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Abstract. The process of Structural Health Monitoring aims to detect changes in material and/or geometric 
properties, boundary conditions or member connectivity of a structural system in time. However, the transfer 
of research results into engineering practice poses several challenges, especially for stiff structures with 
very diverse geometry that could not be well dynamically exited like low and medium-rise structures under 
ambient vibration conditions. Noise in modal parameters from output-only modal analysis due to variable 
environmental and operational conditions is considered one of the most problematic aspects of detecting 
structural damage using a vibration-based method. This research proposes a new way to reduce 
environmental noise in vibration data and dynamic parameters by merging dynamic response data from 
two similar shear wall buildings. The object of the study is a three-story reinforced concrete building. First, 
the damage features as natural frequencies and zero-order temporal moment of the vibration response are 
studied. Further, those feature changes are explored by means of modelling wall removal/opening 
introduction into the finite element models. It is established that the variation in the base excitation spectrum 
has more impact on dynamic response than introduced structural changes. Therefore, a time-domain 
feature like a zero-order temporal moment of the vibration response is not applicable for the proposed 
method. The appropriate damage sensitive feature vector for this approach is the difference of natural 
frequencies from two monitored buildings. The proposed method for fusion of vibration information from 
several buildings that share the same environmental and operational conditions filter out environmental 
noise effectively and give a clear advantage in reducing false alarm possibility during continuous and 
automated structural health monitoring process. 

1. Introduction 
Structural Health Monitoring (SHM) is a process of implementing a damage detection strategy that 

involves the observation of a structure over time using periodically spaced or continuous dynamic response 
measurements. The extraction of damage-sensitive features from those measurements and the statistical 
analysis of these features are used to determine the current state of the system health. One of the SHM 
strategies is to use the vibration-based monitoring (VBM) global method by extracting the information about 
lower vibrational modes of the structure. Although VBM damage identification techniques are suitable for 
global damage assessment of large and flexible structures [1], recent advances in various technology 
branches allow developing new cost-effective methodologies for low and medium-rise structures. These 
include sensing equipment, signal acquisition and transmission, data processing and analysis, as well as 
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numerical modelling. Examples of successful dynamic parameter identification for medium-rise buildings 
under ambient vibration excitation (AVT) can be found in the literature [2–4].  

One of the most problematic aspects of implementing an SHM system in practice is that real 
structures undergo the changing operational and environmental variables (EOV) [5]. The changes in natural 
frequency estimates due to environmental and operational variables are often of the same order of 
magnitude as those caused by damage [6]. Still, only a few researchers incorporate the consequences of 
these effects on their proposed SHM system. The most common environmental effects are temperature 
and moisture changes, but the operational effect changes mass and ambient loading conditions. These 
effects may disguise the changes in modal parameters from structural damage. In their seminal work in 
2007, Hoon Sohn provided an extensive review of the effects of environmental and operational variations 
on real structures [7]. Many structures exhibit daily and seasonal temperature variations that cause the 
expansion or contraction of structures and boundary conditions changes. These effects mostly investigated 
in bridge monitoring research (e.g. [8–11]) because bridge structures experience more severe conditions 
than insulated buildings.  

Realistic and direct modelling of the influence of environmental and operational variables on the 
structure’s response is an almost impossible task. Therefore, it is common to build mathematical models 
from experimentally measured environmental data. Vibration-based damage sensitive features of healthy 
structure [12–16] obtained using different techniques, e.g. from simplest linear regression models to neural 
networks and support vector machines. The limitation of those methods is the restricted use of only those 
structures on which model has been created. Also, a training period that covers the range of environmental 
changes is needed to filter their influence, e.g. it is about one year for temperature variations [17]. 

Rainieri et al. [6] presents the Second-Order Blind Identification technique and demonstrates that it 
can model the variability of natural frequency estimates in operational conditions and give a fundamental 
insight in determining the causes of such variability. 

Other techniques aim to obtain the variability of natural frequencies without measuring environmental 
or operational variables. These algorithms, e.g. principal component analysis (PCA) [5], Mahalanobis-
squared distance (MSD), auto-associative neural network (AANN), factor analysis (FA), singular value 
decomposition (SVD) [18] rely only on response time-series data acquired under changing operating 
conditions. Recently a novel distance-based anomaly detection method based on adaptive Mahalanobis-
squared distance and one-class kNN rule called AMSD-kNN has been proposed to detect early damage 
under the environmental variability conditions [19]. The authors of the paper performed comparative studies 
and concluded that the proposed AMSD-kNN method is superior to the conventional MSD, PCA, and AANN 
based anomaly detection techniques in detecting damage and distinguishing the damaged state from the 
normal condition properly. 

Sohn in [7] points out that data normalisation procedures need to be more focused on specific 
applications. For example, industries and research should focus more on tests of real structures in their 
operating environment than laboratory tests of representative structures. The structural monitoring case of 
the “Cardarelli” Hospital in Campobasso [20] is one of the rare cases of longitudinal research on frequency 
dependency on building temperature changes. It shows clear frequency dependency for all four closely 
spaced modes on daily temperature changes. The first two are transversal and longitudinal bending modes, 
but the other two are torsional modes. The estimates’ swing systematically recurs every day, with a sudden 
drop in the night and a gradual increase in the morning up to the maximum value reached in the afternoon.  

Yuen and Kuo [21] utilise a one-year daily measurement of a 22-storey reinforced concrete building 
to trace the variation of its modal frequencies, which is identified using the Bayesian spectral density 
approach with the ambient vibration data. Their work investigates the ambient temperature variation and 
fundamental frequency variation during the year, and the results of the research highlight that the relative 
humidity could be essential for long-term structural health monitoring. Coletta et al. [19] use cointegration 
theory to remove environmental effects from dynamic data of the Sanctuary of Vicoforte in Italy. Their 
investigation showed that the different nature of the effects imposed by operational and environmental 
variations on structural response requires an extension of cointegration theory.  

Gentile and Ruccolo [20] describe findings from one-year monitoring of EOV effects on the first six 
modes of Milan Cathedral. Authors conclude that the variations observed in the resonant frequencies are 
mainly driven by temperature, with the effect of thermal changes being very peculiar as the mode shapes 
in opposite do not exhibit appreciable fluctuations associated with the environmental changes.  

Compiling the results from case studies mentioned above, it follows that environmental effects for 
building structures may introduce a variation of first natural frequencies up to 8 % depending on building 
structure and exposure level to those effects. On the contrary, variations in mode shapes due to EOV’s 
seems to be less sensitive.  
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The recent development of the Internet of Things (IoT) rapidly expands the possibilities for the 
implementation of state-of-the-art SHM systems. IoT solutions for SHM purposes are commonly based on 
four principal components: sensor devices, gateway, Remote Control and Service Room, and Open 
Platform Communications server [19, 20, 22]. In the near future, low-cost sensor devices for sensor 
networks will be able to gather lots of vibration data remotely and aggregate it. After that, a critical analysis 
will be possible both for one structure and several buildings at once. Advancements of sensors with noise 
level as low as 60 ng/√Hz for the frequency band of interest [21] has already been reached. 

This paper investigates the ways to reduce environmental noise in vibration data and dynamic 
parameters by merging vibration data from two similar buildings under ambient vibration conditions with 
variable operational and environmental situations. This work presents an approach for data fusion and 
verifies it by FEM simulations of two three-story buildings with very similar but not identical structural 
parameters nor ambient excitation. Furthermore, damage sensitive feature changes due to EOV effects is 
investigated. 

It is found that the fusion of vibration information from several buildings that share the same 
environmental and operational conditions gives clear benefits in reducing false alarm possibility during 
continuous and automated structural health monitoring process. The advantage of the presented approach 
includes: filtering out damage sensitive feature variations due to EOV; potential reduction of training data 
required when machine algorithms applied for damage detection; no necessity for developing a reference 
model of a building, or gathering previous information on building dynamic response.  

2. Research methods 
There are four recognised paths to deal with EOV effects in SHM:  

1. Development of mathematical models from experimental measurements; 

2. Monitoring of structure in an undamaged state and extracting feature vectors that are later 
compared with damaged state feature vectors; 

3. Machine learning approaches trained on the undamaged state; 

4. Damage detection by using features that are insensitive to EOV effects.  

However, almost all of the approaches require gathering experimentally or via model simulations 
vast amounts of information before the actual in-service monitoring due to the well-known SHM axiom that 
states: 

“The assessment of damage requires a comparison between two system states” [23]. 

The authors also propose to use a reference state for damage detectionꟷnot the same building or 
its model in the undamaged state but rather a similar building nearby that generally share the same EOV 
conditions. An example of such structures might be mass housing. Fig. 1 shows three buildings with similar 
structural composition and materials are located near ambient vibration source – regular traffic. These kinds 
of buildings often have reached their intended design life. SHM system that could detect an illegal structural 
change like new openings in walls or entire wall removals would enhance such buildings’ structural safety. 

The basic underlying assumptions of the proposed method are: 

− Very unlikely that the exact damage occurs simultaneously at both buildings; 
− Both buildings have a similar structure and share the same environmental and operational 

conditions (e.g. temperature, moisture and vibration source);  
− The monitored feature vector changes due to the damage event; 
− Properties of the soil only slightly modify modal frequencies of the building; 
− The chosen monitoring system is capable of recording a time series of sensor network located in 

both buildings simultaneously and extract feature vectors with a precision higher than its value 
changes due to the damage event; 

− Preferably, at least one damage sensitive feature is extracted from the frequency domain and one 
from the time domain to cross-check the identified damage event to reduce false alarm situations. 
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Figure. 1. Example of mass house buildings that share the same EOV  
and ambient vibration conditions [24, 25]. 

To find out appropriate damage sensitive features of medium-rise shear wall structure 60 FEM 
simulation cases were performed. In all these simulations, the previously outlined method for structural 
damage identification was applied to filter out the effects of variable environmental and operational 
conditions. These simulations correspond to 30 experimental measurements per year per building. 

Generally, EOV effects might be sources of variations in the following structural elements and 
parameters: stiffness changes of the foundation base (cause: groundwater changes, freezing and 
defrosting of the soil); the variable inertial mass of the structure (cause: snow, rain, varying material 
densities, variable load etc.); the variable stiffness of the structure (cause: temperature, moisture, change 
in boundary conditions of elements). 

Stiffness changes in the foundation base affect natural frequency values, but this dynamic parameter 
change does not characterise the damage of the structure. Therefore, in performed simulations, building 
bases are taken as fixed.  

Other EOV effects are implemented in the model through variable elastic modulus and material 
density. A total change of natural frequencies due to EOV are in the range of 3 %. EOV deviations have a 
harmonic component and a stochastic component. Due to seasonal temperature fluctuations, changes 
represent a harmonic function of elastic modulus E (see Fig. 2), but the stochastic component of EOV 
effects considered by changes in material density (see Fig. 3).  

Variations in the excitation signal from building to building were realised through randomly generated 
signal following the Gaussian distribution in the frequency domain. In calculations, mean and standard 
deviation values of excitation frequencies variated but remained equal for both buildings per simulation. At 
the same time, randomly generated amplitudes of frequencies simulate discrepancies in the excitation 
spectrum per building. The range of those simulation parameters was chosen based on typical spectral 
characteristics of sites exited by regular traffic and reported in the literature [26, 27] Input parameters for 
FEM simulations are presented in Table 1, and the example of generated signal a(t) is shown in Fig. 4. 

 
Figure 2. Applied deviations in elastic modulus E in FEM simulations  

(Δf – change of natural frequency). 
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Figure 3. Applied deviations in material density in FEM simulations 

(Δf – change of natural frequency). 
Table 1. Input parameters for FEM simulation. 

Case* 

Gaussian kernel parameters of 
the excitation signal 
(frequency domain) 

Obtained RMS of the 
base excitation signal  
(time domain), m/s2 

Parameters for modelling of EOV effect 

(Max; min) of 
Standard 

deviation, Hz 

(Max; min) of 
Mean value, 

Hz 
Max Min 

Elastic modulus (for 
stiffness variation), 

kN/m2 

Density (for mass 
variation), kN/m3 

Max Min Max Min 

A + B (3.75; 2.03) (13.32; 8.13) 2.69∙10–4 1.81∙10–4 28 995 28 000 24.95 24.00 
A + C (3.91; 2.04) (13.69; 9.18) 2.76∙10–4 1.87∙10–4 28 866 27 257 25.00 24.11 
D + B (3.86; 2.42) (13.92; 8.43) 2.72∙10–4 1.88∙10–4 27 792 27 005 24.99 24.01 
* A+B is the case when Building #1 and Building #2 is undamaged; A+C is the case when Building #1 is undamaged, 
and Building #2 is damaged by damage case I; D+B is the case when Building #1 is damaged by damage case II and 
Building #2 is damaged before by Case I. 

 

 
Figure 4. Example of generated and applied base excitation signal to FEM model. 

Four FE models of three-story RC shear buildings were developed. Model A and B correspond to 
undamaged states of building. Model C corresponds to the damage state of building B, but model D 
corresponds to the damaged state of building A. Dimensions, stiffness of springs that models shear walls, 
and measurement point locations are presented in Fig. 5. Model B (Building #2) is not an exact copy of 
model A (Building #1) because to simulate differences in applied base excitation amplitudes, model B is 
turned by 15 degrees in the plane. It has shear walls in all directions for the middle axis of the building and 
has reduced stiffness due to different opening composition in one of the building’s outer walls. These 
structural differences from model to model are highlighted in the drawing of Fig. 5. 
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Figure 5. FE Models of buildings for the undamaged state with response measurement point 
notation (for model B highlighted only structural differences in the drawing). 

Structural damage generally causes changes in structural parameters, and it affects the dynamic 
behaviour of the building. Deviation from the structure’s original geometry and changes in element 
boundary conditions mostly affect the local/global stiffness of the structure. Therefore it introduces 
variations in natural frequencies of elements/structure. The deviations in material properties, such as 
cracks, may change all modal parameters: natural frequencies, mode shapes and damping. In this 
research, damage state assumed shear wall removal or shear wall stiffness reduction due to the new 
opening that does not cause changes in the damping parameter. All building models damping ratio is taken 
as 5 %. Introduced structural changes for Building #1 (FE Model A) and Building #2 (FE Model #B) is 
presented in Fig. 6. 

 
 

Figure 6. FE Models of buildings for damaged state  
(highlighted only introduced structural differences due to damage). 

The difference between first natural frequencies (first transverse, first longitudinal and torsional) 
between both buildings is proposed as the damage identification feature vector from the frequency domain 
analysis: 
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if∆  is natural frequency difference for mode shape i; 2if  is natural frequency of monitored building for 

mode shape i; 1if  is natural frequency of reference building for mode shape i. 

As mentioned before, it is useful to have also a damage sensitive feature vector from the time-domain 
analysis. The output-only modal identification process’s errors could be identified if the statistic parameters 
of the response signal are used as the damage-sensitive features. An example of such metrics is the 
temporal statistics of signals developed by Smallwood [28]. One of the temporal statics’ metrics is temporal 
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moment ( )n sm t  of a time history ( )a t  about a time location st  and is defined as the square of a time 
history: 

( ) ( ) ( )2 , 0,1, 2,3,...,n
n s sm t t t a t dt n+∞

−∞= − =∫                                           (2) 

( )a t  is acceleration time series; st  is reference time; n  is order of the temporal moment. 

As the zero-order temporal moment is independent of the time shift st  and taking to account that all 
experimentally obtained data from sensors are discrete, the data equation (2) can be rewritten as: 

( )2 2
0 1

1

1
,

2 j j
k

i

tm a a +

−

=

∆
= +∑                                                        (3) 

ja  is data point j in acceleration time series; t∆  is time step in acceleration time series. 

The square of the time history is used to avoid the problem of negative amplitudes, and this definition 
allows it to relate it with an energy E. 

Ambient response time series are not unimodal, i.g., they have more than one maximum. Therefore, 
kurtosis obtained from 4th order central moment normalised by energy E is another potentially useful 
metrics. For further details, see reference [26]. Different mode shapes respond differently to the same 
structural change due to the discrepancies in generalised mass and generalised stiffness per mode shape. 
This property might also be utilised for damage detection purpose.  

Linear modal analysis based on the structure’s eigenvalues and mode shapes is used to decouple 
the system and obtain building response to simulated base excitation. It is appropriate because 
experimental research, e.g. [29], shows that buildings under ambient vibrations due to very small vibration 
amplitudes behave elastically.  

3. Results and Discussion 
Thirty data points are obtained for each of the building, which simulates 30 measurements during 

the year by recording acceleration time series with a sample rate of 100Hz under variable EOV, base 
excitation and two damage scenarios: Case I is damaged Building #2; Case II is damaged Building #1. 
Acceleration time series of transversal and longitudinal directions is obtained from seven points best-suited 
to represent the first translational, longitudinal, and torsional vibration modes. As these are results from 
simulations, no additional data processing is required. However, data detrending due to sensor 
inaccuracies, for example, sensitivity to temperature changes, should be performed in practice before the 
dynamic parameter identification process. 

It is found that for a three-story shear wall building with three bays in each direction is possible to 
identify changes in wall stiffnesses due to the wall removal or implementation of openings by analysing first 
frequency (transverse, longitudinal and torsional) changes. The fusion of modal information from two 
buildings gives a clear advantage to filter out frequency variations due to environmental and operational 
conditions when properties of the soil only slightly modify modal frequencies of the building. The building 
could behave as a dependent unit against ground response as one rigid mass for the soft-soil condition 
[30]. Then method could be used for the identification of changes in the building support conditions.  

Figure 7 represents the traditional way of showing the frequency changes where the negative effects 
of EOV can be easily identified. Similar graphs could be found in experimental works of other authors, e.g. 
Fig. 3 un [20] and Fig. 2 in [20]. Variations in natural frequencies of buildings due to these effects are 
presented in Table 2. In contrast, Fig. 8 has “flat” regions, and jumps occur only due to introduced building 
damage scenarios. Thus, variations due to EOV effects are successfully filtered out. 
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Figure 7. Building frequencies due to EOV  
and introduced damages. 

Figure 8. Building frequency difference plots 
due to EOV and introduced damages. 

By exploring three frequency difference plots together, partial damage localisation might be done. 
For example, in damage Case II structural changes do not affect the first transverse frequency. Therefore, 
it follows that structural changes are not introduced in this direction. Potentially characteristic frequency 
jumps could be mapped for typical shear wall building structures, and machine learning algorithms applied 
for further damage localisation.  

The required precision of dynamic parameter structural identification from the ambient response 
signal is dependent on the detection capability of a particular change point algorithm. This problem is not 
in the scope of the article but will be considered in further investigations.  

Table 2. Natural frequency changes due to change in EOV simulation parameters. 

Case 

Frequency changes due to EOV  

max min max(( ) / ) 100f f f− ⋅  

Transverse 
mode (f1) 

Longitudinal 
mode (f2) 

Torsional 

Mode (f3) 

Non damaged case 
(measurement # 1-10)  

Building #1 1.85 % 1.93 % 1.63 % 
Building #2 1.89 % 1.78 % 1.44 % 

Damage case I  
measurement # 11-20) 

Building #1 2.01 % 2.18 % 1.60 % 
Building #2 1.97 % 1.92 % 1.10 % 

Damage case II  
(measurement # 21-30) 

Building #1 2.08 % 2.15 % 2.19 % 
Building #2 1.98 % 2.03 % 1.41 % 

 

While performing result analysis, all variable and first mode frequency pairwise Pearson correlations 
were found. The main results are presented in Table 3. The results indicate that frequency domain damage 
sensitive feature i.g., mode frequency, are more sensitive to elastic modulus changes than mass changes.  
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Table 3. Correlations between 1st frequencies of buildings and EOV simulation parameters. 

EOV parameter 
Building #1 natural frequencies Building #2 natural frequencies 
Transv. Long. Torsion Transv. Long. Torsion 

Elastic modulus E +0.905 +0.921 +0.854 +0.913 +0.896 +0.774 

Material density, γ –0.486 –0.450 –0.577 –0.536 –0.568 –0.738 
 

Time-domain feature for cross-checking of damage identification is also explored, namely change of 
vibration energy amplitude (first temporal moment) at sensor locations that measures the overall building 
dynamic response strength. It is found that the first temporal moment (energy) of each measurement time 
series may represent the distinct dynamic behaviour of each building due to the variable excitation and 
EOV (see Fig. 9). 

 

 
Figure 9. Energy changes due to variations of base excitation and EOV. 

However, for damage detection, this is not an appropriate feature. Visually some disparities in energy 
difference for various damage situations might be spotted (see Fig. 10). Still, there is not simulated 
additional sensor self-noise in this research that could reduce the possibility of identifying damages from 
this feature. 

 
Figure 10. The energy difference between the response  

of buildings to the base excitation variations. 
The steady linear growth in the cumulative sum plot (Fig. 11) of functions presented in Fig. 10 

confirms that damage identification using pure statistics of time series is not feasible. For both buildings, 
variations of the base excitation spectrum have more impact on dynamic response than structural changes 
due to introduced damage scenarios.  
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Figure 11. The energy difference between the response  

of buildings to the base excitation variations (cumulative sum plot). 

4. Conclusion 
This research proposed a new approach to reduce environmental noise in experimentally obtained 

vibration data and dynamic parameters by data fusion of dynamic response of two similar buildings under 
ambient vibration and variable operational and environmental conditions referred to as EOV’s. Data fusion 
capabilities are investigated by using FEM simulations of two three-story shear wall buildings with very 
similar but not exact structural parameters or ambient excitation. 

By utilising one of the buildings as a reference state instead of the same building, it is possible to 
identify shear wall removal or new opening implementation from the damage sensitive feature vector taken 
as natural frequency differences of both buildings. In this way, successfully filtered out natural frequency 
variations due to EOV effects, leaving the jumps in a data which cause is a damage introduction in one of 
the structures. Implementation of natural frequencies differences series for damage detection potentially 
significantly reduce training data required when machine learning analysis is used on data which is one of 
the distinctive advantages of this data fusion approach. Also, outliers from erroneous output-only modal 
identifications might be easily spotted, and different novelty detection algorithms can be applied for damage 
recognition. 

The required accuracy of the dynamic parameter structural identification from ambient vibration 
testing depends on the effectiveness of the chosen change-point algorithm for the damage state detection. 
Investigation of the time-series data statistics showed that the approach is not effective for the time-domain 
analysis. Variations in base excitation signal influence more the dynamic response of building than 
structural changes due to introduced damage scenarios for medium-rise buildings. 

The fusion of building dynamic response data from several buildings that share the same 
environmental and operational conditions give a clear advantage in reducing false alarm possibility during 
continuous and automated structural health monitoring process. Further full-scale experimental 
investigations are planned to assess the proposed approach’s effectiveness for real structures in their 
operating environment.  
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