account to third parties [16]. These peculiarities can be exploited by intruders to gain access 
the critical documents of an organization [17]. Therefore, the problem of user profiling is an 
important component of the organizational cybersecurity program. The problem with collecting 
data on episodic behavior also arises in this setting, as episodes of some behaviors are difficult to 
observe directly (e.g., sharing a password with third parties), and the estimates of the potential 
employee trustworthiness are required in the hiring process being limited in time.

Thus, several research areas deal with the problem of estimating episodic behavior 
characteristics, and the frequency (intensity) of the behavior is the main of those characteristics. 
Mathematical models of a person’s behavior are proposed for assessing the risk associated with 
episodic behavior with limited and incomplete data.

The goal of the paper is formalizing the existing gamma Poisson mathematical model of 
personal behavior in terms of point stochastic processes [28] and deriving the maximal likelihood 
function for estimating the behavioral characteristics (the frequency of behavior) with data on 
several latest episodes of a person’s behavior.

In the paper, we use the data on three last episodes for all respondents, but the proposed 
model can be adapted to any number of episodes. The problem setting lies within an analysis of 
recurrent event process [29] and a survival analysis [30]. The proposed formalization allows to 
use regression analysis to estimate behavioral characteristics, accounting for those affecting the 
behavior intensity. Application of regression analysis is illustrated for the problem on estimating 
the frequency of public posting in social media.

We note that although the gamma Poisson model was proposed earlier, the point process 
formalization with the possibility of including external factors is a novel approach in modelling 
personal behavior. This formalization extends and improves the existing Poisson process 
formalization, introducing a class of mixed Poisson processes. Practically speaking, the regression 
model approach accounting for external factors is novel.

Research methods
Estimation of episodic behavior characteristics with limited data (existing approach). Cheap 

and fast estimates of behavioral characteristics associated with a person’s behavior are required 
in certain research areas. Sometimes the data on episodes of behavior is unavailable (e.g., in 
situations dealing with deviant behavior), sometimes the cheapest is the best (risk assessment 
during a check-up visit to a physician). The main characteristic of episodic behavior is its 
frequency (or intensity). This characteristic is often a component of existing risk scales, like 
the AUDIT score or Facebook Use Intensity Scale, and it can be directly related to a certain 
risk, like the frequency of physical activity. Due to cost and time limitations, it is preferable to 
rely on self-reports to gather the data on episodes of a person’s behavior, subsequently using 
mathematical models to build desired estimates.

Various methods are used to extract a person’s knowledge about their behavior. The Timeline 
Followback (TLFB) is one of the most widely used methods [18]. The individual is asked 
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to outline the most memorable episodes in their behavior consulting a calendar. Holidays 
and events are marked too. This method is used to characterize different risky behaviors, 
like modelling consumption patterns of nicotine and alcohol [19], drugs [20], assessing HIV 
transmission patterns [21], and is considered to be reliable [22]. We note here that although the 
information on several memorable episodes is important in the context of behavioral pattern 
modelling, it has limited usage for estimating the frequency of behavior and is nevertheless 
prone to cognitive biases [23].

Refs. [24, 25] describe the method for behavior frequency estimation with limited data on 
several last consequent episodes and record intervals. The information extraction approach is 
similar to the TLFB method, and originally was implemented in the area of HIV transmission 
modelling to estimate the number of episodes of hazardous behavior and cumulative risk in the 
population [2]. The last episodes’ methodology relies on answers to questions like “When was 
the last time (or earlier times) you participated in this behavior?” The answers to such questions 
are less prone to cognitive biases than answers to questions like “How many times did you 
participate in such behavior?”. The information on several consequent episodes can be used to 
build the frequency estimates via the mathematical model of behavior.

The natural mathematical model for an episodic behavior is a point process, specifically, 
the Poisson one [26] that assumes that the sample is homogeneous with respect to the behavior 
in question. The gamma Poisson model was proposed to include additional interpersonal 
variability for heterogeneous samples [25]. In the latter case, Bayes Belief networks can be 
used to estimate the risky behavior characteristics [27]. We now proceed to formalization of the 
Poisson mathematical model of behavior.

Poisson model of person’s behavior formalization. Let us assume that the episodes of a 
person’s behavior occur in continuous time and only a finite number of episodes can occur in 
a finite interval of time. Several episodes cannot occur simultaneously. This property is natural 
when considering the person’s episodic behavior.

The point process is defined via its intensity function [29]. Let us denote the starting point 
of the process as t = 0, moments of episode realizations as 1 20 T T≤ < <… . We exploit the 
property (1) here: two episodes cannot occur simultaneously; N(s,t] is the number of episodes 
that occurred in the interval (s,t], let N(0,t) = N(t), and ( ) { ( ),0 }H t N s s t= ≤ <  is the history 
of the process up to time t > 0.

The intensity function of a point process is the limit of the probability of episode realization 
in the infinitely small interval Δt:

0

Pr{ ( ) 1| ( )}( | ( )) lim .
t

N t H tt H t
t∆ →

∆ =
λ =

∆
                                 (1)

This function is supposed to be bounded and continuous almost everywhere.
All characteristics of the process can be defined via its intensity function [29], including the 

distribution of the interval between two subsequent episodes, the distribution of the number 
of episodes N(s, t] in the interval (s, t], joint distribution of numbers N(sj, tj) in the disjoint 
intervals (sj, tj], j = 1 ,2, …, m, the mean function ( ) { ( )},t E N tµ =  the dispersion function var 
{N(t)}, etc.

Now we will use write out the formalization of the Poisson model of the person’s behavior 
in the terms of its intensity function. This model assumes that all individuals are equal in their 
behavior proneness and is useful when dealing with homogeneous samples.

If the realization of episodes for some type of behavior does not depend on the process history 
(see property (1)), then the Poisson point process is the basic model for such episodic behavior. 
The intensity function in that case is assumed to be a non-negative integrable deterministic 
function (1): 

Poiss ( | ( )) ( ), 0.t H t t tλ = ρ >                                           (2)

Note. In the homogeneous case, the intensity function of the Poisson process Poiss ( | ( ))t H tλ = ρ  
is called ‘intensity’ and in the one-dimensional case it is ‘rate’. 
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The Poisson model of behavior was a starting mathematical model for the problem of 
behavior characteristics estimation with limited data on several last episodes [1, 2, 24, 25]. Ref. 
[26] is dedicated to the maximum likelihood estimation of these characteristics.

The intensity function in the form (2) allows writing out different characteristics of the 
person’s episodic behavior process in closed form [29]. Let us define the cumulative intensity 
function as

( , ) ( ) ,
t

s
s t v dvµ = ρ∫  

where μ(s, t) is continuous and finite t > 0 (we denote μ(t) = μ(0, t)).
Then the following statements hold.
(i) The number of points N(s,t] in the interval (s,t] follows the Poisson distribution with the 

mean μ(s, t) = μ(s) − μ(t), 0 ≤ s < t:

 
( , )Pr( ( , ]) exp{ ( , )};episodes in 

!

ns tn s t s t
n

µ
= −µ

(ii) For the Poisson model of the person’s behavior, the mean number of episodes in the 
interval equals its variance:

E{ ( )} var{ ( )} ( );N t N t t= = µ

(iii) Numbers N(s1, t1) and N(s2, t2) in the disjoint intervals [s1,t1), [s2,t2) are independent of 
random variables;

(iv) For the homogeneous Poisson process with intensity ρ, the interval lengths between 
the times of subsequent episodes Wj = Tj – Tj−1, j = 1, 2, … are independent and identically 
exponentially distributed random variables with the same intensity ρ:

The Poisson model of the person’s behavior can be used for estimating the behavioral 
characteristics in the following settings:

all individuals can be considered homogeneous in their behavior; they have identical intensity 
of the episode realization process; 

as numbers of episodes in every two disjoint intervals are independent, the data on episodes 
can be collected in every moment.

However, the Poisson model of behavior has limited use in real-life applications. In 
particular, the property (ii) is often violated. Gamma Poisson model of behavior was formulated 
to incorporate this overdispersion with the random intensity function that can model inter-
individual variability of the intensity function.

Results obtained

Formalization of gamma Poisson model of the person’s behavior. This mathematical model 
describes the person’s episodic behavior assuming that the episodes occur for every individual 
according to the Poisson point process and the intensity parameter varies between individuals in 
the population. This parameter is modelled with the gamma distributed variable. The assumptions 
of the gamma Poisson model are listed below.

1. Episodes of the person’s behavior occur in continuous time and only a finite number of 
episodes can occur in a finite interval of time. Several episodes cannot occur simultaneously. 

2. The time of realization of the episode for every individual does not depend on the times 
of realization of the previous episodes.

3. All individuals vary in their behavior proneness that remains constant in time.
The second assumption may be verified with statistical data (e.g., with methods of a 

dependency analysis), but as we consider the situations with lack of such data, we have to 
state it as the assumption. The third assumption describes the natural heterogeneity of the 
sample, and the requirement that behavior proneness be constant in time may be relaxed with 
appropriate mathematical considerations (not covered in Ref. [29]). 

Pr( ) exp( ), 0.jW w w w> = −ρ >
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It is assumed in the gamma Poisson model that the behavior intensity varies between 
individuals [25], and it cannot be observed directly. The mixed Poisson process is a background 
for this model. The episodes of the process for a particular individual occur according to the 
standard Poisson process, but the intensity of this process varies between individuals in the 
population and is modelled with the random variable [31].

Historically, the mixed Poisson distribution emerged in a similar setting in insurance studies 
[32, 33]. The authors proposed to take into account an individual accident proneness when 
modelling the number of insurance claims in some period of time. This accident proneness is 
assumed to have a gamma distribution.

Now we proceed to the gamma Poisson model of behavior formalization. We introduce 
unobserved random covariates ui, i = 1, 2, …, m to model (1) to take into account inter-
individual differences in the behavior. Conditioned on ui, the intensity function of the episode 
realization process ( ), 0iN t t ≥  has the form

( | , ( )) ( ),i i i i it u H t tλ = λ = λ ρ                                       (3)

where ui is a random variable with the distribution function Gi(u) and finite expectation, λi is 
the behavior proneness for an individual i and is the realization of ui for a current individual. 

We assume that all ui are independent and identically distributed random variables with the 
probability density function (PDF) G(u). For simplicity of calculations, in this paper we assume 
that G(u) has the gamma distribution

1 exp( / )( ; , ) ,  0,
( )

k

k

u ug u k u
k

− − φ
φ = >

φ Γ                                                     
(4)

where k > 0 is the shape parameter, ϕ > 0 is the scale one.
The gamma distribution is frequently chosen for modelling different real-life values that 

are skewed and positive, e.g., the inter-episode time intervals. The usefulness of the gamma 
distribution for the purpose of this study is the property of the gamma mixture of the Poisson 
distribution: it has a closed form. Moreover, it is widely used as the conjugate prior in Bayesian 
statistics.

Now we write out some properties of the mixed gamma Poisson process that is the 
foundation for the gamma Poisson model of the person’s behavior. In the following, we denote 

( , ) ( ) .
t

i is
s t v dvµ = ρ∫
GP. 1. Conditioned on ui, the number of episodes in some interval has the Poisson 

discrete distribution 

 
( ( , ))P( ( , ) | ) exp( ( , )),

!

n
i i

i i i i i
s tN s t n u s t

n
λ µ

= = λ = −λ µ

and without this condition it has a negative binomial distribution:

 
0

1

0

[ ( , )]P( ( , ) ) exp( ( , )) ( ; , )
!

[ ( , )] exp( / )exp( ( , ))
! ( )

n
i

i i

n k
i

i k

u s tN s t n u s t g u k du
n

u s t u uu s t du
n k

∞

−∞

µ
= = ⋅ − µ φ =

µ − φ
= − µ ⋅ =

φ Γ

∫

∫

 

The negative binomial distribution has an additional parameter compared to binomial, 
incorporating the overdispersion emerging due to inter-individual variability.

1

0

( , ) exp( ( ( , ) 1/ ))
! ( )

( , ) [ ( , )]( )( ) , 0, 1, .
! ( ) [ ( , ) 1] ! ( ) [1 ( , )]

n
n ki

ik

n nn k
i i

k n k n k
i i

s t u u s t du
n k

s t s tn kn k n
n k s t n k s t

∞ + −

+

+ +

µ
= ⋅ − µ + φ =

φ Γ

µ φµφ Γ +
= Γ + = = …

φ Γ φµ + Γ + φµ

∫
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The negative binomial distribution has an additional parameter compared to binomial, 
incorporating the overdispersion emerging due to inter-individual variability.

GP. 2. Using the fact that the expectation of the gamma distributed random variable (4) is 
E{ }iu k= φ  and the formulae for the complete expectation and complete variance, we derive 
that the expectation of the number of episodes in some interval for the gamma Poisson model 
of behavior is 

E{ ( , )} E{E{ ( , ) | }} ( , ) , i i i iN s t N s t u s t k= = µ φ

and the variance is:

GP. 3. The number of episodes in the disjoint intervals for this model is not independent. 
Let s1 < t1 < s2 < t2, then we have:

( ) ( ){ }1 1 2 2 1 1 2 2 1 1 2 2

2
1 1 2 2 1 1 2 2

2 2 2
1 1 2 2 1 1 2 2 1 1 2 2

cov ,  ,  ,  E( ( , ) ( , )) E ( , )E ( , )

= E[E( ( , ) ( , ) | )] ( ) ( , ) ( , )
= E( ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ).

i i i i i i

i i i i i

i i i i i i i

N s t N s t N s t N s t N s t N s t

N s t N s t u k s t s t
u s t s t k s t s t k s t s t

= ⋅ − =

⋅ − φ µ µ =

µ µ − φ µ µ = φ µ µ

 

GP. 4. (gamma Poisson Unconditioned Intensity function). The unconditioned intensity 
function for the gamma Poisson process has the form:

( )( | ( )) ( ), 0.
1 ( )

i
i i i

i

N t kt H t t t
t

− +
λ = φρ > +µ φ 

                               (5)

Theorem. The unconditioned intensity function for the gamma Poisson process has the following 
form in the assumptions of the gamma Poisson model:

P r o o f. Now we proceed to the derivation of Eq. (5). Let us consider an individual episode 
realization process with conditioned (for every individual) intensity: 

( | ( ), ) ( ),t H t u u tλ = ρ

where u has gamma distribution (4) with the cumulative distribution function (cdf) g(u; k, ϕ). 
Based on the full expectation rule, following definition (1) and bearing in mind that it is 
impossible for episodes to occur simultaneously (the property according to gamma Poisson 
assumption (1)), in that case we have

{ ( , ) 1| ( ), } , ( | ( ), ) ( )P N t t t H t u t H t u t o t+ ∆ = = λ ∆ + ∆

we derive

{ ( , ) 1; ( )}{ ( , ) 1| ( )}
( ( ))

P N t t t H tP N t t t H t
P H t
+ ∆ =

+ ∆ = = =

2.
var{ ( , )} E(var[ ( , ) | ]) var(E[ ( , ) | ])
= E( ( , )) var( ( , )) ( , ) ( ( , ) )

i i i i i

i i i i i i

N s t N s t u N s t u
u s t u s t s t k k s t

= + =

µ + µ = µ φ+ µ φ

( )( | ( )) ( ), 0.
1 ( )

i
i i i

i

N t kt H t t t
t

− +
λ = φρ > +µ φ 
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Further we note that N(t)|u is a standard Poisson process with the intensity uρ(t), and, 
therefore,

( ( ) | ) ( ( ) | ) Poisson( ( ) . )P H t u P N t u u t−= ∼ ρ

As g(u) follows a gamma distribution, 
0

( ( ) | ) ( )P H t u g u du
∞

∫  is the probability of the 
variable 

with a negative binomial distribution [31] equal to N(t–):

where PNB denotes the probability mass function of the negative binomial distribution.
Then we write:

NB0

( ) 1[ ( ) ( )] { ( ) | } ( ) ( ( ) 1).
( )

N tu t t o t P H t u g u du P N t
t

−∞ −+
ρ ∆ + ∆ = +

µ∫  

Therefore, the intensity function has the form

 

Q. E. D.
If the behavior proneness u has the gamma distribution with the expectation 1 (one) (in that 

case E( ) 1u k= φ = ), then the intensity function has the form:

1 ( )( | ( )) ( ), 0.
1 ( )

N tt H t t t
t

− + φ
λ = ρ > + φµ 

                                 (6)

Therefore, the gamma Poisson model of the person’s behavior reflects the following properties:
a) all individuals in the population vary in their behavior proneness and the intensity of the 

episode’s realization;
b) gamma Poisson model takes into account the overdispersion in the number of episodes 

that occurs due to inter-individual variability; 
c) as k,ϕ > 0, it follows from (GP. 3) that the numbers of episodes in the disjoint intervals are 

clustered; this means that the probability for N(s1,t1) and N(s2,t2) to take simultaneously large 
(or small) values is greater than in the Poisson case;

d) in the homogeneous case, according to (ii) and Eq. (2), the expected intensity of episode 
realization in the population is 

 E( | ( ) )
1/

k nN t n
l t
+

λ = =
φ+

( )

0

0

0 0

0 0

{ ( , ) 1; ( ) | } ( )

( ( ) | ) ( )

[ ( ) ( )] { ( ) | }{ ( , ) 1| } { ( ) | } ( )
.

( ( ) | ) ( ) ( ( ) | ) ( )

P N t t t H t u g u du

P H t u g u du

u t t o t P H t u g u duP N t t t u P H t u g u du

P H t u g u du P H t u g u du

∞

∞

∞ ∞

∞ ∞

+ ∆ =
= =

ρ ∆ + ∆+ ∆ =
= =

∫
∫

∫ ∫
∫ ∫

NB0
( ( ) | ) ( ) ( ( )),  P H t u g u du P N t

∞ −=∫

( ) { } ( ) ( )
( )

NB

0
NB

( ) 1
( )
1

( )
( ) 1
1

1 ( ) 1( , ) 1| ( )
| ( ) lim ( )

( ) ( )

( ) 1
1 ( ) 1 ( )( ) 1 ( )( )

( ) ( ) 1
1 ( ) 1 ( )

t

N t k
N t k
k

N t k
N t k
k
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(this follows from GP. 4), which is close to the classical notion of the rate as the number of 
episodes per unit time.

Note on the concept of behavior intensity. The notion of behavior intensity is introduced to 
deal with the characteristics of episodic types of behavior. This notion is sometimes overloaded, 
and the proposed formalization of the gamma Poisson model forms the following system of 
notions.

The intensity function ( | ( ))t H tλ  is the probability limit of the realization for one episode 
in the infinitely small unit of time Δt. If the intensity function is constant (the case of standard 
homogeneous Poisson process), it is called ‘intensity’; the notion of ‘rate’ can be used in the 
one-dimensional case. 

Gamma Poisson model of the person’s behavior: the likelihood function for 
estimating the behavior characteristics with the data on several last episodes

Therefore, the proposed formalization allows interpreting the estimation of episode frequency 
as a problem on intensity function restoration and estimation of the parameters of gamma 
distribution that models individual behavior proneness. The data on several last consequent 
episodes are less prone to cognitive biases and are easy to extract [2].

We also note that it is important to take into account external factors that influence the 
person’s behavior. Regression analysis allows to combine the mathematical gamma Poisson 
model of behavior and available additional data on external factors. To use regression analysis, 
we derive the maximum likelihood function for the realization of several last episodes.

We observe m individuals from the moment t = τi0 up to τi. Next, we extract self-reported 
data on the times when the latest episodes of some type of behavior occurred (the available 
number of episodes can be 0 or 3 – 4 for different respondents). Therefore, we observe several 
epochs of the point stochastic process

in the interval τi – τi0.
Let us denote as ( ) { ( ) : 0 }i iH t N s s t= ≤ <  the history of a point process for an individual i. 

Such process has an intensity function of the form (3) in the gamma Poisson model.
Let us assume that p external covariates (e.g., age, sex, etc.) influence the process of episode 

realization:

There exist several methods for incorporating these factors to the intensity function, one of 
them is the assumption of proportional hazards that is the foundation for the Cox proportional 
hazards model [36]. In that case, all external factors are included to the deterministic factor of 
the intensity function (3):

ρi(t) = ρ0(t; α)exp(xi (t)β),                                               (7)

where ρ0(t;α) is the baseline intensity function for the individuals with xi (t) = 0; β is the vector 
of regression coefficients.

If there is no assumed form of the function then the regression estimation method is 
semiparametric. The semiparametric method for the recurrent events data is called the Andersen – 
Gill model [29, 30]. The semiparametric derivation allows to simplify the overall maximum 
likelihood function using gamma distribution (4) with 1 (one) expectation E( ) 1:iu k= φ =

1

1

1

1
exp( / )( ; ) , 0.

(1/ )
s sg s s

−

−

φ −

φ

− φ
φ = >

φ Γ φ
 

                                                      
(8)

Therefore, in order to restore the intensity function (3) we should estimate the parameters 
( , , )θ = α β φ  from data. The likelihood function is comprised from the episode realization 

{ ( ),0 }, 1, 2, ,iN t t i m≤ = …

'
1 2( ) ( ( ), ( ), , ( )) , 1, 2, , .i i i ipt x t x t x t i m= … = …x
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likelihoods for every individual in the sample:

1

( ) ( ).
m

i
i

L L
=

θ = θ∏

If ui were observed, then the individual likelihood function of the realization of data  
(ni, ti1, ..., tini

, ui) (see Ref. [30]) is

 0
0 0

1

( ) ( ( , ) ; ) ( ) exp ( ){ }.in

i i i i i i i i ij i i
j

L P N n u u t u s ds
∞

=

θ = τ τ = = ρ − ρ∏ ∫

However, ui represent an individual proneness and are therefore unobserved. The likelihood 
function of the data (ni, ti1, ..., tini

) is the gamma mixture of the individual functions Li
0 (θ):

 0

0 0 0
1
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Using the formula for the realization probability for n episodes of mixed Poisson distribution, 
we derive

 1

1
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1 0
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i i
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θ φ = ⋅ µ τ Γ φ + φµ τ 

∏

The EM (Expectation-Maximization) algorithm is used to estimate the parameters [29]. The 
main assumption of this method is the proportional hazards assumption (7) that defines the 
multiplicative form of the dependency between intervals between subsequent episodes in the 
gamma Poisson model and external factors.

Program realization. The data were gathered for 1,500 random users of the ‘VKontakte’ 
social network who have written at least three public wall posts during the last year from their 
last visit. The data included information on the times when the posts were made, sex and 
age listed in the profile, and the number of friends. As the main purpose of the data analysis 
was illustrating how to apply the regression methodology to the problem of behavior intensity 
estimation, only full observations were included.

Тable 1 demonstrates the survival data on behavioral episodes in regression analysis. The 

Table 1
The survival data for public posts

The interval
Posting 
episodeStart End

Start End 

(UNIX time format)

Feb. 1, 2021 
17:45:11

Feb. 21, 2021 
14:55:11

1612190711 1613908511 0

Feb. 1, 2021 
17:15:07

Feb. 1, 2021 
17:45:11

1612188907 1612190711 1

May 31, 2020 
16:02:00

Feb. 1, 2021 
17:15:07

1590930120
1612188907

1

Feb. 21, 2020 
14:55:11

May 31, 2020 
16:02:00

1590930020 1590930120 1

Footnote: user ID = 22.
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intervals between public posts for user ID 22 are given: the last visit was at 1613908511 (2021-
02-21 14:55:11 MSK), and the times of public posts were 1612190711 (2021-02-01 17:45:11 
MSK), 1612188907 (2021-02-01 17:15:07 MSK), 1590930120 (2020-05-31 16:02:00 MSK). 

The general regression model for estimating the behavior characteristics with the data on last 
episodes accounting for the user profile data is as follows:

Surv. (Start, End, Posting episode) ~
Cluster (ID)+ Sex + Age + Number of friends.

This model reflects the dependency between the interval, starting at Start, ending at End, 
and other characteristics from the user’s profile. We used the emfrail [35] R package for 
semiparametric regression fitting. The fitted model is presented in Table 2.

The overall regression performance is good: the p-value for the likelihood ratio test is lower 
than 0.01, so that the model describes the data better than the saturated model, the Commenges – 
Andersen test for the frailty significance p-value is lower than 0.01. Regression fitting allows 
estimating the parameter of gamma density: 0.769 (95% confidence interval (0.691, 0.861)). 
Furthermore, all three characteristics (Sex, Age, Number of friends) of the user’s profile are 
statistically significant in the regression.  The negative regression coefficient for the sex variable 
can be interpreted to indicate that women are more likely to write public posts.  Other variables 
have positive valued coefficients, meaning that an increase in those values results in an increase 
in the length of intervals between subsequent episodes.

Discussion of the results

The proposed methodology allows using the Poisson model of behavior in heterogeneous 
samples. The assumptions made are that the realization process of an individual episode follows 
the Poisson model, and the proportional hazards assumption holds. The former assumption 
does not hold for some types of behavior, e.g., planned behavior. The gamma Poisson model 
can be used in situations when episodes are more or less spontaneous, like deviations from the 
dietary plan. The latter assumption can also be violated, and there exist several other forms of 
dependency between behavioral episodes and other influencing factors [29].

Summary

The paper addresses the problem of estimating risky behavioral characteristics with data on 
several latest episodes accounting for external factors that influence how the episode unfolds. 
The novel formalization of the gamma Poisson model of behavior via the process intensity 
function is presented. The proposed formalization extends the existing one, developed for the 
Poisson model of behavior, allowing to include external factors (like age or sex) and take into 
account the interpersonal variability in the behavior proneness. The gamma Poisson model has 
some limitations as it was developed to model occasional (unplanned) behavior. The practical 
application of the proposed formalization includes the survival analysis regression model: the 
Cox proportional-hazards regression. Although the proportional-hazards assumption can be 
violated too, other approaches exist. The Cox regression usage was demonstrated on the public 
posting data.

The factors that influence how episodes evolve can have a complex dependency structure. 
This peculiarity can be addressed with probabilistic graphical networks that may also be used 

Table 2
The coefficients obtained for the fitted Cox regression

Variable
Coefficient 

exponentiated
Standard 

error
z-score with 
significance

Sex (male) 0.745 0.079 –3.71*)

Age 1.03 0.006 5.08*)

Number of friends 1.00 0.000 6.98*)

  Footnote: *) denotes that p-value is less than 0.01.
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for decision making under uncertainty and incorporate different types of uncertainties in the 
domain.

REFERENCES

1. Paschenko A. E., Tulupiev A. L., Tulupieva T. V., et al., Indirect assessment of the probability 
of HIV infection on the basis of data on last risky behavior episodes, Health Care of the Russian 
Federation. (2) (2010) 32–35 (in Russian).

2. Tulupieva T. V., Paschenko A. E., Tulupiev A. L., et al., Modeli VICH-riskovannogo povedeniya 
v kontekste psihologicheskoy zaschity i drugih adaptivnyh stiley [Models of HIV risky behavior in 
the context of psychological protection and other responsive behaviors], Nauka, St. Petersburg, 2008 
(in Russian).

3. Bell D. C., Trevino R. A., Modeling HIV risk, J. Acq. Immun. Def. Syndrom. 22 (3) (1999) 
280–287.

4. Rao A., Tobin K., Davey-Rothwell M., Latkin C. A., Social desirability bias and prevalence of 
sexual HIV risk behaviors among people who use drugs in Baltimore, Maryland: implications for 
identifying individuals prone to underreporting sexual risk behaviors, AIDS and Behavior. 21 (7) 
(2017) 2207–2214.

5. Kaplan R. M., Criqui M. H. (Eds.), Behavioral epidemiology and disease prevention, Springer 
Science & Business Media, USA, 2012.

6. Oftedal S., Kolt G. S., Holliday E. G., et al., Associations of health-behavior patterns, mental 
health and self-rated health, Prevent. Med. 118 (January) (2019) 295–303. 

7. Guertler D., Moehring A., Krause K., et al., Latent alcohol use patterns and their link to 
depressive symptomatology in medical care patients, Addiction. 116 (5) (2021) 1063–1073.

8. Dumuid D., Olds T., Lewis L., et al., Health-related quality of life and lifestyle behavior clusters 
in school-aged children from 12 countries, J. Pediatrics. 183 (April) (2017) 178–183. 

9. Blom E. E., Aadland E., Skrove G. K., et al., Health-related quality of life, intensity-specific 
physical activity in high-risk adults attending a behavior change service within primary care, PloS 
One. 14 (12) (2019) e0226613. 

10. Hart L. M., Gordon A. R., Sarda V., et al., The association of disordered eating with health-
related quality of life in US young adults and effect modification by gender, Qual. Life Res. 29 (5) 
(2020) 1203–1215. 

11. Bishwajit G., Tang S., Yaya S., et al., Lifestyle behaviors, subjective health, and quality of 
life among Chinese men living with type 2 diabetes, Am. J. Men's Health. 11 (2) (2017) 357–364.

12. Neufeld M., Rehm J., Bunova A., et al., Validation of a screening test for alcohol use, the 
Russian Federation, Bull. World Health Organ. 99 (7) (2021) 496–505.

13. Orosz G., Tóth-Király I., Bőthe B., Four facets of Facebook intensity – The development of 
the multidimensional Facebook intensity scale, Pers. Individ. Differ. 100 (October) (2016) 95–104.

14. Kreitchmann R. S., Abad F. J., Ponsoda V., et al., Controlling for response biases in self-
report scales: Forced-choice vs. psychometric modeling of Likert items, Front. Psychol. 10 (15 
October) (2019) 2309.

15. Eke C. I., Norman A. A., Shuib L., Nweke H. F., A survey of user profiling: State-of-the-art, 
challenges, and solutions, IEEE Access. 7 (17 October) (2019) 144907–144924. 

 16. Tulupieva T. V., Abramov M. V., Tulupiev A. L., Tsifrovaya kultura: sotsialniye seti 
i sotsioinzhenerniye ataki [Digital culture: Social networks and social engineering attacks], In: 
Psychologicheskoye zdorovye i technologii zdorovyesberejeniya v sovremennoy obrazovatelnoy srede 
[Psychological health and health preservation technologies in the modern educational environment 
(monograph)], Ed. by V. M. Golyanich, NIC ART, St. Petersburg (2019) 322–345 (in Russian).

17. Azarov A. A., Tulupieva T. V., Suvorova A. V., et al., Sotsioinzhenerniye ataki: problemy 
analisa [Social engineering attacks: the problems of analysis], Nauka, St. Petersburg, 2016 (in 
Russian).

18. Sobell L. C., Sobell M. B., Timeline follow-back: A technique for assessing self-reported 
alcohol consumption, In: Measuring alcohol consumption: Psychological and biochemical methods. 
Litten R. Z., Allen J. P. (Eds.), Humana Press, Totowa, NJ, USA (1992) 41–72.

19. Ray L. A., Du H., Grodin E., et al., Capturing habitualness of drinking and smoking behavior 



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2021 Vol. 14, No. 4

214

in humans, Drug Alcohol Depend. 207 (1 February) (2020) 107738.
20. Martin‐Willett R., Helmuth T., Abraha M., et al., Validation of a multisubstance online 

Timeline Followback assessment, Brain Behav. 10 (1) (2020) e01486.
21. Irwin T. W., Morgenstern J., Parsons J. T., et al., Alcohol and sexual HIV risk behavior 

among problem drinking men who have sex with men: An event level analysis of timeline followback 
data, AIDS and Behavior. 10 (3) (2006) 299–307.

22. Santos G. M., Strathdee S. A., El-Bassel N., et al., Psychometric properties of measures 
of substance use a systematic review and meta-analysis of reliability, validity and diagnostic test 
accuracy, BMC Med. Res. Methodol. 20 (1) (2020) 1–22.

23. Kaplan B. A., Koffarnus M. N., Timeline followback self-reports underestimate alcohol use 
prior to successful contingency management treatment, Alcohol Alcohol. 54 (3) (2019) 258–263.

24. Paschenko A. E., Tulupiev A. L., Nikolenko S. I., HIV infection modeling based on the last 
episodes of risky behavior, J. Instr. Engin.  49 (11) (2006) 33–34 (in Russian).

25. Paschenko A. E., Tulupiev A. L., Nikolenko S. I., HIV-acquisition risk statistical estimates based 
on the data about several last episodes of risky behavior, Trudy SPIIRAN (SPIIRAS Proceedings). 
2 (3) (2006) 257–268 (in Russian).

26. Stepanov D. V., Musina V. F., Suvorova A. V., et al., Risky behavior Poisson model 
identification: heterogeneous arguments in likelihood, Trudy SPIIRAN (SPIIRAS Proceedings). (4 
(23)) (2012) 157–184 (in Russian).

27. Suvorova A., Exploring Bayesian belief network for risky behavior modelling: discretization 
and latent variables, Proc. the II Internation. Sci. & Pract. Conf. “Fuzzy Technologies in the 
Industry–FTI”. Ulyanovsk, Russia, October 23 – 25 (2018) 63–70.

28. Daley D. J., Vere-Jones D., An introduction to the theory of point processes, Vol. I: Elementary 
theory and methods, 2nd edition, Springer, New York, 2003. 

29. Cook R. J., Lawless J., The statistical analysis of recurrent events, Springer Science & 
Business Media, New York, 2007.

30. Andersen P. K., Borgan O., Gill R. D., Keiding N., Statistical models based on counting 
processes, Springer Science & Business Media, New York, 2012. 

31. Grandell J., Mixed Poisson processes [Monographs on Statistics and Applied Probability, Vol. 
77], Chapman and Hall / CRC Press, UK, 1997.

32. Greenwood M., Yule G. U., An inquiry into the nature of frequency distributions representative 
of multiple happenings with particular reference to the occurrence of multiple attacks of disease or 
of repeated accidents, J. Royal Stat. Soc. A. 83 (2) (1920) 255–279.

33. Newbold E. M., A contribution to the study of the human factor in the causation of accidents, 
Industrial Health Research Board, London, 1926.

34. Therneau T. M., Grambsch P. M., Modeling survival data: Extending the Cox model, Springer 
Science + Business Media, New York, 2000.

35. Balan T. A., Putter H., frailtyEM: An R package for estimating semiparametric shared frailty 
models, J. Stat. Softw. 90 (7) (2019) 1–29.

СПИСОК ЛИТЕРАТУРЫ

1. Пащенко А. Е., Тулупьев А. Л., Тулупьева Т. В., Красносельских Т. В., Соколовский Е. В. 
Косвенная оценка вероятности заражения ВИЧ-инфекцией на основе данных о последних 
эпизодах рискованного поведения // Здравоохранение Российской Федерации. 2010. № 2. С. 
32–35.

2. Тулупьева Т. В., Пащенко А. Е., Тулупьев А. Л., Красносельских Т. В., Казакова О. С. 
Модели ВИЧ-рискованного поведения в контексте психологической задачи и других адаптив-
ных стилей. СПб.: Наука, 2008. 147 с.

3. Bell D. C., Trevino R. A. Modeling HIV risk // Journal of Acquired Immune Deficiency 
Syndromes. 1999. Vol. 22. No. 3. Pp. 280–287.

4. Rao A., Tobin K., Davey-Rothwell M., Latkin C. A. Social desirability bias and prevalence of 
sexual HIV risk behaviors among people who use drugs in Baltimore, Maryland: implications for 
identifying individuals prone to underreporting sexual risk behaviors // AIDS and Behavior. 2017. Vol. 
21. No. 7. Pp. 2207–2214.



215

Mathematics

5. Kaplan R. M., Criqui M. H. (Eds.) Behavioral epidemiology and disease prevention. USA: 
Springer Science & Business Media, 2012. 299 p.

6. Oftedal S., Kolt G. S., Holliday E. G., Stamatakis E., Vandelanotte C., Brown W. J., 
Duncan M. J. Associations of health-behavior patterns, mental health and self-rated health // 
Preventive Medicine. 2019. Vol. 118. January. Pp. 295–303.

7. Guertler D., Moehring A., Krause K., et al. Latent alcohol use patterns and their link to 
depressive symptomatology in medical care patients // Addiction. 2021. Vol. 116. No. 5. Pp. 1063–
1073.

8. Dumuid D., Olds T., Lewis L., et al. Health-related quality of life and lifestyle behavior clusters 
in school-aged children from 12 countries // The Journal of Pediatrics. 2017. Vol. 183. April. Pp. 
178–183. 

9. Blom E. E., Aadland E., Skrove G. K., Solbraa A. K., Oldervoll L. M. Health-related quality of 
life, intensity-specific physical activity in high-risk adults attending a behavior change service within 
primary care // PloS One. 2019. Vol. 14. No. 12. P. e0226613.

10. Hart L. M., Gordon A. R., Sarda V., Calzo J. P., Sonneville K. R., Samnaliev M., Austin 
S. B. The association of disordered eating with health-related quality of life in US young adults 
and effect modification by gender // Quality of Life Research. 2020. Vol. 29. No. 5. Pp. 1203–
1215.

11. Bishwajit G., Tang S., Yaya S., He Z., Feng Z. Lifestyle behaviors, subjective health, and 
quality of life among Chinese men living with type 2 diabetes // American Journal of Men's Health. 
2017. Vol. 11. No. 2. Pp. 357–364.

12. Neufeld M., Rehm J., Bunova A., et al. Валидация скринингового теста на употребление 
алкоголя, Российская Федерация // Bulletin of the World Health Organization. 2021. Vol. 99. 
No. 7. Pp. 496–505.

13. Orosz G., Tóth-Király I., Bőthe B. Four facets of Facebook intensity – The development of 
the multidimensional Facebook intensity scale // Personality and Individual Differences. 2016. Vol. 
100. October. Pp. 95–104.

14. Kreitchmann R. S., Abad F. J., Ponsoda V., Nieto M. D., Morillo D. Controlling for response 
biases in self-report scales: Forced-choice vs. psychometric modeling of Likert items // Frontiers in 
Psychology. 2019. Vol. 10. 15 October. P. 2309.

15. Eke C. I., Norman A. A., Shuib L., Nweke H. F. A survey of user profiling: State-of-the-art, 
challenges, and solutions // IEEE Access. 2019. Vol. 7. 17 October. Pp. 144907–144924.

16. Тулупьева Т. В., Абрамов М. В., Тулупьев А. Л. Цифровая культура: социальные сети 
и социоинженерные атаки // Психологическое здоровье и технологии здоровьесбережения 
в современной образовательной среде (Монография). Ред. В. М. Голянич. СПб.: НИЦ АРТ, 
2019. С. 322–345.

17. Азаров A. A., Тулупьева Т. В., Суворова А.Л., Тулупьев А. Л., Абрамов М. В., Юсупов 
Р. М. Социоинженерные атаки. Проблемы анализа. СПб.: Наука, 2016. 352 с.

18. Sobell L. C., Sobell M. B. Timeline follow-back: A technique for assessing self-reported 
alcohol consumption // Measuring alcohol consumption: Psychological and biochemical methods. 
Litten R. Z., Allen J. P. (Eds.) Totowa, NJ (USA): Humana Press, 1992. Pp. 41–72.

19. Ray L. A., Du H., Grodin E., Bujarski S., Meredith L., Ho D., Nieto S., Wassum K. Capturing 
habitualness of drinking and smoking behavior in humans // Drug and Alcohol Dependence. 2020. 
Vol. 207. 1 February. P. 107738.

20. Martin‐Willett R., Helmuth T., Abraha M., Bryan A. D., Hitchcock L., Lee K., Bidwell L. C. 
Validation of a multisubstance online Timeline Followback assessment // Brain and Behavior. 2020. 
Vol. 10. No. 1. P. e01486. 

21. Irwin T. W., Morgenstern J., Parsons J. T., Wainberg M., Labouvie E. Alcohol and sexual 
HIV risk behavior among problem drinking men who have sex with men: An event level analysis of 
timeline followback data // AIDS and Behavior. 2006. Vol. 10. No. 3. Pp. 299–307. 

22. Santos G. M., Strathdee S. A., El-Bassel N., et al. Psychometric properties of measures 
of substance use a systematic review and meta-analysis of reliability, validity and diagnostic test 
accuracy // BMC Medical Research Methodology. 2020. Vol. 20. No. 1. Pp. 1–22. 

23. Kaplan B. A., Koffarnus M. N. Timeline followback self-reports underestimate alcohol use 
prior to successful contingency management treatment // Alcohol and Alcoholism. 2019. Vol. 54. 
No. 3. Pp. 258–263.



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2021 Vol. 14, No. 4

216

24. Пащенко A. E., Тулупьев А. Л., Николенко С. И. Моделирование заражения ВИЧ-ин-
фекцией на основе данных о последних эпизодах рискованного поведения // Известия выс-
ших учебных заведений. Приборостроение. 2006. Т. 49. № 11. С. 33–34.

25. Пащенко A. E., Тулупьев А. Л., Николенко С. И. Статистическая оценка вероятности за-
ражения ВИЧ-инфекцией на основе данных о последних эпизодах рискованного поведения 
// Труды СПИИРАН. 2006. Т. 2. № 3. С. 257–268.

26. Степанов Д. В., Мусина В. Ф., Суворова А. В., Тулупьев А. Л., Сироткин Т. В., Тулупьева 
Т. В. Функция правдоподобия с гетерогенными аргументами в идентификации пуассонов-
ской модели рискованного поведения // Труды СПИИРАН. 2012. № 4 (23). С. 157–184.

27. Suvorova A. Exploring Bayesian belief network for risky behavior modelling: discretization and 
latent variables // Proceedings of the II International Scientific and Practical Conference “Fuzzy 
Technologies in the Industry–FTI”. Ulyanovsk, Russia, October 23 – 25, 2018. Pp. 63–70.

28. Daley D. J., Vere-Jones D. An introduction to the theory of point processes. Vol. I: Elementary 
theory and methods. 2nd Edition. New York: Springer, 2003. 491 p.

29. Cook R. J., Lawless J. The statistical analysis of recurrent events. New York: Springer Science 
& Business Media, 2007. 404 p.

30. Andersen P. K., Borgan O., Gill R. D., Keiding N. Statistical models based on counting 
processes. New York: Springer Science & Business Media, 2012. 784 p.

31. Grandell J. Mixed Poisson processes. [Monographs on Statistics and Applied Probability. Vol. 
77]. UK: Chapman and Hall / CRC Press. 1997. 280 p.

32. Greenwood M., Yule G. U. An inquiry into the nature of frequency distributions representative 
of multiple happenings with particular reference to the occurrence of multiple attacks of disease or 
of repeated accidents // Journal of Royal Statistical Society. A. 1920. Vol. 83. No. 2. Pp. 255–279.

33. Newbold E. M. A contribution to the study of the human factor in the causation of accidents. 
London: Industrial Health Research Board, 1926. 75 p.

34. Therneau T. M., Grambsch P. M. Modeling survival data: Extending the Cox model, New 
York: Springer Science + Business Media, 2000. 287 p.

35. Balan T. A., Putter H. frailtyEM: An R package for estimating semiparametric shared frailty 
models // Journal of Statistical Software. 2019. Vol. 90. No. 7. Pp. 1–29.

THE AUTHORS

STOLIAROVA Valeriia F.
St. Petersburg Federal Research Center of the Russian Academy of Sciences
39, 14-th Liniya V. I., St. Petersburg, 199178, Russia
vfs@dscs.pro
ORCID: 0000-0002-1666-2186

TULUPYEV Alexander L.
St. Petersburg State University
St. Petersburg Federal Research Center of the Russian Academy of Sciences
7–9, Universitetskaya Emb., St. Petersburg, 199034, Russia
alt@dscs.pro
ORCID: 0000-0003-1814-4646

СВЕДЕНИЯ ОБ АВТОРАХ

СТОЛЯРОВА Валерия Фуатовна – младший научный сотрудник Санкт-Петербургского Фе-
дерального исследовательского центра Российской академии наук, Санкт-Петербург, Россия.

199178, Россия, г. Санкт-Петербург, 14-я линия В. О., 39
vfs@dscs.pro
ORCID: 0000-0002-1666-2186



Mathematics

© Санкт-Петербургский политехнический университет Петра Великого, 2021

Received 02.11.2021. Approved after reviewing 03.12.2021. Accepted 03.12.2021.
Статья поступила в редакцию 02.11.2021. Одобрена после рецензирования 03.12.2021. 

Принята 03.12.2021.

ТУЛУПЬЕВ Александр Львович – профессор, доктор физико-математических наук, про-
фессор кафедры информатики Санкт-Петербургского государственного университета, главный 
научный сотрудник Санкт-Петербургского Федерального исследовательского центра Россий-
ской академии наук, Санкт-Петербург, Россия.

199034, Россия, г. Санкт-Петербург, Университетская наб., 7–9
alt@dscs.pro
ORCID: 0000-0003-1814-4646


