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Abstract. This paper presents a comparative study of nonlinearity reduction by different
algorithms of switching-based calibration method for DACs. Based on the known algorithms,
one general parametric algorithm is proposed. The introduced parameters are a resolution of
primary array and numbers of folding and decoupling operations. The intermediate options of
such a general algorithm, defined by the parameters combination, are called “algorithm cases”.
The algorithm cases are compared by the efficiency of static nonlinearity reduction in presence of
random and systematic errors. For both errors, the folding operation improves DNL in contrast
with the decoupling operation, which deteriorates it. The increment of folding operations number
lowers the presence of systematic drift in DNL, which completely disappears at the maximum
number. In the case of INL, the impact of both operations is determined by the elements order. If
elements values depend on their indices, the folding operation deteriorates INL in contrast with
the decoupling operation, which improves it. All fully unarized arrays provide the INL reduction,
but do not decrease DNL.
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Annoramusa. [IpoBeneHO cpaBHUTENbHOE HCCAeIOBaHUE CHIMKeHUsS HenuHeiHoctu LIATT
pPa3JIMYHBIMUA QJITOPUTMAMKU KOMMYTAlIMOHHOTO MeTona KaJiuOopoBKU. Ha oCHOBE M3BECTHBIX
aJITOPUTMOB TIPEICTaBJICH OOMIMI TTapaMeTpUUeCKUii alropuT™M. [IpelToXKeHHBIMH TapaMe-
TpaMU aJTOPUTMA SIBJISTIOTCST Pa3psiTHOCTh MCXOIHOTO MAacCUBa U KOJIMYECTBO OIeparuii 00b-
eOWHEHUs U paccoeanHeHUs. [IpoMeXyTOUHbBIe CIydand OOIIEeTro alfOpUTMa, OTIPEAC/ISIOIIAECS
KOMOMHAIMEH ITapaMeTpOB, HAa3bIBAIOTCS «CIIydasiMU airopuTMar». [IpoBeieHO cpaBHEHUE CIIy-
YyaeB aJITOpUTMa MEXIy co00il 1o 3(D(HEKTUBHOCTH CHUKEHUSI CTATUYCCKON HEJIMHEMHOCTHU B
MPUCYTCTBUM CIyYaliHON M CHCTeMaTUYeCcKoil omnooK. s oboux TUMOB OIIMOOK Orepaius
obobeauHeHus yaydinaer DNL B oTinure oT onepauuu pacCcoeaMHEeHUs, yxyaluawliei e€. YBe-
JIMYeHNE KOJIWYECTBa OIepallnii 00beAMHEHUS CHIDKACT BIMSHUE CUCTEMAaTUYECKOTO yXOla B
3apucuMocTy DNL, TTOJHOCTBIO MCYe3alomero Mpyu MaKCUMaJTbHOM KOJIMYECTBE omepaluii. B
caydyae INL BmustHre 00eMX omiepanuii 3aBUCUT OT TOTO, B KAKOM ITOPSIKE HAXOMISITCS 3JIEMCHTEHI.
Ecnu HabmomaeTcst 3aBUCMMOCTD 3HAYEHUM 3JIEMEHTOB OT X MHACKCOB, TO OMepalus o0benm-
HeHus yxyamwaeT INL B oTinuue ot onepaliuy paccoeIuHeHus, KoTopas e€ ynydinaeT. Bece mac-
CHBBI 3JIEMEHTOB, MMEIOIINE YHAPHYIO apXUTEKTYpy, IeMOHCTpUPYIOT cHIKeHne INL, ogHako
He yMeHbInaoT DNL.
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HBIl aJITOPUTM, OTKJIOHEHME, CHIDKEHUE HeIMHeHOCTH, uddepeHIraIbHas HeTMHEIHOCTD, NH-
TerpajbHast HEJIMHEITHOCTh

Jna marapoanmsa: Kvashina N.V. Influence of algorithm parameters on static nonlinearity in
switching-based calibrations for DACs // Computing, Telecommunications and Control. 2022.
T. 15, Ne 2. C. 32—42. DOI: 10.18721/JCSTCS.15203

Introduction

A digital-to-analog converter (DAC) is a significant interface device, which is implemented in mod-
ern electronic communication systems for converting an input digital code into a corresponding output
analog signal, that can be represented as current or voltage. The conversion process is realized due to
DAC’s weighting elements (or shortly “elements”) forming an analog signal proportionally to their val-
ues, or weights. In this paper, as for the elements, current sources are considered.

According to the ratio of elements weights, three common DACs architectures are highlighted:
unary, binary and segmented. In a unary architecture, all elements are identical in their weights (also
called “unary-weighted elements”) and their ratio equals 1. In a binary architecture, elements are bina-
ry-weighted, which means that their weights have a ratio as power of 2. As for the segmented architec-
ture, it is constructed from both unary and binary architecture parts called “segments”. In Fig. 1, there
are all three common architectures of DACs with a representation of elements in each architecture.

For a correct conversion result, such characteristics of DAC transfer curve as linearity and mono-
tonicity are substantial and require the elements weights ratio to be precise regarding the nominal ratio.

© KeawwuHa H.B., 2022. U3paTtenb: CaHKT-MNeTepbyprckuii NONUTEXHUYECKUI YHUBEpPCUTET MNeTpa Benukoro
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Fig. 1. Three common architectures of DACs

However, with the fabrication of integrated circuits, the elements mismatches unavoidably appear and
deteriorate the accuracy of elements ratio, resulting in nonlinearity, or even nonmonotonicity, of trans-
fer curve. Moreover, such unpleasant effects as aging, parasitic components and temperature deviations
can also have an impact on further degradation of linearity. The mentioned issues are critical and make
design of high-resolution (over 12 bits) DACs with a linear transfer curve quite challenging. In order to
reduce the deteriorative impact of errors on DAC linearity and weaken the requirements for elements
accuracy, a great number of electronic calibration methods was presented in [1—5] and classified in [6].

Among all calibration methods described in the classification, one particular method, i.e. switch-
ing-based calibration method, stands out due to minimization of the analog part. There is a great di-
versity of implementations of this calibration method (or just “algorithms”). These algorithms are also
discussed thoroughly and classified in [7]. One of the introduced criteria for the classification is presence
or absence of redundant elements, and the algorithms with the latter one are an object of this research.
Some works did a comparison of such algorithms in terms of efficiency in nonlinearity reduction [8, 9],
but provided poor coverage of intermediate implementations for the calibration method. Moreover, they
do not study a static performance for the discussed algorithms in presence of systematic errors, as it was
done for a dynamic performance in [8].

The goal of this research is to provide a comparative analysis of nonlinearity reduction by different
implementations of switching-based calibration method in presence of both random and systematic
errors. Additionally, this paper proposes a generalization of the known implementations providing in-
termediate options called “algorithm cases”.

The present paper is organized as follows. In Section 1, the basic operations of switching-based
calibration method are introduced. Then, a description of a general algorithm for switching-based cali-
bration method is presented in Section 2. In Section 3, the simulation results for algorithm cases in
presence of random and systematic errors are discussed. Based on the results, the comparison of consid-
ered algorithm cases by their efficiency in nonlinearity reduction is provided. Finally, in Section 4, the
conclusions of the present work are drawn.

1. Basic operations

The principle of switching-based calibration method without redundant elements lies in changing
the switching pattern for elements in an initial non-calibrated array. The initial array consists of 2V
unary-weighted elements (N is a DAC resolution) and further is called the primary array. The switching
pattern is changed by means of elements indices reordering. The reordering procedure is based on two
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Fig. 2. The folding and decoupling operations

basic operations, folding and decoupling, which are applied to the primary array of elements as illustrat-
ed in Fig. 2. Here, rectangles heights correspond to the elements values.

To perform the folding operations, the 3 following steps must be done. At Step 1, the elements of
primary array are compared with each one by their values and sorted in an ascending order. Then, the
sorted elements change their places as it is shown in Step 2, so the couples of elements are created. Each
couple contains the smallest elements preceding the greatest. At the final Step 3, the elements in couples
are united. There is also a shaded dummy element in the array, which may be not involved in unification
and can be absent. The result of folding operation is a segmented array with a decreased resolution of
unary segment by one bit and with an increased resolution of binary segment by one bit.

The decoupling operation is performed with the application of only one step — the decomposition of
previously united elements. It should be noted that after the decoupling all elements are placed in their
order before unification. As the result, this operation increases the resolution of the unary array by one
bit, which corresponds to the decrease in the resolution of the binary array. The number of decoupling
operations cannot exceed the number of folding operations.

2. Description of general algorithm

Based on the previously known implementations [5, 9, 10], one general parametric algorithm is
proposed. The algorithm depends on the following parameters: N is a primary array resolution, F" and
D are numbers of folding and decoupling operations respectively. A certain combination of N, F'and D
gives an individual algorithm case. In Fig. 3, a table of all algorithm cases is presented. The resolution
of primary array N defines the maximum numbers of ' and D. Colored areas in the table correspond to
existent algorithm cases, while grayed out areas represent impossible cases of algorithm due to unreal-
izable combination of ¥ and D.

It can be seen that with the increment of N the maximum numbers of folding and decoupling op-
erations F and D also increase. Thus, the number of possible or existent algorithm cases grows with an
arithmetic progression. The sum of arithmetic progression Sn is obtained by

Sn=(a1+a”jxn,
2

where a, and a, are the first and last numbers in numerical sequence, 7z is a number of elements in the
sequence. The a, is the number of algorithm cases for a row with F =1in Fig. 3, a, is the number of
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algorithm cases for a row with F'= N — 1 and n is the number of rows. So, the final result for the number
of existent algorithm cases is:
(N-1)(N+2)

M, = .
2

According to the combinations of /' and D, there are three types of algorithm cases which allow to
obtain either binary, or unary or segmented architecture of calibrated array. As it was mentioned before,
the folding and decoupling operations change the resolutions of unary and binary segments of calibrated
array, thus the resolutions can be obtained by the following expressions, where N pand N , are resolutions
of unary and binary segments respectively:

N,=F-D,
N,=N-N,=N—-F+D.

In order to construct the desired architecture of calibrated array, corresponding requirements for the
numbers of folding and decoupling operations must be satisfied. So, a unary architecture is obtained
when F'= D, a segmented architecture requires D < F'< N — 1 and a binary architecture is constructed
when FF'= N — 1 and D = 0. The previously mentioned implementations are particular cases of the pro-
posed general algorithm, that is:

 Switching sequence post adjustment — SSPA (further 4 y — unary calibrated array) [5];

+ Total 3-dimensional sort-and-combine — T3D-SC (further 4 ¢ — segmented calibrated array) [10];

« Complete-Folding (further A , — binary calibrated array) [9].

In this work, they are called “boundary algorithm cases”. For A U algorithm case F =D =2, for 4 s
algorithm case /' =1, D = 0 and for 4, algorithm case F=F__ =N —1, D = 0. In Fig. 4, the calibrated
array for every boundary algorithm case is presented.
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Fig. 4. Calibrated arrays for boundary algorithm cases

In order to study the efficiency of DAC static nonlinearity reduction by algorithm cases, a parametric
algorithm was observed, and maximum averaged values of differential and integral nonlinearities (DNL
and INL) were obtained in the research [11]. In the present work, the influence of algorithm parameters
on DNL and INL exact values will be studied more thoroughly.

3. Simulation and comparison

In this section, the simulation and comparison of the results for random and systematic errors are
presented. Since it is reasonable to calibrate high-resolution DACs (12 bits and more), here N resolution
is 12. To perform a calibration of the primary array influenced by random errors, it is necessary to form
an array of m = 2" unary elements. For each element of the primary array, a random deviation with a
normal distribution is introduced. Such a normal distribution has the following parameters: mathemat-
ical expectation  is 0 and the value of standard deviation ¢ is chosen to be 0.13 %. The value of ¢ is an
example of deviation, which was derived while performing the Monte-Carlo simulation of an element
(current source) for UMC 180 nm technology [12]. The number of generated primary arrays is 200. All
mentioned parameters are highlighted in Table 1.

Table 1
Parameters of primary array with random errors
. Number of Numlr.)er of Mathematical Standard Number
Resolution, N algorithm . ..
elements, m expectation, Ll deviation, ¢ of arrays
cases, Mex
12 4096 77 0 0.13% 200

All possible algorithm cases were applied to a set of primary arrays with random deviations. As the
result, transfer curves before and after calibration for each algorithm case were obtained and further
used for DNL and INL calculations. In Fig. 5, the DNL and INL dependences on input code D and
elements order are presented for boundary algorithm cases AU, A s and A » There is also a maximum
normalized value defined for each nonlinearity dependence. As it was mentioned before, the elements
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Fig. 5. Simulation results for DNL, INL and elements orders
of boundary cases in presence of random errors

after application of 4 v A gand A  algorithm cases form unary, segmented and binary arrays respectively.
The number of deviation cases illustrated in the graphs is 200.

The results show that the increment of binary segment resolution even only by one bit allows to
greatly improve the DNL, which can be seen in the transition between 4, and 4  and between 4 and 4,
algorithm cases. Such an improvement is possible due to presence of united elements after the folding
operation. The unification reduces elements deviation and, consequently, DNL. For instance, tran-
sition from AU to A ¢ reduces elements deviation and corresponding DNL by one order. However, the
elements order obtained after unification deteriorated INL since element value decreases with its index.
In contrast, splashes break the dependence of element value on its index in case of 4 - As a result, it
leads to better INL reduction.

When comparing the obtained DNL dependences, a systematic drift of DNL can be noticed after the
calibration for the AU and 4 s boundary cases, which is absent in the A4 , case. To establish the reason for
the systematic drift appearance, it is necessary to consider the results for DNL with fixed F' from a pure
unary, or unarized, array to a pure binary, or binarized, one. This will allow us to understand whether an
increase in the resolution of a unary segment, or unarization, affects the appearance of a systematic drift.

In Fig. 6, the simulation results of DNL, INL and elements orders are presented. Here, algorithm
cases from a bottom line of the table in Fig. 3 are considered, where F' = Fmax = 11. The unarization
power increases from left to right, so the leftmost case is a binarized array and the rightmost case is a
unarized one. The number of deviation cases illustrated in the graphs is 200.

According to the obtained results, there is no systematic drift of DNL with an increase of unarization
power. So, the unarization has no impact on the appearance of the systematic drift. Previously, the sys-
tematic drift in DNL dependences occurred for AU and A ¢ algorithm cases when F’ was lesser than the
maximum possible value F i Meanwhile for 4 p case, where FF'=F - it was absent. Therefore, while
studying algorithm cases with a fixed F > N0 systematic drift was observed in the dependences.
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Fig. 6. Simulation results for DNL, INL and elements orders (F=F = 11)

In order to establish the reason of systematic drift appearance, results of DNL, INL and elements
orders for algorithm cases with different numbers of F are presented in Fig. 7. Here, algorithm cases that
allow obtaining fully unarized arrays (i.e. cases on the diagonal in Fig. 3) are considered.

According to the results, the systematic drift can be seen. Moreover, with the decrement of F' from
the maximum possible value /' = 11 to the minimum possible value /= 1 the influence of systematic
drift becomes worse. Hence, the systematic drift appears when F'is lesser than the maximum possible
value. Therefore, the more folding operations are done, the less is the systematic drift for DNL results
in presence of random errors.

The forming of primary array influenced by systematic errors is similar to the one in presence of ran-
dom errors except for the deviations introduction. A primary array of 2" elements is formed (N = 12) for
a further calibration. Then, according to the methodology for systematic errors forming with different
profiles [13], a generation of profile parameters combinations and set of profiles systematic errors is held.
Among the whole set of profiles, a joint approximation with anisotropic case is chosen to be applied to the
primary array. The number of cases considered for various angles and shifts is 200.

Similarly to the case of random errors, boundary algorithm cases were applied to a primary array
influenced by systematic errors. The DNL and INL were calculated using the obtained transfer curves
before and after calibration. In Fig. 8, the DNL and INL dependences and elements orders are present-
ed for boundary algorithm cases 4, A and 4.

According to the obtained results, the systematic drift, which was observed earlier for the DNL de-
pendence in presence of random errors, provides an impact on DNL for the AU and A ¢ algorithm cases
in presence of systematic errors as well. However, the 4 , algorithm case demonstrates the lack of sys-
tematic drift, which is also similar to the result for random errors. Therefore, the cause of such a behav-
ior is the same for both types of errors, and one common statement can be concluded: the fewer folding
operations are done, the worse is the systematic drift impact on the DNL results.
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4. Conclusion

Digital-to-analog converters (DACs) are widespread devices for converting digital data into analog
signals. The linearity of conversion depends on the elements ratio, which can deviate from the nominal
value during integrated circuit fabrication. To overcome this issue, a calibration is one of the possible
solutions. In this work, a non-redundant switching-based calibration method is considered and the gen-
eral algorithm for such a method is proposed. The intermediate implementations of the algorithm are
compared by efficiency of DNL and INL reduction.

The folding and decoupling operations are introduced. One folding operation (' = 1) decreases the
resolution of a unary segment by one bit and increases the resolution of a binary segment by one bit. One
decoupling operation (D = 1) decreases the resolution of a binary segment by one bit and increases the
resolution of a unary segment by one bit. In terms of DNL, the folding operation improves nonlinearity
due to reduction of elements deviations during the elements unification. The opposite result is demon-
strated by the decoupling operation, which deteriorates nonlinearity during the elements splitting. In
terms of INL, the impact of folding operation depends on the elements order after calibration, which
also contributes to the nonlinearity. If the elements order represents a dependence of element value on
its index, then the unification has a deteriorative impact on nonlinearity in contrast to the decoupling
operation, which improves it. Research [11] concluded that a simultaneous variation of both F and D
does not allow definite estimation of a more efficient algorithm case in nonlinearity reduction.

All fully unarized arrays (F' = D) provide the INL reduction, however the DNL cannot be de-
creased. The similar results were demonstrated in [14, 15] for the switching schemes of unary DAC:s.
The DNL reduction can be obtained by the increment of binary segment resolution — binarization.
Binarization provides an error averaging for elements, which reduces elements deviations, as they will
consist of two and more parts. Such an effect is demonstrated for switching schemes with element
division in [13, 14, 16]. As a result, the greater is the resolution of the binary segment, the better is the
nonlinearity reduction.

The number of applied folding operations F' affects the presence of systematic drift in DNL depend-
ences for both random and systematic errors. After the sorting step of the folding operation an explicit
dependence of element value on its index occurs, which has an influence on the DNL dependence in
the form of the systematic drift. With the increment of F, the reordering of elements is more thorough.
Thus, the greater is F, the better elements are reordered and the lesser is an explicit dependence of
element value on its index. At the maximum possible number of folding operations /', the array of
elements is completely reordered, which results in the absence of the explicit dependence. Hence, the
systematic drift in case of I ax 1S @bsent.
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