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Abstract. The paper develops the finite element method (FEM) in the form of the force method and in the 
mixed form for the calculation of structures. At present, the displacement-based finite element method is 
mainly used for engineering calculations. Stress-based and mixed finite element formulations are not so 
widely spread, but in some cases these formulations can be more effective in particular with respect to 
calculating stresses and also obtaining a two-sided estimate of the exact solution of the problem. The finite 
element models based on the approximation of discontinuous stress fields and the use of the penalty 
function method to satisfy the equilibrium equations are considered. It is shown that the continuity of both 
normal and tangential stresses only on the adjacent sides of the finite elements contributes to the expansion 
of the class of statically admissible stress fields. At the same time, the consistent approximation is provided, 
both of the main part of the functional of additional energy, and its penalty part. The necessary matrix 
relations for rectangular and triangular finite elements are obtained. The effectiveness of the developed 
models is illustrated by numerical studies. The calculation results were compared with the solution on the 
FEM in displacements, as well as with the results obtained using other schemes of approximating the 
stresses in the finite element. It is shown that the model of discontinuous stress approximations gives the 
bottom convergence of the solution, both in stresses and in displacements. At the same time, the accuracy 
on the stresses here is much higher than in the displacement-based FEM or when using conventional stress 
approximation schemes. 

1. Introduction  
One of the important steps in the design process of building structures and constructions is to 

improve the method of their calculation. This problem is very relevant, since it helps to give valid results, 
which ultimately reduces the efforts and costs in the construction process. Nowadays, the calculation of 
structures is carried out, as a rule, using the finite element method (FEM). Many fundamental works have 
been devoted to the development of the theoretical principles of the FEM and questions of its application 
in structural mechanics [1–3]. They consider the basic variational principles and the corresponding FEM 
formulations, on the basis of which the finite element models can be constructed to solve different problems.  

There are three main forms of FEM, each form is an analogue of one of the three classical methods 
of structural mechanics of rod systems – the displacement method, the force method, and the mixed 
method. The most widely used engineering calculations method is the FEM in the displacement method 
form. The mathematical formulation of the problem here is based on the variational Lagrange principle, i.e., 
the minimum principle of the total potential energy of the system. The main unknowns in this case are the 
displacements of the nodal points of the discrete model of the structure. The stresses are secondary and 
can be calculated by numerically differentiating the displacements. The finite element method in 
displacements is widely used to solve geometrically and physically nonlinear problems [4–6], constructively 
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nonlinear problems with unilateral constraints [7–10], problems of stability and dynamics of structures  
[11–14].  

The advantages and disadvantages of the displacement method are well known. The huge 
advantage of this FEM form is its complete formalization (and, accordingly, the ease of implementation to 
software), as well as good stability of the solution with guaranteed convergence to the lower boundary. 
However, the accuracy of stresses (forces) determination is much lower than the displacements, although 
it is stress values which are more important in the structural strength analysis. In this connection, special 
refinement algorithms are often used to calculate stresses, e.g. [15]. In addition, since the approximate 
solution in displacements corresponds to the lower boundary, the values of both displacements and 
stresses are underestimated relative to the exact values.  

Attempts to overcome these shortcomings, based on the use of FEM schemes directly in stresses 
(forces) or in a mixed form, have been made repeatedly, but this problem is still far from complete and 
remains one of the most important problems of the finite element method application in structural 
mechanics.  

Castiliano’s minimum principle of additional energy and the related FEM schemes in the form of the 
force method, as well as the Reissner variational principle (mixed method), have not received such a wide 
application. This situation is caused by a number of circumstances, in particular, the need to satisfy the 
equilibrium equations in the force method or an increase in the number of unknowns in the mixed method. 
However, in some cases, these approaches can be more effective, especially with regard to the accuracy 
of calculating stresses. In addition, performing dual calculations based on the alternative forms of FEM 
allows, as a rule, to obtain a two-side estimate of the exact solution of the problem [1, 2].  

The FEM schemes, in which the search of the solution is based on the approximation of stresses 
(forces) in the finite element region, were considered in [1, 2, 16–22]. In [19], the combination of principles 
of possible displacements and possible changes in the stress state is used to find the solution. The solution 
to the problems of the elasticity theory in stresses on the basis of the functional of additional energy is 
considered in [21, 22]. In this case, the principle of possible displacements and Lagrange multipliers are 
used to satisfy the equilibrium equations.  

The main advantage of the FEM in the form of the force method is that the main unknowns here are 
stresses. And if there were no certain difficulties in implementing the force method [1, 3], the stress values 
could be obtained with the same degree of accuracy as the displacements in the FEM scheme of the same 
name. In addition, the use of Castiliano’s principle gives the upper boundary of the approximate solution 
(i.e., the stresses are overestimated), which, in principle, is better for strength calculations than the 
underestimated estimate. On the other hand, solving the problem in stresses can supplement the usual 
calculation of FEM in displacements, including from the point of view of the two-sided estimation of the 
solution of the problem on energy. Nevertheless, there are no algorithms that are equally as simple and 
stable, with guaranteed convergence in an extensive class of problems, similar to the FEM in the form of 
the displacement method.  

The variational formulation of the mixed method is based on the principle of the stationarity of various 
forms of the Reissner functional. Some variants of the FEM in a mixed formulation were considered in [2, 
3, 23–31]. With this approach, displacements and stresses within each finite element are approximated 
simultaneously, therefore, there is no need to overestimate the requirements for the continuity of the desired 
functions and their derivatives. On the contrary, it is possible to set the necessary approximations, and 
since the mixed variational principles lead to a mixed form of relations between stresses and displacements 
for the finite element, more reliable solution can be obtained.  

On the other hand, the Reissner functional is not convex; its surface at the point of stationary has a 
prominent saddle-like behavior. The system of resolving equations corresponding to the formulation of a 
mixed type is not a symmetric and positive definite. Therefore, the approximate solution obtained by the 
FEM in the mixed form is characterized by some imbalance in the fulfillment of the equilibrium conditions 
and the conditions for the compatibility of deformations and, when crushing the mesh, it can approach the 
exact solution both from below and above. These circumstances to some extent make the direct use of the 
Reissner functional in the FEM more difficult [1, 3].  

This paper is devoted to the development of alternative forms of the FEM based on the force and 
mixed methods. It is proposed to use the approximation of discontinuous stress fields in the finite element 
region to construct a solution to the plane problem of the elasticity theory. Such an approach may have 
advantages in terms of more accurately fulfilling the equilibrium conditions, as well as in solving contact 
problems and some problems related to stress concentration.  
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2. Methods  
Let us consider the following version of the FEM in the force method form, which allows us to 

efficiently solve a wide class of problems directly in stresses. It is based on the approximation of 
discontinuous stress fields and the use of the penalty method to satisfy equilibrium equations. The 
corresponding variational formulation for the plane problem of the elasticity theory has the form of a 
modified functional of additional energy [32, 33]: 

( ) ( )11( ) { } [ ] { } { } [ ] { } [ ] { } { } [ ] { } { }
2

u

ТТ Т Т Т Т
s s

Ω S Ω
П σ σ D σ dΩ u L σ dS α A σ ρ A σ ρ dΩ−= − + + + +∫ ∫ ∫ (1) 

under the additional condition at the region boundary: gss SgσL Т ∈= }{}{][ .  

Here T
xyyx τσσσ }{}{ =  is the stress vector; ][D  is the stiffness coefficients matrix; ][A  is the 

differentiation operations matrix in the equilibrium equations; ][ sL  is the direction cosine matrix of the 

external normal to the boundary ug SSS +=  of the plane region Ω ; }{ sg  is the surface force vector at 

the boundary gS ; }{ su  is the vector of given displacements at the boundary uS ; T
yx ρρρ }{}{ =  is the 

volumetric force vector.  

When solving problems in stresses, the main restrictions on the smoothness of the desired functions 
are imposed by the equilibrium equations – it is necessary to ensure the existence of piecewise continuous 
derivatives of the stress components. Therefore, according to them, for the plane problem of the elasticity 
theory, the differentiability of the normal stresses xσ  is only on x, yσ  is only on y, and tangential stresses 

xyτ  is both on x and on y is required. Thus, normal stresses can undergo discontinuities at sites 
perpendicular to the element boundaries. In comparison with the continuous approximation, the use of such 
an assumption contributes to the expansion of the class of statically allowable stress fields, among which 
the solution is sought. This allows to minimize the additional energy functional to a greater extent – as a 
result, the solution of the problem is, on average, closer to the exact one. The use of discontinuous 
approximations leads to the need to apply a special class of finite elements. The location of the nodal points 
here should ensure that the conditions of discontinuity of normal stresses are satisfied.  

Figure 1 shows one of the simplest elements of this kind, which is a rectangle, the four nodes at the 
vertices of which correspond to tangential stresses, two nodes on each of the sides correspond to normal 
stresses xσ , two nodes on the upper and lower sides correspond to stresses yσ .  

 
Figure 1. Eight-node finite element with discontinuous stress approximation.  

Here the stress distribution is given by the following approximating polynomials:  

.87654321 xyαyαxαατy;αασx;αασ xyyx +++=+=+=                                (2) 

Substituting the approximation data in the equilibrium equations, we obtain:  

.0;0 864872 =+++=+++ yx ρyαααρxααα                                           (3) 
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Obviously, for the constant volumetric element forces yx ρρ ,  the conditions (3) can be satisfied only 
if the following condition is identically satisfied:  

088 == yαxα .                                                                     (4) 

Since this is not provided by the exact integration of the penalty term of functional in Eq. (1), a method 
for artificial lowering the accuracy of calculating the integrals was proposed for the reduced finite element, 
which facilitates the zeroing of the expression in the integral part of the penalty term [33]. Despite the fact 
that this finite element gives the acceptable accuracy and convergence of the results of solving problems 
in stresses, there are certain disadvantages. First, to calculate the coefficients of the deformability matrix 
related to the penalty term, it is necessary to apply the procedure of numerical integration. Secondly, for 
the main part of functional (1) and its penalty term, different stress approximations are used – for the penalty 
term, they are respectively of a lower order than for the main part of the functional. The model proposed 
here for approximating discontinuous stress fields for a finite element of a plane problem of the elasticity 
theory is free from these disadvantages.  

Consider the above condition (4). For the finite element (Figure 1) and approximation (2) described 
above, exact execution of (4) is possible only when using the single-point integration scheme of the penalty 
term, i.e. when the integration order is lowered. However, locating nodes of the finite element on the x, y 
axes (Figure 2(a)), the condition (4) is reduced to the equality yαxα 88 = .  

Substituting this equality into approximation (2), we obtain the following variants of polynomials for 

xyτ :  

.; 2
8765

2
8765 yαyαxαατxαyαxαατ xyxy +++=+++=                                  (5) 

For each of the polynomials (5), we define the form functions for nodes and average them. Then the 
nodal stress vector for the finite element  

T
xyyxyxxyyxyx

e τστστστσσ }{}{ 44332211=                                          (6) 

the following form functions will be a respond:  
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The approximation of the tangential stresses within a given finite element, in particular, for the shape 
function xyN1 , is shown in Figure 2(b).  

 
Figure 2. Four-node finite element with discontinuous stress approximation:  

(a) location of the nodes; (b) approximation of the tangential stresses.  
Expressing the stresses using the form functions (7) through the nodal values (6) and substituting 

them into stationarity condition of the functional (1) for finite element, we obtain the matrix equation for the 

vector eσ}{ :  

eee
σ UσK }{}{][ = .                                                                (8) 
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The deformability matrix of the finite element can be represented as the sum of two matrixes 
e

α
ee

σ KKK ][][][ 0 += . The first term ∫ −=
Ω
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0  corresponds the main part of 
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Ω
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Perfoming the matrix operations and integrating the obtained expressions, we obtain:  
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Here: ;
180E

abκ =  );1(2 νμ −=  
b
am
3

= ; ,
3a
bn =  where νE,  are the elastic modulus and 

Poisson's ratio; ba,  are the size of the rectangular finite element.  

The penalty parameter α  has the physical meaning of the deformability coefficient of the weakest 
possible elastic base. Its value should be large enough and limited from above only by the accuracy of 
calculations. The recommendations for choosing the values α  for different problems are given in [21, 32, 

34]. As applied to the plane problem of the elasticity theory, κα )1010( 97÷=  can be accepted.  

Similarly, the approximation of discontinuous stress fields can be applied to construct finite elements 
in stresses of other geometric shapes, as well as extended to finite elements of the mixed form. In particular, 
for a finite element in the form of a right triangle (Figure 3(a)), the stress distribution can be represented by 
the following polynomials:  

.7654321 yαxαατy;αασx;αασ xyyx ++=+=+=                                      (9) 
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It is clear that the fulfillment of the condition similar to (4) is not required here. The following form 
functions will respond to the vector of nodal stresses of a finite element 

T
xyyxxyyxyx

e τσστστσσ }{}{ 3332211= :  

.1;11;;;; 3332211 b
y

a
xN

b
yN

a
xN

b
yN

b
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a
xN

a
xN xyyxxyyxyx ++=+=+=−=−=−=−=  (10) 

We replace the nodal stress components xyxy τσσ 333 ,,  with the tangent and normal components 

to the inclined face of the element nn τσ 33 ,  (Figure 3(b)). The nodal stress vector will then be 
T

nnxyyxyx
e τστστσσ }{}{ 332211= .  

 
Figure 3. Triangular finite element with discontinuous stress approximation.  

After substituting the form functions (10) and converting the stress components during turn of the 
axes, we obtain the following terms that make up the deformability matrix of a triangular finite element:  
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Here: 
E

κ
3
2 ab

= ; )2(1 νλ += ; 
b
aη = ; 

a
bμ = ; μηβ += ; )( 22 mlχ −= , where νE,  are the 

elastic modulus and Poisson's ratio; a, b are the dimensions of the legs of the triangular finite element; l, 
m are cosine and sine to the normal of the inclined face.  

Let us consider a mixed finite element model that allows to solve effectively the problems of the 
elasticity theory directly both in displacements and stresses. It is also based on the approximation of 
discontinuous stress fields and using the penalty method to satisfy equilibrium equations. The variational 
formulation of the mixed problem corresponds to the principle of stationarity of various forms of the Reissner 
functional, which directly includes the components of both displacements and stresses as well. As already 
indicated, this functional is not convex; its surface at the stationary point has a prominent saddle-like shape. 
This circumstance significantly complicates its use in the finite element method (the matrix of coefficients 
in this case is not symmetric and positive definite).  



Magazine of Civil Engineering, 110(2), 2022 

Lukashevich, A.A. 

A convex mixed functional can be obtained by subtracting the Lagrange functional from the first form 
of the Reissner functional [33]:  

( ) ( ) .}{][}{}{}]{[][}]{[
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under the additional conditions: ΩρσA Т ∈=+ 0}{}{][ , gss SgσL Т ∈= }{}{][ .  

The convexity of the functional (11) is obtained by moving the equilibrium conditions from natural (for 
the functional ),(

1
σuПR  to additional ones. We use the penalty method in order to satisfy these conditions:  
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with the additional condition gss SgσL Т ∈= }{}{][ .  

It is easy to see that the reduced functional is equivalent to the variational statement of the problem 
in a least squares form. This circumstance provides the convexity condition for the functional (12), which 
makes it more convenient for applying the finite element method. Thus, setting an approximating expression 

for displacements e
u uNu }]{[}{ =  and, accordingly, for stresses e

σ σNσ }]{[}{ = , and varying the 
functional (12) in a discrete form, we obtain the following matrix equilibrium equation for a finite element 
with a symmetric, positive definite coefficient matrix:  
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where ( )∫=
Ω
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u dΩNADNAK T ][][][][][][  and −= ∫ −

Ω
σσ

e
σ dΩNDNK T ][][][][ 1  

( )∫−
Ω

σσ dΩNANAα TTT ][][][][  are the stiffness and deformability matrixes, respectively; 

( )∫ Ω−=
Ω

σu
e

uσ dNNAK T ][][][][  and ( )Te
uσ

e
σu KK ][][ =  are the mixed matrixes; ][],[ σu NN  are 

the form function matrixes for displacements and stresses, respectively; ee σu }{,}{  are the vectors of 

nodal generalized displacements and stresses, respectively; ee UR }{,}{  are the vectors of generalized 
reactions and displacements in the nodes of the finite element, respectively.  

The approximation of displacements within a finite element (Figure 4) can be similar to that usually 
used in the FEM in displacement method form. For stresses, however, it is more efficient to use the 
discontinuous approximations, such, as those discussed above, e.g. (2).  

 
Figure 4. Eight-node finite element with discontinuous stress approximation.  



Magazine of Civil Engineering, 110(2), 2022 

Lukashevich, A.A. 

The FEM solutions considered above using discontinuous stress approximations are implemented 
in a computer program. With its help, numerical studies and a comparative analysis of the finite element 
solutions based on the formulation of the displacement method, the force method, and the mixed method 
were performed.  

3. Results and Discussion  
Let us consider the problem of unilateral contact of a three-layer array with a rigid base (Figure 5). 

The upper and lower layers are concrete (elasticity modulus E1 = 1.9⋅104 MPa, v = 0.18), the middle layer 
is brickwork (E2 = 0.27⋅104 MPa, v = 0.16). Under the action of a distributed load applied at the left end of 
the calculated region, the zone of separation of the lower surface of the array from the rigid base is formed. 
The dimensions of the contact and separation zones are calculated using the standard iterative algorithm 
for unilateral constraints.  

 
Figure 5. Unilateral contact of the three-layer array with the rigid base.  

The solution of the problem based on discontinuous stress approximations was compared with the 
traditional FEM scheme in the displacement method form, as well as with the relatively accurate solution 
obtained with a sufficiently dense finite element mesh using the LIRA-SAPR software package [35]. 
Comparison of the proposed approach with the traditional FEM was carried out under the same 
discretization of the computational region, i.e. 18 × 6 elements.  

The stresses σx along the vertical cross-section at a distance of 0.4 m from the left face of the array 
are compared in Figure 6(a) and the stresses σy along the lower face of the contact zone of the array with 
the rigid base are compared in Figure 6(b). The solid line shows the exact solution, the shaded circles – 
the FEM solution in the displacement method form, the not shaded circles – in the force method form.  

 
Figure 6. Stress distribution in characteristic sections of the three-layer array.  
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The graphs show that the stresses obtained by the FEM in the form of the force method are closer 
to the exact values, than the form of the displacement method gives. This is especially manifested at the 
region edges under consideration, as well as near the interfaces of different-modular materials.  

In order to compare various forms of the finite element method, the problem of determining the stress-
strain state of a cantilever plate was solved (Figure 7(a)). The Poisson's ratio was assumed to be 0.3, the 
remaining values: the elastic modulus E, the plate thickness h, and the load p were expressed in general 
form (in computer calculations they were set equal to one). Meshes of different densities were used, e.g. 
Figure 7(b) shows the 2×3 mesh when calculating the plate by the mixed method.  

 
Figure 7. The problem of the cantilever plate.  

The stresses and displacements obtained by the considered approaches were compared with the 
results of the FEM calculation in the displacement method form. Table 1 shows (in the terms of E, h, p) the 
vertical displacements υ of the middle of the free edge (x = 12 m, y = 0) and the stress σx at the upper point 
of the fixed edge of the plate (x = 0, y = 3 m) for different finite element meshes. The stresses at the extreme 
points here are obtained using linear interpolation.  

Table 1. Comparison of the plate calculation results with different FEM forms.  

Mesh 

Displacement method Force method Mixed method 

Number of 
unknowns 

υ 







Eh
p  σx 








h
p  Number of 

unknowns 
σx 








h
p  Number of 

unknowns 
υ 








Eh
p  σx 








h
p  

2×2 12 152.5 6.67 24 16.63 42 156.2 15.97 

3×2 18 156.2 6.83 34 16.20 58 183.8 15.74 

3×3 24 184.4 8.94 48 14.27 80 189.4 14.39 

4×3 40 200.8 10.34 62 14.42 102 197.6 14.52 

5×4 70 213.1 11.70 98 14.56 158 211.7 14.72 

6×4 96 216.6 12.19 116 14.90 186 215.9 14.81 

Exact solution 225.0 15.10  15.10  225.0 15.10 
 
The calculation results for the given variants of the finite element meshes show the following. The 

FEM in the force method form provides a monotonic convergence of the solution in stresses to exact values 
from below. The stresses obtained by the mixed method approach the exact solution at first (for coarse 
meshes) from above, then (for fine meshes) also from below. Moreover, the use of discontinuous 
approximations of stress fields allows to achieve better convergence and accuracy of the solution in 
comparison with the displacement method with approximately the same order of the resolving equations 
system.  

As it can be seen, on coarse meshes, the stresses obtained by the FEM in the force method form 
are significantly closer to the exact values than those obtained by the FEM in displacements. Under 
crushing the mesh (with the equivalent dimension of the problem), the accuracy of determining the stress 
by the force method and the mixed method also remains higher than by the displacement method. So, with 
the number of unknowns of the order of 100, the values of the stresses obtained by the force method differ 
from the exact values by 3.6 %, the mixed method by 3.8 %, and the displacement method by 19.3 %. In 
turn, for the identical meshes, the mixed FEM allows one to obtain stresses with the same accuracy as 
FEM in stresses, and displacements – as FEM in displacements.  
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Figure 8 illustrates the convergence of solutions obtained using various forms of the FEM. Obviously, 
according to the accuracy of calculating the stresses, the approaches considered here are more effective 
in comparison with the traditional FEM scheme in displacements.  

 
Figure 8. The convergence of solutions obtained by the different FEM forms.  

The problem of bending a cantilever plate under the action of a vertical distributed load applied to its 
free end is presented below in Figure 9(a). The plate thickness is 1 m, the elastic modulus is 10000 kN/m2, 
the Poisson's ratio is 0.25. This example was given in [21], where the application of the finite element 
models in stresses at constant and piecewise-constant approximations of stresses in the finite element 
region was considered. Below, we compare the solutions constructed on the basis of approximations of 
discontinuous stress fields with the results obtained in [21] using conventional schemes of stress 
approximation in the finite element.  

Table 2 shows the stress values in the upper fibers of the section at the clamp (x = 0, y = 1 m), 
obtained using different stress approximation types in the finite element. The calculation results are 
presented for four variants of the finite element meshes. For comparison, the lower row of the table shows 
the stress values obtained by FEM in the LIRA-SAPR software package for a relatively dense mesh.  

Table 2. Comparison of the plate calculation results for different types of stress 
approximation.  

Mesh 
Constant stresses Piecewise constant stresses Discontinuous stresses 

σx, 
kN/m2 

σy, 
kN/m2 

τxy, 
kN/m2 

σx, 
kN/m2 

σy, 
kN/m2 

τxy, 
kN/m2 

σx, 
kN/m2 

σy, 
kN/m2 

τxy, 
kN/m2 

12×4 13.96 0.95 1.11 17.56 3.12 1.75 22.18 3.42 2.75 

24×8 16.53 1.43 1.45 19.55 3.52 2.40 23.25 3.67 3.08 

48×16 18.91 1.78 1.93 22.06 4.03 3.22 23.62 3.80 3.44 

96×32 21.45 2.10 2.49 25.16 4.65 4.06 24.17 3.97 3.69 

192×64 
(LIRA-
SAPR) 

24.02 3.46 3.62 24.02 3.46 3.62 24.02 3.46 3.62 

 
The Table shows that even on the coarse meshes, the stress values obtained on the basis of 

discontinuous approximations are more accurate compared to using the constant and piecewise constant 
stress approximations. So, for the mesh 12×4, the stress values xσ  differ upward from the constant and 

piecewise-constant stresses by 37 % and 21 %, respectively. The stresses yσ  and xyτ  in our case are 
also much more accurate than with ordinary schemes of approximations.  

When the mesh is crushed, the model of discontinuous approximations gives a monotonous and 
stable convergence of stresses to the lower boundary. In this case, the numerical stress values are in the 
gap between the stress values obtained with the constant and piecewise-constant approximations. For 
example, for mesh 96×32, the stress xσ  is 11% higher than at constant stresses in the element, but 4 % 
less than for the piecewise-constant stresses variant. Figures 9(b–d) illustrate the convergence of solutions 
in stresses for different types of stress approximations.  
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Figure 9. The convergence of solutions in stresses for different types of approximation.  

4. Conclusions 
Summarizing the results of numerical researches, we can draw the following conclusions:  

1. The finite element method in the form of the force method in the general case gives the upper 
convergence of the solution in stresses. This allows us to obtain a two-sided estimate of the exact solution 
of the corresponding problem. At the same time, the finite-element solutions built on the stress 
approximation are much closer to exact values than those obtained in the displacement method formulation.  

2. The use of discontinuous stress approximations contributes to the expansion of the class of 
statically admissible stress fields. In this case, the same approximation is provided for both the main part 
of the additional energy functional and its penalty part. This allows us to obtain more accurate stress values 
as compared to the continuous stress approximation.  

3. The mixed finite-element models allow to obtain alternative solutions to the considered problems, 
thereby ensuring their greater validity and reliability. Under identical meshes, the mixed finite element 
method allows us to obtain stresses with the same accuracy as the FEM in stresses, and displacements – 
as the FEM in the displacement method form.  
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4. Discontinuous stress approximations give a fast and stable convergence of the resulting solution 
to the lower boundary. At the same time, the accuracy of the stress in this case is significantly higher than 
when using conventional stress approximation schemes, in particular, constant and piecewise constant 
approximations.  
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