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ON CRACKING IN THICK GAN LAYERS GROWN ON SAPPHIRE 

SUBSTRATES 
M.G. Mynbaeva1,2*, A.A. Sitnikova1, A.N. Smirnov1, K.D. Mynbaev1,2, H. Lipsanen2,3, 

A.V. Kremleva2, D.A. Bauman2, V.E. Bougrov2, A.E. Romanov1,2 
1Ioffe Institute, Polytechnicheskaya 26, Saint-Petersburg 194021, Russia 

2ITMO University, Kronverkskiy 49, Saint–Petersburg 197101, Russia 
3Aalto University, Tietotie 3, Espoo 13500, Finland 

*e-mail: mgm@mail.ioffe.ru 
 
 

Abstract. Self-organization mechanisms promoting elimination of cracks in thick GaN layers 
grown on sapphire substrates are considered on the basis of the experimental results on the 
fabrication of the layers by Hydride Vapor-Phase Epitaxy on MOCVD-grown GaN/Al2O3 
templates. The obtained data support the supposition on the closure of tensile stress-related 
cracks via diffusion processes and demonstrate the strong contribution of bulk diffusion in 
addition to surface diffusion discussed earlier. 
Keywords: GaN, defects, cracking, Hydride vapor phase epitaxy 

 
 

1. Introduction 
Currently, development of III-nitride epitaxial technology is aimed at the achievement of the 
best possible quality of the material. Despite numerous efforts to commercialize III-nitride 
homoepitaxy, most of the epitaxial structures for GaN-based devices are still grown on 
foreign substrates, mainly on sapphire [1]. Sapphire (0001)Al2O3 substrates are known to be 
highly mismatched to GaN layers in respect to both lattice parameter (14%) and thermal 
expansion coefficient (30%). It is known that the increase in thickness of heteroepitaxially 
grown GaN layers provides the decrease in threading dislocation (TD) density, and this 
improves crystalline perfection [2]. Аt the same time, growth of thick layers often leads to 
cracking in both the substrate and the layer due to thermally-induced stress caused by 
aforementioned mismatches. When relaxation mechanisms are not taken into account, 
calculations predict that the compressive stress in GaN is reduced by over two orders of 
magnitude under cooling if the film thickness is increased to 1 mm. Thus, the tensile stress in 
sapphire substrate is increased by over two orders of magnitude [3]. Stress calculations for 
GaN/Al2O3 with consideration of relaxation mechanisms were performed in Ref. [4]. Three 
mechanisms of relaxation accompanied with the formation of structural defects were 
proposed for different film thicknesses: (i) pure lattice deformation for films with  
thicknesses <4 µm, (ii) enhancement of the density of interface defects such as "microcracks" 
and/or dislocations (4-20 µm), and (iii) generation of "macrocracks" in sapphire (>20 µm). 
Macrocracks that develop in GaN/(0001)Al2O3 structures are the cause of the mechanical 
failure of the entire wafer during post-growth cool-down (an example is shown in Fig. 1(a)). 

Yet the failure does not necessarily occur in all cases. For instance, as was shown for 
Metal-Organic Chemical-Vapor Deposition (MOCVD) of GaN, cracking could be observed 
for 13 µm-thick layers, but did not necessarily appear in the layers with the thickness of 
30 µm [5]. This phenomenon was treated in detail by Etzkorn and Clarke [6]. They have 
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shown that in sufficiently thick GaN layers grown on sapphire substrates, a particular net of 
buried cracks, which do not extend to either bottom or top of the film, is formed. Etzkorn and 
Clarke argued that this cracking pattern could not be produced under compression. Their 
general conclusion was that cracking resulted from tensile stress, which was generated during 
the growth when a certain critical thickness of the film was reached. This supposition was 
supported by the results of some experimental and theoretical studies (see, e.g., [7-9]). For the 
explanation of crack elimination phenomenon, Etzkorn and Clarke considered several 
possible scenarios involving diffusion-type processes or non-diffusion crack retraction [6]. 
Later, Liu et al. [7], who demonstrated formation and healing of buried cracks in thick GaN 
layers grown by Hydride Vapor-Phase Epitaxy (HVPE), suggested that the lateral overgrowth 
was the predominating process. In this paper, we will discuss our experimental results on 
fabrication of thick GaN layers with HVPE using MOCVD-grown templates. Our results are 
indicative of the dominance of diffusion (both bulk and surface) mechanism of the crack 
closure during the growth. 

 
2. Experimental technique 
The initial substrates were 2" (0001)Al2O3 wafers with 3.2 to 4.6 µm-thick GaN layers grown 
by MOCVD on low-temperature GaN buffer layers. Thick (100-1500 µm) epitaxial layers 
were grown in a home-made horizontal HVPE reactor at the atmospheric pressure. The 
growth temperature was 1050 0С. Argon with 99.997% purity was used as a carrier gas, while 
metallic Ga (99.9999%) and gaseous NH3 (99.999%) were used as Ga and N sources, 
respectively. Gallium was chlorined with gaseous HCl with 99.999% purity. It appeared that 
HVPE-grown layers with thicknesses exceeding 400 µm were not necessarily destructed 
during the cool-down from the growth temperature to the room temperature. An example of 
the appearance of a 1000 µm–thick HVPE layer is shown in Fig. 1(b), where it is seen that the 
whole structure is undamaged and retains its integrity. 

 

a b 
Fig. 1. Optical photographs of thick GaN layers grown by HVPE on templates prepared with 
MOCVD: a, a layer with thickness <100 µm, this sample experienced destruction right on the 

growth pedestal after cooling down to the room temperature; b, a layer with thickness of  
1000 µm, which retained its integrity. The diameter of both wafers is 50.8 mm 

 
3. Experimental results 
Optical microscopy study was performed with various focus depths from the surface to the 
bulk of the material (down to approx. 200 µm). The studies revealed the presence of a set of 
crack nets located at a considerable distance from the HVPE layer/substrate interface. The 
nets were arranged one above another in the bulk of the layer with crack density decreasing 
towards the surface. Figures 2 and 3 show the specifics of crack propagation. Figure 2(a) 
shows an image obtained with the maximum focus depth. The observed area does not contain 
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any cracks. Figure 2(b) shows the image obtained with the minimum focus depth, which 
allowed for observing a buried crack (indicated by arrow) that did not intersect the surface. 

 

 
a                                               b  

Fig. 2. Optical photographs of a thick HVPE-grown GaN layer taken with various focus 
depths of the microscope: a, maximum focus depth; b, minimum focus depth. An arrow in 

image (b) points to a buried crack 

Images presented in Fig. 3 show the evolution of the microstructure of buried cracks 
within the bulk of the material. Moving the focus from the layer/substrate interface along the 
growth direction, a heavily cracked region was detected. This can be seen in Fig. 3(a), where 
a net of cracks with irregular shape is seen with weaker contrast (marked with white arrows). 
Also, cracks with good contrast with lower density are seen above them (marked with a red 
arrow). Important features of the defect pattern here are spheroid-like voids formed along the 
crack trajectory as well as spherical micropores located in the immediate vicinity of the cracks 
(Fig. 3(b,c)). The upper portion of the GaN bulk is shown in Fig. 3(d). This image 
demonstrates that all the underlying cracks are completely closed and only micropores exist 
above them (as seen in the lower left side of the image). 

Transmission Electron Microscopy (TEM) studies were performed with the use of 
Philips EM–420 (accelerating voltage 80 kV, resolution 5 Å) and Jeol JEM–2100F 
(accelerating voltage 200 kV, resolution 2 Å) microscopes. Specimens for TEM studies were 
prepared using standard procedures of mechanical thinning and subsequent etching with Ar+ 
ions with energy 3 to 4 keV. According to TEM data, the crack-free surface layer in the 
investigated sample had a thickness of 10 to 15 µm with TD density as low as 4×107 cm-2. 
TEM results also confirmed the existence of both voids (Fig. 4(a)) and micropores (Fig. 4(b)) 
in the bulk of the studied layer. The TEM study also showed that the process of evolution of 
the shape of buried cracks via formation of voids was accompanied by changes in the 
trajectories of TDs, so dislocations got deviated from their typical path along the direction of 
the growth. Figure 4(a) shows a TEM image of a cross-section of the layer, where one can see 
a buried void and a dislocation that changed its direction near the surface of the void. The 
change of the direction of dislocation propagation can be indicative of the existence of 
diffusion processes leading to dislocation motion [10]. 

For accessing the quality of the GaN material, we used Raman and PL techniques. 
Horiba Jobin-Yvon T64000 Raman spectrometer (France) was used in these studies. Raman 
signal was excited with YAG:Nd laser (excitation wavelength λ=532 nm). The results of 
Raman spectroscopy performed in backscattering geometry at 300 K revealed low residual 
strain value in the studied sample. In Raman spectra (not shown), three allowed lines related 
to phonons of E2(low), E2(high) and A1(LO) symmetry were observed. The Raman shift and 
full-width at half-maximum (FWHM) of the E2(high) line equaled 567.5 cm-1 and 2.1 cm-1, 
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respectively, and these values were close to those typical of non-deformed GaN (567.8 cm-1 
and 1.9 cm-1, respectively [11,12]). According to the Raman shift of A1(LO) phonon line 
(733.7 cm-1), free electron concentration in the sample equaled (5-6)×1016 cm-3. 

Low-temperature (T=10 K) PL spectrum of the layer (not shown) was dominated by 
excitonic lines (bound exciton, BE, peaks) and their LO phonon replicas. The high quality of 
the material was confirmed by the absence of strong "yellow" PL line (with peak at ~2.2 eV), 
which can be often observed in GaN luminescence spectra [13]. This was indicative of low 
concentration of point defects that are responsible for the appearance of this line. There was 
no indication of the presence of other ‘defect’ lines, such as ‘green’ (with peak at ~2.4 eV) 
and blue (with peak at ~2.9 eV) lines that are typical of HVPE-grown GaN even with 
relatively high purity [14] either. High-resolution PL spectrum revealed a number of narrow 
excitonic bands, which were also indicative of the high quality of the material [15]. 

 

 

 

Fig. 3. Optical microscopy images illustrating reduction of crack density during HVPE of 
the 650 µm-thick GaN layer: a, deeply buried cracks; b, spherical micropores located in the 
vicinity of the cracks; c, partly closed crack propagated in the overlying section; d, the third 

(upper) section that does not contain cracks. Red arrows in images (a), (c), and (d) show 
the same crack, which allows for following its propagation, changes in its shape and its 

complete closure 
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a b 

Fig. 4. TEM image of a cross-section of the thick GaN layer with buried cracks, 
which illustrates the interaction between an inner void and a threading dislocation (a), 

and a spherical micropore located in the immediate vicinity of the void (b) 
 

4. Discussion 
We shall start the discussion with the established fact that cracks in thick GaN layers originate 
from the increase of tensile strain during the growth when material reaches a certain critical 
thickness and that they remain buried in the bulk of the material [6]. Etzkorn and Clarke 
offered some possible scenarios of the formation of buried cracks. One of them was a 
diffusion-type process of crack closure. The driving force for this process obviously was the 
'desire' of the system to lower the overall stored energy, which resulted in the decrease of the 
surface area of cracks [6]. We believe that the dominating role of the diffusion mechanism is 
now supported by our experimental results. On the basis of our data it can be suggested that 
the observed formation of multi-layered nets of cracks in the bulk of thick GaN layers 
proceeds according to the following scenario. After the layer reaches the critical thickness, 
cracks of the first level are formed. Under high temperatures (those of GaN HVPE growth), 
surface diffusion occurs at the walls of the cracks while bulk diffusion occurs in their vicinity. 
This leads to the evolution of the shape of the cracks, which proceeds till their continuity is 
interrupted as a result of the formation of voids along the crack trajectory. Then the cracks 
break up into a series of voids via a series of pinch-off events [16,17]. It can be suggested that 
the formation of micropores in the vicinity of the voids results from the subsequent process of 
void spheroidisation, which completes crack closure. These processes of the formation of 
cracks and their diffusion-mediated closure at the first level partly relax the strain that was 
generated during the growth. Thus, newly formed net of second-level cracks have lower 
density. These cracks undergo similar changes and additionally serve as internal sinks for 
micropores that had resulted from the first-level crack closure. As a result of this, the cracks 
of the lower level become fully closed, and the voids of the next level have larger mean 
diameter as compared to that of the channels of the lower level. With growth strain gradually 
relaxing, the density of cracks decreases and they all become closed. The remaining 
micropores, which now have no internal sinks, are absorbed by the free surface, which serve 
as an external sink, and thus, disappear. This scenario of buried crack evolution is also 
supported by TEM observation of the dislocation motion. The change in the direction of 
dislocation propagation could be considered as an extra proof of the existence of intensive 
diffusion processes, namely, a mass transfer by two counter-fluxes, where vacancies are 
moving towards the cracks or voids, which serve as powerful internal sinks for them, while 
atoms are moving towards the dislocation. The first flux defines the changes in the shape of 
both the crack and voids, while the second flux leads to non-conservative dislocation motion. 
As growth of the material proceeds further, the crack/void–containing region gets buried in 
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the bulk of GaN and strain-free portion of the material with low TD density is formed above 
it, as was confirmed by the results of Raman, PL, and TEM studies presented above. 

 
Conclusion 
In conclusion, the results of the study of crack elimination in thick GaN layers grown by 
HVPE on GaN/Al2O3 templates prepared with MOCVD showed that non-catastrophic (those 
not leading to sample destruction) cracks that form during long growth runs appeared to be an 
important structural element, which encouraged additional relaxation processes in the bulk of 
thick GaN layers grown on foreign substrates. The suggestion by Etzkorn and Clarke [6], who 
postulated that changes in the shape of initial buried cracks result from surface diffusion, were 
complemented with our experimental data that were indicative of the existence of 
simultaneous processes of bulk diffusion. This provides extra arguments in favor of diffusion 
mechanisms of crack closure. The diffusion processes obviously reduce free energy and help 
strain relaxation in the growing thick GaN layers. 
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Abstract. In this work, we exploit the two-scale homogenization approach to compute 
explicitly the band gaps for out-of-plane wave propagation in ternary locally resonant 
metamaterials (LRM) with two-dimensional periodicity. The homogenization approach, 
recently developed by the authors for binary LRM, leads to the definition of the dynamic 
effective mass density, depending on the frequency, that becomes negative near the resonant 
frequencies of the inclusions. The intervals of negative effective mass give the band gaps. 
These explicit solutions put in evidence the dependence of the spectral gaps on the geometric 
parameters of the unit cell and on the mechanical properties of the three constituent materials. 
The range of frequency where the asymptotic homogenization approach is equivalent to the 
Bloch-Floquet theory is also established and confirmed by numerical simulations. 
Keywords: metamaterials, homogenization, effective mass, band gaps, wave propagation 
 
 
1. Introduction  
Sonic and phononic crystals based on the localized resonant principle have been proposed and 
studied in the last twenty years. In particular, periodic materials with heavy, stiff inclusions 
with a soft coating embedded in a stiff matrix have been demonstrated to have broad spectral 
gaps at low frequency, see e.g. [1] with pioneering experimental results on a composite with 
lead spheres coated by silicone rubber in epoxy matrix. The intervals of frequency inside 
which no waves with real wavenumber can propagate, can have different applications 
especially in vibration isolation [2,3] or impact absorption [4,5].  

The physical mechanism of local resonance with the corresponding spectral gaps can be 
associated with the concept of negative effective mass. This can be well understood with help 
of simple discrete mass-spring structures and many works have been performed in this 
direction, see e.g. [6,7]. Also in actual continuum composites one can, by different 
approaches, define an equivalent, effective mass density. In particular in [8] and [9] quite 
complex expressions of the effective mass were derived for ternary composites considering a 
single cell with rigid cylindrical or spherical inclusions coated by a soft materials and the 
possibility of negative effective mass were demonstrated. However, the limit of validity of 
these solutions was not explicitly settled.  

The two-scale homogenization approach, first proposed in [10] for high-contrast binary 
elastic composite materials in the long wavelength regime, provides a powerful tool to define 
equivalent material properties. In [11] the approach was developed for a row of locally 
resonant inclusions and recently the authors studied the spectral properties and the band gaps 
of binary LRM through homogenization, [12].  
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In the same line, in the present work, we address the problem of out-of-plane wave 
propagation in ternary LRM by the two-scale homogenization approach. The material has 
two-dimensional periodicity, with cylindrical inclusions, modelled as rigid, coated by a very 
compliant material. In the low frequency regime, under the hypothesis of high contrast 
between the stiffness of the coating and of the matrix, homogenization leads to the definition 
of the dynamic effective mass density, depending on the frequency, that becomes negative 
near the resonant frequencies of the inclusions. The intervals of negative effective mass give 
the band gaps. The influence of geometric parameters of the unit cell, such as the filling 
fraction or the coating thickness, on the spectral gaps can thus be simply studied. This can be 
useful for the design of the metamaterial.  

The paper is organized as follows. Section 2 sets the problem and the basic 
assumptions. The homogenization approach is developed in Section 3, where a closed form 
expression for the effective mass is derived. Results in terms of band gaps for different LRM 
are shown in Section 4. Section 5 provides a comparison of the analytical results with the 
numerical results obtained on a single cell with Bloch-Floquet boundary conditions; the range 
of frequency where the asymptotic homogenization approach is equivalent to the Bloch-
Floquet theory is also established and confirmed by the simulations. Some conclusions are 
given in Section 6. 
 
2. Problem formulation 
We consider out-of-plane wave propagation in a ternary material endowed with two 
dimensional periodicity. The heterogeneous body Ω has a cross section S in the plane x1-x2 
and has a length in the direction x3 very large with respect to the heterogeneities, see Fig. 1a. 
The unit cell that periodically repeats in the plane x1-x2 is composed by a stiff matrix m 
containing a cylindrical heavy inclusion (also referred to as fibers, f) coated by a very 
compliant material c, as shown in Fig. 1b. The matrix and the coating are isotropic with linear 
elastic behavior, while the fiber is considered as rigid. The two dimensional Bravais lattice 
has primitive vectors a1 and a2, which can have different moduli and can be non-orthogonal.  

 

 
Fig. 1. Metamaterial with periodically distributed coated cylindrical inclusions: (a) geometry, 

(b) unit cell with primitive vectors ia  

 
In this work, we assume that the size 1 2a = ∧a a  of the in-plane area Yϵ of the unit cell 

is small with respect to the considered wavelengths in the matrix material mL  
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m
m

m

a L m
ω ρ

= =
 , (1) 

with   a dimensionless small parameter, ω the angular frequency of the wave, mm the elastic 
shear modulus and ρm the mass density of the matrix. The coated inclusion has radius 

c cR R=   and the heavy stiff core has radius f fR R=  . The area of the coating and of the 

fiber inside the unit cell are cY   and fY  , respectively. The filling fraction f is defined as the 
ratio between the area of the coated inclusion and the total area 

f cY Y
Y

f
+

=
 


. (2) 

We further assume that there is high contrast between the stiffness of the matrix and that 
of the coating, namely the ratio between the elastic shear modulus of the coating and of the 
matrix is of the order of ϵ2. We denote by ϵ2mc the coating shear modulus, with mc of the order 
of mm, and by ρc its mass density. 

The motion, for a wave of angular frequency ω with out-of-plane polarization, is 
described by a displacement field, which has only one component uϵ = u3

ϵ in the direction x3 
that depends only on the in-plane coordinates x1 and x2. The non-vanishing stress components 

31σ   and 32σ   are collected in vector σ  that reads:  
grad um=σ    in Ω, (3) 

with m ϵ equal to ϵ2mc in cY   and mm in mY  . In view of the simplifying assumption of rigid 

inclusion, the stress in  fY   is only fixed by equilibrium. 
The equation of motion is expressed by: 

2div 0uρ ω+ =σ    in Ω. (4) 
The two scale asymptotic method [13], [11] allows to construct the homogenized 

equation of motion for the composite material and to derive analytical conditions for wave 
propagation and band gaps prediction. 

  
3. Homogenization approach 
Let us introduce first the rescaled unit cell Y= Yϵ/ϵ and a microscopic coordinate y=x/ϵ within 
it. The displacement and the stress are expanded in the form: 

0 1 2 2( ) ( , ) ( , ) ( , ) ...u u u u= + + +x x x x x x x       (5) 
0 1 2 2( ) ( , ) ( , ) ( , ) ...= + + +σ x σ x x σ x x σ x x       (6) 

The fields ( , )u uα α= x y� �  and ( , )α α=σ σ x y� � , 0,1, 2,...α = , depend on both the 
macroscopic x and microscopic y coordinates and are Y-periodic with respect to y. 
Accordingly, their spatial partial derivatives are denoted by an index x or y. From (5) and (6) 
one obtains: 

1 0 1 0 2 1grad ( ) grad grad grad (grad grad ) ...u u u u u u−= + + + + +y y x y xx    (7) 
1 0 1 0 2 1div ( ) div div div (div div ) ...−= + + + + +y y x y xσ x σ σ σ σ σ    (8) 

The expansions (5-8) are substituted in the governing equations (3-4) and the terms of 
the same order in ϵ are then considered.  

At order -1 from (3) we get 0grad 0u =y in Ym and Yf , while from (4) we get
0div inY=yσ 0 . Hence: 

0 0 0 0( , ) ( ) in ; ( , ) ( ) inm m f fu U S Y u U S Y= × = ×x y x x y x  (9) 
and  
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0 0 1 0(grad grad ) in ; inm m m cU u S Y S Ym= + × = ×x yσ σ 0 . (10) 
The term 0grad mUx in eq. (10) can be interpreted as a constant eigenstrain in the cell. 

For any value of 0grad mUx , one can solve a linear elastic static problem in the matrix only, 
with periodic boundary conditions, subject to the additional condition of zero stress at the 
boundary with the coating cY∂ . The out-of-plane displacement u1 in the matrix can be 
expressed as 

02
1 1

1
( , ) ( ) ( ) ( ) inim

m
i i

Uu U S Y
x

χ
=

∂
= + ×

∂∑x y x y x , (11)  

with iχ  solution of the problem  
div grad 0 in

(grad ) 0 on
periodic, grad anti-periodic  on

i
m

i
m i c
i i

m

Y
Y
Y

χ
m χ
χ m χ

 =
 + ⋅ = ∂
 ⋅ ∂

y

y

y

e n
n

 (12) 

ei being the unit vector of the axis xi. 
The stress in the matrix reads 

02
0

1
( , ) (grad ) ( ) ini m

m i m
i i

U S Y
x

m χ
=

∂
= + ×

∂∑ yσ x y e x . (13) 

The homogenized displacement u0 in the coating is the solution of the following 
problem, obtained by considering the terms of order 0 in ϵ in equilibrium equation (4) and 
those of order 1 in ϵ in the constitutive equation (3): 

0 2 0

0 0

0 0

div grad 0 in
on

  on

c c c

m c

f f

u u S Y
u U S Y
u U S Y

m ρ ω + = ×
 = ×∂
 = ×∂

y

. (14)  

For a given 0
mU  and a given ω, different from the eigen-frequencies of the coated 

inclusion fixed at its boundary cY∂ , problem (14) admits a unique solution that can be 
expressed as: 

0 0( , ) ( ) ( ) inm cu U S Yη= ×x y x y , (15) 
where η(y) is the solution of  

2

0 0

div grad 0 in
1 on

  on

c

c

f m f

k Y
Y

U U Y

η η
η
η

 + =
 = ∂
 = ∂

y

 (16)  

with: c

c

k ρω
m

= . 

The displacement of the rigid fiber 0
fU  is obtained from the global dynamic equilibrium 

of the fiber subject to inertia forces and surface tractions transmitted by the coating 
2 0 0grad ( ) 0

f

f f f c m
Y

Y U d Uρ ω m η
∂

+ ⋅ =∫ y y n y . (17)  

For the coated circular inclusion, problem (16)-(17) can be solved in close form and the 
solution in polar coordinates ( r = y ) for f cR r R≤ ≤   reads: 

( ) ( )0 0 0 0 0 1 0 1( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )
( ) f f f f c f fkR J kr Y kR Y kr J kR Y kr J kR J kr Y kR

den
ρ ρ

η
− + −

=y  (18) 
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with 
( ) ( )0 0 0 0 0 1 0 1( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )f f c f c f c c f c fden kR J kR Y kR Y kR J kR Y kR J kR J kR Y kRρ ρ= − + − , (19) 

where J0 and J1 are Bessel function of the first kind and Y0 and Y1 are Bessel function of the 
second kind. 

The ratio between the displacement in the fiber and in the matrix reads 
( )0

0 1 0 1

0

2 ( ) ( ) ( ) ( )
( ) c f f f ff

f
m

Y kR J kR J kR Y kRU
R

U den
ρ

η
−

= = . (20) 

The discussion for ω equal to an eigenfrequency of the coated inclusion follows the 
same lines of the case of binary metamaterials developed in [12] and is not reported here for 
brevity. 

Having obtained the above solutions for u0 and σ0 in the three constituent materials one 
can finally obtain an effective equation of motion for the propagation of out-of-plane waves in 
the metamaterial. To this purpose, let us consider the expansion of the equation of motion at 
order 0: 

1 0 2 0div div 0 inu S Yρ ω+ + = ×y xσ σ , (21) 
and let us integrate it over Y . The integral of the first term equals the integral on the cell 
boundary of the traction forces which vanishes by virtue of the periodic boundary conditions. 
The other two terms give 

* 0 * 2 0div ( grad ) ( ) 0 in m mU U Sρ ω ω+ =x xΜ , (22) 
where M* is the second order effective stiffness tensor, whose components are given by 

* 1 (grad ) (grad ) ,
m

i j
ij m i j

Y

M d
Y

m χ χ= + ⋅ +∫ y ye e y  (23) 

and ρ*(ω) is the  effective mass density. This latter reads 
0

*
0( ) ( ) .

c

f fm c
m f

m Y

Y UY
d

Y Y U Y
ρρ ω ρ ρ η= + + ∫ y y  (24) 

Using the expression (18) of η one has 
( ) 2 ( ( ) ( ))

c

c f
Y

d h R h Rη π= −∫ y y   (25) 

with 
( ) ( )1 0 1 0 1 1 1 1( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

( ) f f f f c f fkR J kr Y kR Y kr J kR Y kr J kR J kr Y kRrh r
k den

ρ ρ− + −
=  (26) 

which, inserted into (24) together with (20), gives the explicit form of the effective mass. For 
ω=0 the integral in (25) is cY , and 0 0

f mU U= , hence the effective mass coincides with the 
static mass density of the composite material ρst: 

fm c
st m f c

YY Y
Y Y Y

ρ ρ ρ ρ= + + . (27) 

The effective mass is not defined for the frequencies ω n which are roots of den=0 
(eq. 19), it tends to -∞ and +∞ when ω tends to ω n from above and from below, respectively. 
Therefore, the effective mass density is negative in a countable set of intervals. The values of 
ω n, which fix the position of these intervals, depend only on the geometry and material 
properties of the coating through the non-dimensional groups kRf and kRc defined for the 
rescaled problem in Y. The corresponding real physical quantities in Yϵ are defined as  
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2

c

c

k ρω
m

=


 , f fR R=  , c cR R=  , (28) 

hence f fk R kR=   and c ck R kR=  and the frequencies intervals determined with the above 
analysis remain valid for the physical problem.  

In view of eq. (22), waves with frequency ω such that the effective mass density 
becomes negative cannot propagate inside the composite material; the interval of negative 
effective mass identify then the band gaps. One should remark however that the 
homogenization approach applies only to waves with low frequency, as specified by 
hypothesis (1). This condition involves the properties of the matrix material and should be 
checked for the particular cases considered. 

 
4. Results  
Figure 2a shows the variation of the effective mass density, normalized with the static one, 
with the frequency ω/2π for the ternary metamaterial constituted by lead inclusions coated 
with rubber and embedded in epoxy matrix. The ratio between the external radius and internal 
radius of the coating is 0.2, the filling fraction is 2 0.4cR Yf π= =  and the materials 
parameters are listed in Table 1. The effective mass becomes negative in several intervals of 
frequency (shaded in the figure) that correspond to band gaps. 
 
Table 1. Materials properties 
Constituents Ε [MPa] ν [-] ρ [Kg/m3] 
matrix – epoxy  3600. 0.370 1180. 
coating – rubber  0.118 0.469 1300. 
inclusion – lead  14000. 0.420 11340. 
  

 
Fig. 2. Ternary metamaterial with filling fraction 0.4: (a) normalized effective mass vs. 

frequency for Rf / Rc = 0.2, intervals of negative effective mass give the first three band gaps; 
(b) intervals of negative effective mass in the plane frequency- Rf / Rc, the dashed line 

corresponds to the case shown on the left 
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The influence of the thickness of the coating is highlighted in Fig. 2b, where the regions 
of negative effective mass are shown at varying f cR R . The dashed line corresponds to the 
effective mass evolution shown in Fig. 2a. The amplitude of the first band gap increases as the 
thickness of the coating decreases since, at fixed filling ratio, this corresponds to an increase 
of the resonating fiber mass. 
 

 

 
Fig. 3. Frequency intervals of negative effective mass for varying filling fraction: (a) thick 

coating Rf / Rc = 0.67, (b) thin coating Rf / Rc = 0.87 
 

Since a closed form solution is obtained, one can easily perform parametric studies to 
evidence the influence of different geometries on the wave propagation properties.  

As an example, Fig. 3 displays the frequency intervals of negative effective mass at 
varying fillings fractions for the case of a thick coating (Fig. 3a) and that of a thin coating 
(Fig. 3b).  

In the first case, two strips are visible since two band gaps are inside the considered 
interval of frequency, while for the thin coating only the first band gap is inside the 
considered interval. In both cases, as the filling fraction increases, the opening frequency of 
the first band gap decreases and the amplitude of the bandgap increases.  

 
5. Discussion and comparison with Bloch-Floquet analysis 
The propagation of waves in periodic materials is often studied making use of the Bloch-
Floquet theory solving an eigen-problem for the elementary cell subject to peculiar boundary 
conditions. These latter, also called Bloch-Floquet boundary conditions, relate the 
displacements of opposite sides of the unit cell and depend on the wave vector k considered. 
The dispersion surfaces, ω=ω(k) can be numerically evaluated, e.g. by finite 
elements [14,15].  

Due to the periodicity and to the symmetries of the unit cell (if any), the description of 
the dynamic behavior of the metamaterial for all the possible wave vectors can be obtained by 
considering only the first Irreducible Brillouin Zone (IBZ) of the reciprocal lattice. 
Furthermore, often only the wave vectors along the boundary of the IBZ are considered, see 
[16,17] for details. The frequency of each mode is then plotted as a function of the arc length 
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along the boundary of the IBZ. The diagrams thus obtained are called dispersion diagrams 
and characterize the transmission properties of the periodic material. The intervals of 
frequencies where no real solutions exist define the band-gaps.  

In a recent work [12], the authors proved that the asymptotic analysis of the Bloch-
Floquet problem leads to the same effective equation of motion (20) obtained through the two 
scale homogenization methods described is Section 3. The two approaches therefore, in the 
low frequency range, give the same prediction of the band structure. In the following we 
illustrate these results for the ternary material with two dimensional periodicity.  

We refer to the material shown in Fig. 1. To perform the numerical analysis, we 
consider that the inclusions are distributed on S following a square lattice, characterized by 
orthogonal base vectors a1 and a2 with the same modulus, so that the unit cell is a square of 
side a.  

Note that the results of the homogenization theory are general, independent from the 
actual shape of the unit cell, while of course the numerical analysis of the Bloch-Floquet 
problem requires to fix the shape of the unit cell.  

Assuming a square primary lattice, the reciprocal lattice of wave vectors is also square 
and the Brillouin Zone is a square with side 2π/a. Exploiting symmetries, the IBZ is the 
triangle Γ−X−M, shown in the inset of Fig. 4a. The properties of the constituent materials are 
reported in Table 1.  

Figure 4a shows the dispersion plot for the metamaterial with a = 21mm, Rc = 7.5 mm, 
(corresponding to filling fraction of 0.4) and Rf = 5 mm. The band gaps are shaded and the 
relative amplitude, defined as the bandwidth divided by the central band-gap frequency, is 
also reported. Figure 4b shows the evolution of the normalized effective mass density with 
frequency obtained through homogenization (note that this diagram in rotated of π/2 to 
facilitate the comparison). The shaded regions correspond to negative effective mass density 
and hence give the homogenization-based predictions of band gaps. One can observe an 
extremely good agreement of the two approaches for the determination of the first band gap.  
 

 
Fig. 4. Three components metamaterial, filling fraction 0.4, Rf / Rc = 0.67: (a) dispersion plot 

with dashed bandgaps, (b) normalized effective mass density vs frequency, shaded areas 
correspond to negative effective mass 

 
The opening and the closing modes of the first band gap are shown in Fig. 5a-b, they are 

axial symmetric and correspond to different symmetry points of the IBZ, as common for 

Two scale homogenization in ternary locally resonant metamaterials 15



band-gaps generated by a local resonant mechanism. The second band gap in the dispersion 
plot is actually separated into two smaller bandgaps by the flat modes shown in Fig. 5d, and 
Fig. 5e corresponding to local resonances inside the coating characterized by displacement 
depending on both the radial and the angular coordinates.  

 

 
Fig. 5. Three components metamaterial, filling fraction 0.4, Rf / Rc = 0.67: (a) opening mode 
of first band gap, (b) closing mode of first band gap, (c) opening mode of second band gap, 

(d-e) flat modes inside second band gap, (f) closing mode of second band gap 
 

 
Fig. 6. Three components metamaterial, filling fraction 0.4, Rf / Rc = 0.87: (a) dispersion plot 

with dashed bandgaps, (b) normalized effective mass density vs frequency, shaded areas 
correspond to negative effective mass 

 

(a) mode 1 – k point M               (c) mode 4 – k point M               (e) mode 6 – k point M

(b) mode 2 – k point Γ                  (d) mode 5 – k point Γ (f) mode 7 – k point Γ
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The prediction of these flat modes through the homogenization approach would require 
to consider more general, not axial-symmetric, solutions. This part is not developed in this 
paper. The opening mode of the first part of this second band gap, shown in Fig. 5c, and the 
closing mode of the second part of this second band gap, Fig. 5f, are again axial-symmetric. 
From Fig. 5 one can also observe that the displacement is uniform in the internal lead 
inclusion, the hypothesis of rigid inclusion is therefore justified.  

Another comparison between the two approaches is presented in Fig. 6 for the 
metamaterial with inclusions with a thin coating (Rc = 7.5 mm and Rf = 6.5 mm). The 
agreement is very good also in this case, especially as far as the first band gap is concerned. 

One should remark that, in both cases considered in Figs. 4 and 6, the first band gaps 
fall inside the domain of validity of the homogenization approach, which is based on 
hypothesis (1). In fact, using the properties of the epoxy matrix and the cell dimension a, from 
(1) one obtains the following limit of validity of the asymptotic analysis:

max
1 8kHz

2
m

m

f f
a

m
π ρ

<< = = ; the frequency of the actual first band gaps are one order of 

magnitude lower than fmax.  
 
6. Conclusions 
Based on the two-scale homogenization approach, we present an analytical expression for the 
dynamic effective mass density of a ternary LRM with cylindrical inclusions. The results, 
which provide an estimate of the band gaps in the low frequency regime, are independent 
from the shape of the unit cell and from the matrix stiffness. On the contrary, the gaps in the 
spectral properties strongly depend on the filling fraction and on the thickness and stiffness of 
the coating. This dependence is explicitly given in this work. 

The range of validity of the homogenization approach is given and the results are also 
validated by comparison with those numerically obtained from the Bloch-Floquet theory. 

The findings may be useful in designing LRM for specific applications where the 
required band gap frequencies are fixed. The extensions to in-plane wave propagation and 
spherical inclusions do not bring conceptual difficulties and are currently under development. 
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Abstract. In the present work, using the method of a composite piezoelectric oscillator at a 
frequency of 99-102 kHz, polycrystalline magnesium was studied under two types of 
treatment: deformation and subsequent annealing. The influence of these types of treatments 
on changes in the dislocation density and such an important structurally sensitive parameter as 
the dynamic Young's modulus has been established. The values of micro-yield stress are 
determined. With a longitudinal deformation of 1.7%, at the strain amplitude of 5×10-6 , its 
value decreased from 2.9 MPa to 1.7 MPa; after annealing at 400 °C, it increased to 5.8 MPa.  
Keywords: Magnesium, mechanical spectroscopy, dislocation density, Young's modulus, 
internal friction, microplastic deformation 
 
 
1. Introduction 
Magnesium (Mg) and alloys based on it are widely used in the aerospace industry, 
shipbuilding and mechanical engineering due to its low weight, specific strength and 
environmental friendliness [1,2]. The low density of magnesium alloys has motivated the 
development of structural Mg alloys for automobiles and aerial vehicle, where weight 
reduction is needed to achieve high fuel efficiency [3]. In recent years, there has been a surge 
of interest in magnesium and its alloys as revolutionary materials for biomedical 
applications [4]. However, the poor plastic properties of Mg-based materials limit their 
applications [5]. At present, the development of new and improvement of existing Mg-based 
alloys does not stop [6,7,8]. For example, in 2001, rapidly solidified Mg–Zn–Y alloys were 
found to have excellent mechanical properties, including maximum tensile yield strength of 
~600 MPa and elongation of ~5% at room temperature [7,8].  

One of significant aspects of the properties of structural alloys is the study of the 
influence of microdeformations. Multiple microdeformations during the operation of the 
material lead to fatigue, wear, the formation of microcracks, and finally the fracture of 
samples or constructions [9]. The formation of new dislocations in the structure of the 
material lead to increase of internal stresses, which are the main reason for the degradation of 
materials strength properties. Knowledge of changes in the density of dislocations can be very 
useful in the practical applications due to the direct connection of this change with the fracture 
and wear of materials [10]. In this paper, we present the results of investigation of elastic and 
anelastic properties of pure polycrystalline magnesium using mechanical spectroscopy. The 
aim of our work is to study the changes in such a structurally sensitive parameter as the 
dynamic Young's modulus (YM) and mechanical damping or internal friction (IF) under 
deformation and annealing of magnesium. 
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2. Method and samples 
Polycrystalline magnesium samples with purity 99.99% in the shape of rectangular bars with 
characteristic dimensions of 2.5х2.5х24.5 mm were fabricated by casting. To study the 
microplastic behavior, the samples were passed through three processing steps:  
i) 1.7% longitudinal deformation carried out using a press ii) annealing at 200°С in vacuum  
iii) annealing at 400°С in vacuum. The measurements were taken before these processing 
steps and after each of them. The grain size in the experimental samples remained in the range 
from 10 to 100 μm. 

All measurements were conducted using the composite piezoelectric oscillator 
technique at a oscillatory frequency about 100 kHz [11]. The size of the samples was 
specially selected to ensure resonance of longitudinal oscillation. The temperature range used 
in the experiments was from 80 to 300 К. The low temperature range is optimal for studying 
dislocation motions since the contribution of thermal vibrations of the lattice decreases. In this 
range, the temperature dependencies of oscillation frequency and the IF were measured in the 
sample at a fixed oscillatory strain amplitude 10-5. Along with this, the amplitude dependence 
of IF was recorded at different temperatures and oscillation frequencies at constant 
temperature. Young’s modulus was determined using the resonant frequency of the sample:  
𝐸𝐸 = 4𝜌𝜌𝑙𝑙2𝑓𝑓2,                                                         (1) 
where 𝑓𝑓 is oscillatory frequency, 𝜌𝜌 is density of magnesium, 𝑙𝑙 is length of the sample. 

The frequency change in these experiments was approximately in 99-102 kHz range. 
Internal friction was determined by the change in voltage on the quartz transducer [11]. 
 
3. Results 
Figure 1 shows the temperature dependencies of YM and IF as a result of heating; in general, 
there is a tendency for YM and IF to decrease with increasing temperature. The dependencies 
of internal friction at low temperatures after deformation and after annealing at 200°C show 
the formation of a Bordoni relaxation peak close to 80 K [10], Fig. 1b. The value of Young's 
modulus over the entire range decreases by about 1.5%, as it is shown in Fig. 1a. To verify the 
adequacy of the obtained Young's modulus values, we used the traditional method of 
estimation of the elastic constants for polycrystals by Voigt – Reuss – Hill averaging [13]. 
Room temperature Young's modulus found with such averaging for magnesium is 43.2 GPa, 
which is close to our values determined before deformation and after annealing. Therefore, 
this indicates on the isotropy of the investigated Mg polycrystalline samples, which also 
means that the effects of texturing can be neglected [13].  

Figure 2 demonstrates temperature spectra of IF on cooling and subsequent heating 
before deformation. The amplitude dependencies were measured during cooling at fixed 
temperatures, Fig. 3, and during heating the continuous temperature spectra were obtained 
(Fig. 1b). Places where the data for amplitude dependencies were taken can be seen from the 
curve discontinuities during the cooling processes, see Fig. 2. It also important to note, that 
after each event of measuring amplitude dependence (Fig. 3) the level of IF sharply increases 
(Fig. 2), which may be associated with an increase in the density of dislocations after each act 
of loading. The heating process does not lead to stress relaxation, and the heating curve goes 
higher than spectrum for cooling. 
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Fig. 1. Temperature dependencies of the dynamic Young's modulus (a) and normalized 
internal friction (b) for differently treated samples: — before deformation, — after 

deformation, — after annealing 200ºC, — after annealing 400ºC;  
oscillatory strain amplitude is 10-5 
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Fig. 2. Temperature dependence of internal friction in the cooling-heating cycle before 
deformation: — heating; — cooling; oscillatory strain amplitude is 10-5 

 
Figure 3 shows the amplitude dependences of the internal friction at various 

temperatures divided into 3 groups. For the first group the measurements were conducted 
before deformation of the sample, for the second – after deformation, and for the third – after 
deformation and deep annealing. Each individual curve consists of two parts: amplitude-
independent internal friction (AIIF), where a change of the oscillatory strain amplitude is not 
accompanied by a change in the IF, (up to about 10-7) and amplitude-dependent internal 
friction (ADIF), where a change in the strain amplitude is accompanied by a sharp change in 
internal friction (after about 10-7) [14]. The amplitude dependences before deformation and 
after deep annealing are characterized by a pronounced increase in ADIF. At the same time, 
one can notice an increase in the hysteresis value (the difference between the forward and 
backward running) for these curves.  

Our measurements also allowed us to evaluate the mechanical (or microplastic) 
properties of magnesium using stress – strain diagram. We explored the algorithm to calculate 
microplastic deformation as it was proposed in [15]. To estimate the contribution of 
microplastic deformation, we plotted the dependence of microplastic deformation versus 
anelastic strain amplitude for three cases: before deformation; after deformation and after 
deep annealing, Fig. 4. 
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Fig. 3. Internal friction as function of the oscillatory strain amplitude at different fixed 
temperatures under different treatments of polycrystalline magnesium: before deformation; 

after deformation; after deep annealing  

 

Fig. 4. Microplastic deformation diagram for different treatments of magnesium polycrystal: 
— before deformation; — after deformation; — after deep annealing 
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4. Discussion  
A change in the dislocation density of the material directly affects such important structurally 
sensitive parameters as the dynamic Young's modulus and mechanical damping: plastic 
deformation produces additional (fresh) dislocations and results in YM decreasing and the 
increasing of IF. This effect was previously observed on numerous crystalline materials 
[12,13,16]. In this paper we show that the reduction of Young's modulus after deformation of 
1.7% is accompanied by a thermally activated Bordoni peak, as it follows from Fig. 1. The 
basis of this relaxation process is the formation and movement of thermal or geometric kinks 
at edge, screw and mixed dislocations [17]. The changes in the elastic modulus under 
different treatment are clearly seen in Fig. 1a. A drop in YM during deformation is caused by 
a raise of the dislocation density in the material. After annealing the structure relaxes and this 
process is accompanied by a decrease in the dislocation density and in the height of the 
Bordoni peak until its complete disappearance, and at the same time in a raise in the Young's 
modulus, see Fig. 1. The dynamic elastic modulus clearly raises with the annealing 
temperature increase; this can be explained by the diffusion of point defects to dislocations 
hindering their movement and annealing of the dislocations themselves [18,19]. It is also 
worth noting the recovery of the curvature of the elastic modulus graph, Fig. 1a, after 
annealing at 400°С; this indirectly reflects the state of equilibrium of the structure [11]. 
Investigation of amplitude dependences of IF after different treatments of magnesium is a 
clear evidence of a change in the dislocation structure, Fig. 3. These ADIF dependences relate 
on the formation of the microplastic regions, in which the damping raises as a consequence of 
dislocation multiplication [13]. The motion of dislocations in some cases is controlled by 
point defects [18,19]. Figure 3 shows that the deformation of the sample is accompanied by a 
sharp drop of the amplitude-dependent part of IF and appearance of strain hysteresis, which is 
connected with partial blocking of the dislocation movement. The magnitude of microplastic 
deformation at various amplitudes can be seen from Fig. 4. An increase in the dislocation 
density leads to blocking the propagation of dislocations, thereby reducing the magnitude of 
microplastic deformation. With a strain amplitude about 5×10-6 the values of micro-yield 
stress drop from 2.9 MPa to 1.7 MPa, and after annealing it increases by more than 3 times 
reaching the level of 5.8 MPa.  
 
5. Conclusions 
We studied the evolution of dislocation density of a polycrystalline magnesium under plastic 
deformation and annealing by mechanical spectroscopy at a frequency about 100 kHz. It was 
found that micro-yield stress caused by the movement of dislocations is reduced by 1.2 MPa 
at a strain amplitude of 5×10-6 after longitudinal sample deformation of 1.7% due to the 
increased dislocation density inside the polycrystal. After annealing the value of micro-yield 
stress increased by more than 3 times, which indicates a decrease in stresses inside the 
structure due to both the diffusion of point defects to dislocations and the annealing of the 
dislocations themselves. At the same time these processes are confirmed by a pronounced 
changes in the dynamic elastic modulus. 
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Abstract. The interaction of impurity atoms of light elements C, N, O with vacancies and 
vacancy clusters in fcc metals Ni, Ag and Al was studied by the molecular dynamics method. 
The binding energies of impurity atoms with vacancies, divacancies and stacking fault 
tetrahedron (SFT) are calculated. It is shown that the impurity atom in a vacancy is not 
located at its center, but is displaced relative to it in the direction of the <100> type. The 
changes in the activation energy of vacancy migration upon interaction with an impurity atom 
are calculated. When studying the interaction of impurity atoms with a SFT, it was found that 
the binding energy of C, N and O atoms for all the considered metals is higher with the SFT 
edge (i.e. with partial dislocation) than with the top of the SFT. 
Keywords: molecular dynamics, metal, vacancy, impurity, binding energy, divacancy, 
vacancy cluster, stacking fault tetrahedron 
 
 
1. Introduction  
Impurity atoms of light elements (primarily the most common ones: hydrogen, oxygen, 
nitrogen, carbon) have high chemical activity and already at low concentrations strongly 
influence on the properties of metals. Being effective stoppers of dislocations and grain 
boundaries, the impurities of light elements significantly increase the strength, hardness, 
frictional properties simultaneously, as a rule, with brittleness [1-3]. A high melting 
temperature and chemical resistance are typical for many interstitial alloys. Despite the 
importance of understanding the mechanisms and processes underlying the effect of doping 
light elements on the properties of metals, now there are many questions regarding the 
behavior of impurities at the atomic level in the metallic matrix. In particular, the questions of 
interaction at the atomic level of various interstitial impurities with defects in the crystal 
lattice, especially dislocations and grain boundaries, remain insufficiently studied. In this 
case, computer simulation is an effective research tool.  

This work is devoted to the study using molecular-dynamic modeling of the interaction 
of impurity atoms of light elements C, N and O with vacancies and vacancy clusters in metals 
with fcc lattice. As metals, Ni, Ag and Al were chosen. This set of three metals is unique in 
that two of them have almost the same radii of atoms, while the other two have almost 
identical electronegativities. The radii of atoms: Al − 1.43 Å, Ag − 1.44 Å, Ni − 1.24 Å [1]. 
Electronegativity (Pauling scale): Al − 1.61, Ag − 1.93, Ni − 1.91 Å [3]. Thus, when 
obtaining different dependencies for these three metals, the relationship either with the size of 
atoms or with electronegativity will be seen. 
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2. Description of the model 
The simulation was performed using the molecular dynamics method. The calculation block 
of the crystal had the shape of a parallelepiped and contained 8400 atoms. Periodic boundary 
conditions were used. Interactions of metal atoms with each other were described by the EAM 
tight-binding Cleri-Rosato potentials [4]. In this case, the energy of the i-th atom is found 
using expression: 
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Here А, p, q, ξ , 0r  are the potential parameters; rij is the distance between the i-th and  
j-th atoms. The parameters of the Cleri-Rosato potentials were taken from [4]. 

To describe the interactions of impurity atoms of light elements with metal atoms and 
impurity atoms with each other the Morse potential was chosen: 

( )2)( −ββ=ϕ α−α− ijij rr
ij eeDr ,                                                (2) 

where α , β , D are the parameters of the potential. Cleri-Rosato and Morse potentials have 
proved themselves in numerous calculations performed by the molecular dynamics 
method [5-8]. Pair potentials are relatively often used by various researchers to describe 
interatomic interactions in metal-impurity systems. Multi-particle potentials are physically 
more reasonable, but taking into account the high error of the experimental data on which the 
potential parameters are selected, as well as the error of the search methods of the parameters 
themselves, the choice of pair potentials is justified. 

The parameters of the potentials for describing the interactions of impurity atoms C, N 
and O with the metal atoms under consideration were taken from [9], where they were found 
taking into account empirical dependencies and known characteristics, such as the melting or 
decomposition temperature of the corresponding chemical compound of a metal with a light 
element, activation energy of the diffusion of an impurity atom in the crystal lattice of the 
metal. In [9], to describe the interactions of impurity atoms with each other in metals, the 
potentials proposed by other authors have been taken as a basis. For the C-C bond, the pair 
potential from [10] was transformed into Morse potentials. For N-N and O-O bonds, 
potentials were taken from [11,12]. 
 
3. Interaction of impurity atoms with vacancies 
The binding energy of an impurity atom with a vacancy Ebv was calculated as the difference 
between the potential energy of a calculation block containing a vacancy and an impurity 
atom at such a distance from each other, which eliminates their interaction, and the potential 
energy of a calculation block containing an impurity atom inside a vacancy. In both cases, 
before the calculation of the energy of the computational block, the structure was relaxed, 
after which the calculation block was cooled to 0 K. 

When conducting structural relaxation of the calculation block containing an impurity 
atom inside a vacancy, it was observed that the impurity atom in the vacancy is not located at 
its center, but is displaced relative to it in the direction of the <100> type. In Table 1, in 
addition to the binding energy of an impurity with a vacancy, the values of the displacement 
of the impurity atom δ from the center of the vacancy are shown (Fig. 1). 

In the literature there is very little information on the binding energy of light-element 
atoms with defects of the crystal lattice of metals. For fcc metals, we found only the binding 
energy of a carbon atom with a vacancy in γ-Fe: 0.67 eV [13] and 0.37–0.41 eV [14]. In [14], 
this quantity was found experimentally and with the help of ab-initio calculations; in [13] – 
only by the calculations. Of the metals under consideration, the characteristics of γ-Fe are 
closest to Ni (atomic radii: 1.29 Å (γ-Fe) and 1.24 Å (Ni); differences of electronegativities 
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with carbon: 0.72 (Fe) and 0.64 (Ni)). The binding energy of a carbon atom with a vacancy in 
nickel, found in our model, turned out to be 0.70 eV, which is close to the values in [13]. 

 

 
Fig. 1. The displacement of the impurity atom δ from the vacancy center (the vacancy center 

is marked with a cross) 
 

Table 1. The binding energy of an impurity atom with a vacancy (eV) 
 C N O 

Ebv  δ (Å) Ebv  δ (Å) Ebv  δ (Å) 
Ni 0.70 0.44 0.39 0.68 -0.05 0.80 
Ag 0.05 1.03 -0.25 1.24 -0.59 1.97 
Al 0.86 0.95 0.14 1.00 -0.58 1.05 
 

According to the data obtained in the work, the binding energy of impurity atoms with a 
vacancy is not always positive. For example, negative values were obtained for the oxygen 
atom for all three considered metals. This means that between a vacancy and an impurity 
oxygen atom there must be a kind of repulsion, their combination is energetically 
unfavorable. The largest values of the binding energy with a vacancy are obtained for a 
carbon atom in Ni and Al, which is apparently related to the largest size of carbon atoms 
among considered impurities. The smallest values of the binding energy and at the same time 
the largest displacements of impurity atoms from the center of the vacancy δ were obtained 
for Ag. In this case, impurity atoms are shifted almost to the position of the neighboring 
octahedral pore. 

Thus, vacancies are a "trap" mainly for relatively large impurity atoms, for example, 
carbon. For atoms of small size, such as, for example, oxygen, combining with vacancies is 
energetically not beneficial. 

In this work, we also investigated the effect of impurity atoms on the diffusion of 
vacancies in the metals under consideration. The migration energy of a vacancy was 
determined by the magnitude of the energy barrier in the migration path of the defect. In 
addition to the migration of a "pure" vacancy, the migration energies of a vacancy in the 
presence of an impurity atom in it were calculated. To obtain each point on the graph of the 
change in the energy of the calculation block, the structure was relaxed, during which the 
displaced atom, adjacent to the vacancy, remained stationary. Figure 2 shows the dependences 
of the change in the energy of the calculation block ΔU on the displacement Δr of an atom 
adjacent to a vacancy in the case of the vacancy without impurity (graph 1) and with an 
impurity carbon atom (graph 2). 

The graphs obtained for a vacancy with an impurity carbon atom, as can be seen from 
Fig. 2, asymmetric, in contrast to the graphs for vacancies without impurities. Nevertheless, 
the extremum is distinct and it is possible to estimate the activation energy of vacancy 
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migration with its separation from the impurity atom. It should be noted that the peak at the 
2nd dependence in Fig. 2 is located to the right of the peak for the "pure" vacancy in the case 
of Ni and to the left in the case of Al. 

 

     
                                   a)                                                                      b) 
Fig. 2. The change in the energy of the calculation block when an atom adjacent to a vacancy 

moves to its place: a) in Ni, b) in Al. 1 – in pure metal. 2 – in the case of the presence of 
an impurity carbon atom in the vacancy 

 
Table 2 shows the values obtained in the present work for the migration energy of a 

vacancy with and without impurities. These values are obtained for the "separation" of 
vacancies from impurities, not for the case of joint movement of vacancies and impurities. For 
joint migration of vacancy and impurity, it is necessary to implement an additional 
mechanism consisting in the exchange of places of the metal atom and impurity atom adjacent 
to the vacancy. 

 
Table 2. The migration energy of a vacancy with and without an impurity atom (eV) 

  without impurity C N O 

Ni 0.90 0.99 0.78 0.52 
Ag 0.91 0.81 0.74 0.87 
Al 0.38 0.60 0.61 0.26 

 
The obtained values of the migration energy of a vacancy in a pure metal are in 

satisfactory agreement with the data of other authors. For example, for Ni, values in the range 
of 0.9–1.1 eV are given in [15,16] and 0.4–0.6 eV for Al. 

The effect of impurities on the diffusion mobility of a vacancy is consistent with the 
previously mentioned binding energies of impurity atoms with a vacancy (Table 1). As can be 
seen from the Table 2, carbon atoms, having a positive binding energy, inhibit the diffusion of 
vacancies in Ni and especially in Al. In this case, due to the much higher mobility of 
vacancies compared to the mobility of impurity atoms [1,9], it seems more correct to say that 
impurity atoms are a "trap" for vacancies, and not vice versa. Oxygen atoms, on the contrary, 
"accelerate" the migration of vacancies, reducing their activation energy due to the negative 
binding energy of oxygen atoms with a vacancy. Nitrogen for different metals has a different 
effect on the migration of vacancies: it reduces the energy of migration in the case of Ni and 
Ag and increases it in the case of Al. 

 
4. Interaction of impurity atoms with divacancies and stacking fault tetrahedron 
Along with the vacancy mechanism, the contribution to diffusion in crystals is made by the 
migration of divacancies (bivacancies) – doubled vacancies [15,17]. Even in equilibrium 
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conditions in crystals there is a small concentration of them (as a rule, approximately two 
orders of magnitude lower than the concentration of monovacancies). Divacancies are unique 
in that they are the most mobile among vacancy clusters. In [17], using the molecular 
dynamics method, the activation energies of divacancy migration were found: 0.23 eV in Ni, 
0.18 eV in Ag, and 0.09 eV in Al. As can be seen, these values are several times lower than 
the energies of monovacancy migration (Table 2). With an increase in the number of 
vacancies in a cluster, its mobility sharply reduced. The next cluster, trivacancy, has a much 
lower mobility than mono- and, especially, divacancy [15]. 

Table 3 shows the binding energy of impurity atoms with divacancies in the metals 
under consideration. It should be noted that they are close to the values for monovacancies, 
differing, as a rule, only by the second decimal place. In accordance with these values, as for 
monovacancies, the influence of impurity atoms on the diffusion mobility of divacancies 
should be expected. 
 
Table 3. The binding energy of an impurity atom with a divacancy (eV) 

  C N O 
Ni 0.76 0.50 0.02 
Ag 0.06 -0.23 -0.57 
Al 0.89 0.22 -0.28 

 
The role of point defects is not limited to diffusion. With their high concentration in 

materials, they have a significant impact on the strength properties. Nonequilibrium high 
concentrations of point defects are formed as a result of rapid cooling from high temperatures, 
plastic deformation and radiation damage [15,18]. 

In addition to the defects mentioned above, of interest are unique vacancy clusters in fcc 
crystals – stacking fault tetrahedrons (SFT). At present, it is reliably established that small 
vacancy clusters in fcc metals are mainly stacking fault tetrahedrons [19,20]. The faces of the 
stacking fault tetrahedron (Fig. 3) are oriented along the (111) planes and are stacking faults, 
and the edges are oriented along the <110> directions and are partial dislocations with the 
1/6<110> Burgers vector [19]. SFTs are formed in all fcc metals, but their critical size, at 
which the vacancy disks become energetically more advantageous, depends to a large extent 
on the formation energy of the stacking fault in a given metal [21]. SFTs are formed as a 
result of radiation damage, rapid cooling from high temperatures, plastic deformation. 

In the molecular dynamics model, SFTs were created by introducing "triangular 
vacancy disks" (Fig. 3a). To do this, atoms were removed from the region having the shape of 
an equilateral triangle in the close-packed atomic (111) plane. For the formation of a SFT 
from such a "vacancy disk", additional thermal activation was not required. The mechanism 
of the "triangular vacancy disks" in the (111) plane to the SFT consisted in successively 
displacing (settling) of groups of atoms in the form of equilateral triangles from the planes 
parallel to the "vacancy disk" plane toward it (Fig. 3a). Because of the peculiarities of the fcc 
lattice, the sizes of the shifting groups of atoms of a triangular shape were successively 
decreased, as a result of which the free volume of the initial "vacancy disk" propagated into 
the tetrahedral region of the crystal and evenly distributed over the edges of the SFT (Fig. 3b). 
In Figure 3b it was used the visualizator of excess free volume, i.e. free volume over that 
which is characteristic of a pure crystal. It can be seen, for example, that inside the SFT itself, 
the structure corresponds to the structure of an ideal crystal, and all the excess free volume is 
concentrated on the edges of the SFT, which, as already mentioned, are partial dislocations. 
The faces of a SFT are stacking faults and contain almost as much free volume as an ideal 
crystal. 
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                                   a)                                                                    b) 
Fig. 3. Stacking fault tetrahedron in the molecular dynamic model: a) creation of a SFT from 
a "triangular vacancy disk" (displacements of atoms in the process of structural relaxation are 

shown by segments); b) the distribution of excess free volume in the SFT 
  

Impurity atoms were introduced in two positions: at the top and edge of the SFT. The 
values obtained are shown in Table 4. As can be seen from the table, the binding energy of C, 
N and O atoms for all metals turned out to be higher with the edge of the SFT (i.e. with 
1/6<110> partial dislocation) than with the top. In addition, in all cases the binding energies 
are positive, which indicates the attraction of impurities by such dislocations. The highest 
binding energy is obtained for a carbon atom with a SFT edge in Al – 1.40 eV. Such a high 
value of the binding energy speaks in favor of a relatively strong bond of carbon atoms with 
dislocations of this type. The lowest binding energies are obtained for Ag, which is apparently 
due to two factors simultaneously: a relatively large lattice parameter and not deep interaction 
potentials of impurity atoms with metal atoms. As in the cases of vacancies and divacancies, 
the lowest values of the binding energy are obtained for oxygen. 
 
Table 4. The binding energy of an impurity atom with a top and edge of SFT (eV) 

 C N O 
top edge top edge top edge 

Ni 0.64 0.77 0.49 0.72 0.27 0.62 
Ag 0.10 0.30 -0.03 0.15 -0.34 0.01 
Al 0.80 1.40 0.24 0.88 -0.11 0.44 
 

5. Conclusion 
The interaction of impurity atoms of light elements C, N, O with vacancies and vacancy 
clusters in fcc metals Ni, Ag and Al was studied by the molecular dynamics method. The 
binding energies of impurity atoms with vacancies, divacancies and stacking fault tetrahedron 
(SFT) are calculated. It is shown that the impurity atom in a vacancy is not located at its 
center, but is displaced relative to it in the direction of the <100> type. According to data 
obtained, vacancies are a "trap" mainly for relatively large impurity atoms, for example, 
carbon. For atoms of small size, such as, for example, oxygen, combining with vacancies is 
energetically not beneficial. The changes in the activation energy of vacancy migration upon 
interaction with an impurity atom are calculated. It is shown that at the positive binding 
energy of an impurity atom and a vacancy, they inhibit the migration of each other during the 
interaction. When studying the interaction of impurity atoms with a SFT, it was found that the 
binding energy of C, N and O atoms for all the considered metals is higher with the SFT edge 
(i.e. with partial dislocation) than with the top of the SFT. 
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Abstract. In this study, SiC was deposited on carbon/carbon (C/C) composite substrate using 
chemical vapor deposition (CVD) method to investigate the kinetics of the deposition process. 
Therefore, the time, temperature, precursor composition (SiCl4:N2:CH4) and substrate position 
in the reactor were varied to evaluate the deposition rate. X-ray diffraction (XRD) method 
was used to characterize the phase composition and calculate the grain size and the texture 
coefficient of the coatings. Field emission scanning electron microscopy (FESEM) was 
utilized to observe the coating morphology, microstructure and thickness. As observed β-SiC 
was the dominant phase of the coating with varied preferred growth crystalline planes of 
(111), (220) or (311). The coating thickness was 2 µm and 5 µm for the samples treated at 
1000 and 1100ºC, respectively. 
Keywords: chemical vapor deposition, boundary layer, deposition rate, SiC coating, 
C/C composite 
 
 
1. Introduction  
Carbon/carbon (C/C) composites have recently attracted much interest due to their unique 
physical, mechanical and chemical properties. Some advantageous properties such as low 
weight, good high-temperature strength, high thermal conductivity, resistance to thermal 
shock and resistance to high-temperature erosion make C/C composites more useful [1-6]. 
The most important defect of these composites is oxidation at temperatures higher than 
500ºC, which could be prevented by applying an appropriate coating on them. Silicon carbide 
(SiC) is the most applicable coating for C/C composites due to the low thermal expansion 
coefficient and high adhesion between coating and the substrate [7-12]. Chemical vapor 
deposition (CVD) is an attractive and efficient coating method for applying SiC coating on 
C/C composite. This method is based on the decomposition of a gaseous reactant in an 
activated environment and the formation of solid products. The thermodynamics and kinetics 
of CVD process could be used for identification of the process and reactions. Thermodynamic 
calculations could be employed to investigate the feasibility of the reaction, while kinetics 
study could be used to determine the controlling factor in deposition procedure. To obtain a 
uniform coating with a certain morphology and expected properties, an exhaustive 
investigation should be carried out on the deposition process to determine the controlling 
factors [13-18]. The aim of this research is to study the relationship between boundary layer 
theory and deposition kinetics of β-SiC coating on a C/C composite by CVD method. 
Therefore, the influences of various parameters on the deposition rate were studied.  
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2. Material and methods 
C/C 2D bi-directional structured samples was obtained from Jiao company. The modulus of 
elasticity, thermal conductivity and density of the composite were about 180 GPa, 
100 W/m·K and 1.8·10³kg/m³, respectively. Cubic specimens with dimensions of  
10 mm×10 mm×10 mm were cut from the bulk C/C composite by means of wire-cutting 
method. The samples were ground with emery silicon carbide papers of 400-1300 grits. 
Thereafter, the ground specimens were cleaned ultrasonically in acetone and ethanol for 
15 min followed by drying in the oven at 200ºC for 2 h. Low pressure chemical vapor 
deposition (LPCVD) process was carried out by means of a setup with horizontal reactor 
(NSSG, Iran).The deposition was performed using pure Sicl4 (Merck, Germany) and CH4 as 
well as N2 as dilution and carrier gas. The schematic diagram of the CVD setup is shown 
in Fig. 1.  

To evaluate the deposition rate, deposition parameters varied as follows; temperature: 
900, 1000 and 1100ºC, time: 1, 2 and 3 h, SiCl4:N2:CH4: 2:100:100, 4:100:100 and  
6:100:100 (sccm). Furthermore, the samples were deposited at different positions in the 
reactor to study the effect of sample position. 
 

 
Fig. 1. The schematic diagram of the CVD setup 

 
Deposition rate of the SiC coating were calculated utilizing the following equation:  

0

. 
W WR

A t
−

= , (1) 

where, 0W  and W are the weight of the sample before and after CVD process, respectively, 
A  is the sample surface area and t  is the deposition time. 

X-ray diffraction (XRD) (Bruker, Germany, Cu Kα=1.54 Å) was used to characterize 
the phase composition and measure the grain size and texture of the coatings. Field emission 
scanning electron microscopy (FESEM) (Tescan, Czech Republic) was utilized to measure 
the thickness and investigate the morphology of the coatings. 
 
3. Results and discussion  
X-ray diffraction analysis. Figure 2 illustrates XRD pattern of SiC coating applied on a 
C/C composite by CVD method. It can be seen that β-SiC is the major phase of the coating 
and also one carbon peak is observable. 
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Fig. 2. XRD pattern of β-SiC coating applied on C/C composite by CVD method 

 
The intensity of the carbon peak for the coatings produced at 1100ºC is lower than that 

of the coatings produced at 900 and 1000ºC. This carbon peak is related to the C/C substrate 
as X-ray beam can penetrate through 30 μm thick coatings [19]. As can be seen in FESEM 
cross-sectional images (Fig. 3), the thickness of the coatings produced at 1000 and 1100ºC 
was about 3 and 5 µm, respectively. Therefore, the carbon peak rises from substrate. 
Furthermore, with increasing deposition temperature, the intensity of β-SiC diffraction peaks 
enhanced. From the X-ray diffraction patterns, the texture coefficient (TC) of the coatings 
could be measured. The TC represents texture and preferred orientation of the crystal surface. 
The lower the TC value for certain (h k l) plane, the weaker the growth for that plane and vice 
versa. The TC and preferred growth orientation depend on the deposition conditions and on 
the deposition kinetics. The TC of (111), (220) and (311) crystal planes in polycrystalline SiC 
coating can be calculated using Harris method [19-20]:  
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where, iI  is the measured relative intensity of a (h k l) plane and 0I  is the standard intensity 
of the plane (taken from ASTM standard intensities) and n is the number of reflections. TC 
values for (111), (200) and (311) crystalline planes are shown in Fig. 4. It can be observed 
that at 900 and 1000ºC, the TC of (200) and (311) is higher than (111) plane. At 1100ºC, the 
TC of (111) direction is higher than that of (220) and (311). Hence, with increasing 
temperature, preferred orientation changes from (220) and (311) to (111) and at higher 
temperatures β-SiC tends to grow through densely-packed atomic planes. 
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Fig. 3. Cross section of SiC coated C/C at different temperatures of 1000 and 1100ºC 
 

 
Fig. 4. Texture coefficients of β-SiC coating at different temperatures 

 
The SiC coating grain size was calculated using the Debye-Scherer formula, as given in 

Equation (3) [21]: 
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D λ
β θ

= , (3) 

where, D  is the grain size of the crystallite, λ  is the wavelength of the incident X-ray, β  is 
the width of peak in the middle of maximum intensity and θ  is the related point on the 
horizontal axis. Table 1 presents the average crystal size of the SiC coating deposited at 
different temperatures. As it can be seen, the grain size of coating increases from 70 to 
350 nm as the deposition temperature increases from 900 to 1100ºC. 
 
Table 1. Calculated average grain size of coating at different temperatures 

Deposition temperature (ºC) Average grain size (nm) 
900 70 
1000 145 
1100 350 

 
Effects of different parameters on deposition kinetics. In general, the CVD process 

involves the following seven key steps [22]:  
1. Transport of gaseous species in to the reactor. 
2. Formation of intermediate species from reactant gaseous species.  
3. Diffusion of intermediate species through the boundary layer to the substrate surface.  
4. Adsorption of these species on the surface.  
5. A single-step or multi-step reactions on the substrate surface.  
6. Desorption of by-product species from the substrate.  
7. Forced exit of un-reacted gases and by-product species from the reactor.  
The schematic illustration of CVD steps during the deposition is shown in Fig. 5. 

Steps (1) and (7) are mass transport-controlled processes. Rate of step (1) is controlled by 
experimental conditions and flow rate of the precursors in the reactor. In addition, step (7) is 
controlled by the gas flow rate in the reactor and the power of vacuum systems. Step (5) is 
consisting of the intermediate gas reaction in the surface. Steps (3) and (6) show mass 
transport through the boundary layer. The rate of these steps can be determined by Fick's first 
law. In general, the steps in this model can be classified into two categories; the mass-
transport-controlled steps (1, 3, 6 and 7) and the surface-reaction-controlled steps (2, 4 and 5). 
Amongst, the slowest step determines either the process is a mass-transport or surface-
reaction controlled [18,22]. Thus, various parameters were studied to determine the kinetics 
of coating process.  
 

 
Fig. 5. Schematic diagram of the mechanistic steps of CVD process [20] 
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Temperature. Figure 6 illustrates the deposition rate of coating as a function of 
temperature. It can be seen that the deposition rate increases with deposition temperature due 
to overcoming the thermodynamically-formed barriers. However, at elevated temperatures, 
the consumption rate of the reactants at the surface of furnace hot wall is high too and it has a 
destructive effect on the deposition rate which can be clearly seen in Fig. 6. Thus, increasing 
the deposition temperature can be assumed as a positive and negative factor in SiC deposition. 
 

 
Fig. 6. Deposition rate of coating versus temperature 

 
For determination of deposition kinetics in CVD process, an accurate knowledge of 

boundary layer is necessary. According to boundary layer theory [11], mass transport through 
boundary layer could be pursued utilizing Fick's first law [22]. 

AB A
A

D dCJ
RT dx

= − , (4) 

where, AJ  is the diffusion flux of specie A , ABD  is diffusivity of reactants, AC  is 
concentration of specie A , R  is gas constant, T  is temperature and x  is the direction 
perpendicular to the substrate surface. In boundary layer theory of a CVD process, x  is the 
thickness of boundary layer. The average boundary layer thickness as a function of 
temperature is given as [22]: 
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where, L  is the length of the substrate, mixm  is the viscosity of the gas mixture, ρ  and u  are 
the density of the gas and the linear velocity of the gas in reactor, respectively. The density 
and velocity of the gas are function of temperature. The density is estimated by ideal gas law 
and the viscosity is estimated by some models [23]. Calculated results of the average 
boundary layer are shown in Fig. 7. As it is illustrated, an increase in temperature causes an 
increase in the thickness of boundary layer. Increasing the temperature causes the viscosity 
enhancement of the gas in reactor. With increasing gas concentration, the velocity of reactants 
in the reactor decreases. Thus, according to Eq. 5, the boundary layer will get thicker. With 
more thickening of the boundary layer, the growth kinetics will be controlled by mass 
transport. When the deposition rate is controlled by mass transport, the particles pass through 
the boundary layer thickness and reach to the substrate surface and the coating has enough 
time to grow. As can be seen in Fig. 4, the preferred orientation for growth of the crystals at 
high temperatures is (111) crystalline plane. Thus, it can be concluded that at elevated 
temperatures, the boundary layer thickness increases and the deposition process is controlled 
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by mass transfer. Due to having enough time for being ordered, crystals grow in high density 
orientation.  
 

 
Fig. 7. Calculated boundary layer thickness at different temperatures 

 
Precursor composition. The effect of composition of precursor on deposition rate of 

coating is shown in Fig. 8. The results indicate that the deposition rate increases with 
increasing the amount of SiCl4 in the gas composition. Increasing SiCl4 as precursor from 2 to 
4 sccm has a meaningful effect on deposition rate, but increasing it from 4 to 6 sccm has a 
lower effect on deposition rate. When SiCl4 amount is 2 sccm, the concentration of active 
particles containing Si is very low in comparison to the active particles containing C, thus the 
deposition rate is very low. With increasing SiCl4 up to 4 sccm, the concentration of  
Si-containing particles on the surface increases and the deposition rate increases severely. 
However, with increasing SiCl4 content up to 6 sccm, the deposition rate slightly increases. In 
this case, the excessive concentration is the controlling factor of the deposition process. 
 

 
Fig. 8. Deposition rate of SiC coating versus SiCl4 concentration 

 
Time. The deposition time is one of the most important and controlling parameters in 

the nucleation and growth of SiC on C/C composite. Figure 9 shows the effect of time on 
deposition rate of SiC coatings. It can be seen that the deposition rate is low at first hour, 
followed by a significant increase especially when the deposition time increased to 3 hours. 
When the deposition time is low, SiC nucleates on the surface of C/C composite.  
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Fig 9. Deposition rate of SiC coating versus deposition time 

 
Position of the samples in the reactor. Position of substrate in the CVD reactor is one 

of the effective parameters on deposition rate. In different parts of the reactor, temperature, 
pressure and gas flow input is sometimes different. Figure 10 illustrates substrate positioning 
in the CVD reactor and its effects on deposition rate. As it is obvious, the deposition rate is 
higher in position 2 than that in positions 1 and 3. Thermocouples of the CVD reactor furnace 
are located close to this location and displayed temperature is the temperature of this position. 
In this position, since the distance from the inlet and outlet of reactor is high, the temperature 
is higher and mass transfer is easier. Thus, the activated particles suspended in the reactor 
react readily on the substrate surface. However, around position (1) and (3) due to the 
closeness to input and output gates, the temperature is lower and the deposition rate is less.  
 

 
Fig. 10. (a) Schematic illustration of substrate position in reactor, (b) deposition rate of SiC 

coating versus substrate position 
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Controlling factors of deposition. To determine the factors controlling the deposition 
rate, its changes versus temperature is plotted in Fig. 11. The resulted curve can be divided 
into two regions. Due to the changes in region (a), the slope of the curve is constant, but in 
region (b), a noticeable decrease of the slope could be clearly seen. From the calculated slope, 
it could be noted that chemical reactions, mass transfer and surface migration, network 
integration and byproducts desorption from surface are the controlling factors in region (a). 
The surface processes strongly depend on deposition temperature and the processes speed up 
with temperature enhancement. Also, it could be mentioned that deposition could be 
controlled by mass transport of the activated particles in the boundary layer in region (b). 
Hence, there is a limitation in mass transport and deposition rate, which are slightly dependent 
on temperature. In fact, at high temperatures, surface processes are accelerating, thus fewer 
particles could reach the surface. Therefore, the growth mechanism of the deposit also 
changes. The change in mechanism of the crystal growth was also observed by calculation of 
the preferred orientation of crystals. The (111) crystalline plane is more compact than (220) 
and (311) crystalline planes and Si and C atoms, are arranged in this plane in compressed 
mode. It can be concluded that, at low temperatures, deposition is controlled by chemical 
reaction and particles can easily reach the surface at lower speeds. When the surface reaction 
is carried out at lower speeds, the particles deposit in irregular form and may be stacked with 
little compression. In this state, the texture coefficient (TC) of (220) and (311) planes are 
more than that of (111). When the deposition rate is controlled by mass transport, the transfer 
of activated particle to surface is done slower and atoms have adequate time to be arranged 
and compressed. The crystals grow in plane (111) with the lowest surface energy. Certainly, 
there is a little information about the details of the surface process mechanisms, but the 
relationship between temperature and activation energy can be defined by the following 
Arrhenius formula [18]: 

exp aER A
RT

 = − 
 

, (6) 

where E  is the activation energy, A  is a constant; R  and T  are the gas constant and 
temperature, respectively. The activation energy could be obtained from the slope of the 
Fig. 11. Results of the activation energy calculation showed that the activation energies in 
regions (a) and (b) are 69 kj.mol-1 and 18 kj.mol-1, respectively. 
 

 
Fig. 11. The deposition rate curve versus inverse temperature 

 
Region (a) represents a region that is controlled by chemical reaction and the activation 

energy in this area is much greater. The high activation energy indicates that deposition takes 
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place with difficulty and barriers ahead of deposition process are high. Therefore, it is 
expected that the formed coating has a low thickness. In region (b), the activation energy is 
lower. Deposition has a lower dependence on temperature in this region. Hence, SiC deposits 
more easily. 

FESEM images of coatings. Figure 12 demonstrates surface morphology of 
C/C composite before and after SiC deposition. As it is observed, C/C has a laminate 
configuration due to the flake-like structure of C/C, which acts as a template for further SiC 
growth. As it is seen from the figure, SiC crystals grow according to flakes of the substrate 
and are not capable of growing on the surface porosities of C/C surface. Therefore, deposition 
time needs to be extended. On the other hand, since the temperature is an effective parameter, 
it also needs to be elevated to prepare adequate energy for SiC particles to grow in porosities. 
 

 
 

Fig. 12. Surface morphology of C/C composite (a) before and (b) after SiC deposition 
 

Figure 13 presents EDS analysis of SiC coating. As it is seen, the coating is consisted of 
high percentage of C and Si. Presence of O in composition of coating indicates that some 
areas of SiC have undergone oxidation. However, as the amount of oxygen is low, oxidation 
cannot be widespread on the coating.  
 

 
Fig. 13. EDS analysis of SiC coating on C/C substrate 
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Figure 14 shows FESEM images of SiC-coated C/C with two different magnifications. 
As it is observed, at 900 and 1000ºC, the generated clusters are very small and by increasing 
temperature, they start to grow and become bigger and bigger. At 1100ºC, many crystals 
could grow and in some cases, crystal size has even reached 300 μm. 
 

 
 

Fig. 14. FESEM images of SiC coated C/C with two different magnifications at  
900 and 1000ºC 

 
Effect of deposition time on growth morphology of coating. Figure 15 presents 

FESEM images of the applied SiC coating in different periods of times. As it is observed, by 
increasing deposition time, the crystallized grains on the surface of C/C have grown and their 
size have increased. When the deposition time is less, crystals nucleate and if they reach 
critical radius, begin to grow. As can be observed in the figure, during 1 h, small particles 
have been generated on the surface of the composite. By increasing deposition time up to 2 h, 
the same particles exist on the surface. However, they had the sufficient time to absorb more 
Si and C atoms to be enlarged and reach the diameter of 100 nm. When the time was further 
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allocated, initial nucleation and growth both occurred at the first hour of deposition. However, 
the main growth happened at the last hour of deposition and crystals have been able to reach 
themselves to the diameter of 200 to 300 nm homogeneously. From above mentioned 
discussion, it is concluded that SiC crystals grow in an Island-type manner. 
 

 
 

Fig. 15. FESEM images of the applied SiC coatings in different periods of times 
 
4. Conclusions 
From the above-mentioned results, the following conclusions could be drawn;  

1) Phase characterization of SiC coating applied at different temperatures shows that the 
β-SiC phase in crystalline planes (111), (200) and (311) grows on the surface of C/C 
composite and the phase peak intensity increases with increasing temperature.  
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2) Texture coefficient calculation results using XRD analysis revealed that crystal 
preferential orientation at 900 and 1000ºC were (311) and (200) and at 1100ºC, preferred 
orientation of crystalline plane was (111).  

3) Grain size calculation by utilizing XRD analysis revealed that grain size of the 
coating applied at 900, 1000 and 1100ºC were 70, 145 and 350 nm, respectively. 

4) With increasing temperature, the amount of SiCl4 in precursor, and placement of 
sample in middle position of reactor, deposition rate of SiC on C/C composite increases. 

5) Kinetics studies show that at 900 and 1000ºC, controlling factor is the chemical 
reaction and at 1100ºC, it is mass transport.  
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Abstract. In the current paper, the characteristic factor )]/1()/(904.01[ bssb ssssb −⋅+=  is 
extracted from the analytical solution of the bending moment for a rectangular strain- 
hardening beam first. Thereafter, the characteristic factor b  is transplanted into the 
previously proposed assessment of the critical buckling strain for rigid-perfectly plastic 
bending pipe by analogy method, thus an extended expression of the critical buckling strain 
for a pipe plastic bending including strain-hardening effect is developed, 

])1/(904.0096.0[)
78.1

1(19.0 2n
r

t
r
t

c −+⋅+⋅=ε . Moreover, available test data is employed to 

check the suitability of the extended expression. The results show that the extended 
expression is reasonable to reveal the effect of Hollomon type strain-hardening behavior on 
the critical buckling strain of pipe plastic bending. 
Keywords: plastic bending, buckling, critical strain, strain-hardening, pipe 
 
 
List of symbols 

BRM : critical bending moment of a pipe 
r : cross-sectional radius of a pipe 
t : thickness of a pipe 
E : Young's modulus of a pipe material 
ν : Poisson's ratio of a pipe material 

0D : cross-sectional diameter of a pipe 
M : bending moment of a pipe 
κ : bending curvature of a pipe 

2
1 0t Dκ =  
DD : change in diameter of a pipe 

ss : yielding strength of pipe material 
P : internal pressure of a pipe 

0 0 02P t Ds=  

acs : critical buckling stress of classical (elastic) solution for Donnell equation for circular 
shell 

acε : critical buckling strain of classical (elastic) solution for Donnell equation for circular 
shell 

ip : maximum internal design pressure 

ep : minimum external hydrostatic pressure 
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sE  = 207GPa 

yF : effective specified minimum yield strength 
σh: characteristic hoop stress 

hα : maximum yield to tensile ratio;  

gwα : girth weld factor 
C : longitudinal curvature of the pipe during bending 

cC : critical longitudinal curvature C  
γ : dimensionless parameter to reflect the ovalization of the cross section of the bending pipe  

cγ : critical value of γ  

k : the intensity factor of metal 
n : hardening exponent of metal 

bs : ultimate strength 
/s bR s s= : ratio of yield strength to ultimate strength 

uε : uniform elongation 
4/2

0 sbhM s=  
b : width of a beam  
h : height of the beam  

pM : bending moment of the rectangular strain- hardening beam 
)]/1()/(904.01[ bssb ssssb −⋅+= : factor characterizing strain -hardening effect on bending 

moment of a beam as compared to the ideal plastic one 
 
 
1. Introduction 
Buckling failure is a common phenomenon in pipe production and service conditions 
involving bending. This kind of failure is fatal due to the loss of load capacity. However, the 
assessment of critical strain of plastic bending pipe at buckling is still insufficient. 

In general, buckling initiation can be used to define the failure of pipeline. During pipe 
bending, the cross - section shape of pipe changes from a round to an oval one gradually, and 
the bending load or moment increases at the beginning stage; however, the bending load or 
moment could no longer increase or even suddenly decreases when the pipe bending exceeds 
certain degree, which is defined as buckling failure of the bending pipe.  

Early in 1927 [1], Brazier proposed an elastic solution to correlate the bending moment 
and critical state at the limit point. His work showed that when an initial straight pipe is bent 
uniformly, the tension and compression in longitudinal direction in the pipe resist the applied 
bending moment, at the same time the cross section of the pipe tends to ovalize or flatten 
elastically, which in turn reduces the flexural stiffness of the member as the bending curvature 
increasing. He showed that the flexural stiffness has a maximum value which is defined as the 
critical instable moment, 2/122 )1/(987.0 ν−= rEtM BR , where r  and t  are the cross-sectional 
radius and thickness of a pipe, E  is its Young's modulus and ν  is the Poisson's ratio, 
respectively.  

Similar to Brazier, Chwalla studied the flattening of pipe cross-section due to pipe 
bending in 1933 [2]. It diminishes the bending resistance of pipes progressively due to the 
production of a certain curvature, and the bending moment for an oval section is smaller than 
that of a round one. This nonlinear effect leads to instability [3]. The theoretical flexural limit 
moment of cylindrical shells in considering section flattening (ovalization) is with a high 
critical value [4]. Seide and Weingarten studied the bifurcation of bending cylindrical shell, a 
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linear pre-buckling state and a Ritz-type bifurcation solution were assumed [5]. Their results 
indicated that the buckling stress of a finite length simply supported cylindrical shell bending 
is similar to the pure compression shell. Reddy observed the wave - like ripples on the 
compression side of bending pipes ahead of collapse with steel and aluminum specimens [6]. 
Kyriakides and Ju studied the instability of cylindrical aluminum shells in pure bending [7,8], 
the ratio of diameter to thickness of the cylindrical aluminum shells was 19.5 ~ 60.5, and the 
length to diameter ratio was 18.1 ~ 30.1; the appearance of wave - like ripples was observed 
on the compression side of the bent pipes once more before collapse. Libai and Bert [9], 
Tatting et al. [10], Stephens and Starnes [11] also investigated the dependence of bifurcation 
instability on Brazier's flattening effect.  

In these decades, massive work has been done to study the stability of circular pipe 
bending due to the needs of safety assessment of pipeline and behavior of nano-pipe.  

As to the buried pipeline, it might suffer from complex and changeable environmental 
conditions, which could induce deformation and strain or even lead to pipe failure, the critical 
value of strain for a bending pipe at buckling might be rationally taken as a parameter in 
pipeline design in nowadays [12-15]. However, the assessment of critical buckling strain is 
still on the way, though some formulae have been proposed [13-15]. Till now some formulae 
are either short of physical meaning or unreasonable. The prediction of classical analytical 
solution is far from experimental results due to its elastic feature though it is with clear 
physical meaning [13,14], other regressive or fitted formulae are short of physical meaning or 
unreasonable [15], see the analysis in next section in detail. This situation indicates that the 
assessment of the critical strain of plastic bending pipe at buckling is still an important and 
open problem. 

In 2006, Khurram Wadee et al. proposed a variational model to formulate the 
deformation localization of bending round thin-walled pipes in elastic status [16]. The results 
are compared to a number of case studies including nano-pipe, but it is in elastic case. 
Philippe Le Grognec and Anh Le van studied the theoretical aspects of elasto-plastic buckling 
of plates and cylinders under uniform compression in 2009 [17]. 3-D plastic bifurcation 
theory assuming the 2J  plastic flow with von Mises yield criterion and a linear isotropic 
hardening are involved in the analysis. The critical loads, the buckling modes and the initial 
slope of the bifurcated branch are obtained for the rectangular plates under uni-axial or biaxial 
compression (-tension) and cylinders under axial compression. Poonaya et al. analyzed the 
plastic collapse of thin-walled round pipe bending in 2009 [18]. The oblique hinge lines along 
the longitudinal pipe within the length of the plastic deformed zone were introduced in the  
3-D geometrical collapse mechanism analysis. The internal energy dissipation rates, the 
inextensional deformation and perfect plastic material behavior were assumed in the 
derivations. Gianluca Ranzi and Angelo Luongo proposed an approach to illustrate the  
cross-section change in the context of the generalized beam theory (GBT) in 2011 [19]. The 
semi-variational method was employed to formulate the problem.  

In 2012, Christo Michael et al. studied the effects of ovality and variable wall thickness 
on collapse loads of pipe bending in-plane by finite element limit analyses with  
elastic-perfect plastic material model [20]. It showed that ovality affects collapse load more 
significantly than thinning in the pipe bending process. They proposed a regressive 
mathematical equation to include the oval effect for their finite element analysis results. 

Currently, Gayan Rathnaweera et al. studied the performance of aluminum / Terocore 
hybrid structures in quasi-static three-point bending by experiment and finite element 
analysis [21]. They observed two failure modes in their study, i.e., the top surface failure 
(compression) from structures made of AA7075 T6 and the bottom surface failure (tensile) 
from structures with higher percentage volume of foam. 

Wrinkling is an accompanying phenomenon in pipe bending [22,23]. Guarracino 
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pointed out that the growth of ripples on the compressed side of the pipe has a softening effect 
on the overall response of the bent pipe [22]. Lamam et al. studied the inelastic wrinkling and 
collapse of stainless steel (SS) 321 pipes with a tD /0  about 52 under combined bending and 
internal pressure experimentally [23], where 0D  and t  are the diameter and thickness of the 
pipe. Their results indicated that the moment ( M ) – bending curvature (κ ) response κ−M  
can be characterized by an initial linear elastic regime during which the pipe underwent a 
small amount of ovalization. Then the elastic regime eases into a smooth moment knee caused 
by the onset of inelastic action. The knee is followed an essentially linear "hardening" regime, 
which continues to a relatively high curvature. The increase of the change rate in diameter 

DD  indicates a growth of ovalization accompanied by a net plastic circumferential expansion 
of the pipe. Meanwhile, pockets of small amplitude wrinkles were observed on the 
compressed side of the pipe soon after the moment knee. Under zero pressure condition, the 
wrinkles were short lived, which developed on the compressed side of the pipe and soon 
thereafter one of them localized, it results in a sharp local inward kink. This is a sudden event 
that is associated with the sharp loss of rigidity at the end of the κ−M  response, which 
corresponds to the appearance of maximum moment. This phenomenon implies that the limit 
carrying capacity of the pipe could be characterized by κ−M  response at the buckling 
though small amplitude wrinkles were observed on the compressed side of the pipe [23]. 

While, in the presence of internal pressure the moment–curvature response κ−M  after 
the knee becomes stiffer and follows an early linear path that is higher than that of the pure 
bending test [23]. The bulging led to the drop in moment observed at the termination of the 
M–κ response indicating that the structure started collapsing. The collapse point of the pipe is 
defined at the curvature corresponding to the maximum moment. As the pressure increases the 
response after the knee maintains approximately the same slope but gradually moves down 
with pressure. The zero pressure case is seen to have a different post-yield slope than the rest 
due to the significance of the pipe cross section ovalization [23].  

In summary, the limit carrying capacity of a bending pipe could be characterized by 
κ−M  response at the buckling regardless of the presence or absence of internal pressure. 
In 2015, Ji and Zheng et al developed an analytical approach for assessing critical strain 

of plastic bending pipeline at buckling with the cross section ovalization and rigid-perfect 
plastic material models [24]. The available test data from Ref. [13,14] was employed to check 
the validity of the assessment, good agreement was obtained. However, strain-hardening 
effect of pipeline material was not included in such approach, which is a shortcoming of the 
work, see the analysis in next section in detail. 

In this paper, an expression including strain-hardening effect on assessment of critical 
strain for plastic bending pipe at buckling is developed; the cross section ovalization model 
and the Hollomon type strain-hardening behavior of the pipe material are employed. 
 
2. Typical approaches for assessing critical buckling strain of bending pipe  
Elastic solution (classical solution). The classical (elastic) solution for Donnell equation of 
circular shell is [25,26], 

r
tE

cr
)1(3 2ν

s
−

= , (1) 

in which, r , and t  are the radius, and thickness of the circular shell, respectively; E  is elastic 
modulus of the circular shell; s  is the uniform stress on the circular shell along its axial 
direction.  

For common metallic material, such as steel, its Poisson's ratio is 3.0=ν , while for 
aluminium and copper, their Poisson's ratio is 34.0=ν  [27], Eq. (1) reduces, 
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r
tEcr 605.0=s , for steel; (2) 

r
tEcr 614.0=s , for aluminium and copper. (2′) 

The corresponding critical strain is 

r
t

cr 605.0=ε , for steel; (3) 

r
t

cr 614.0=ε , for aluminium and copper. (3′) 

For a bending circular shell, it gives the same results as Eqs. (3) and (3′).  
The experimental data shows that Eqs. (3) and (3′) give more significant 

overestimations than the test results [24]. 
In general, the value of radius-thickness ratio tr /  for a practical pipeline, is about  

30 ~ 50, which results in a higher %02.2~%21.1=crε
 
from Eq. (3), it exceeds the usual 

elastic limit strain of the pipeline steel so much, says, about 0.2% [24]. This phenomenon 
indicates that the prediction of Eq. (3) exceeds its actual application scope for a practical 
pipeline seriously, so it isn't valid for practical pipeline. 

Other expressions. Some other empirical approaches have been proposed to predict the 
critical strain of bending pipe at buckling, such as [24], 

Sherman (1976): 2)/(16 Dtc =ε ; 

Stephens (1991): 59.1)/(42.2 Dtc =ε . 
However, the comparison of their results with experiments indicates the non- 

reasonability of these formulae [24]. 
Available codes in industry.  
(1) CSAZ662-07 
CSAZ662-07 code C.C6.3.3.3 gives an assessment of local critical buckling strain 

including primary loads, secondary loads, or both [24]， 
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in which, cε  is the ultimate compressive strain capacity of the pipe; t  is the wall thickness of 
the pipe, mm; D  is outside diameter of pipe, mm, ip  is maximum internal design 
pressure, MPa; ep  is minimum external hydrostatic pressure, MPa; sE  = 207GPa, 

yF  = effective specified minimum yield strength, MPa. 
(2) DNV-OS-F101  
DNV-OS-F101 clause 507 supplies the characteristic compressive bending strain 

capacity, cM ,ε  as [24], 
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in which, t  and D  represent the thickness and diameter of the pipe; hs  is the characteristic 
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hoop stress; ss  is the yield strength of material; R  is ratio of yielding strength to ultimate 
strength; gwα  girth weld factor (=1 for specimen with no weld); P  is the internal pressure.  

However, studies show that the accuracy of predictions of both two codes is also 
limited [24].  

 
3. Cross section ovalization model for assessing critical buckling strain of pipe plastic 
bending 
Ji and Zheng et al proposed an analytical assessment for critical strain of pipe plastic bending 
at buckling, which considered the cross section ovalization during bending and rigid-perfect 
plastic material models [24].  

In the derivations, the energy rates of cross section ovalization and the oval pipe 
bending were established, which were combined to derive the macro bending moment of pipe. 
Furthermore, the maximum of macro bending moment of the pipe at buckling is yielded, and 
the assessment for critical buckling strain of the plastic bending pipe is then obtained. 

The longitudinal curvature of the pipe during bending is expressed by C , which could 
be used to characterize the instant status of the bending pipe [24].  

For a thin-wall circular pipe [24], rt << , if a standard ellipse is employed to 
characterize its ovalized cross-section shape due to bending, a dimensionless parameter γ  
could be introduced to reflect the ovalization of the cross section, thus the lengths of the 
longer and shorter half axis of the ellipse could be written as, )1( γ+= ra  and )1( γ−= rb , 
respectively. The dimensionless parameter γ  depends on the longitudinal curvature C  of the 
bending pipe, which could be seen in [24] for details. Besides, the material of the pipe 
behaves as a rigid - perfect plastic one.  

Instability of the bending pipe occurs when the curve of bending moment M  with 
respect to γ  reaches to the peak. Thus the critical value of cγ  is derived, it obtains 

11.0=cγ  [24]. 
Furthermore, it derives the critical longitudinal curvature cC  of the bending pipe by 

completing the complicated integral calculations in [24], 

22 8524.02131.0
D
t

r
tCc == . (8) 

Correspondingly, the apparent strain of the outer-fiber-line for the bending pipe at 
buckling is derived [24]: 

)
78.1

1(19.02131.0)
2

89.0(
2

)1( 2 r
t

r
t

r
t

r
trCtr cc +⋅=⋅+=⋅



 +−= γε . (9) 

Eq. (9) is the expression of apparent strain of the outer-fiber-line of the bending pipe at 
buckling geometrically. In the derivation, a rigid-perfect plastic material model and cross 
section ovalization are involved.  

The factor 0.19 in Eq. (9) is close to the most experimental results [24]. 
In Ref. [24], the available test data from Ref. [13,14] was employed to check the 

validity of the predictions of cross section ovalization model for plastic bending pipe, good 
agreement was obtained.  

Obviously, strain-hardening effect of pipeline material was not included in the above 
proposed model, which is the main shortcoming of the work. 

 
4. Extension of critical buckling strain assessment to include strain-hardening effect on 
plastic bending pipe  
Function of strain-hardening on critical buckling strain of plastic bending pipe. Strain 
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hardening or deformation strengthening ability of metallic material is one of the most 
important properties of metals, and the most commonly used relationship describing this 
ability is the Hollomon formula [28], 

nks ε= ,  (10) 
in which, s  and ε  present the true stress and true strain, respectively; k  is the intensity 
factor; n  is the hardening exponent of metal. 

Okatsu et al. conducted buckling experiments for small scale linepipes of Hollomon 
type material with different strain-hardening exponent n  [29]. Their results showed that 
higher strain-hardening exponent n  obviously corresponds to higher critical buckling strain 

cε  for pipes with different diameter to thickness ratio, tD / , see Fig. 1 [29]. Their results also 
indicated that high deformability linepipe ″JFE - HIPER″ is with superior resistance to 
buckling, which is developed by multiphase micro - structural control from X52 to X100 
grades. The stress-strain curves in the longitudinal direction are round-house type for all 
pipes, and high n  - value (low Y/T ratio). 

       
Fig. 1. cε  vs tD /  for small scale 

linepipes [29] 
Fig. 2. uε  vs R for X70, X80, and X90 

steels [30] 
 
With the development of pipeline steel from X65 to X100, the ratio of yielding strength 

to ultimate strength, bsR ss /= , increases from 0.80 to 0.90 ~ 0.93 or higher. Excessive ratio 
of yielding strength to ultimate strength leads to a decrease in the strain - hardening property 
of the steel pipe, which is harmful to the safe service of the pipe structure in a large 
displacement environment. Meanwhile, the increase of the yielding strength to ultimate 
strength ratio results in a decrease in the uniform elongation, uε .  

Ji L.K. et al. studied the tensile behaviors of X70, X80, and X90 steels. Tensile 
specimens were cut longitudinally [30]. The rectangular tensile specimens with 50 - mm gage 
length, 38.1 - mm width, and full wall thickness were used to carry out their tensile tests on 
SHT 4106 machine according to ASTM A370. The tensile performance of the five specimens 
is shown in Fig. 2. It can be seen from Fig. 2 that the tendency of uniform elongation uε  for 
the line pipe steels decreases with the increasing of the yielding strength to ultimate strength 
ratio, R . This phenomenon has been reported for various structural steels as well [30]. 

In addition, the deformability of the steel pipe decreases as the structural size tD /  
increases. Due to the use of high-strength pipeline steel, the wall of the steel pipe is thinned, 
which further limits the ultimate plastic deformation ability of the pipeline. As to the  
two-phase structure steel, its features of low yielding strength to ultimate strength ratio, high 
uniform elongation and strain strengthening exponent ensure the safety of pipeline structures 
in service, especially under strain-controlled load condition. 

In fact, strain-hardening exponent is an important material parameter of pipe, which 
reflects the strengthening behavior of material during deformation. The value of  
strain-hardening exponent equals to the maximum uniform strain of material in principle [31], 
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which represents the ability of the material to perform strain hardening so as to make 
deformation uniformly before necking. Hu et al proposed a relationship to correlate the  
strain-hardening exponent n  and the ratio of yielding strength to ultimate strength for 
Hollomon type material [32], 

( ) 2/1/1 bsn ss−= . (11) 
Hu et al. also collected many experimental data to check the reasonability of Eq. (11) 

[32], which are shown in Fig. 3. It can be seen from Fig. 3 that good agreement is obtained. 
These results indicate that the strain-hardening exponent n  is the rate of the increase of 

strength or hardness of Hollomon type material during deformation process. It reveals the 
internal relationship between strength and plasticity. Higher bs ss /  corresponds to lower n .  

Jaske C.E. also studied the correlation of strain - hardening exponent n  and bs ss / , the 
variation of strain-hardening exponent n  vs bs ss /  for typical pipeline steels with Hollomon 
type is shown in Fig. 4 [33].  

From Figure 3 and Figure 4, the result of higher bs ss /  corresponds to lower critical 
buckling strain cε  reasonably. 

 

        
Fig. 3. Variation of bs ss /  with n [32] Fig. 4. n  vs bs ss /  for typical pipeline 

steels [33] 
 

Extraction of the characteristic factor b  from bending moment of a rectangular 
strain-hardening beam to specifically characterize the strain-hardening effect on plastic 
bending beam. The effect of hardening exponent on pipe bending was once studied by 
Murata et al. with both FEM (Finite Element Method) and experiment [34]. In their FEM, the 
tube is axial symmetry, and therefore a quarter part of tube was analyzed, the strain-hardening 
behavior of pipe material is Hollomon type. The hardening exponent changed with n  = 0.1, 
0.3, 0.5 and 1.0. A commercial finite element code ELFEN was employed to conduct the 
3D explicit analysis for the press bending process of circular, and shell element was 
employed. ELFEN is a widely used code for the analysis of metal forming developed by 
Rockfield Software Limited, Swansea [34]. The results showed that the increasing of 
hardening exponent significantly resists the flatness of pipe cross section during bending due 
to its action for deformation uniformity. 

Yang investigated the strain-hardening effect on bending moment of a rectangular  
strain-hardening beam [35], an analytical expression was developed. The strain-hardening 
behavior of the material is Hollomon type.  

Yang′s analytical result showed that the bending moment of the rectangular  
strain-hardening beam could be written as [35]:  

)]/1()/(904.01[4/)]/1()/(904.01[ 0
2

bssbbssbsp MbhM sssssssss −⋅+⋅=−⋅+⋅≈ , (12) 
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in which 4/2
0 sbhM s≈  represents the bending moment of the beam with ideal plasticity 

property and yielding strength ss ; b  and h  represent the width and the height of the beam, 
respectively. 

Obviously, Eq. (12) indicates that a specifically characteristic factor b  can be extracted 
from the expression, which reflects the effect of strain-hardening behaviour on bending 
moment of the beam as compared to the ideal plastic beam, i.e. 

)]/1()/(904.01[ bssb ssssb −⋅+= . (13) 
Extension of critical buckling strain assessment to include strain-hardening effect 

for plastic bending pipe at buckling. On the other hand, recalling to the two cases of elastic 
buckling condition, i.e., the 1st one is the classical (elastic) solutions for critical moment and 
strain of circular shell at bending buckling [36,37],  

2/1222/122' )1/(577.0)]1(3/[ νπνπ −=−= rEtrEtM cc ,  (14) 
2/122/12' )1/()/(577.0)]1(3/[)/( ννε −=−= RrRrcc , (15) 

in which the cross-section shape of the elastic circular shell keeps completely round. 
While the 2nd one is the Brazier solution, which involves the cross-section shape of the 

elastic circular shell changing into an ellipse during bending, in this case the critical moment 
and strain of circular shell at bending buckling are, 

2/122" )1/(314.0 νπ −= rEtM bc , (16) 
2/12" )1/()/(366.0 νε −= Rrbc . (17) 

Compare Eqs. (14) and (15) with Eqs. (16) and (17), it yields two significant 
conclusions: 1) the numerical factors in the classical (elastic) solutions for critical moment 
and strain are identically all bigger than those in Brazier solutions, which is due to the 
consideration of out-round of the pipe cross-section shape in Brazier mode. This phenomenon 
clearly indicates that pipe with better roundness of cross-section shape will have bigger 
critical buckling moment and strain at the same time during bending; 2) the numerical factors 
are almost the same for the critical moment and strain at buckling.  

Meanwhile, the previous section states that the action of strain hardening is to make 
deformation uniformly before necking, and it may retain the roundness of cross-section shape 
of pipe during bending. Therefore, as to the Hollomon type strain-hardening material and 
bending moment problem, the specifically characteristic factor b  extracted from bending 
moment of a rectangular strain- hardening beam could be employed and transplanted into the 
expression for assessing the critical bending moment and strain of bending pipe at buckling to 
reflect effect of strain-hardening effect due to the similarity of the problem. 

On the other hand, recalling to the three cases of elastically bending buckling condition 
of pipe, i.e., the 1st one that is the classical (elastic) solution of the bending pipe retaining the 
cross-section shape perfect round, the Brazier′s solution which involves the cross-section 
shape changing into an elliptical one during of pipe bending, and Li′s solution considering the 
cross section ovalization of pipe due to elastic bending [24], the corresponding critical 
moment and strain of above models for bending buckling are shown in Table 1. 

From Table 1, it results in a significant consequence that the numerical factors in the 
classical (elastic) solutions for critical moment and strain are all greater than those in Brazier 
solution and Li′s solution, which is due to the consideration of out-round of the pipe  
cross-section shape in Brazier and Li models. This phenomenon obviously reveals that pipe 
with better roundness of cross-section shape exhibits greater critical buckling moment and 
strain at the same time during bending, and ratio of the numerical factor cε  to cM  are all not 
far from 1.0 in the above three examples.  
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Table 1. Solutions of critical moments and strains for initially circular pipe bending at 
buckling corresponding 3 elastic models [24] 

Elastic 
model 

Classical (elastic) 
solution 

Brazier solution Li's solution 

cM  
2/122 )1/(577.0 νπ −

=

rEt
M c  

2/122 )1/(314.0 νπ −

=

rEt
M c  

2/122 )1/(388.0 νπ −

=

rEt
M c  

cε  
2/12 )1/()/(577.0 ν

ε

−= Rr
c  

2/12 )1/()/(366.0 ν

ε

−= Rr
c  

2/12 )1/()/(461.0 ν

ε

−= Rr
c  

Ratio of 
numerical 

factor  
cε  to cM  

1.000 1.166 1.188 

Shape of 
pipe  

cross-section 
during 

bending 

Perfect round Ellipse Ovalization 

 
Meanwhile, the previous section indicates that the function of strain hardening is to 

ensure deformation uniformly before necking, and it may retain the roundness of cross-section 
shape of pipe during bending. Therefore, as to the Hollomon type strain-hardening material 
and the bending moment problem, the characteristic factor b  separated from bending moment 
of a rectangular strain-hardening beam could be transplanted into the representation for 
assessing the critical buckling moment and strain of a bending tube to reveal the effect of 
strain-hardening effect due to the similarity of the problem. 

Referring that Eq. (9) is the estimation of the critical buckling strain of the  
outer-fiber-line of a rigi -perfectly plastic bending tube due to cross section ovalization, which 
is a complete geometric one without considering the action of strain-hardening. 

Therefore, Eq. (9) could be extended to contain the action of deformation uniformity of 
strain-hardening effect by the specifically characteristic factor b  reasonably, thus it yields 

0.19 (1 ) 0.19 (1 ) [1 0.904( / ) (1 / )]
1.78 1.78

0.19 (1 ) (0.096 0.904 / ).
1.78

c b s s b

b s

t t t t
r r r r

t t
r r

ε b s s s s

s s

= ⋅ + ⋅ = ⋅ + ⋅ + ⋅ − =

= ⋅ + ⋅ +
 (18) 

In the light of Eq. (10), Eq. (18) becomes,  

])1/(904.0096.0[)
78.1

1(19.0 2n
r

t
r
t

c −+⋅+⋅=ε . (19) 

Eq. (19) is the extended expression of the critical buckling strain assessment containing 
the strain - hardening of plastic bending pipe. 

Ishikawa N. et al. collected the variation of cε  with respect to n for some pipes with 
different tD / = 40 to 44 and 62 [38]. These data is redrawn in Fig. 5 to check the validity of 
Eq. (19), and it takes the average value 42 for the tD /  = 40 to 44. Figure 5 represents the 
reasonability of Eq. (19) obviously. 
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Fig. 5. Variation of cε  vs n for Hollomon type pipes different tD /  

 
5. Conclusion 
By extracting the characteristic factor ( )1 0.904 1b s s bb s s s s = + −   from the analytical 
solution of the bending moment for a rectangular strain - hardening beam, the Hollomon type 
strain - hardening effect on plastic bending moment of beam can be characterized specifically. 
Furthermore, by analogy method the critical strain assessment for strain - hardening pipeline 
plastic bending at buckling is developed. The result shows the reasonability of the developed 
expression for the critical buckling strain assessment of pipe with Hollomon type  
strain-hardening behavior. 
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Abstract. The concept of a vertical barrier embedded in soil to protect from seismic waves of 
the Rayleigh type is discussed. Horizontal barriers are also analyzed. The principle idea for 
such a barrier is to reflect and scatter energy of an oncoming wave by the barrier, thus 
decreasing the amplitude of surface vibrations beyond the barrier. Numerical FE simulations 
of a plane model are presented and discussed. 
Keywords: seismic protection, seismic barrier, Rayleigh waves, Lamb problem 

 
 

1. Introduction 
Ground vibrations generated by the external sources, such as earthquakes, blasts, railroads, 
etc. can affect structures and cause their damage. During recent few decades, several 
approaches were suggested to mitigate effects of the ground vibrations inside the protected 
regions by introducing barriers of different nature; see [1-11]. 
 Most of these works concern with vertical barriers filled by an acoustically softer 
material than the one of the ambient soil. However, as observed in [8], horizontal barriers 
filled by acoustically stiffer material than the ambient soil can produce even stronger 
protective effect against vibrations. The discussed effect relates to Chadwick's theorem 
[12,13] stating that no Rayleigh waves can propagate over a clamped surface of a halfspace or 
a halfplane. 
 Herein, different materials for filling in the vertical barriers are analyzed with respect to 
their ability to mitigate ground vibrations beyond the barrier. The main attention is paid to 
Rayleigh waves, as the major factor causing ground surface vibrations at regions sufficiently 
distant from the buried dynamic sources [14]. 

 
2. Basic notations 
The starting point for the analysis of interaction of surface acoustic waves (in the considered 
case of a homogeneous halfplane the surface waves are reduced to Rayleigh waves) with the 
vertical barrier, is analysis of the equation of motion 

2

2div rot rotP Sc c
t

∂
∇ − =

∂

uu u , (1) 
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where u  is the displacement field, Pc  and Sc  are velocities of the longitudinal and transverse 
bulk waves respectively:  

2 ,P Sc cλ+ µ µ
= =

ρ ρ
. (2) 

In (2) λ  and µ  are Lamé constants and ρ  is the material density. 
Due to Helmholtz decomposition, the displacement field can be represented in terms of 

scalar (Φ ) and vector (Ψ ) potentials 
rot= ∇Φ +u Ψ . (3) 

The potentials are assumed harmonic in time 
( ) ( ) ( ) ( ), , ,i t i tt e t eω ω′ ′Φ = Φ =x x x xΨ Ψ . (4) 

Substituting representation (4) into Eq. (1) yields two independent Helmholtz equations 
2 2

2 20, 0
P Sc c
ω ω   ′ ′∆ + Φ = ∆ + =   

   
Ψ . (5) 

To define plane waves and to simplify the analysis, the splitting spatial argument is 
needed 

( ) ( ) ( )= ⋅ + ⋅ + ⋅x x n n x x w wn n , (6) 
where n  is the unit wave vector, is the unit normal to the median plane of the plate, and 

= ×w n n . 
The further assumption relates to the periodicity of the potentials in the direction of 

propagation 
( ) ( ) ( ) ( ),x xx e x e′ ′′ ′′ ′ ′′Φ = ϕ Ψ = ψx x , (7) 

where the dimensionless complex coordinates x′  and x′′  are 
,   x ir x ir′ ′′= ⋅ = ⋅x n x n . (8) 

In (8) 1i = −  and r  is the wave number related to the wavelength l  by 
2r
l
π

= . (9) 

Substituting representations (7) into Eq. (5) results in the decoupled system of two 
ordinary differential equations 

2 2 2 2

2 2 2 21 0, 1 0
P S

d c d c
dx c dx c

  ϕ ψ
+ − ϕ = + − ψ =     ′′ ′′   

,                (10) 

where the phase speed c  relates to the frequency and the wave number by the following 
relation 

c
r
ω

= .           (11) 

The boundary surface is 0⋅ =x n  assumed free from the surface tractions:  

( ) ( )( )tr 0 , 0t
n ≡ λ ∇ + µ ∇ + ∇ ⋅ = ⋅ =t u I u u xn n .            (12) 

Substitution representation (3) into boundary conditions (12) yields boundary conditions 
written in terms of potentials ′′ϕ  and ′′ψ  

( )( )( )1
22 rot rot 0, 0t ′ ′ ′ ′λ∆Φ + µ ∇∇Φ + ∇ ∇ ⋅ = ⋅ = 

 
I xΨ + Ψ n n .             (13) 

The equation (13) is one, we are looking for; it describes propagation of Rayleigh 
waves along free surface of a halfspace/halfplane. 
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Equation (13) should be supplemented with equation of motion for the barrier, 
analogous to Eq. (1), and boundary conditions at the interface between barrier and soil. The 
ideal mechanical contact is imposed at the interface:  

interfacebar soil

bar soil

n n

=

=

u u

t t
                                          (14) 

In the next section the FE approach for solving the considered equations will be 
developed, allowing us to analyze the interaction of Rayleigh waves with the vertical seismic 
barrier. 

 
3. FE modeling of a system "soil-vertical barrier" 
Herein, some results based on numerical modeling of seismic waves propagation as well as 
their interaction with vertical seismic barriers are presented. The shown results are received 
utilizing an explicit FE code. 

Basic Remarks. The analysis has shown that similarly to the horizontal barriers [8], 
vertical barriers should satisfy several important conditions in order to protect the given area 
from seismic waves effectively: (i) height of the barrier should be comparable with the 
lengths of the waves which it protects from; (ii) material of the barrier should have larger 
Young's module and density than the ambient soil has (iii). 
 2D Model. In connection with the complexity of this problem, 2D model was used in 
order to simplify the subsequent studies. These are models consisting of a symmetric plate 
with sizes which were chosen lest the waves reflected from the boundaries of the model 
should return to the points of observation during the calculation time. The condition of 
symmetry (3) is applied on the left edge of the plate while, the lower and the right edges were 
fixed. The source of waves was simulated as a harmonic load (1) applied on the upper edge in 
the center of the plate (on the top of the axe of symmetry). Vertical barrier (2) was created at a 
distance from the axe of symmetry so that the wave picture might stabilize. Figure 1 
represents the picture of wave propagation in the model. 
 Comparing the kinetic energy of a piece of the plate beyond the barrier with the energy 
of the same area without barrier provides us with the information on the efficiency of this 
barrier. The same comparison may be carried out with the magnitudes of displacement of the 
observation points behind the barrier. 

 

  
 

Fig. 1. Finite element model with a vertical round-shaped barrier. 3D model (left) and cross 
section (right) 
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Similarly, Figure 2 shows a finite element model of a horizontal barrier. The latter 
utilizes Chadwick's theorem on non-propagating Rayleigh waves in a clamped halfspace. In 
view of this theorem, the modeled horizontal barrier had either larger Young's modulus than 
the halfspace, or larger density, or both. The latter case, as numerical computations reveal, 
appears the best in terms of reduction vibrations behind the barrier: Rayleigh waves are 
almost completely eliminated in the protecting zone.  

 

  
 
Fig. 2. Finite element model with a horizontal round-shaped barrier. 3D model (left) and cross 

section (right) 
 

4. Dimensional analysis 
In accordance with the π-theorem [15] which states that physical law does not depend on the 
form of units, the kinetic energy field bar

kinE  of an area ∆  beyond the barrier can be described 
by the following group of dimensionless parameters: 

2; ; ; ; ; ;
/

bar bar bar soil
kin bar soil

soil soil soil soil

E d h dE
E h E

ρ ωλ n n
ρ λ λ ρ

 × ∆
  
 

 ,                    (15) 

where index soil marks the ambient material of the half-space, while index bar corresponds to 
the parameters of the barrier; λ  is the wavelength of the Rayleigh wave in a half-space (this 
wavelength can be solved from the Bergmann-Victorov's equation); ,bar soilE E  are the 
corresponding Young's moduli; ,bar soiln n  are the Poisson's ratios; ,bar soilρ ρ  are the densities; 
d  and h  are the thickness and the height of the barrier accordingly; ω  is the circular 
frequency of the exciting load (here it is always equal to the wave circular frequency). 
 According to the analyses performed in [8] as well as this research, both Poisson's ratios 
almost do not have the influence on the kinetic energy field of the area, therefore, we can 
eliminate both Poisson's ratios. Apart from that, the frequencies of considered waves remain 
constant (because the applied harmonic load has a constant frequency). That is why the 
expression (15) can be simplified to the following:  

2; ; ;bar bar bar
kin

soil soil

E d h dE
E h

ρ
ρ λ

 ×
 
 

.                   (16) 

 
5. Conclusions 
It was demonstrated that seismic barriers can be utilized to successfully protect areas from 
oncoming seismic waves significantly reducing amplitudes of vibrations and surface 
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accelerations. Further research is required in order to establish best possible geometry and 
material for the barriers. The developed approach can be verified experimentally on both the 
laboratory scale and outdoor experiment. 

 
Acknowledgements. This work is supported by the Russian Science Foundation under grant 
nr. 20-49-08002. 
 
References 
[1] Adam M, Estorff O. Reduction of train-induced building vibrations by using open and 
filled trenches. Computers and Structures. 2005;83(1): 11-24. 
[2] Herle V. Long-term performance of reinforced soil structures. Proceedings of the 13. 
Danube-Conference on Geotechnical Engineering. Ljublana, Slovenia: Slovenian 
Geotechnical Society; 2006. p.251-256. 
[3] Jesmani M, Fallahil MA, Kashani HF. Effects of geometrical properties of rectangular 
trenches intended for passive isolation in sandy soils. Earth Science Research. 2012;1(2): 
137-151. 
[4] Ketchart K, Wu JTH. Performance test for geosynthetic reinforced soil including effects of 
preloading. U.S. Department of Transportation. Federal Highway Administration. Report 
number: FHWA-R-01-018, 2001 
[5] Kim SH, Das MP. Artificial seismic shadow zone by acoustic metamaterials. Modern 
Physics Letters B. 2013;27(20):1350140 
[6] Kusakabe O, Takemura J, Takahashi A, Izawa J, Shibayama S. Physical modeling of 
seismic responses of underground structures. In: Proceedings of the 12th International 
Conference of International Association for Computer Methods and Advances in 
Geomechanics. Goa, India; 2008. p.1459-1474. 
[7] Kuznetsov SV. A new principle for protection from seismic waves. In: Performance-
Based Design in Earthquake Geotechnical Engineering. International Conference. Tokyo, 
Japan; 2009. p.463–468, 
[8] Kuznetsov SV. Seismic waves and seismic barriers. Acoustical Physics. 2011;57(3): 420-
426. 
[9] Kuznetsov SV, Nafasov AE. Horizontal acoustic barriers for protection from seismic 
waves. Advances in Acoustics and Vibration. 2011;2011: 150310. 
[10] Motamed R, Itoh K, Hirose S, Takahashi A, Kusakabe O. Evaluation of Wave Barriers 
on Ground Vibration Reduction through Numerical Modeling in ABAQUS. In: Proceedings 
of SIMULIA Customer Conference 2009. London, UK; 2009. p.402-441. 
[11] Takahashi A, Takemura J, Shimodaira T. Seismic performance of reinforced earth wall 
with geogrid. In: Proceedings of the 15th International Conference on Soil Mechanics and 
Geotechnical Engineering. Istanbul, Turkey; 2001. p.1265-1268. 
[12] Chadwick P, Borejko P. Existence and uniqueness of Stoneley waves. International 
Journal of Geophysics. 1994;118(2): 279-284. 
[13] Chadwick P, Smith GD. Foundations of the theory of surface waves in anisotropic elastic 
materials. Advances in Applied Mechanics. 1977;17: 303-376. 
[14] Kuznetsov SV, Terentjeva EO. Plane inner Lamb problem: waves in the near epi zone by 
the vertical point source. Acoustical Physics. 2014;60(4): 12-18. 
[15] Gibbings JC. Dimensional Analysis. London: Springer; 2011. 

Homogeneous horizontal and vertical seismic barriers: mathematical foundations and dimensional analysis 65



 

 

HYPERBOLIC TWO TEMPERATURE FRACTIONAL ORDER ONE 

DIMENSIONAL THERMOELASTIC MODEL HEATED BY A PULSE 

OF LASER 
E. Bassiouny* 

Department of Mathematics, College of Sciences and Humanitarian Studies, Prince Sattam Bin Abdulaziz 

University, Al Kharj 11942, Saudi Arabia 

Department of Mathematics, Faculty of Sciences, Fayoum University, Fayoum, Egypt 

*e-mail: esambassiouny@yahoo.com 
 
 
Abstract. The behaviour of an isotropic homogeneous thermoelastic semi-infinite medium is 
investigated based on the acceleration of conductive and thermodynamic temperatures. A 
half-space 0x ≥ , under stress-free boundary condition at the near end, is considered. At this 
near end, a laser pulse decaying exponentially with time is applied. In the framework of 
fractional order generalized thermoelasticity theory, a one-dimensional coupled model is 
reduced using Laplace transform and corresponding thermally-induced temperature, stress 
and strain distribution functions are determined in the Laplace domain. Different inverse field 
functions are investigated numerically through a complex inversion formula of Laplace 
transform. The behavior of the field functions with different parameters are studied and 
presented graphically. Comparisons with the classical two temperature model are discussed. 
Keywords: hyperbolic two temperatures, fractional order strain, fractional order equation of 
motion, laser short pulse, thermal loading, generalized thermoelasticity   
 
List of symbols 
ϕ : the conductive temperature in the hyperbolic two-temperature model   

cϕ : the conductive temperature in the classical two temperature model   
σ : principal stress component in the case of hyperbolic two-temperature model   

cσ : principle stress component in the classical two temperature model   
e : cubic dilatation in the hyperbolic two-temperature model  

ce : cubic dilatation in the classical two temperature model  
EC : specific heat at constant strain  

oc : longitudinal wave speed 
T : absolute temperature    

oT : reference temperature    
t : time    

iu : components of the displacement vector 
0α ≥ : two temperature parameter    

Tα : coefficient of linear thermal expansion    
ε : the dimensionless mechanical coupling constant    
θ : thermodynamical temperature    

,λ µ : Lame's constants    
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ρ : body density    

oτ : relaxation time parameter    
β : the fractional-order parameter    
Γ : Gamma function       
s : a complex parameter related to Laplace transform     
K : thermal conductivity    

0T Tθ = − : increment such that 0/ 1Tθ 0    
I : power intensity   
δ : absorption coefficient   
Ω : pulse parameter   
 
1. Introduction 
In thermoelasticity, the heat conduction in deformable bodies arises from the conductive and 
thermodynamic temperatures [1-3]. It is seen that in the case of the time-dependent situation, 
when there is no supply of heat, the two temperatures are the same, whereas, in the case of the 
time-dependent situation, the two temperatures are different. Some more details of such 
studies can be found in [4-5]. Indeitsev and Osipova [6] investigated optical excitation of 
acoustic pulses in conductors through a two-temperature model, where the energy of optical 
pulses transferred to long-wavelength phonons. It is shown that excited acoustic pulse by laser 
in conductors can be presented as a convolution of the laser pulse envelope and the transfer 
function. Shi et al. [7] studied the laser heating and phase change process and inferred that the 
rise in temperature and the rate of surface melting is proportional to the laser power intensity. 
Yilbas and Kalyon [8] introduced a closed-form solution for laser evaporative heating process 
for pulses varying exponentially and introduced an expression for the evaporation front 
velocity in their analysis. Their analysis gave good results compared with experimental 
findings limiting the temporal variations of the laser pulse to exponential form. Othman et al. 
[9-11] studied the behavior of thermoelastic, linear, isotropic material with voids subjected to 
laser pulse heating in the presence of different parameters in the context of G-N theory of type 
II-III. They reported that the amplitudes of the field functions depend strongly on the initial 
stress and rotation.  

Youssef established the variational principle and the uniqueness of the initial boundary 
value problem in generalized thermoelasticity with two temperatures in different  
cases [12-14].  

There is a paradox admitting infinite speeds for propagating signals in the classical two 
temperatures thermoelasticity theory. Youssef improved the two-temperature generalized 
thermoelasticity theory based on the conductive and thermodynamic temperature. He 
considered a hyperbolic form of the two temperatures equation [15]. 

The concept of derivative and integral have been generalized to a non-integer order and 
studied by many researchers [16-23]. Various physical processes and models have been 
implemented through the application of fractional-order derivatives. Applications of the 
fractional-order theory and many other contributions have been published by many 
researchers [24-29]. The fractional-order thermoelasticity becomes more realistic when it 
relies on the fractional-order operator because the presence of the fractional-order derivatives 
permits the differential equations of the system to take into consideration the effects of the 
intermediate as well as the previous states to express the present and the next states of the 
medium.    

One of the most famous definitions of fractional order was introduced by Riemann-
Liouville and given by [23]:  
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1

0

1( ) [ ( ) ( ) ], 1 .
( )

n t n
RL t n

dD f t t f d n n
dt n

β βτ τ τ β
β

− −= − − < <
Γ − ∫  (1) 

The second definition was presented by [23] and given by: 
1

0

1 ( )( ) ( ) , 1 .
Γ( )

t n
n

C t n

d fD f t t d n n
n d

β β ττ τ β
β τ

− −= − − < <
− ∫  (2) 

These two definitions are the same if (0) 0f = . For more details about the comparison 
between the two definitions of the fractional-order time derivative introduced by Riemann-
Liouville and that of Caputo and various definitions and works of fractional order, derivatives 
were reported in [25]. 

Based on the new theory of the hyperbolic two-temperature generalized thermoelasticity 
by Youssef [15], the present work can be considered as a generalization to the application 
studied in [15] and more realistic as the present model contains fractional-order derivatives in 
both equations of motion as well as the heat equation. In the present work we will use the 
following equation:  

( ){ ( )} { ( )} 1 ,n n
C tL D f t s L f t n nβ β β−= − < <  (3) 

as in [19] to investigate the behavior of a thermoelastic isotropic and homogeneous half-space 
in the presence of a short pulse of a laser beam, which is decaying in an exponential manner. 
In Eq. (3), s  denotes the complex parameter related to Laplace transform. 
 
2. One dimensional thermoelastic model 
We consider here the following one-dimensional fractional-order system of equations, which 
is capable of describing the overall behavior of a semi-infinite one-dimensional homogeneous 
isotropic material occupying the half-space 0x ≥  and subjected to laser short-pulse heating 
exponentially decaying pulse type. The three-dimensional forms of this system can be found 
in our previous work Bassiouny et al. [25] and Youssef [15]. The medium is subjected to a 
Gaussian pulse of laser uniformly at the near end. All the field functions are initially set at 
zero. We also assume that there is no body force applied to the medium. Hence, the 
generalized thermoelastic one-dimensional coupled system of partial differential equations, in 
the absence of inner heat sources, body force and free charge assume the following system of 
equations: 
the heat equation:

2 2
(Ω )

12 2

( , )( ) ( )( ( , ) (1 ) ( , )) ( ,1 ) t x
o E o t o

x tK C x t T D e x t I e
x t t t

β β δ∂ ϕ ∂ ∂ ∂τ ρ θ γ τ τ δ
∂ ∂ ∂ ∂

− += + + + − +  (4) 

the equation of motion:  

( )
2 2 2

2 2 2

( , ) ( , ) ( , )2 (1 )t
e x t e x t x tD

t x x
β β θρ λ µ τ γ∂ ∂ ∂

= + + −
∂ ∂ ∂

, (5) 

the constitutive equations can be written in the forms:  
( , ) (1 )( 2 ) ( , ) ( , )tx t D e x t x tβ βσ τ λ µ γ θ= + + − ,  (6) 

and 
( , )( , ) .u x te x t
x

∂
∂

=   (7) 

Instead of the classical two temperature relation between the heat conduction ϕ  and the 
thermodynamical temperature θ  given by:  

2

2x
∂ ϕθ ϕ α
∂

= − , (8) 

we used the following hyperbolic relation as given in[15]:  
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2 2 2

2 2 2 .
t t x
θ ϕ ϕα∂ ∂ ∂
= −

∂ ∂ ∂
 (9) 

 
3. Dimensionless system of equations in Laplace domain 
For converting the previous system of Eqs. (4)-(9) into a dimensionless system we used the 
set of dimensionless variables as in [15] and dropping the primes for convenience, we get the 
following non-dimensional system of equations:  
the non-dimensional heat equation: 

2 2
(Ω )

1 2 12 2

( , ) ( )( ( , ) (1 ) ( , )) t x
o t

x t x t D e x t I e
x t t

β β δ∂ ϕ ∂ ∂τ θ xε τ ε δ
∂ ∂ ∂

− += + + + − , (10) 

the non-dimensional equation of motion takes the form: 
2 2 2

2 2 2

( , ) ( , ) ( , )(1 )t
e x t e x t x tD

t x x
β β θτ ω∂ ∂ ∂

= + −
∂ ∂ ∂

,  (11) 

the constitutive equations take the following forms:  
( , ) (1 ) ( , ) ( , )tx t D e x t x tβ βσ τ ωθ= + − ,  (12) 

and 
( , )( , ) u x te x t
x

∂
∂

= , (13) 

the hyperbolic two temperature non-dimensional equation becomes:  
2 2 2

2 2 2t t x
∂ ϕ ∂ θ ∂ ϕα
∂ ∂ ∂

= − ,  (14) 

where / ECx γ ρ= , / ( 2 )oTω γ λ µ= + , 2
1 / ( 2 )EK Cε γ ρ λ µ= +  and 

2 1 (1 ) /o oI c Kε δ τ η= − Ω  are non-dimensional constants.  
Applying the Laplace transform defined by:  

0

{ ( )} ( )stL f t e f t dt
∞

−= ∫   (15) 

together with Caputo's definition (3) to the system of Eqs. (10)-(14) and eliminating ( , )x sθ , 
we get the following non-dimensional system of equations in the Laplace domain [9]:  

( ) ( )( )1 2
12

2

e 1 1 ( , ) ( , )
( , ) ,

(1 )

x Is s s o s e x s x s
sx s

x s s o

δ
β βε τ ε x τ ϕ

ϕ
α τ

− 
+ + + + +Ω∂  =

∂ + +
 (16) 

2 2 4
4 2

2 2 2 4

( , ) 1 ( , ) ( , )[ ( , )  ( )],
(1 )

e x s x s x ss e x s s
x s s x xβ β

ϕ ϕω α
τ

∂ ∂ ∂
= + −

∂ + ∂ ∂
 (17) 

2
2

2 2

 ( , )( , ) (1 ) ( , )  ( ( , ) ),x sx s s e x s s x s
s x

β β ω ϕσ τ ϕ α− ∂
= + − −

∂
 (18) 

and the relation between the two types of temperature: 
2

2
2

( , )( , ) ( , ) )x sx s x s s
x

ϕθ ϕ α− ∂
= −

∂
. (19) 

Combining Eqs. (17) and (18) gives: 
2

2
2

( , ) ( , )x s s e x s
x

σ∂
=

∂
. (20) 

The system of Eqs. (16)-(20) represents the one-dimensional fractional-order 
thermoelastic model in the light of generalized fractional-order thermoelasticity with a 
hyperbolic two-temperature equation.  
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4. The solution in the Laplace domain  
Eliminating ( , )e x s  between the Eqs. (16) and (17), we get the following fourth-order non-
homogeneous differential equation:  

2 4

2 4

( , ) ( , )( , ) ,sxx s x sN x s M He
x x

ϕ ϕϕ −∂ ∂
− + =

∂ ∂
 (21) 

where: 
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α τ τ xωε τ α xωε
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+ + + + + + + +
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+ + +
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)
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o

s sN
s sβ β
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α τ τ xωε

+
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+ + +
 

and  
( )( )

( )
2 2

1 2

1

1

( 1)( ) 1 ( 1)

xI s e s s
H

s s s

δ β β

β β

ε δ τ

α τ τ xωε

− − +
= −

+ +Ω + +
.  

According to the present formulation of the problem, the most general solution of (21) 
takes the form: 

2

1
( , )  ,ik x x

i
i

x s C e e δϕ ψ− −

=

= +∑  (22) 

where 
2 4/ ( ),H N Mψ δ δ= − − +  iC  are coefficients depending on s whose values can be evaluated 

by using the given boundary conditions and ik±  are the roots of the characteristic equations 
corresponding to the Eq. (21), which is: 

2 4 0.N M k k− + =  
After some manipulations to the system of Eqs. (16)-(19) we get the following general 

solutions of the physical quantities of the present model in the domain of Laplace. 
The thermodynamical temperature assumes the form: 

2 22

2 2
1

( , )  (1 ) (1 )ik x xi
i

i

kx s C e e
s s

δα αδθ − −

=

= − + −∑ . (23) 

The stress and the strain in the domain of Laplace take the forms: 
2

2 2
1 1

1
2

1

[ (1 )(1 ) ( (1 )(1 )] ( ) 
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ik x x
i o o e
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ie x s C e s s s s f s e
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k δτ α τ

ε x τ
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=
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where ( )f sσ  and ( )ef s  can be evaluated by using the given boundary conditions. 
The Eqs. (22) and (23)-(25) represent the complete solution of the system (16)-(20) in 

the Laplace transform domain. 
 

5. Determination of the Parameters 
To determine the previous parameters, we assume that the medium is initially at rest and has 
reference temperature oT  so that the initial conditions are given by; 

( ,0) 0,    ( ,0) 0,              ( ,0) 0,
( ,0) / 0,    ( ,0) / 0,     ( ,0) / 0,
x e x x

x t e x t x t
ϕ σ
ϕ σ

= = =
∂ ∂ = ∂ ∂ = ∂ ∂ =

 (26) 
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we also assume that the medium is subjected to the following boundary conditions at the near 
end 0x = : 

(0, ) 0,    (0, ) 0,t tϕ σ= =   (27) 
while the boundary conditions x = ∞ are given by: 

( , ) 0, ,   ( , ) 0,   0 .t t tϕ σ∞ = ∞ = < < ∞  (28) 
Using the dimensionless variables listed in [9] and applying Laplace transform to the 

boundary conditions (27)-(28) and dropping the primes we obtain: 
(0, ) 0, (0, ) 0, ( , ) 0,  ( , ) 0.s s s sϕ σ ϕ σ= = ∞ = ∞ =  (29) 

Similarly, the dimensionless initial conditions in the domain of Laplace can be obtained. 
By applying these conditions to the Eqs. (22)-(25), the parameters ,  ( )i eC f s  and ( )f sσ  can be 
obtained as given below: 

2 2
1 2

2 2
1 2

( ) ,      1, 2,
( )

i
i

I s k bC i
b k k

ε δ+ −
= =

−
 (30) 

2 2 2
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s s s sf s
s s sσ

ψ τ αδ ε xω δ
ε τ
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 (31) 

and 
2 2 2

1 2

1

[(1 )(  )( ) ]( )
(1 )(1 )

o
e

o

I s s s s sf s
s s sβ β

ε τ δ α δ ψ
ε x τ τ

+ + + + +Ω
=

+ +
, (32) 

where 1(1 )(1 ).ob s sα τ ε xω= + + +  
After substituting with the parameters given by the Eqs. (30)-(32) into the Eqs. (22)-

(25) we obtain the complete solution of the non-dimensional field functions, temperature, 
stress, and strain in the Laplace domain. 
 
6. Numerical inversion of the Laplace transform 
The physical quantities ( , )x tϕ , ( , )x tθ , ( , )x tσ  and ( , )e x t  can be obtained by inverted the 
system of Eqs. (22)-(25) back to the time domain. Therefore, we use a numerical formula 
based on Fourier expansion. In this technique any function ( )f s  is inverted back to the 
original function  ( )f t  in the time domain according to the following formula: 

1
11 1 1

exp( ) 1( ) [  ( ) (  ( exp( )],          0 2 ,
2

Nct ik ikf t f c f c t t
t t t

p p
= +ℜ + < <∑  (33) 

where ℜ  is the real part, i  is imaginary number unit and N  is a sufficiently large integer 
representing the number of terms in the truncated Fourier series chosen such that: 

1
1 1

exp( )  ( )exp( ) ,iN iN tct f c
t t
p p 

ℜ + ≤ 
 

   (34) 

where 1   is a small positive number that represents the degree of accuracy required. The 
parameter c  is a positive free parameter that must be greater than the real part of all the 
singularities of ( ) f s . The optimal choice of c  was obtained according to [31]. 
 
7. Numerical Results and Discussion 
For numerical computations, we used the physical constants of the Copper material used in 
[16]. We investigate the distributions of the field functions, that is ϕ , θ , σ  and e  for 
different values of the parameters δ , β  and t  compare their behavior with the corresponding 
physical quantities cϕ , cσ  and ce . The results are presented in three groups of Figures; each 
group presents the effect of one of the mentioned parameters on the physical quantities. 

Hyperbolic two temperature fractional order one dimensional thermoelastic model heated by a pulse of laser 71



(a)

 

(b)

 

(c) 

 
(d)

 

(e)

 

(f)

 
(g) 

 

(h)

 

(i)

 
Fig. 1. Effect of fractional order parameter β  on ϕ , σ  and e  for 26 10Ω = × , 0.3t = ,

0.02oτ = : (a) hyperbolic conductive temperature; (b) parabolic conductive temperature;  
(c) the hyperbolic and parabolic conductive temperature at 0.5β = ; 

 (d) stress in the hyperbolic case;  
(e) stress in parabolic case; (f) hyperbolic and parabolic stress at 0.5β = ;  

(g) strain in hyperbolic case; (h) strain in the parabolic case;  
(i) hyperbolic and parabolic strain 0.5β =  

 
Figure 1 illustrates the effects of the fractional-order parameter β  on the field 

functions. In Figures 1 (a) and (b) we noticed that both of the hyperbolic ϕ , and parabolic 
conductive temperature cϕ , is inversely proportional to the variation of the fractional-order 
parameter β , with the peaks occurring at the same point regardless of the value of β , such 
behavior may be attributed to an increase of the fractionality parameter induces dissipation 
effects in the medium. Figure 1 (c) shows the comparison between the two types of heat 
conduction; ϕ  and cϕ . It is also noticed that the hyperbolic heat conduction ϕ  is 
asymptotically stable, while the heat conduction in a model with classical two temperatures 

cϕ  has local asymptotic stability. Figures 1 (d), (e), and (f) show the effects of fractional 
order parameter β  on the stresses σ and cσ . Figures 1 (d) and (e) show that the absolute 
value of the magnitude of the stresses varies inversely with the variation of β , this in 
accordance with the fact that thermal stress is related to the temperature gradient. In 
Figure 1 (f), it is seen that the absolute value of the amplitude of the stress σ  is less than the 
stress in the classical two-temperature model cσ  and the stress σ  attain its equilibrium state 
before cσ . 
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Figures 1 (g), (h) and (i) illustrate the effects of the fractional-order parameter on the 
strain. Unlike the effect of β  on the stresses, a direct proportion between the absolute value 
of the amplitude of the strains and the variations of β  can be noticed in Fig. 1 (d) and (e). 

Figure 2 presents the effects of variations of the pulse intensity Ω  on the behavior of 
the physical quantities ϕ , σ  and e . Figures 2(a), (d) and (g) show that the value of the pulse 
intensity Ω  is directly proportional to the absolute value of the amplitude of the physical 
quantities ϕ , σ  and e . Figures 2(c), (f) and (i) show significant changes in the amplitude of 
the field functions ϕ , σ  and e  respectively with the two types of heat conduction. 

We also noticed a significant change in the absolute value of the amplitude of the field 
functions ϕ , σ  and e  in the two types of heat conduction. 
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Fig. 2. Effect of pulse parameter Ω  on ϕ , σ  and e  for 0.5β = , 0.2t = , 0.02oτ = :  
(a) hyperbolic conductive temperature; (b) parabolic conductive temperature;  

(c) the hyperbolic and parabolic conductive temperature at 24 10Ω= × ;  
(d) stress in the hyperbolic case;  

(e) stress in parabolic case; (f) hyperbolic and parabolic stress at 24 10Ω= × ;  
(g) strain in hyperbolic case; (h) strain in the parabolic case;  

(i) hyperbolic and parabolic strain at 24 10Ω= ×   
Figure 3 represent the variations of the field function under the changes of time t . We 

noticed that the field functions changes significantly with the variation of time t . All the field 
functions are in direct proportion with the variation of t . Figure 3 (a) and (b) shows that the 
peaks of the temperatures occur at different points and move away from the near end 0x = . 
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Figures 3 (g), (h) show that the strain resembles the behavior of the stress. Figures 3 (c), (f) 
and (i) show that the ϕ , σ  and e  attain their equilibrium before cϕ , cσ  and ce , 
respectively.  
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Fig. 3. Effect of time t  on ϕ , σ  and e  for 210Ω = , 0.5β = , 0.02oτ = : 

(a) hyperbolic conductive temperature; (b) parabolic conductive temperature;  
(c) the hyperbolic and parabolic conductive temperature at 0.2t = ;  

(d) stress in the hyperbolic case;  
(e) stress in parabolic case; (f) hyperbolic and parabolic stress at 0.2t = ;  

(g) strain in hyperbolic case; (h) strain in the parabolic case;  
(i) hyperbolic and parabolic strain 0.2t =  

 
Conclusions 
In summary, it is found that the field functions ϕ , σ  and e  have asymptotic stability in the 
hyperbolic case (i.e., in contrast to the classical two-temperature model, where they have local 
stability). Increasing the strength of the laser pulse leads to an increase in the absolute values 
of all the field functions magnitudes. The strain resembles the same behavior of the stress 
with any parameter. Stress and strain tend to equilibrium state rapidly than temperatures. The 
effect of time on the field functions is more significant than the effects of the other 
parameters. Increasing the time and the strength of the pulse, pumping more energy into the 
system, leads to an increase of the absolute values of the amplitude of field functions. 
Increasing fractional-order parameter, which Increases dissipation, results in decreasing the 
absolute values of the amplitude of ϕ , σ  and e . 
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Abstract. The composite panel test were made of gypsum, pumice powder, and glue with 
composition of 1:2:1/2 and coconut fiber with volume fraction variation of 10%, 15%, 20%, 
25%, and 30% by using Hand lay-up technique. The sound absorption panel was tested for 
acoustic and mechanical characteristic using test standard with ASTM E1050, ASTM D256, 
and ASTM D790, respectively. The result of data analysis was presented graphically and the 
bounding of composite materials was analysed by using SEM photograph. From the data 
analysis for 10mm thickness of composite with 30% fiber volume fraction gained the highest 
sound absorption coefficient, the highest impact strength occurred on composite with 25% 
fiber volume fraction. Meanwhile, the strength and modulus of bending occurred on 
composite with 15% fiber volume fraction. Sound absorption coefficient for composite with 
15mm thickness was higher than 10mm for 10% fiber volume fraction.  
Keyword: pumice waste, coconut fiber, gypsum, acoustic and mechanic 
 
 
1. Introduction 
Comfortable and soundproof room is highly needed in the factory, hotel, office or in private 
room. Soundproof material has an important role to absorb sound so it will decrease the sound 
resonance intensity to the ears so there will be more comfortable for the user.  

The soundproof material is in form of porous material, resonator and panel [1]. Type of 
the existing soundproof material is a porous material such as foam, glass wool, Rockwool, 
and resonator. These material usage is relatively expensive and could not be exposed because 
resulting irritation on skin and respiration.  

Development of soundproof with natural material becomes the best choice because it is 
environmental friendly by improving the usability of wasted material. Some researches on 
soundproof have been conducted by [1], who develops soundproof from recycled polyester 
material.   

Abundant pumice waste becomes economic consideration to engineer this rock to be 
more useful material. Pumice has porous structure which is the same with the existing 
soundproof material. This rock has characteristics of porous structure, light, easy to be gained 
and cheap but fragile. The abundant pumice waste comes from the result of pumice sieve of 
unused pumice since the size does not fulfil the criteria of packaging to be marketed 
(aggregate size of pumice waste less than 10 mm). 

Coconut fiber waste is also abundant but it is used for mat, or becomes traditional firing. 
Coconut fiber is a Lignocellulosic fiber, brittle and possibly modified chemically, non-toxic 
[2,3] and biodegradable, low density, not abrasive on the tool to work it [3]. Moreover, the 
coconut fiber waste does not impact the environment. It has holes in the fiber axis [4] so it is 
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suitable for soundproof material and decrease the density type of the formed material [5]. 
Research about multi-layer coconut fiber with little latex binder as soundproof shows sound 
absorption coefficient of 0.7-0.85 for frequency 500-2500Hz which is competitive with the 
marketed material such as rock wool and other fiber synthetic [6]. 

This research reviews how pumice hybrid and coconut fiber as amplifier and gypsum as 
the binder could absorb sound well so it can be applied as acoustic wall.  

 
2. Purpose of the Research  
The use of industrial waste is one of the good ways to maximize the existing natural resources 
so it can be beneficial for human life. The abundant pumice and coconut fiber wastes in 
Indonesia are highly potential to be developed for composite material of soundproof. This 
research has specific purposes as follows:  

a. Determining the acoustic characteristic of sound absorption of the pumice-coconut fiber 
hybrid composite as the effect of coconut fiber volume fraction variation.  

b. Determining mechanical strength of impact load and flexibility of the pumice-coconut 
fiber hybrid composite as the effect of coconut fiber volume fraction variation. 

 
3. Research Method 
The research procedures are firstly the pumice was cleaned by pure water to get clean 
particles; secondly it was heated with 65°C for 24 hours to get dried pumice. The pumice was 
sifted to get ≤ 1mm pumice size. The coconut fiber treatment was done by cleaning coconut 
fiber, boiling the coconut fiber to remove the dirt and then it was dried in 70°C for 24 hours. 
The fiber was cut off into 10-15mm in length. The fiber was treated by 5% NaOH 
concentration in 50°C for 2 hours and then cleaned. The fiber was dried in 70°C for 24 hours.  

The composite moulding process was done by using hand lay-up method, with 100mm 
in diameter of mould with 10mm and 15mm thickness. The mould surface was cleaned from 
any dirt by using tissue and tinner to reduce impurity factor and then covered by glycerine. 
Afterward, mixed gypsum with glue, and then the pumice was mixed into this mixture. The 
coconut fiber was poured into this mixture to be hybrid composites in container based on 
composition of gypsum mixture: pumice: glue 1:2:1/2. Meanwhile, volume fraction of 
coconut fiber was varied on percentage of 10%, 15%, 20%, 25% and 30%.  

Testing of specimen sound absorbtion coefficient was done by using test machine of 
impedance tube standing wave method with specification of Measuring Amplifier Brüel & 
Kjær type 2636, Sine Generator Brüel & Kjær type 1054. The test was done on frequency 
120-4000 Hz (ASTM C 423-66). Impact and bending test was done by using Impact (Charpy 
Type) test and bending test of Tensilon Universal Testing Machine with type RTG 1310. The 
data analysis was done by using graphic analysis. The final result was in form of data trend 
which was plotted to be a frequency graphic (Hz)-Coefficient sound absorption (α). 

 
4. Result and Discussion  
Based on Figure 1 of relationship diagram of frequency with sound absorption coefficient for 
composite 10%, 15%, 20%, 25% and 30% coconut fiber with 10mm thickness, there are no 
trend since the data are random and fluctuating. It is caused by the effect of back cavity depth 
on sound absorption characteristic of all composite samples. It can be seen that the pick sound 
absorption happened in some certain frequencies which is possibly caused by back cavity 
depth, which is similar with the research result of other researchers [7,8]. However, sound 
absorption coefficient from all specimens had sound absorption coefficient (α) > 0.8, which 
means that the sound absorptions are excellent.  
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Fig. 1. The effect of frequency on sound absorption coefficient for composites 10%, 15%, 

20%, 25% and 30% coconut fiber with 10mm thickness 
 

Coconut fiber addition on the composite improved the sound absorption coefficient. 
This condition is caused by the absorber characteristic of the fiber and micro pore structure of 
pumice and gypsum. Besides that, addition of fiber could increase the number of micro empty 
spaces among the fibers or improving composite porosity so it can improve interaction 
between sound wave and composite material which causes friction improvement which 
finally increase the change of sound energy to be lost heat energy [9]. 
 

 
Fig. 2. Comparison diagram of sound absorption coefficient for composite of 10mm and 

15mm thickness for 10% fiber volume fraction  
 

Figure 2 shows that thicker composite has bigger sound absorption coefficient than 
thinner composite. It is because of the thicker of the composite the more spaces or micro 
spaces owned so the bigger sound energy that could be absorbed. But the addition of 
thickness will increase the weight of the material and narrow the space. So that future 
research, how to make thin material with high sound absorption will be done. 

Figure 3 shows that the highest impact strength occurred on specimen of 25% volume 
fraction and then followed by 15% and 20% of fiber volume. It occurred because the matrix 
binds almost all fiber surface as shown by Figure 4c in which the matrix still fully attaches on 
the fiber while on the 15% fiber volume fraction the matrix still attaches on the fiber but 
mostly detached (Fig. 4a), as well as on 20% fiber volume fraction the matrix does not attach 
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on the fiber well (Fig. 4b). From the data, there is possibility that 25% volume fraction is the 
highest limit of volume fraction to get the highest specimen impact strength. This explanation 
is supported by SEM photo of Fig. 4c in which the matrix is still intact binding fibers.  
 

  
Fig. 3. The effect of coconut fiber volume fraction on composite impact strength  

 

  

 
Fig. 4. SEM Photo of composite fraction with fiber volume fraction:  

a) 15%, b) 20% and c) 25%  
 
Figure 5 shows that the highest bending strength and modulus bending occurred on 

specimen of 15% fiber volume fraction and the lowest score gained by 25% volume fraction. 
It is caused by bending behavior in which in this specimen, the matrix bonding rigidity with 
pumice takes the most important role which is different with impact in which matrix and 
pumice are fragile so the fiber takes more roles on it. In other words, bending strength and 

All fiber surfaces are 
covered by matrix 

Not all fiber surfaces 
are covered by matrix 

All fiber surfaces are 
covered by matrix 
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modulus bending increases with the decreasing fiber volume fraction of coconut fibers. As a 
result, the increase of gypsum and pumice stone that has more rigid properties than fiber on 
the composites were concluded to enhance bending strength and modulus.  

 

 
Fig. 5. The effect of coconut fiber volume fraction on composite bending strength 

 
5. Conclusion  
This study aimed the investigation of the effect of fiber volume fraction and panel thickness 
of hybrid acoustic panels which are made of gypsum, pumice powder, and glue with 
composition of 1:2:1/2 and coconut fiber with volume fraction variation of 10%, 15%, 20%, 
25%, and 30% on sound absorption, impact strength and bending strength. According to this 
study and analysis, that can conclude that the sound absorption coefficient (α) is bigger than 
0.8 for all specimen which means that the sound absorption is categorized as excellent, since 
good material for sound absorption at least α=0.3. The thicker the composite, the sound 
absorption coefficient increases as well. For mechanical properties, the highest impact 
strength occurred on composite with 25% fiber volume fraction. The highest bending strength 
and modulus bending specimen occurred on 15% volume fraction. Thus, optimum volume 
fraction for composite pumice/gypsum/glue to have high sound absorption coefficient, high 
impact strength and high modulus bending is 15%.  
 
Acknowledgement. This work was supported by the Directorate of Research and Community 
Services, Directorate General of Research and Development Strengthening, Ministry of Research, 
Technology, and Higher Education of Republic Indonesia, with agreement letter  
No. 415.12/UN14.4.A/PL/2017. 
 
References 
[1] Lee Y, Joo C. Sound absorption properties of recycled polyester fibrous assembly 
absorbers. AUTEX Research Journal: 2003;3(2): 78-84. 
[2] Rahman MM, Khan MA. Surface treatment of coir (Cocos nucifera) fibers and its 
influence on the fibers' physico-mechanical properties. Composite Science Technology. 
2007;67(11-12): 2369-2376. 
[3] Tomczak F, Sydenstricker THD, Satyanarayana KG. Studies on lignocellulosic fibres of 
Brazil. Composites Part A: Applied Science and Manufacturing. 2007;38(7): 1710-1721.  
[4] Brahmakumar M, Pavithran C, Pillai RM. Coconut fiber reinforced polyethylene 
composites such as effect of natural waxy surface layer of the fiber on fiber or matrix 
interfacial bonding and strength of composites. Composite Science and Technology. 
2005;65(3-4): 563-569. 

Hybrid acoustic panel: the effect of fiber volume fraction and panel thickness 81



[5] Wallenberger FT, Weston N. Natural fibers, plastics and composites. USA: Kluwer 
academic publisher; 2004. 
[6] Zulkifli R, Mohd NMJ, Mat TMF, Ismail AR, Nuawi MZ. Acoustic properties of multi-
layer coir fibres sound absorption panel. Journal of Applied Sciences. 2008;8(20): 3709-3714. 
[7] Jiang S, Xu YY, Zhang HP, White CB, Yan X. Seven-hole hollow polyester fibers as 
reinforcement in sound absorption chlorinated polyethylene composite. Applied Acoustics. 
2012;73(3): 243-247. 
[8] Nanting Z, Xueyan G, Mingqi Y, Lan Y, Zhongde S, Yiping Q. Mechanical and sound 
adsorption properties of cellular poly(lacticacid) matrix composites reinforced with 3D ramie 
fabrics woven with co-wrapped yarns. Industrial Crops and Products. 2014;56: 1-8. 
[9] Seyda C, Dilek K, Habip D. Investigation of pumice stone powder coating of multilayer 
surfaces in relation to acoustic and thermal insulation. Journal of Industrial Textiles. 
2015;44(4): 639-661.  

82 NPG. Suardana, IKG. Sugita, IGN. Wardana



 

 

STRUCTURAL TRANSFORMATION OF HCP METALLIC 

NANOWIREUSING CLERI-ROSATO POTENTIAL  
M.M. Aish* 

Physics Department, Faculty of Science, Menoufia University, 32511 Shebin Elkom, Menofia, Egypt 

*e-mail: mohamedeash2@yahoo.com 
 
 

Abstract. Sub-atomic Dynamic simulations have been carried out on some single-crystal 
hexagonal metals, HCP nanowires (Cd, Co, Mg, Ti, and Zr) upon application of uniaxial 
tension with a speed of 20 m/s and to investigate the nature of deformation and fracture. The 
deformation corresponds to the direction <0001> plane. A many-body interatomic potential 
for HCP nanowires within the second-moment approximation of the tight-binding model (the 
Cleri-Rosato potentials) was employed to carry out three dimensional MD simulations.  
A computer experiment is performed at a temperature 300K. The stored energy diagrams 
obtained at various time by the MD simulations of the tensile specimens of these metallic 
nanowires show a rapid increase in stress up to a maximum followed by a gradual drop to 
zero when the specimen fails by ductile fracture. The feature of deformation energy can be 
divided into three regions: quasi-elastic, plastic and failure. The nature of deformation, 
slipping, twinning and necking were studied. Stress decreased with increasing volume and the 
breaking position increases. The results showed that breaking position depended on the 
nanowire length. From this, it appears that Cleri-Rosato potentials make good represent for 
the deformation behavior of HCP metallic nanowires. 
Keywords: molecular dynamics, uniaxial tension, Cleri-Rosato, nanowires, tight-binding and 
failure 
 
 
1. Introduction 
Physical and mechanical properties of the substances in condensed matter physics depended 
on size and structure: With decreasing size of the elementary particles that make up the 
material, increase the strength and feature of plasticity changes were studied in [1]. In the past 
ten years, special attention has been given to the studied the properties of metallic nanowires 
and nanofilms and another nano-objects [2]. Nanowires referred to as materials, which are in 
the cross-section size is not more than 100 nm and significantly extended in length. Other 
important systems include metallic nanostructured and alloys, which have unique properties, 
and can be used as structural or functional materials [1]. First of all, this is due to the fact that 
they have been studied and has accumulated extensive experimental data. Of particular 
interest in terms of the choice of the object of study are those metals and alloys, in which, 
first, has the longest period of nanosize. Second, the weak-stable to external influences 
(temperature, load, doping and so on.). Third, there is a range of structural states near the 
boundary of stability loss, and these states are in equilibrium or near-equilibrium. 

These requirements are responsible, in particular, ordered alloys and intermetallic 
compounds which contain long periodic structure (LPS). From the normal ordered systems 
with a simple superstructure, they differ in that the alloys of this class ordered arrangement of 
atoms periodically or quasi-periodically broken antiphase boundaries (APB). Normally, in 
ordered alloys and intermetallic compounds APB energetically favorable, however, in 
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systems with long-period equilibrium nanostructure APB are elements of the structure. Given 
that the mechanisms of structural-energy transformations at various load conditions, in 
particular uniaxial strain, help to explain the abnormal strength properties of long-period 
metal alloys (LPMA), ie the properties of LPMR resist destruction and irreversible change in 
the shape, the task of studying the mechanisms of structural-energy transformations occurring 
during high uniaxial strain tension of HCP metallic (Cd, Co, Mg, Ti, and Zr) nanowires, 
containing LPS. Because of the strong anisotropy of the structure, defects in HCP metals and 
alloys have a number of features that is of great interest to them and requires detailed 
consideration. In an ideal HCP – structure each atom is characterized by 6 sets [1|4|2|1] and 6 
sets [1|4|2|2]. The ability of metals to form alloys with specific physical and mechanical 
properties is crucial for the technical application. Because of the strong anisotropy of the 
structure, defects in HCP metals and alloys have a number of features that is of great interest 
to them and requires detailed consideration.  

Currently, the many-body potentials of the embedded-atom method (EAM) [1,2], 
Finnis–Sinclair [3] potentials and the second-moment approximation (SMA) of the tight-
binding (TB) method [4-9] were studied. According to [4,5], the TB-SMA expression of the 
total energy of a metallic system is based on a small set of adjustable parameters, which can 
be determined by adjusting to experimental data [9,10] or ab-initio results [1,10-13]. The 
author of [12], was studied the features of structural transformations of HCP metallic Ti 
nanowires using Cleri-Rosato potential at low temperature. In [13-17] the mechanical 
properties of Ni nanowires were studied in detail. There were other representations [18-20]. 

Thus, the present work, with the assistance of molecular dynamics simulation (Cleri-
Rosato potential), structural-energy transformations in HCP Mettalic (Cd, Co, Mg, Ti, and Zr) 
nanowires, under high-speed deformation of uniaxial tension been processed using 
mathematical modeling. To the study structural-energy transformations, under high-speed of 
deformation (1010 s-1) were applied on pure metallic nanowire (Cd, Co, Mg, Ti, and Zr). This 
material has a positive temperature dependence of yield stress. The deformation in such alloys 
can be a combination of structural and superstructural changes, which entails various effects. 

Finally this article discusses the results of Molecular Dynamicsimulation to HCP phase 
in metallic nanowires, obtained using the interatomic potential of strong coupling (tight-
binding). 
 
2. MD simulation methodology 
MD is a simulation technique where the time evolution of an interacting atoms is followed by 
integrating their equation of motion. It consists of integrating Newton's second law for each 
atom present in the system by discretization of time. In general, it is difficult to obtain an 
analytical solution that precisely describes the atoms' trajectories. Therefore, the equations of 
motion are solved numerically using a time-discredited finite difference methodology such as 
the Verlet method or the velocity Verlet method, which incorporate the velocities explicitly 
into the integration scheme. The initial atomic positions for metallic systems are defined on 
the crystal lattice of the metal, while the initial velocities are assigned according to the 
Boltzmann distribution at the given simulation temperature. The validity and accuracy of MD 
simulation results depend on the accuracy of the interatomic forces used as inputs, which rely 
on the selection of an efficient underlying interatomic force-field potential. For modeling 
metallic systems, the most 

Modeling considered atomic systems was carried out in the framework of multiparticle 
tight-binding potential Cleri-Rosato. The repulsive part of this potential is short-range 
repulsive pair potential Born-Mayer and the attractive part arises from the so-called tight-
binding (TB) method second-moment approximation to the electronic density of state in 
which the ion-ion interaction is described by the band terminology [6]. The uses of these 
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potentials are well established in a number of studies [7-10]. This potential has been used in 
several studies of bulk and cluster systems transition and noble metals [1,6-7,13]. 

Commonly used potential is the semi-empirical embedded atom method (EAM) 
potential. The parameters of EAM potential are generally obtained by fitting cohesive energy, 
equilibrium lattice constant, elastic constants, unrelaxed vacancy formation energy, bond 
length, and diatomic bond strength. Since its introduction, the ability and viability of EAM in 
modeling metals have been extensively analyzed and tested The classic EAM method is not 
suitable for describing systems in which covalent bonds are present, such as carbon (in 
diamond or graphite structures), because the EAM description does not account for the 
angular dependence of the interatomic interactions. To account for angular dependence, as in 
the case of the HCP lattice where it is important, a modified embedded atom method was 
proposed. The total energy U in a system of N atoms in the EAM framework can be 
written as: 
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is the many-body term. Where A , p , q , ζ , 0r  - are adjustable parameters governing the 
interaction between those atoms, ijr  - the separation between atoms i and j. The values of 
Potential parameters Cleri-Rosato were taken from [21]. Table 1 gives the parameters of tight-
binding potentials for HCP metals used in this work [21]. 
 
Table 1. Parameters of tight-binding potentials for HCP metals [21] 

 A  (eV) ζ  (eV) p  q  β  

Cd 0.1420 0.8117 10.612 5.206 1.8856 
Co 0.0950 1.4980 11.604 2.286 1.6232 
Mg 0.0290 0.4992 12.820 2.257 1.6335 
Ti 0.1519 1.8112 8.620 2.390 1.587 
Zr 0.1934 2.2792 8.250 2.249 1.5925 

 
The model can be used to describe quite well elastic, plastic, defect and mechanical 

properties of a wide range of FCC- and HCP-metals. Verlet algorithm used to determine the 
velocities of atomic motion in the simulation were. Cleri-Rosato potentials which were 
proposed by [21] have already worked well in HCP nanowires studies. 

The use of such a cutoff radius ensures that the calculations will not consume large 
amounts of computational time in evaluating the forces that are near zero. The MD 
simulations require the solution of 6N (N-total number of atoms) simultaneous, coupled, first-
order deferential equations of motion. This solution is obtained using a fourth-order  
Runge-Kutta algorithm. Integration accuracy is monitored using back-integration and energy 
conservation requirements with the velocity reset procedure turned off. The MD simulations 
were carried out till separation occurs in the tensile specimen. 
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3. Results and discussion 
Since the deformation and fracture of HCP nanowires are of main interest in this work 
(Table 2). The specimen used for the studied section is a nanowire of 12a0×12a0×12c0. The 
total number of atoms used in the simulations equal 1928 according on the crystal structure. 
The crystal was set-up with a hexagonal orientation and the uniaxial tensile force was applied 
along the [0001] direction. The feature of deformation, slipping, twinning and necking were 
studied. 

Table 2 gives the measured tensile strength and strain to fracture of the various 
materials used in this work. As can be expected, Zr exhibits the highest strength (yield 
strength of =23GPa) while Mg exhibits the lowest strength (yield strength of =4GPa). The 
strength of Ti was estimated to be=14GPa. The strength of Co was estimated to  
be =22.5GPa. The strength of Cd was estimated to be =6 GPa. Cadmium showed an earlier 
fracture while Cobaltshowed the maximum strain before fracture. 

 
Table 2. MD results for calculating of HCP nanowires at 300 K including yielding time, 
yielding stress and breaking time 

HCP Nanowire Yielding point Breaking time 
σ (GPa) T, Ps t, Ps 

Cd 6 10 135 
Co 22.5 8 170 
Mg 4 8 140 
Ti 14 4 150 
Zr 23 4 140 

 
Three stages deformation. The experiments were obtained plots of the stored energy 

of deformation at various times, reflecting the processes in the HCP nanowires during 
deformation. There are three stages of deformation: the quasi-elastic deformation (I), plastic 
deformation (II) and the breaking (failure) (III). 

For all HCP nanowires, in the first stage there was almost linear increase in stress. The 
initial stage quasi-elastic area there is only relative displacement of atoms and there are no 
defects. Therefore, in this region the energy stored varies periodically. This stage is completed 
at 8 Ps, 8 Ps, 4 Ps, 4 Ps for Mg, Co, Ti and Zr nanowires, respectively. The sharp fall takes 
place only at the point of transition from the first to second stages of deformation (Fig. 1). 

Analysis of the graphs in Fig. 1 shows that the average duration of the first stage of 
deformation for nanowire, The duration of the plastic deformation step is 210, 160, 165, 
115 Ps, for Mg, Co, Ti and Zr nanowires, respectively. 

The value of the stored energy at the peak of deformation schedule at the end of the first 
stage for the reduced nanowires equals 0.05, 0.07, 0.05 and 0.045 eV / atom, respectively. The 
levels of stored energy at the end of the plastic deformation steps are equals 0.065, 0.145, 
0.115, and 0.112 eV / atom, respectively. The neck of the HCP nanowire forms after the slips 
happened, and the deformations have been carried mainly through the elongation of the neck. 
Through further analysis, we find that the last stage of plastic deformation of the neck is 
formed; deformation develops mainly due to the reconstruction and rebuilding of the neck 
area. Outside this area, the HCP nanowires ordered structure is retained and there are 
significant changes. Beyond the neck region, atomic structures have no significant changes. 
The atomic rearrangements in the neck region induce the zigzag increase–decrease in stress as 
the strain is increased. The atoms, close to the narrowest region of the neck, are highly 
disordered. 
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Fig. 1.The dependence of the energy stored by the deformation time of the experiment at 
300 K at various time of uniaxial loading for Mg, Co, Ti and Zr nanowires 

 
At the point of breaking, we observe a one-atom thick. With further pulling of the HCP 

nanowires, the bond between the two atoms lying in the one-atom breaks and then the rupture 
happens. As can be expected Zirconium exhibits the highest ultimate strength (=26 GPa), 
while the ultimate strength of Titanium nanowire was estimated to be 18 GPa. 

Structure transformation of HCP metallic nanowire. The MD simulation plots of the 
XOY plane of the tensile specimens at various stages of uniaxial tension are shown in  
Figs. 2-5 are for the HCP materials, Cd, Co, Mg, Ti and Zr, respectively, It may be noted that 
the discussion of the results presented here is based not only on the MD simulation plots of 
the various stages presented here but also on the detailed study of the animation of the 
process [12].  

Figure 6 shows a small compressive bulge of the specimen after the relaxation at time 
4 Ps for Zr. A similar situation is found for the other HCP metals investigated, namely, Cd, 
Co, Mg and Ti. Considerable disorder in the XOY plane of the crystal was observed during 
the early stages of deformation for all HCP metals (up to 50 Ps as in Figs. 2-5).  

As the HCP nanowires was extended, necking area can be seen at times 135 Ps, 170 Ps, 
150 Ps, 140 Ps for Cd, Co, Mg and Zr nanowires, respectively, (Figs. 2-5). Since Co is a 
highly ductile material, the atoms hold together under larger strain before the dislocations 
formed during the elastic and plastic deformation dislocation and form a ductile fracture. 
Towards the end of plastic deformation, the neck is elongated almost linearly to a very large 
strain (Fig. 2). On subsequent pulling, the necked region separates in the failure at 170 Ps.  

The radius of the neck was found to increase with increase in the deformation of the 
nanowire and to decrease with decrease in the ductility. Thus, the radius decreases as we go 
from Co to Zr to Co to Mg. The region of disordered material as well as the extent of vacancy 
formation was also found to decrease with decrease in the ductility of the wire.  
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Initially, dislocations at =35º were observed in the MD data for the case of Zr but due to 
the high disorder, further dislocation propagation can be observed. Based on the results, as 
well as the MD simulations at first stage of deformation (Figs. 2-5), the strain to fracture was 
observed to the HCP nanowires. This can be observed by comparing Figs. 2-5 which shows 
the variations in the strain to fracture of various nanowires. In the case of HCP nanowires, the 
work material was disordered from the early stages of necking till the end of the experiment. 

 

 
Fig. 2. MD simulation plots of the gage section of a tensile specimen at various time of 

uniaxial loading for Cd nano-wire in plane [1010] right and in plane [0110] left 
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Fig. 3. MD simulation plots of the gage section of a tensile specimen at various time of 
uniaxial loading for Co nanowire in plane [1010] right and in plane [0110] left 
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Fig. 4. MD simulation plots of the gage section of a tensile specimen at various time of 
uniaxial loading for Mg nanowire in plane [1010] right and in plane [0110] left 
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Fig. 5. MD simulation plots of the gage section of a tensile specimen at various time of 
uniaxial loading for Zr nanowire in plane [1010] right and in plane [0110] left 

 
4. Conclusions 
The process of formation of defects in the dynamic deformation of HCP metallic (Cd, Co, 
Mg, Ti, and Zr) nanowires under uniaxial tension at 300 K have been studied using MD 
simulation. Structural differences between the structural and energy transformations were as 
follows: As a result of studies of structural and energy transformations during tensile 
deformation of HCP metallic (Cd, Co, Mg, Ti, and Zr) nanowires at 300 K, identified three 
stages of structural and energy transformations: the quasi-elastic, plastic(flow), and fracture. 

1. The first stage of structural and energy transformations in the deformation process 
ends with formation sliding on the substructure of HCP metallic (Cd, Co, Mg, Ti, and Zr) 
nanowires. At the first stage of deformation, we can see rotation the central portion of 
nanowire and C-domain formation in the second stage of deformation. The first stage of 
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structural and energy transformations ends quickly for all of them and tack values 4 Ps for Ti 
and Zr, 8 Ps for Co and Mg and 10 Ps for Cd. As can be expected the ultimate strength of the 
HCP nanowires equals 23, 22.5,14,6 and 4 for Zr, Co, Ti, Cd and Mg nanowires, respectively,  

2. It was found that the features of structural and energy transformations for HCP 
metallic nanowires in the second stage of deformation affects the orientation of the axis of 
tension. In the second stage occur collective atomic bias, the formation of dislocations and 
grain boundaries. As shown in Fig. 2 the period of the plasticity was tacked largest period of 
time for Co and Ti and smallest for Zr and Mg. 

3. The value of the stored energy at the peak of deformation schedule at the end of the 
first stage for the reduced nanowires equals 0.07 eV/atom for Co and 0.045 eV/atom for Zr. 
The levels of stored energy at the end of the plastic deformation steps are equals  
0.065 eV /atom for Mg and 0.112 eV /atom for Zr. 

4. The neck area occurs in the third stage of structural and energy transformations. 
Stored strain energy in that period varies only slightly.  

5. The nature of the destruction of blocks corresponds to brittle fracture at 300 K. After 
fracture of nanowire for all nanowires, found planar defects such as twins and packing 
defects. 
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Abstract. In this paper, we consider the adequacy of the use of the straight normal hypothesis 
in the applied theory for the calculation of a cantilever-type piezoelectric generator that takes 
into account the incomplete piezo-element coating of the substrate, which was obtained 
earlier, and a numerical optimization procedure for piezoelectric generator is given, taking 
into account critical failure stresses.  
Keywords: piezoelectric generator, banding, straight normal, semi-analytical method, finite 
element, numerical optimization 
 
 
1. Introduction 
It is known that piezoelectric materials are widely used as actuators, sensors and generators in 
the engineering and aerospace field for monitoring the state of structures, shape control, active 
suppression of parasitic vibrations, noise suppression, etc. Such wide application is achieved 
due to their good electromechanical properties, flexibility in the design process, ease of 
production, as well as high energy conversion efficiency in the direct and inverse piezo effect. 
When using piezoelectric materials as actuators, deformations can be controlled by changing 
the magnitude of the applied electric potential. In the sensors, deformation measurement is 
also performed by measuring the induced potential. In the field of energy harvesting by means 
of piezoelectric materials, the free mechanical energy that is present in the environment is 
converted into electrical, and then converted into a suitable for low-power device. A detailed 
survey is given in [1-3] 

In recent years, research has been actively developed in the area of piezoelectric 
transducers of mechanical energy into electrical one. This type of transducers was called 
piezoelectric generators (PEG). The basic information about PEG, as well as the problems 
arising at the development stages of energy storage devices, were given in the review 
papers [3-5], as well as in the fundamental monograph [6]. 

Typical actuators, sensors and generators, working on bending, are a multi-layered 
structure consisting of several layers with different mechanical and electrical properties. The 
traditional design, consisting of two piezoelectric layers, glued to the substrate or to each 
other is called a bimorph.  
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Most of the works are devoted to the study of the characteristics of the bimorph 
cantilever type PEG. There are several ways of modeling PEG: mathematical model with 
lumped parameters, mathematical model with distributed and finite element (FE) model. 

Works [7-9] are devoted to the construction of PEG models on the basis of oscillations 
of a mechanical system with lumped parameters. The use of such systems is a convenient 
model approach, since it allows obtaining analytical dependencies between the output 
parameters of PEG (potential, power, etc.) and electrical, mechanical characteristics and 
resistance of the external electric circuit. 

Simulation using lumped parameters gives an initial idea of the problem, allowing 
simple expressions to be used to describe the system. However, this simulation method is 
inaccurate and limited to only one mode of oscillation. In addition, the approach does not take 
into account important aspects of the related physical system, for example, information on the 
dynamic form of the oscillation mode and accurate information on the distribution of 
deformation and its effect on the electrical response of the system. 

Another type of simulation is modeling using distributed parameters. Based on the 
Euler-Bernoulli hypotheses for a beam, analytic solutions of the related problem were 
obtained in [10,11] for various configurations of the cantilever type PEG. Explicit expressions 
for the output voltage across the resistor for harmonic oscillations of the cantilever beam were 
obtained. In addition, the authors studied in detail the behavior of PEG with short-circuited 
and open-circuit electrical circuits and the effect of the electromechanical coupling 
coefficient. However, in these studies, the case where the piezoelectric element (PE) does not 
completely cover the substrate has not been considered. 

Works [11-14] are devoted to the FE modeling of cantilever PEGs of various 
configurations. The case where the PE does not completely cover the substrate is also easily 
solved by the FE method. Nevertheless, obtaining a numerical-analytical solution for the case 
of incomplete coating of the substrate by a PE is of some interest. 

The above brief analysis of known works has shown that the problem of modeling PEG 
using analytical methods in full is not yet solved, although it is very relevant. 

In previous works, we presented a numerical analytical model based on the Kantorovich 
method [15], confirmed by FE modeling and a series of experiments [16], and also carried out 
a FE analysis of the improved model of cantilever PEG [17]. 

In this paper, we consider the adequacy of the use of the straight normal hypothesis in 
the applied theory for the calculation of a cantilever-type PEG that takes into account the 
incomplete PE coating of the substrate, which was obtained earlier in [15], and a numerical 
optimization procedure for PEG is given, taking into account critical failure stresses. 

 
2. Mathematical modelling of the cantilever PEG 
The simplest bimorph design of cantilever PEG is presented in Fig. 1. The cantilever bimorph 
PEG consists of two PEs (Fig. 1, points 1 and 3) glued to the substrate (Fig. 1, point 2), which 
is clamped from one end. Electrodes are applied to large sides perpendicular to the 3x  axis. 
The electrical voltage ( )v t  is measured on the resistor R . 

Piezoelectric elements are polarized in thickness. In this paper, we consider a parallel 
circuit for connecting PEs to a common electric circuit (see Fig. 1); therefore, it is assumed 
that the polarization vectors are aligned with the positive direction of the 3x  axis.  

The excitation of oscillations in the PEG shown in Fig. 1 occurs through the movement 
of the clamp relative to a certain plane, so the absolute displacement of the cantilever along 
the coordinate 3x  will consist of the displacement of the clamp ( )cw t  and the relative 
displacement of the cantilever 1( , )w x t . 
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Fig. 1. Bimorph cantilever PEG: 1 and 3 - PEs, 2 - substrate 

 
To analyze the problem of forced oscillations of a cantilever bimorph PEG in [15], we 

used the Kantorovich method [18]. It is based on the idea of the expansion of the 
displacement of the beam in a row: 
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where N  is the number of vibration modes to be considered, ( )i tη  is unknown generalized 
coordinates, 1( )i xφ  are known test functions that satisfy the boundary conditions. 

Earlier, in [15], applied numerical theories were constructed to simulate the 
performance characteristics of a cantilever type PEG. Simulation took place on the basis of 
the Hamilton principle within the framework of the Euler-Bernoulli hypotheses: 
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where µ γ= +D M K  is the Rayleigh-type damping matrix, and the remaining coefficients 
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where ijM  is the elements of the mass matrix, ijK  is the elements of the stiffness matrix, ( )v t  
is the voltage across the resistor R , pC  is the electrical capacitance, iθ  is the elements of the 
electromechanical coupling vector, ip  is elements of the effective mechanical load vector.  

Next we will consider PEG, the substrate of which has the following characteristics: 
geometric dimensions L b h× × , 108×10×1 mm3, density sρ  1650 kg/m3, elastic modulus  

sc  15 GPa. PEs have the following characteristics: geometric dimensions pp pL b h× × , 
56×6×0.5 mm3, density pρ  8000 kg/m3, elastic modulus pc  7.5 GPa, relative permittivity 

033 /Sε ε  5000, piezoelectric modulus 31d  350 pC/N. The excitation in the system is given by 
the harmonic displacement of the base t

c c
iw w e w=  , whose amplitude is 0.1cw =  mm. 

The damping coefficients µ  and γ  for the natural frequencies iw  and jw  are found 
from the solution of the following equation [19]: 
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=    

      (4) 
where 1ξ  and 2ξ  are the modal damping coefficients, which are selected for reasons of 
agreement with the experimental data. In this work, the modal damping coefficients for the 
first two modes were set equal to 1 2 0.02ξ ξ= =  in accordance with the results of earlier 
experimental studies of cantilever PEGs [16]. 
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3. Adequacy of the hypothesis of a straight normal 
The Euler-Bernoulli hypotheses assume that the beam is uniform in thickness. In our case, we 
have a three-layer beam (Fig. 2). Moreover, the modulus of elasticity of the substrate (inner 
layer) is 3.8 times smaller than the elastic modulus of the PEs (outer layers). This fact may 
indicate a break in the normal when the beam is bent. This in turn can lead to inaccurate 
results when using the theory based on the Euler-Bernoulli hypotheses in the calculation of 
such a construction. With the help of the FE calculation, we analyze the deformations in the 
cross section of the beam and compare them with theory. 

For the analysis, a model of cantilever bimorph PEG, shown in Fig. 2, was chosen. 
 

 
Fig. 2. Cantiliver type PEG 

 
In order to take into account the incomplete covering of the piezoelectric substrate by 

the generator shown in Fig. 2, the function 1( )i xφ  should be specified as follows: 
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In this case, the specific mass m , for the cross section shown in Fig. 2, is calculated as 
follows: 

2 ,p ps sm S Sρ ρ= +  (6) 
where sρ  is the density of the substrate, pρ  is the piezoceramic density, sS hb=  is the cross-
sectional area of the substrate, and pp pS h b=  is the cross-sectional area of the PE. 

The flexural rigidity EI  for this construction is calculated as follows: 
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where pc  and sc  are the moduli of elasticity of piezoceramics and substrates, respectively, 
and pupS  and plowS  are the cross-sectional areas along which integration is performed for the 
lower and upper PEs, respectively. 

The function pJ  in the electromechanical coupling vector is: 
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The boundary conditions and the conjugation conditions necessary for finding the 
functions 1( )i xφ  for a given construction will be as follows: 
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where (1)EI  is the bending stiffness of the segment without a PE, and (2)EI  with a PE. 
A similar problem was modeled in the ACELAN FE package. With a certain 

indentation to the right at three points near the left edge of the PE, the longitudinal strain 
distributions along the thickness were obtained (see Fig. 3). 

 

 
Fig. 3. Strain distribution along the thickness in the vicinity of the left edge of PE 
 
The FE calculation showed that, in the vicinity of the first resonance frequency, the 

deflected mode of the three-layer structure is well described by the hypothesis of a single 
normal, with the exception of the edges of the PE, and the size of this region does not exceed 
the thickness of the packet. Thus, in Fig. 3, the plots of the longitudinal strain distribution 
along the beam thickness for distances from the left edge of the PE 0.5, 1 and 2 mm are 
shown for the model shown in Fig. 2. A similar distribution is also found at the right edge of 
the PE. Considering that the PE length in calculation is 56 mm, the applied theory of 
oscillations of a three-layer beam is described with a high degree of accuracy on the basis of 
the hypothesis of a single normal. 

 

 
Fig 4. Stress distribution in the cantiliver transducer anlong the length of transducer on the 

upper surfaces of layers 
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Comparison of the results of the calculation of the stress-strain and electric state of 
cantilever transducer according to the applied theory and the FE model in the framework of 
the deflected mode with the condition of an open circuit at a frequency in the neighborhood of 
the first resonance shows a good qualitative coincidence of the characteristics  
(Fig. 4 and 5). In quantitative terms, with a relative deflection difference of 9%, the relative 
difference in maximum stresses at the free boundaries of the PE in their middle part along the 
length did not exceed 10%. In addition, a comparison was made with the known FE model, 
built in the ANSYS package, according to which the relative error in determining the resonant 
frequencies and the output electric voltage was 6%. 
 

 
Fig 5. Stress distribution in the cantiliver transducer anlong the thicknes  

in the middle point of PE 
 

4. Numerical optimization 
Of particular interest is the study of the influence of geometric parameters on the output 
characteristics of PEG, taking into account the critical stresses for each material. We 
introduce the strength limit in the following form 

m ckσ σ= , (10) 
here, mσ  is the maximum permissible value of the mechanical stress, k  is the safety factor, 
and cσ  is the critical value of the mechanical stress at which the material is broken. 

For substrate and PE materials [20], let us take the critical values of cσ  for the case of 
tension equal to 150 and 66 MPa, respectively. Safety factor is 0.5k = .  

For optimization, a bimorph cantilever PEG model with an attached mass, which is 
located at some margin on the free end of the beam, was selected (see Fig. 6.). 

 

 
Fig. 6. Cantilever type PEG with poof mass 

 
In order to take into account the incomplete covering of the piezoelectric substrate by 

the generator shown in Fig. 6, the function 1( )i xφ  should be given as follows: 
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Adding an attached mass to the design requires consideration of its influence in the 
system of differential equations, since it is an additional inertial load that affects the kinetic 
energy. Taking into account the attached mass, the expressions for the components ijM  and 

ip  vary as follows: 
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where ML  is the position coordinate of the attached mass. In this case it is the free end of the 
beam. 

The boundary conditions and the conjugation conditions for finding 1( )i xφ  will be as 
follows: 
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where / mLMα = , β  is an eigenvalue, (1)EI  is the bending stiffness of a segment covered 
by a PE, and (2)EI  is without a PE. 
 

 
Fig 7. Dependences of the maximum mechanical stresses arising in the clamp of PEG on the 

relative length *l  of PE for two configurations 
 

Investigations of the efficiency of various types of structures from geometric parameters 
with allowance for the critical tensile stresses for a piezoceramic layer and a substrate are 
carried out. Thus, for the model shown in Fig. 6, the dependence of the output parameters on 
the PE's length was compared in the presence of (I) and the absence (II) of the attached 
mass 0M . 
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Fig. 8. Dependences of the output parameters of PEG on the relative length *l  of PE for two 

configurations: resonance frequencies (solid lines) and maximum output power  
(dot-dash lines) 

 
The results of the research showed that, in the presence and absence of M0, mechanical 

stresses begin to exceed the permissible stress limits mσ  beginning with a certain value of the 
PE's length (see Fig. 7). It turned out that there is an interval of frequencies (82-94 Hz) where 
the first resonance frequencies in the case of the presence (I) and absence (II) of the attached 
mass coincide. The maximum power that can be obtained in the presence of M0 (I) was about 
31 mW at a frequency of 88 Hz with the relative length of PE * 0/pl L L=  equal to 0.85 (see 
Fig. 8). The same output power can be obtained in the absence of M0 (II) at a frequency of 
131 Hz for a length *l =0.63. 
 
5. Conclusions 
It is shown that the developed applied theory based on the single normal hypothesis 
satisfactorily describes the deflected mode in the internal part of the PEs. An exception to this 
is the small vicinity of the ends of piezoelectric layers, but the effect of this feature on the 
integral characteristics of piezoelectric is not significant. 

An example of optimization of a cantilever-type PEG is shown taking into account the 
critical mechanical stresses for PEG materials. The optimization results showed that there is a 
frequency interval where the first resonant frequencies of the PEG with the attached mass and 
without coincide, but the PEG model without the presence of mass can not work in this 
interval, since the threshold of critical stresses is exceeded. 
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Abstract. It is shown that a single-walled carbon nanotube based on a carbon monolayer 
(graphene) rolled up into a cylinder is a nanoscale quantum system characterized by the 
presence of electron crystals, like graphene. In contrast to the extremely unstable graphene 
quantum system, the nanotube quantum system is stable at a certain curvature of the carbon 
skeleton. The curvature causes the redistribution of π electrons between internal and external 
electron crystals accompanied by the formation of additional one-dimensional or quasi-one-
dimensional crystals of pairs of π* electrons excited into a higher 3s2pz energy state and 
located on the nanotube external side. The stability of the nanotube quantum system and its 
unusual physical properties are due to these crystals of π* electron pairs. 
Keywords: carbon nanotubes, electron crystals, nanoscale quantum systems, ballistic 
conductivity 
 
 
1. Introduction 
The interest to single-walled carbon nanotubes is caused by a number of properties that 
promise their widespread use in electronics based on quantum systems, including the systems 
based on carbon and its compounds. Of practical interest are the following properties of 
carbon nanotubes: the tendency to form bundles from individual tubes [1,2], an almost 
complete absence of defects [2], high emission currents at a relatively low voltage 
accompanied by light emission in the red and near infrared regions [3,4], ballistic 
conductivity at room temperature and achievement of intrinsic contact resistance close to a 
half of the quantum limit (h/4e2) at low temperature [5,6,7], high Josephson supercurrents [8], 
and also induced and intrinsic superconductivity [9]. The natures of all these phenomena are 
still unknown. It is not clear even why electrical properties of tubes, such as armchair and 
zigzag ones, differ from each other, though the only difference between them is in the 
hexagon orientation relative to the tube axis [7]. The nature of high Schottky barriers at 
contacts with metals [10] and the nature of the inhomogeneities of electron and light 
emissions from the tube surface [3,4] also remain unclear. 

Since attempts to explain the above phenomena in the approximation of weakly 
interacting particles were unsuccessful, an attempt will be made to explain them in the 
approximation of strongly interacting electrons, i.e., in the approximation used earlier for 
graphene [11]. It was shown in [11] that a strong exchange interaction (resonant π binding) 
and strong Coulomb interaction between π electrons at neighboring atoms in graphene led to 
the localization of π electrons on carbon atoms and their strongly correlated state which 
manifested itself in the formation of two spin-polarized π electron crystals located on opposite 
sides of the carbon skeleton.        
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Since the nanotube is a carbon monolayer rolled up into a cylinder and resonant π 
binding and Coulomb interaction between π electrons are preserved, the formation of electron 
crystals should be also expected in it. The only difference is that both electron crystals 
(external and internal with respect to the carbon skeleton) must also have a cylindrical shape. 
However, it was also noted in [11] that a slightest disturbance in the carbon monolayer 
flatness (for example, a displacement of a π electron at polarization) causes significant 
changes in the monolayer quantum system. It is evident that monolayer rolling up must also 
lead to changes in the nanotube quantum system. 

The goals of our study were, first, to consider the features of quantum systems of the 
armchair and zigzag nanotubes and, second, to show how the unusual properties of these 
nanotubes can be understood in the approximation of strongly interacting electrons.  

It is known that carbon nanotubes are divided into single-walled and multi-walled ones. 
We consider only single-walled ones, since π electron interactions between neighboring tubes 
should be taken into account in multi-walled tubes along with interactions between π-
electrons in each tube (like in graphite). Therefore, the properties of multi-walled and single-
walled tubes can differ considerably. 

It is also known that single-walled nanotubes differ in the orientation of carbon 
hexagons relative to the tube axis (chirality). For the sake of brevity, we consider only two 
cases of hexagon orientation, which corresponds to two types of tubes, i.e., zigzag and 
armchair ones. 
 
2. On preferred diameter of single-walled nanotubes 
In order to carry out a comparative analysis of two types of nanotubes (armchair and zigzag), 
we consider the tubes with the same number of hexagon rows parallel to the nanotube axis 
and determine their diameters. Then we cut out rings five hexagons wide each and draw a 
projection of these rings on a plane. Fig. 1 (a, b) shows the projections of such tube rings 
containing 12 rows of hexagons each. 

The choice of tubes with 12 hexagon rows is not random. As will be shown below, it is 
dictated by the conditions of stability of this carbon modification. The diameter of the 
selected nanotubes is easily calculated if we know the C – C bond length. As the first 
approximation, we can assume that all bonds in the hexagon are similar and their lengths are 
equal to the bond length in graphene (1.41 Å). Under these assumptions, the tube diameter 
with 12 hexagon rows is in the range 8-9 Å (or, more precisely, 8.08 Å and 9.33 Å for the 
armchair and zigzag tubes, respectively). Note that these diameters are close to those obtained 
experimentally in [12], where the highest peak in the distribution of single-walled nanotubes 
in diameter was observed for a diameter of 10.5 Å and a lower peak was observed for a 
diameter of 8.5 Å. 

It is clearly seen from the projection of the armchair tube that the number of rows in 
these tubes can be only even, since every next row of hexagons is shifted with respect to the 
preceding row. Further consideration will show that the even number of hexagon rows is also 
important for zigzag tubes. There is another limitation on the number of rows common to both 
types of tubes. It is a consequence of the multiplicity of bonds in graphene equal to  
1.33 (1σ + 0.33π) corresponding to the maximum binding energy in it. To achieve such a 
multiplicity of coupling, it must be possible drawing of 9 resonance structures of the Kekule 
type. 

Let us explain this statement. Since only two double bonds out of six are possible in 
each hexagon of any resonant structure of a carbon monolayer, a multiplicity of π bond equal 
to 0.33 can be achieved when each bond is a double one in three resonant structures. Hence, 
the number of structures must be 9. This pattern of 9 resonant structures for both types of 
tubes is possible if the number of hexagon rows is a multiple of three. If we take into account 
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the even number of rows noted above, the number of rows in the tubes must be a multiple 
of 6. The tubes with 12 hexagon rows satisfy this condition. 

 

 
The tube diameter calculated above is the carbon skeleton diameter. However, to 

characterize the tube, the diameters of the external and internal π electron crystals, which are 
at a distance equal to the carbon atomic radius (0.91 Å) from the carbon skeleton, are also 
important. The diameters of the electron crystals calculated with due account for the atomic 
radius turned out to be 9.90 Å and 11.15 Å (external) and 6.26 Å and 7.51 Å (internal) for the 
armchair and zigzag tubes, respectively. Note that electron diffraction studies of the nanotube 
diameter (for example, by transmission electron microscopy) give the diameter of the external 
electron crystal with which the electron beam interacts rather than the carbon skeleton 
diameter. Therefore, the experimental data should be compared with the diameter of the 
external electron crystal. Note that the calculated average (for both types of nanotubes) 
diameter of the external electron crystal (10.5 Å) is in good agreement with the experimental 
data [12]. 

 
Fig. 1. Projections of nanotube rings containing 5 hexagons in width and 12 hexagon rows in 

perimeter of a circle for the armchair (a) and zigzag type tubes (b). Resonant π bonds are 
shown by the thin lines, stationary π* bonds are shown by the double lines and the single 
bonds are shown by the dash lines. The dot-and-dash lines with two arrows show the thin 
strips containing one carbon atom chain highlighted by shading. Three 1D crystals of π* 

electron pairs are shown in (a) and two quasi-1D crystals are shown in (b). The line with two 
arrows on the ends shows the tube axis direction 
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A comparison of two types of tubes with the same number of hexagon rows shows that 
the diameter of the carbon skeleton of the armchair tube is noticeably smaller than the zigzag 
tube diameter (8.08 versus 9.33 Å). This means that the curvatures of the carbon tube skeleton 
estimated as 1/r, where r is the skeleton radius, are different. The curvature of the armchair 
tube is greater than that of the zigzag tube (0.24 versus 0.21). 
 
3. Curvature of carbon skeleton and number of excited π electrons 
Let us consider the effect of curvature of the nanotube carbon skeleton on the π electron state 
in them. The rolling up of a carbon monolayer into a tube leads to an expansion of the 
external electron crystal and a compression of the internal one. Such changes should be 
accompanied by changes in the exchange interaction between π electrons, an increase in the 
Coulomb interaction in the internal electron crystal and its weakening in the external one. 

However, to provide stability of a quantum nanotube system, it is important to maintain 
the equality of electron densities of the external and internal electron crystals, since only 
when these densities are equal all Coulomb interactions between π electrons are balanced 
inside and between electron crystals. 

Apparently, the condition in the quantum nanotube system can be satisfied due to the 
transition of a part of π electrons from the internal electron crystal to the external side of the 
nanotube, i.e., transition of a π electron from the lower lobe of its 2pz state to the upper one. 
However, such a transition will encounter a strong Coulomb repulsion from the external 
electron crystal. The result of such repulsion, as shown in [11] for graphene polarization, can 
be a change in the hybrid state of the carbon atom to which this π electron belongs from  
sp2 + 2pz to sp2 + 3s2pz state and excitation of the π electron from the 2pz state into one of two 
3s2pz hybrid states located on the external side of the nanotube. To distinguish such a excited 
electron from a π electron in the 2pz state, we denote it as π*electron. 

A change in the hybrid state of carbon atom will be accompanied by a loss of its 
resonant π binding with three nearest neighboring atoms. Three resonant π bonds will be 
replaced by two single bonds with two neighboring atoms and one stationary (non-resonant) 
π* bond with the third neighboring atom which is closer to the excited atom than the other 
two (Fig. 2). 
 

 
Fig. 2. Formation of four single bonds (1-4) and a stationary π* bond by a pair of π* electrons 

excited into the 3s2pz state. The dot-and-dash line shows the tube axis direction 
 

This point requires some explanation. A monolayer rolling up can be accompanied by a 
decrease in the distance and the bond length between carbon atoms. This decrease will depend 
on the bond orientation relative to the tube axis. So, if the length of the bond parallel to the 
tube axis remains unchanged at a monolayer rolling up, the length of the bond located at an 
angle to the axis decreases, and the length of the bond perpendicular to the axis also 
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decreases, but in a greater degree. Therefore, the hexagons are deformed, and the distances 
between atoms in the hexagon become different (Fig. 1).  

The bonds perpendicular to the tube axis are present only in the armchair tubes, and the 
bonds parallel to the axis are present only in the zigzag ones. Therefore, the π*electron 
excited into the 3s2pz state in the armchair nanotube does not have an alternative when 
choosing an atom with a π electron of which it can be paired. It will be the π electron of the 
carbon atom closest to the excited atom because its π electron is redundant in the system of 
two π electron crystals (it does not have a pair in the internal electron crystal after the excited 
electron leaves it). Since the number of electrons in the quantum system in the internal and 
external electron crystals should be the same, the extra electron will also be pushed out of the 
external electron crystal and excited into the 3s2pz state, but of its own atom. As a result, two 
adjacent closely spaced carbon atoms will be in the same hybrid 3s2pz state, and their π* 
electrons can be paired, thus forming a stationary π* bond (Fig. 2). Such pairing is 
energetically favorable for a quantum nanotube system, since it partially compensates for the 
energy loss of two resonant π bonds of three ones. 

To evaluate the number of π electrons migrating to the external side of the tube and the 
type of their ordering, we separate the projections of both tube rings into separate very narrow 
strips with a width equal to one carbon chain (Fig. 1 a, b). Each such strip in a nanotube 
corresponds to a thin ring containing only one carbon atom chain. Obviously, such a chain 
will be a sequence of atoms located in an armchair array for an armchair-type nanotube, and it 
will be a zigzag array for a zigzag-type nanotube.  

The number of π electrons migrating to the external side of such a thin ring can be 
calculated from the condition of electron density equality on the external and internal sides of 
the nanotube. This equality suggests that the ratio between the numbers of electrons on two 
sides of a thin ring is inversely proportional to the ratio between curvatures of the π electron 
crystals.  

The calculations showed that only three π electrons (from 24 π electrons ) migrate to the 
external side of the ring in each thin ring of the armchair tube, while only two π electrons 
migrate to the external side in the thin ring of the zigzag tube. This is because the curvature of 
the zigzag carbon skeleton is less than the curvature of the armchair carbon skeleton. Thus, 
the difference between the number of π electrons on the external and internal sides of the thin 
ring containing one carbon chain will be six electrons for the armchair tube and four for the 
zigzag tube, or three and two π*electron pairs, respectively (Fig. 1). 

As a result, when a monolayer rolls up into an armchair tube, one fourth of π electrons 
change their state from the 2pz to the 3s2pz one, while only one sixth of π electrons change 
their state in the zigzag tube. Then the concentration of π electrons in the 2pz state in the 
armchair tube decreases from 4×1015 to 3×1015 electrons per cm2, and it decreases to 3.3×1015 
electrons per cm2 in zigzag tubes. The average concentration of π* electron pairs in the 
armchair tubes is estimated to be 5×1014, and it is 3.5×1014 electron per cm2 in zigzag tubes. 

However, the concentration of the electron pairs is not so important for the conductivity 
of nanotubes, as the type of their ordering on the nanotube surface. 

First, we consider the ordering of electron pairs of π* bonds in one thin ring. Owing to 
the Coulomb repulsion between pairs, they are apparently distributed in the ring at equal 
distances from each other, i.e., the thin ring perimeter is divided into three equal parts for the 
armchair tube and two parts for the zigzag tube. 

Let us consider ordering of π* electron pairs between neighboring thin rings. π* 
electron pairs in a quantum system with π electron crystals can be regarded as defects. Since 
defects in any crystalline structure tend to ordering, which reduces the system free energy, we 
can assume that they are ordered in nanotubes as well. As the π*electron concentration is low, 
ordering is possible only in the form of 1D or quasi-1D crystals. 
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Since only three π*electron pairs are formed in each thin ring of the armchair tube, there 
must also be three 1D crystals of π* electron pairs. They will be located at equal distances 
from each other equal to three hexagon rows. The crystals will be oriented along the tube axis, 
since the shortest bonds in the armchair tubes perpendicular to the tube axis are located along 
it (Fig. 1a). 

Only two quasi-1D crystals of pairs can be formed in a zigzag tube. They will also be 
located parallel to each other, but already at the distance determined by five hexagon rows. (It 
becomes clear why the zigzag tube should have an even number of rows). Since the shortest 
bonds in these tubes are oriented at an angle to the tube axis, the quasi-1D crystals will be 
located at the same angle to the tube axis and will embrace the tube in a spiral. Since the 
shortest bonds in each hexagon in the zigzag tubes are neighbors with an angle of about 120º 
between them, the spiral direction can be either clockwise or counterclockwise (Fig. 1b). 

It can be seen from the above that, when a quantum system of graphene is rolled up into 
a nanotube, two spin-polarized electron crystals of 2pz electrons are preserved, but with a loss 
of some of π electrons. In this case, 1D or quasi-1D crystals of pairs of π* electrons excited 
into the 3s2pz state arise in the nanotube quantum system. The number of 1D crystals in the 
armchair and zigzag tubes is different due to different curvatures of their carbon skeletons. 
The orientations of these crystals relative to the tube axis are also different, but due to 
different orientations of stationary π* bonds. 
 
4. Effect of 1D electron pair crystals on nanotube properties 
The presence of 1D crystals of excited π* electron pairs on the tube external side must lower 
the ionization potential of the nanotube and decrease the electric field threshold at which 
electron emission begins. In addition, the electron emission may be accompanied by the 
emission of electron pairs, pair breaking, and the release of π* binding energy. The π* binding 
energy is unknown. Only the energy of a π bond in carbon compounds is known. It is about 
1.5 eV. The π* bond energy should be slightly higher, since the 3s2pz state is characterized by 
a volume larger than the 2pz state, and the lateral overlapping of electron states can be a little 
larger. An energy of 1.5 eV and slightly higher correspond to radiation in the red and near 
infrared. The radiation emission accompanying the electron emission precisely in this range 
was obtained experimentally [3,4], where a very narrow emission band (0.022 eV) with a 
maximum of about 1.85 eV was observed. Perhaps, this energy corresponds to the π* binding 
energy. 

Since emission from nanotubes is associated with 1D crystals, it can be expected that it 
will be strongly inhomogeneous over the nanotube surface, which was also observed 
experimentally. 

As for the conductivity of armchair nanotubes, it can be assumed that it occurs through 
tunneling of 1D crystals of pairs as a whole through gaps between adjacent π* bonds. The 
geometric gap between the pairs is about 2.5 Å, but if we take into account the volume of two 
3s2pz states, it proves to be less than 1 Å. (Note that direct overlapping of these states is 
impossible because of their occupation by electron pairs). Since such tunneling occurs 
without resistance, it can be regarded as a mechanism of ballistic conductivity accomplished 
by electron pairs. 

Tunneling of quasi-1D crystals of pairs is impossible in zigzag tubes, since the field 
applied along the tube axis cannot provide a spiral motion. 

Note also that in the case of conductivity by pairs, the problem of contacts with metals, 
where there are no pairs, arises. An ideal contact for this case would be a superconductor. 
Perhaps, the absence of electron pairs in metals is responsible for the high Schottky barrier 
observed experimentally [10]. 
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The 1D crystals of pairs create a strong inhomogeneity of the electric field on the 
nanotube surface in the form of negative charge strips protruding from the nanotube surface. 
Therefore, when the tubes approach each other, the Coulomb interaction can arise between 
them. As a result, they will be ordered relative to each other. Perhaps, the tendency to form 
bundles is explained by this Coulomb interaction. 
 
5. Conclusions 
It is shown that when a carbon monolayer (graphene) rolls up into a single-walled nanotube, 
the graphene-based system retains its quantum character, but with significant changes in it. In 
addition to the conservation of the system of π electrons in the 2pz state forming two spin-
polarized electron crystals strongly coupled to the carbon skeleton and providing resonant π 
binding between atoms, a second system of π* electrons arises. It is a set of 1D or quasi-1D 
crystals of pairs of π* electrons excited into the 3s2pz state and forming stationary π* bonds 
between excited carbon atoms. It has been shown that it is these 1D or quasi-1D crystals of π* 
electron pairs that ensure the cylindrical nanotube shape stability and are responsible for the 
nanotube unusual physical properties. 
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Abstract. A physical method of receiving nanoporous films of the silicon dioxide (SiO2) and 
tantalum pentoxide (Ta2O5) in vacuum conditions is brought forward in this work. The 
structure and properties of nanoporous films received as a result of self-organization at 
magnetron spattering of a compound target are researched in it. Correlations of the quantity 
and size of pores, the structure and properties of nanoporous films are determined, as well. 
The self-organization process proves to form spatially spattered pores, to change 
electrophysical properties of dielectric films and it enlarges their functions.  
Keywords: nanoporous oxide films, carbon, self-organization process, magnetron spattering 
 
 
1. Introduction 
The study of nanoporous dielectric films has been set a new impulse of late as a result of 
substantially enlarged sphere of their practical use. Such films can be used both in 
microelectronics as insulating stuff with low dielectric permittivity, and they can be used in 
photonics as anti-reflection coating in optoelectronic devices [1,2]. The nanoporous dielectric 
films can be also used as basic material for receiving nanomembranes and selective gas-
sensing, sensor devices [3,4]. A number of methods of receiving nanoporous dielectric 
structure were worked out – anodizing, zol-gel method, matrix template synthesis are among 
them [2,5,6]. All the enumerated methods are chemical which makes it difficult to use them 
when producing micro – and nanoelectronics devices. 

The purpose of the given research is to work out the integral schemes of the formation 
methods of nanoporous films of the silicon dioxide (SiO2) and tantalum pentoxide (Ta2O5) 
basing on the technological modes of forming films with their structural and electrophysical 
properties. 
 
2. Experiment and measurement methods 
The basis of the suggested method is the self-organization principle proceeding in the plasma 
glow discharge which is formed by DC magnetron spattering source, compound spattering 
targets Si:C (graphite) or Ta:C (graphite) being its cathode [7]. The graphite area on the 
compound spattering target expressed in percentage - Sc varied in such a case, which resulted 
in changing the pore quantity and size. Spattering was done in the oxygen atmosphere with 
the pressure in an evacuated vessel equal to 4×10–1 Pa. Such are the conditions under which 
dielectric films of the silicon dioxide (SiO2) and tantalum pentoxide (Ta2O5) are received, and 
injecting carbon is to make a sound nanoporous structure. The given method was patented 
earlier and it was used for receiving the films SiO2 with low dielectric permittivity [8]. This 
method, however, is supposed to be applied to other oxide films used in micro – and 
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nanoelectronics, in Ta2O5 in particular. The pore formation in this process is explained by 
gaseous compounds СО or СО2 which on educing, make the film friable forming in it open 
pores and gas inclusions.  

The thickness of the dielectric films which were researched in the electrophysical 
operations was 100 nm. The films Al, about 100 nm thick, were used as electrodes at 
electrical measurements. These films were made by means of thermal evaporation in vacuum. 
Condensing structures Al-SiO2-Al and Al-Ta2O5-Al were formed like matrixes with the active 
area of 1х1 mm on the ceramized substrates of 60×48×0.6 mm in size. 

The determination of the pore quantity and size was done by means of electrochemical 
copper jumping. The width of the Tauc gap (Et) was defined by the extrapolation (αE)1/2 
dependence on the photon energy E in the range of the wave lengths of 200-1100 nm [9]. The 
spectral dependence of the film absorption index (α) was defined by transmission and 
reflection spectrums with the help of spectrometer USB2000. The determination of the 
thickness and dielectric film refraction index was stated by means of a spectral ellipsometric 
complex. The microanalysis was done with the help of the Bruker Quantax 50 EDX 
microanalyzer as a part of an electron microscope Hitachi TM-1000. The spectral analysis of 
the researched films was done by using an IR –spectrometer in the range of the frequencies of 
500 – 5000 sm-1.  

 
3. Experiment results and analysis 
Electric properties. The research of the electric capacity of the structures Al-SiO2-Al and  
Al-Ta2O5-Al has revealed the general tendency of dielectric permittivity changing and that of 
angle tangent of dielectric losses with the increase percentage of graphite content on the 
compound target when Sc < 40%, however, at great values of Sc the qualitative type of 
dependences differed. At the same time the dependence of electric strength on Sc was similar, 
and it decreased gradually for the both structures (Fig. 1, Fig. 2)  
 

 
Fig. 1. Dependence of dielectric permittivity ε, tangent losses tgδ (a) and electric strength Еd 

on Sc (b) for the structure Al-SiO2-Al 
 

It is evident that the reduction of dielectric permittivity for films SiO2 can be explained 
only by the formation of gas inclusions, because all the other possible ways (the formation of 
chemical bonds of silicon with carbon, the formation of carbon injections) would lead to an 
opposite result. The tangent reduction of the dielectric loss angle is supposedly connected 
both with the gas inclusions, having a considerably smaller tangent of loss angle, and also 
with the reduced film defect because of the chemical reactions which are supposed to be more 
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intensive in the places of defect localization. The growth of these values at Sc > 40% is caused 
by the oxygen deficit and formation of films SiOx , in which x proceeds to 1 which can result 
in the formation of local regions containing underoxidized silicon and, hence, can enlarge 
tangent of dielectric loss angle. This is verified by the microanalysis, Auger electron 
spectroscopy (AES) and IR-spectroscopy data. Electric strength reduction is quite 
characteristic of nanoporous films that have heterogeneous structure, and probably, it is 
connected with penetration of the material of the upper electrode into the dielectric film [10]. 

 

 
Fig. 2. Dependence of dielectric permittivity ε, tangent losses tgδ (a) and electric strength Еd 

on Sc (b) for the structure Al-Ta2O5-Al 
 

On the analogy of the previous account, the same changes are supposed to occur in the 
films Ta2O5, however, the dependence type in them is somewhat different, which can be 
explained by the chemical properties of Ta, itself. 

Optical properties. The research of physical properties of dielectric films SiO2 and 
Ta2O5 has revealed the change of the refraction index n and the width of the optical  
gap Et (Fig. 3). 

 

 
Fig. 3. Refraction index dependence n (at the wavelength λ=632 nm) and that of the width of 

the optical gap Et on Sc for the structure Al-SiO2-Al (a) and Al-Ta2O5-Al (b) 
 

The behaviour of the refraction index correlates with the change of dielectric 
permittivity, which is quite conformable to the theory. Reduction of the width of the optical 
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gap can be connected both with the electronic structure change of dielectric films, themselves, 
and the presence of gas in the pores. 

Structure of surface. The research of the dielectric film porosity illustrated quite even 
distribution of the pores over the dielectric area. Small mesopores with the diameter of less 
than 10 nm and larger ones with the diameter of more than 50 nm can be visually 
distinguished [11]. The porosity of the film SiO2 considerably rises with the value growth of 
Sc reaching its peak at Sc ∼50%, then the growth is replaced by the saturation area (Fig. 4). 
The qualitative dependence type for the films SiO2 and Ta2O5 is equal, at that. Porosity was 
determined by capacitance method [12]. The structure of the surface also undergoes 
considerable changes (Fig. 5). 

 

 
Fig. 4. Relationship between porosity of dielectric film SiO2 and Sc 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. The surface of the nanoporous dielectric SiO2 (Sc = 60%) received with the help of the 
probe microscope: a – surface of the plate, b – chip in the edge of the plate, c – surface of the 
plate (with an upper aluminium electrode with a thickness of 200 nm) d – chip in the edge of 

the plate (with an upper aluminium electrode with a thickness of 200 nm) 

a) b) 

c) d) 
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Spectral analysis. The analysis of the structure of the researched films SiO2 done by a 
microanalyzer revealed some rise of oxygen content with the growth of Sc, the same 
concerned the films Ta2O5. Moreover, IR spectrums of the researched films proved a sharp 
growth of absorption at the wavelength ν=2350 sm-1 corresponding to oscillations of bonds 
С–О. There are also changes in the area: ν1 =3000 sm-1, ν2 =3400 sm-1, ν3 =3600 sm-1, and 
also some changes of peak ν4 =935-940 sm-1. Peaks ν1, ν2, ν3 are usually referred to as  
ОН – groups and Н2O molecules, peak ν4 refers to Si-O-Si bond (valency oscillations) [13].  

Supposedly, it can be explained by the presence of water in the pores owing to the 
capillary effect, and also to the reaction products – gases СО or СО2. It can occur, as well, 
owing to the adsorption of gases СО or СО2 from the atmosphere [14]. The given peak 
amplitude rises with the growth of Sc, which can be connected with the occurrence of oxygen 
vacancies in the silicon and negative charge. The occurrence of the effective negative charge 
on the silicon atom adds to a better adsorption capacity. Thus this resulted in the stimulated 
adsorption. The preliminary experiments have already proved the selectivity of hydrocarbons 
and gas СО adsorption, and also of organic compounds with different functional groups. 

 
4. Conclusions 

1. The experiments proved that the carbon injection into the process of the formation of 
the films SiO2 and Ta2O5 leads to the formation of self-organized nanoporous structure. The 
size and density of the pores is determined by the quantity of the injected carbon. 

2. Electrical and optical parameters of the films SiO2 and Ta2O5 are largely defined by 
the porosity and they have similar tendencies in some intervals, however, the general 
dependence type is stated by the chemical properties of the spattered material, itself. 

3. Common tendencies in the change of electrophysical properties and in the surface 
structure of the films SiO2 and Ta2O5 with the carbon injected into them, make it possible to 
assume that analogous changes will be developed in other oxide dielectrics which are formed 
in the plasma of the glow discharge, though the qualitative dependence type will be different. 

4. The formation of the nanoporous structure contributes to the rise of the selective 
adsorption capacity of the researched dielectrics, mainly, owing to capillary condensation in 
mesapores and also stimulated adsorption, which can serve the basis of creating gas-sensing 
sensor devices [15]. 
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Abstract. In the present work, the pair interaction of coaxial circular prismatic dislocation 
loops (PDLs) arbitrary placed in elastic solids with free spherical surfaces is considered. The 
analytical solutions for the pair interaction energies of PDLs in an elastic sphere, an elastic 
medium with a spherical pore and a spherical layer are given in the form of double power 
series and illustrated by energy maps built in the space of the normalized PDL radii and axial 
positions. The results can be used for analyzing the theoretical models of stress relaxation 
processes in bulk and hollow core-shell nanoparticles and pentagonal particles, which occur 
through the formation of dislocation ensembles. 
Keywords: prismatic dislocation loops, dislocation ensembles, stress relaxation 

 
 

1. Introduction 
Dislocation loops are typical defects in solids, which play a significant role in the physics and 
micromechanics of crystalline materials [1,2]. In particular, the formation of prismatic 
dislocation loops (PDLs) is one of the main mechanisms of elastic strain and stress relaxation 
in solid-state structures containing inhomogeneities and pores. For instance, the ensembles of 
concentric PDLs lying in the same plane and encircling the highly compressed precipitates in 
gadolinium gallium garnet crystals were examined by optical microscopy in [3,4]. 
Subsequently, this mechanism was theoretically described in [5] for the case of generation of 
a single PDL encircled spherical inclusion. The generation of a misfit PDL at the interface of 
the dilatational spherical inclusion was theoretically investigated in [6]. Another relaxation 
mechanism is the punching of ensembles of coaxial PDLs by the inclusion to the matrix. It 
was observed experimentally in [7-9] and then studied by analytical calculations [10] and 
dislocation dynamics computer simulations [11]. The generation of satellite PDLs as the 
effective relaxation mechanism in GaAs films containing As-Sb clusters subjected to one-
dimensional dilatation eigenstrain was experimentally [12,13] and theoretically [14,15] 
investigated.  

To analyze the critical conditions of PDL formation, the authors of the aforementioned 
theoretical models [5,6,10,14,15] used the well-known solution for the strain energy of a PDL 
in an infinite homogeneous elastic medium, given by Dundurs and Salamon [16], in which 
case the image force effects on the relaxation processes were neglected. This limitation could 
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be overcome by using strict analytical solutions of relevant boundary-value problems in the 
theory of elasticity for PDLs in solids with spherical surfaces/interfaces. 

By now, some strict analytical solutions describing the elastic fields and energies of  
circular PDLs in an infinite medium [16-18], near a flat free surface [19] and a planar 
interface [16,20], in thin plates [21,22], in homogeneous [23-25] and heterogenous core-shell 
[26] cylinders as well as in solids with spherical boundaries [27-31] have been fairly well 
discussed. The displacement field of a circular PDL in an elastic sphere was first presented 
in  [27]. The elastic fields and energy of a circular PDL coaxial to the spherical pore in an 
infinite medium were obtained in [28] that allowed to analyze a critical condition for 
punching of a single PDL by the bubbles (pores under pressure) and verified these results 
with experimental observations of PDL ensembles in irradiated materials containing helium 
[32,33] or hydrogen [34] in bubbles. Recently, similar solution has been suggested to use in 
dislocation dynamics computer simulations [31]. The case of dislocation emission induced by 
the spherical pore under remote loading was also studied by molecular dynamics 
simulations [35,36].  

The displacement field of a circular dislocation loop occupying an arbitrary position 
inside an elastically inhomogeneous core-shell spherical particle was found in [29]. The 
solution was given in the form of double series of vector functions with unknown coefficients 
which have to be determined by solving an infinite system of algebraic equations. The authors 
of [29] demonstrated their analytical results with a numerical calculation of the image force 
acting on a PDL symmetrically placed in the core that seems difficult to use in physical 
applications.  

A more applicable solution, from our point of view, is presented in [30] where the stress 
field of a circular PDL is obtained in terms of the Legendre polynomials series for the 
following cases: an elastic sphere, an infinite elastic medium with a spherical pore, and an 
elastic spherical layer with free surfaces. The corresponding solutions have been applied for 
analyzing the initial stages of stress relaxation processes through the formation of individual 
PDLs in bulk [37] and hollow [38] core-shell nanoparticles, in icosahedral [39] and 
decahedral [40,41] small particles (see also a brief review [42]). These theoretical models give 
results which are in good agreement with experimental data [43,44].  

Thus, the aforementioned strict analytical solutions have been used for analyzing the 
critical conditions of stress relaxation through generation of individual PDLs. However, both 
the experimental examinations and computer simulations show that, in many real structures, a 
number of similar PDLs can nucleate and behave in tight interaction with each other, which 
requires the development of suitable mathematical means for studying these situations. One of 
such means is the energy of pair interactions between PDLs.  

In the present work, we consider the interaction of two coaxial circular PDLs arbitrary 
placed in different elastic bodies with free spherical surfaces such as an elastic sphere, an 
elastic medium with a spherical pore, and a spherical layer. Using the strict analytical solution 
of the boundary-value problem for a circular PDL in an elastic sphere [30], we find an 
analytical form for the interaction energy and illustrate this result by energy maps built in the 
space of the normalized PDL radii and axial positions. In our further work, we are going to 
use these results in analyzing theoretical models of stress relaxation processes in core-shell 
nanoparticles and pentagonal particles, which occur through the formation of various 
dislocation ensembles. 
 
2. Model 
Consider an elastically isotropic spherical layer with inner and outer radii ap and a, 
respectively, containing a pair of interstitials (for definiteness) circular PDLs which are 
characterized by the following plastic distortion component [45]: 
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( ) (1 / ) ( )k
zz k k kb H r c z zb δ= − − ,   k = 1, 2, (1) 

where bk is the Burgers vector magnitude of the PDL-k, H (t) is the Heaviside function, 
δ(z ‒ zk) is the Dirac delta function, ck is the radius of the PDL-k, and zk is its  
coordinate (see Fig. 1). 

The interaction energy 1 2
intW − between PDL-1 and PDL-2 in the spherical layer can be 

determined as the work spent to create the PDL-1 in the stress field )2(
zzσ of the PDL-2: 

1

1
1

1 2 (1) (2) (2) (2) (2)
1 1 1 1 1(1 / ) ( ) 2

c

int zz zz zz zz z z zzV V S
W dV b H r c z z dV b dS b rdr

ξ
b σ δ σ σ π σ−

== = − − = =∫ ∫ ∫ ∫ , (2) 

where r is the polar radius; ξ = 0 in the case when the PDL-1 plane does not intersect the inner 
spherical surface, i.e. when z1 ≥ ap, and 2 2

1pa zξ = −  in the case when the PDL-1 plane 
intersects the inner spherical surface, i.e. when  z1 < ap. 

According to [30], the axial stress (2)
zzσ of PDL-2 in the elastic layer can be presented as 

a sum of the axial stress (2)
zzσ∞  of PDL-2 in an infinite elastic medium and an additional term 

* (2)
zzσ  which provides the fulfillment of the boundary conditions on the free spherical surfaces: 

 

 
Fig. 1. A pair of interstitial circular PDLs in a spherical layer. The corresponding coordinate 

system is located in the center of spherical surfaces 
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where G is the shear modulus, ν is the Poisson ratio, J(m,n;p) are the Lipchitz-Hankel 

integrals defined as ( ) 2 2 20
, ; ( ) ( / ) exp[ | | / ] p

m nJ m n p J J r c z z c dκ κ κ κ κ
∞

= − −∫ , Jm(κ) and 

Jn(κ r/c2) are the Bessel functions, (2)
nA , (2)

nB , (2)
nC , and (2)

nD are the coefficients determined in 
[30] from the boundary conditions on the free inner and outer spherical surfaces, and Pn(t) are 
the Legendre polynomials determined by the following explicit formula 
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Here t = cosθ, [n / 2] gives the greatest integer less than or equal to n / 2, and ( )n
s  are 

the binomial coefficients.  
Substituting (3a) to (2), we obtain after integration  
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Then one can simplify equations (3c-f) for * (2)
zzσ  by using the following recurrence 

relations for the Legendre polynomials [30]: 
2
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where 1 2( ) 1 ( ) /n nP t t dP t dt= − − . 
Substituting recurrence relations (6) to (3c), after some algebra we finally find 
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where (2) (2) (2) (2)
2 2 1 1 0C D C D− − − −= = = = . 

With Eq. (7) and taking into account that, for z = z1, the relations cosθ = z1 / R and 
r dr = R dR hold, integral (2) gives 
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where Qn,l and Tn,l are polynomials determined by equations 
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Here ζ = z1 if z1 ≥ ap, and ζ = ap if z1 < ap. 
Thus, the interaction energy 1 2

intW −  for PDL-1 and PDL-2 in the spherical layer  
is given by 

1 2 1 2 * 1 2
intW W W− ∞ − −= + , (10) 

where 1 2W∞ −  is determined by Eq. (5) and * 1 2W −  by Eqs. (8) and (9). 
 
3. Results 
To illustrate the results obtained, consider an example of the pair interaction between PDL-1, 
which has arbitrary radius c1 and axial position z1, and PDL-2 with fixed radius c2 = 100b2 
and axial position z2 = 0. Figures 2a-d show the maps of the interaction energy 1 2

intW −  in 
normalized coordinates of radius c1/c2 and axial position z1/c2 of PDL-1 in (a) an infinite 
medium, (b) an elastic sphere of radius a = 1.5c2, (c) an infinite medium with a spherical pore 
of radius ap = 0.5c2, and (d) a spherical layer of radii ap = 0.5c2 and a = 1.5c2. As is seen, the 
interaction energy of PDLs strongly depends on their radii and positions in the elastic body. 
Moreover, it is highly sensitive to the presence of the inner and outer free surface in the case 
when at least one of the PDLs is localized near the surface. It is worth noting that, in this case, 
the outer free surface makes a greater effect on the interaction energy than the inner free 
surface. The most evident and interesting manifestation of the outer surface effect is the 
region of negative values of the interaction energy near the equator and the outer free surface 
(at the right bottom corner of the maps in Figs. 2(b,d). It means that PDL-1 of radius 
0.9a < c1 < a is attracted to immobilized PDL-2 in this region, while in all the remaining area 
of the body, where the interaction energy is positive, PDL-1 is repulsed of PDL-2. In contrast, 
the inner free surface does not give such effect.  
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Fig. 2. The maps of pair interaction energy 1 2
intW −  for PDL-1 with arbitrary radius c1 and 

position z1 and PDL-2 of radius c2 = 100b2, placed in plane z2 = 0 in (a) an infinite medium,  
(b) an elastic sphere of radius a = 1.5c2, (c) an infinite medium with a spherical pore of radius 

ap = 0.5c2, and (d) a spherical layer of radii ap = 0.5c2 and a = 1.5c2.  
The energy is given in units Gb1b2c2 

 
4. Conclusions 
The phenomenon of pair interaction of circular PDLs in solids with spherical boundaries such 
as an elastic sphere, an infinite medium with a spherical pore, and a spherical layer with free 
surfaces is studied in detail. An explicit formula for interaction energy of two coaxial circular 
PDLs is obtained in the form of double power series. This result is illustrated by maps of the 
interaction energy in the space of PDL radii and axial positions. It is shown that the 
interaction energy of PDLs is strongly screened by free spherical surfaces when at least one of 
the PDLs is localized near the surface. The outer free surface makes a greater effect on the 
interaction energy than the inner free surface. In particular, there is a region near the equator 
and the outer free surface, where the interaction energy changes its sign. The inner free 
surface does not give such effect. Our results give an opportunity to analyze stress relaxation 
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processes through the generation of PDL ensembles in porous materials as well as bulk and 
hollow core-shell nanoparticles and pentagonal particles. 
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Abstract. The influence of a delay time at the maximum temperature on the number of cycles 
for the macrocrack initiation for two thermal loading programs was investigated for two 
single-crystal nickel-based superalloys VIN3 and ZhS32. An analytic approximation of a 
delay time influence was proposed. Comparison of computational results and analytic formula 
on the base of constitutive equations with the experimental data was performed for considered 
single-crystal superalloys and showed a good accuracy. Influence of several mechanical 
constants of nickel alloy on thermal fatigue strength is presented and discussed. The influence 
of crystallographic orientation of the corset sample on the thermal fatigue durability with 
delay times for various thermal loading programs and different single-crystal nickel 
superalloys was investigated. 
Keywords: thermal fatigue, single-crystal nickel-based superalloy, deformation criterion, 
corset sample, crystallographic orientation, finite element modeling, analytic approximation 
 
 
1. Introduction 
Single-crystal nickel-based superalloys [1] are used for production of gas turbine engines 
(GTE) [2]. These materials have a pronounced anisotropy and temperature dependence of 
properties. Cracking in the turbine blades is caused often by thermal fatigue [3,4]. For 
investigation of thermal fatigue durability under a wide range of temperatures with and 
without delay times the experiments are carried out on different types of samples, including 
corset (plane) specimen [3] on the installation developed in NPO CKTI [5] (see Fig. 1). Fixed 
in axial direction by means of two bolts with a massive foundation the corset sample (see 
Fig. 2) is heated periodically by passing electric current through it. The fixing of sample 
under heating leads to the high stress level and inelastic strain appearance. The FE simulation 
is required for the computation of inhomogeneous stress and inelastic strain fields. 

The aims of the study are: (I) to study numerically a stress-strain state of the sample 
during cyclic heating and cooling due to its clamping, (II) to study systematically the effect of 
delay at maximum temperature on the thermal fatigue durability on the base of the four-term 
deformation criterion [6-8] of thermal-fatigue failure for single crystal superalloys using the 
results of finite element (FE) simulation of full-scale experiments and results of analytical 
formulae and (III) to study systematically the effect of crystallographic orientation on the 
thermal fatigue durability. The results of simulation and their verification are obtained for 
different single-crystal nickel-based superalloys: VIN3 and ZhS32. 
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Fig. 1. Testing setup for thermal fatigue experiments 

 
Fig. 2. Geometrical parameters of the corset sample 

 
2. Results of thermo-elasto-visco-plastic analysis 
The axial fixing of the corset specimen under heating leads to the high axial stress and 
inelastic strain appearance. The numerical simulation is required for the computation of 
inhomogeneous stress and inelastic strain fields in sample. Modeling and simulation of 
inelastic cyclic deformation of corset samples has been performed by means of the 
FE programs ANSYS and PANTOCRATOR [9], which allows to apply the micromechanical 
(microstructural, crystallographic, physical) models of plasticity and creep for single crystals 
[10-14]. The micromechanical plasticity model accounting 12 octahedral slip systems with 
lateral and nonlinear kinematic hardening [10,15] is used in the FE computation for the 
simulation of single crystal superalloy behavior under cyclic loading. The Norton power-type 
law is used to describe creep properties. 

Modeling of inelastic deformation in the corset samples has been performed with taking 
into account of the temperature dependence of all material properties, anisotropy of 
mechanical properties of single-crystal sample, inhomogeneous nonstationary temperature 
field, mechanical contacts between bolt and the specimen, between specimen and foundation, 
friction between the contact surfaces, temperature expansion in the specimen. The viscous 
properties are taken into account because of high temperature despite of a quick time of 
heating and cooling of the corset samples. 

The two FE formulations for the thermo-mechanical problem have been considered: 
• FE model with taking into account equipment; 
• FE model without taking into account equipment (simplified formulation [16] for the 

sample only). 
Using of the second formulation provides significant saving computational time due to 

reduction in the number of degrees of freedom and refusal to solve a contact problem. It is 
very actual for the numerous multivariant computations for different regimes of loading and 
the crystallographic orientations. The validity of the simplified formulation is based on the 
comparison with the results of full-scale formulation (with taking into account equipment), as 
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well as on the comparison with the relative displacements of two markers measured in 
experiments. 

In the general case there is no symmetry in the problem (Fig. 3a) due to anisotropy of 
mechanical properties of single crystal sample. However in the important for practice case of 
[001] crystallographic orientation of sample the symmetry in respect to planes xz and yz (see 
Fig. 3a) can be introduced. Equipment and bolts are modeled by linear elastic material (steel), 
and for the sample elasto-visco–plastic model of material is used. The problem is solved in a 
three-dimensional quasi-static formulation. As boundary conditions the symmetry conditions 
are set: zero displacements on the y-axis on the xz plane and zero displacements on the x-axis 
on the yz plane. On the lower side of the equipment zero displacements along the x and z axes 
are set. On the bolt cap the pressure of 100 MPa has been applied that is equivalent to the 
tightening force of the bolt. The temperature boundary conditions are set from the 
experimental data at maximum and minimum temperature with linear interpolation in time. 
The results of finite element heat conduction simulations [17] consistent with experimental 
temperature field distributions. The mechanical properties for the alloy VIN3 are taken from 
the paper [18] and for the alloy ZHS32 from [19] are summarized in Tables 1 and 2. The 
mechanical properties of bolts are taken for pearlitic steel [20]. 
 
Table 1. Mechanical properties of VIN3 used in simulations [18] 

T  °C  20  500  700  900  1000  1050  
001E  MPa  126000  110000  104000  89000  80000  75000  
ν - 0.39  0.41  0.42  0.42  0.425  0.428  
α 1/K 51.21 10−⋅  51.33 10−⋅  51.4 10−⋅  51.5 10−⋅  51.57 10−⋅  51.6 10−⋅  
001
yσ  MPa  555  800  930  910  645  540  
n - 3  3  3  3  3  3  
A 1MPa sn− −  271 10−⋅  178 10−⋅  152.3 10−⋅  146.5 10−⋅  133.5 10−⋅  138 10−⋅  

 
Table 2. Mechanical properties of ZHS32 used in simulations [19] 

T  °C  20  500  700  900  1000  1050  
001E  MPa  137000  110000  105000  99800  94800  92300  
ν - 0.395  0.4248  0.4284  0.4317  0.4347  0.4361  
α 1/K 51.24 10−⋅  51.6 10−⋅  51.7 10−⋅  51.81 10−⋅  52.22 10−⋅  52.42 10−⋅  
001
yσ  MPa  919  904  901  895  670  580  
n - 8  8  8  8  8  8  
A 1MPa sn− −  421 10−⋅  312.5 10−⋅  308.5 10−⋅  282 10−⋅  276 10−⋅  267 10−⋅  

 
In simplified formulation of the problem (see Fig. 3b) we consider only the sample 

without equipment, in which zero displacements on the symmetry planes xz and yz are set, the 
outer face of the sample parallel to the symmetry plane xz was fixed in the direction of the 
axis x. To exclude solid body motions, a number of points on this face are also fixed in the 
direction of the y and z axes. 
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Figure 4 shows distributions of plastic strain intensity field for two nickel superalloys 

and three different temperature modes after 7 cycles (for VIN3 the effective length of the 
sample is 42 mm, for ZHS32 is 50 mm) [17] obtained with using the FE model (¼ due to 
symmetry) without taking into account equipment (Fig. 3b). 
 

 
a)  

 
b) 

 
c) 

 
d) 

Fig. 4. Plastic strain intensity field distributions in the corset sample after 7 cycles for:  
a) superalloy ZhS32, loading regime 150÷900°C; 

b) superalloy ZhS32, loading regime 500÷1050°C; 
c) superalloy ZhS32, loading regime 700÷1050°C; 
d) superalloy VIN3, loading regime 500÷1050°C 

 
Table 3 shows the equivalent (effective) length of the sample for the simplified 

formulation for different alloys, which has been found by the comparison with full model 
using the condition of equality of the inelastic strain ranges. In the FE simulations with 
acceptable engineering accuracy can be used the value 40 mm. Effective length takes into 
account the compliance of equipment and its variation in considered range has no appreciable 
on the results. 
 
 

 

a

 

Fig. 3. FE models of the corset sample for thermo-elasto-visco-plastic problem solution:  
a) model (¼ due to symmetry) with taking into account of equipment,  

b) simplified model (¼ due to symmetry) without taking into account of equipment 

a) b) sample 

equipment    bolts 

sample 

x 

y 

z 

o 

128 A.V. Savikovskii, A.S. Semenov, L.B. Getsov



Table 3. The equivalent length of the corset sample for different alloys 
VIN3 ZhS32  

38 46 mm−  40 52 mm−  
 
3. Influence of the delay on the thermal fatigue durability 
FE computations are carried out for a part of a corset sample (simplified FE model with 
effective length of sample equal 40 mm, see Fig. 3b). The temperature fields are set from the 
experimental data at maximum and minimum temperature cycle phase with using linear 
interpolation in time. 

The influence of the delay at maximum temperature on the number of cycles to the 
formation of macrocrack is analyzed in the range from 1 min to 1 hour for the cyclic loading 
regimes with: 

• maximum temperature of 1050°C and minimum temperature of 700°C; 
• maximum temperature of 1050°C and minimum temperature of 500°C; 
• maximum temperature of 1000°C and minimum temperature of 500°C; 
• maximum temperature of 900°C and minimum temperature of 150°C. 
The heating time in the cycle is 10s, the cooling time is 16s for VIN3. The heating times 

in the cycle are 15s, 15s, 10s, 25s, the cooling times are 15s, 15s, 14s, 75s for ZhS32. The 
mechanical properties for the alloy VIN3 were taken from the paper [18] and for the alloy 
ZhS32 from [19] (see also Tables 1 and 2). 

The problem is solved in a quasi-static 3-dimensional formulation. The FE model is 
shown in Fig. 3b. The boundary conditions are zero displacements in the direction of the x-
axis on two side faces of the sample with the normal along the x-axis. To exclude rigid body 
motions, a number of points on these faces in the direction of the y and z axes are also fixed. 

Temperature evolutions in central point of sample with and without delay for loading 
regimes 700÷1050°C, 500÷1050°C, 250÷1000°C and 150÷900°C are presented schematically 
in Fig. 5. 
 

  

  
Fig. 5. Schematic presentations of temperature evolutions in central point of sample for 

loading regimes with and without delay time: 
a) 700÷1050°C; b) 500÷1050°C; c) 500÷1000°C and d) 150÷900°C 

a) b) 

d) c) 
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Damage calculation and estimation of the number of cycles for the macrocrack 
initiation are made on the basis of four-term deformation criterion [6-8,14]: 

max max0 01 11 2

( ) ( )
max max ,

( ) ( ) ( ) ( )

p k c m p cN N
eqi eqi eq eq

p ct t t ti i r r

D
C T C T T T
e e e e

e e≤ ≤ ≤ ≤
= =

D D
= + + +∑ ∑  (1) 

where the first term takes into account the range of plastic strain within the cycle, the second 
term deals with the range of creep strain within the cycle, the third term is unilaterally 
accumulated plastic strain (ratcheting), the fourth term is unilaterally accumulated creep 
strain. The number of cycles to initiate macrocrack N is determined from the condition D = 1. 
The equivalent strain for single crystal is defined by maximum shear strain in the slip system 
with normal to the slip plane {111}n  and the slip direction 011l : 

{111} 011eqe = ⋅ ⋅n ε l . (2) 

Usually it takes in (1) the values of constants:   2k = , 5  
4

m= , ( )1

kp
rC e= , ( )3

2 4

mc
rC e= , 

where p
re  and c

re  are ultimate strains of plasticity and creep under uniaxial tension. In the 
FE computations the values of ultimate strains 18%p c

r re e= =  are used the same for all 
considered alloys. Improvement of the prediction accuracy of the delay time influence on 
durability can be achieved by the refinement of the constant strains 𝜀𝜀𝑟𝑟

𝑝𝑝 on the basis of data 
without delay. 
 Analytic approximation [21] is offered to enter for describing of delay time influence on 
thermal fatigue durability. The additive strain decomposition [22] is used for the small strain 
case under uniaxial relaxation at constant temperature and total strain: 

0e p c te e e e e e= + + + = ,                                       (3) 

where e  is the total strain, e E
σe =   is the elastic strain, pe  is the plastic strain, ce  is the creep 

strain and te  is the thermal strain, 0e  is constant. Differentiating (3) and using p H
σe =


  

(where H is the hardening modulus), Norton law n
c Ae σ=  with taking into account notation 

( ) 11 1
TE E H

−− −= +  for the tangent modulus it can be obtained equation: 
n

TAEσ σ− = − .                                                          (4) 
Using result of integration of differential equation (4) from 0t  to t  for ( )tσ  in the 

relation n
c Ae σ=  allow us to introduce differential equation for creep strain: 

1 1
0 0( 1) ( )

n
n n

c TA n AE t t− − = + − − e σ .                                (5) 

Result of integration of (5) from 0t  to t  has the form: 

1 1
1 11 1

0 0 0

1 1 1

( 1) ( ) ( )
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n nT n n
T

E n AE t t− −− −

 
 D = − − 
  + − −  

e
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,     (6) 

which can be rewritten as following: 
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Using simplified two-term deformation criterion with taking into account creep strain 
terms:  

1
mc

accumul c

r r

N
 D

+ = 
 

e e
e e

,                                           (8) 

where re  is the ultimate strain of creep under uniaxial tension, N is the number of cycles of 
macrocrack initiation we obtain: 
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In the simulations we use: 
min0 20 20 ) 0.9 ( ·

maxT max T min TT T Eσ a a− − ⋅ ⋅= ⋅ − , 20 maxTa − and 
min20 Ta −  

are the coefficients of linear thermal expansion, 4 49.48 10 / 9.98 10 MPaTE = ⋅ ⋅ ,
28 2 -n -172 10 / 6 10 MPa sA − −= ⋅ ⋅ , 0.18re =  for alloy ZhS32, 113 -n -8 10 MPa sA −= ⋅ , 0.18re =  for 

alloy VIN3. Multiplier 1
c
accumul

r

−
e
e

 is picking up to correlate one point with experiment. 

Comparison of results of FE simulations, experiments and analytical approximation (9) 
concerning the effect of the delay time at the maximum temperature on the thermal fatigue 
durability for single-crystal superalloys VIN3 and ZhS32 for four temperature modes is given 
in Fig. 6. 

 

a) b) 

 
 c)  d) 

Fig. 6. Comparison of results of FE simulations, analytical approximation and experimental 
data for alloys: a) ZhS32, loading regime 150÷900°C, heating time is 25 s, cooling time is 

75 s; b) ZhS32, loading regime 500÷1000°C, heating time is 10 s, cooling time is 14 s;  
c) ZhS32, loading regime 700÷1050°C, heating time is 15 s, cooling time is 15 s; 
d)VIN3, loading regime 500÷1050°C, heating time is 10 s, cooling time is 16 s 
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Figure 7 shows creep strain intensity field distributions for nickel superalloys ZhS32 
and VIN3 in case without delay time and with delay time 5 minutes after 10 cycles. 

 

a) b) 

 
c)  

d) 
Fig. 7. Creep strain distributions: 

a) ZhS32, loading regime 150÷900°C, without delay time; b) VIN3, loading regime 
500÷1050°C, without delay time; c) ZhS32, loading regime 150÷900°C, with delay time 

5 minutes; d) VIN3, loading regime 150÷900°C, with delay time 5 minutes 
 
Several material parameters appearing in the analytic formula (9) and calculations such 

as A, n and re  are more complicated to obtain and to find in open sources. Influence of these 
constants on thermal fatigue durability for nickel alloys ZhS32 and VIN3 and two 
temperature loading regimes is investigated. The results of parametrical analysis are presented 
in Fig. 8 with varied values of A, n and re . 

Numerical simulations show that parameters n and re  influence stronger, then 
parameter A on thermal fatigue durability. 

In gas turbine blades direction of mechanical, thermal and other loadings may not the 
same as crystallographic orientation (CGO) of single-crystal blade. CGO of gas turbine blades 
and the samples have an effect on creep rate and thermal fatigue durability. Influence of CGO 
on thermal fatigue strength is important to predict behavior and damage of single-crystal 
alloys. Influence of crystallographic orientation (CGO) on thermal fatigue strength for 
superalloys ZhS32 and VIN3 for four temperature modes is presented in Fig. 9. 
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          a)            b) 

       c) 
             

d) 

             e)         f) 
Fig. 8. Influence of material parameters of nickel-based alloys on thermal fatigue durability:  

a) Influence of parameter A, ZhS32, loading regime 500÷1000°C, 0.18re = , 8=n ; 
b) Influence of parameter A, VIN3, loading regime 500÷1050°C, 0.18re = , 3=n ; 

c) Influence of parameter n, ZhS32,loading regime 500÷1050°, 7 -n2 -16 10 MPa s0.18, −e = ⋅=r A  
d) Influence of parameter n,VIN3, loading regime 500÷1050,

3 -n1 -18 10 MPa s ;0.18, −= = ⋅r Ae  
e) Influence of parameter re , ZhS32, loading regime 500÷1050°C, 8=n , 

n27 - -16 10 MPa s ;−= ⋅A   
f) Influence of parameter re , VIN3, loading regime 500÷1050°C, 3=n , 113 -n -8 10 MPa s−= ⋅A  
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     a) b) 

 
 c) 

 d) 

Fig. 9. Influence of crystallographic orientation on 
 thermal fatigue durability for single-crystal nickel-based superalloys: 

a) ZhS32, T = 150÷900ºC, heating time is 25s, cooling time is 75s, 0.18re = ; 
b) ZhS32, T = 500÷1000ºC, heating time is 10s, cooling time is 14s, 0.18re = ; 
c) ZhS32, T = 700÷1050ºC, heating time is 15s, cooling time is 15s, 0.18re = ; 
d) VIN3, T = 500÷1050ºC, heating time is 10s, cooling time is 16s, 0.18re =  

 
The reason of the superiority of thermal fatigue durability for samples with CGO <001> 

over CGO <011> and <111> is associated with lower values of Young's modulus for CGO 
<001> ( 111 001 111 011/ 2.4, / 1.4E E E E= =  at 1000ºC). 
 
4. Conclusions 
Computational results of thermal fatigue durability showed a good agreement with the 
experiments, which suggests that finite-element modeling and analytical approximation (9) in 
combination with deformation criterion (1) can be used to predict thermal-fatigue strength of 
single-crystal nickel-based superalloys. 

Investigation of material parameters influence show that creep exponent n and tensile 
rupture strain 𝜀𝜀𝑟𝑟 affect more stronger that creep parameter A on thermal fatigue durability of 
single-crystal nickel based superalloys. Constants n and 𝜀𝜀𝑟𝑟 should be more accurately 
obtained from experimental data. 

The thermal fatigue durability of corset samples from superalloys ZhS32 and VIN3 with 
CGO <001> exceeds the thermal fatigue durabilities of CGO <011> and <111> (Fig. 9) for all 
considered loading programs and alloys. 

Comparison analysis of superalloys ZhS32 and VIN3 showed that superalloy ZhS32 has 
thermal fatigue strength higher than superalloy VIN3 for the same considered loading 
program. 
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Аннотация. Методом гранулярной динамики исследуются различные процессы 
компактирования наноразмерной гранулированной системы, которая соответствует 
нанопорошку на основе оксида алюминия. Для всех процессов: рассчитаны кривые 
уплотнения «плотность – давление» порошкового компакта, из суммарной деформации 
выделены упругий и пластичный вклады, в приближении изотропного материала 
определены упругие модули тела. Установлена недостаточность приближения 
изотропности. В пространстве инвариантов тензора напряжений построена поверхность 
нагружения наноразмерного порошка. Выявлена неприменимость традиционного 
ассоциированного закона к описанию процессов деформирования оксидных 
нанопорошков, и предложено альтернативное правило пластического течения. 
Ключевые слова: нанопорошок, поверхность нагружения, ассоциированный закон 
 
 
1. Введение 
В сфере производства новых материалов с уникальными свойствами заманчивыми 
перспективами обладают оксидные керамические материалы на основе таких 
соединений, как оксид алюминия [1-8], оксид иттрия [7,9,10], и т.д. Оксид алюминия, в 
частности, обладает высокой теплопроводностью и прозрачностью, что делает его 
перспективным кандидатом в качестве рабочей среды для твердотельных лазеров [4], 
высокими прочностными характеристиками, химической и жаропрочностью, что 
обуславливает его востребованность как конструкционного материала [1,2]. 
Повышение прочностных свойств, как и улучшение прозрачности, требует уменьшения 
среднего размера зерен в изготавливаемой керамике вплоть до величин порядка 10 нм 
[3,6]. В связи с этим в последнее время большие усилия направлены на развитие 
нанотехнологий, и в частности, производство наноструктурированных керамик 
методами порошковой металлургии [6-15]. Одним из часто используемых этапов 
данных методов является холодное прессование наноразмерных порошков. В отличие 
от порошков микронного и более крупных размеров нанопорошки обладают рядом 
неожиданных свойств [11,16-18], влияющих на их прессование и последующее 
спекание. В первую очередь, это ярко выраженный размерный эффект: чем меньше 
размер частиц порошка, тем труднее его прессовать. Достижение необходимых 
плотностей оксидного нанопорошка на стадии холодного прессования подчас требует 
давлений в несколько ГПа [11,15-18]. Помимо этого, как было недавно  
обнаружено [16-18], нанопорошки оксидных материалов слабо чувствительны к схеме 
прессования – различия по плотности в процессах всестороннего сжатия и одноосного 
компактирования не превышают 1%. Таким образом, наноразмерные порошки по 
своим механическим свойствам принципиально отличаются от обычных порошковых 
тел. 
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Бурное развитие экспериментальных методик и дальнейший успех в производстве 
наноструктурированной оксидной керамики требуют соответствующего развития 
теоретических представлений о механических свойствах нанопорошкового компакта. В 
пространстве инвариантов тензора напряжений поверхность нагружения нанопорошков 
имеет выпуклую форму эллиптического типа [12-19], что предполагает в качестве 
континуального подхода для описания свойств нанопорошка использование 
модифицированных вариантов теории пластичности [12-15,19,20]. При этом, конечно, 
ряд положений и терминология теории приобретают довольно условный характер: в 
частности, пластичность порошкового тела связана не с деформацией отдельный 
частиц, а с процессами взаимного проскальзывания, переупаковкой. Особенности 
нанопорошкового тела требуют серьезной ревизии основных положений теории и 
верификации ее результатов относительно свойств описываемого объекта. Натурный 
эксперимент не может дать всестороннюю информацию о характеристиках 
порошковой системы и изменении ее свойств в процессах компактирования. Гораздо 
более подробную информацию можно получить в рамках реализованного в данном 
исследовании микроскопического рассмотрения, т.е. компьютерного моделирования 
порошка методом гранулярной динамики [16-18,21-25]. 

В качестве объекта исследования выступает монодисперсная (диаметр частиц 
dg = 10 нм) модельная система, соответствующая нанопорошку оксида алюминия с 
сильной склонностью к агломерированию. Реальные порошки такого типа 
производятся в ИЭФ УрО РАН (Екатеринбург) методами электрического взрыва 
проводников [26] и лазерного испарения мишеней [9,27]. Отдельные частицы 
характеризуются сферической формой и высокими прочностными характеристиками. 
Сферичность частиц и их высокая прочность, неподверженность пластическому 
смятию, делают метод гранулярной динамики особенно перспективным и адекватным 
инструментом теоретического анализа. 
 
2. Описание численных экспериментов 
Модельная ячейка имеет форму прямоугольного параллелепипеда с размерами cellx , 

celly  и cellz . Для генерации начальных засыпок используется алгоритм, описанный в 
[16], который позволяет создавать изотропные и однородные структуры в виде 
связного 3D-периодического кластера. Количество частиц Np = 4000, начальная 
плотность ρ0 = 0.24. Под плотностью ρ подразумевается относительный объем твердой 
фазы, т.е. 3( / 6) /p g cellN d Vρ p= , где gd  – диаметр частиц, cellV  – объем модельной 
ячейки. На всех сторонах ячейки используются периодические граничные условия. 
Деформирование системы осуществляется одновременным изменением выбранных 
размеров модельной ячейки и пропорциональным перемасштабированием 
соответствующих координат всех частиц. После каждого акта деформирования 
определяется новое равновесное положение частиц. Данная процедура соответствует 
воздействию на порошок в квазистатических условиях. Тензор полных деформаций 
модельной системы в декартовых координатах диагонален. Приращение его компонент 
на каждом шаге деформирования были связаны друг с другом соотношениями: 

xx x zzε κ ε∆ = ∆ , yy y zzε κ ε∆ = ∆ . Вертикальная ось Oz всегда соответствовала 
максимальному сжатию. Шаг деформации вдоль данной оси для всех процессов был 
установлен равным / 0.0005zz cell cellz zε∆ = ∆ = − , а различия между процессами, т.е. 
специфика уплотнения, определялись значениями коэффициентов xκ  и yκ .  

Усредненный по модельной ячейке тензор напряжений ijσ  рассчитывался по 
известной формуле Лава [21-23,28] 
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где суммирование проводится по всем парам взаимодействующих частиц k и l;  
( , )k lf  – полная сила, воздействующая на частицу k со стороны частицы l; ( , )k lr  – вектор, 

соединяющий центры рассматриваемых частиц. Как правило, предполагается [12-15], 
что напряженное состояние пластично деформируемого тела, достаточно 
характеризовать первыми двумя инвариантами тензора напряжений, или однозначно 
связанными с этими инвариантами средним (гидростатическим) напряжением p и 
интенсивностью τ девиатора напряжений ( ij ij ijpτ σ δ= − , где δij – единичный тензор): 
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В дальнейшем также введем обозначения для осевых давлений: x xxp σ= − , 

y yyp σ= −  и z zzp σ= − . Силовые характеристики межчастичных взаимодействий 
описывались соотношениями [16-18]: 
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Здесь: модифицированная формула Гамакера (3) определяет силу дисперсионных 
притяжений fa [29,30]; модифицированный закон Герца (4) – силу fe упругого 
отталкивания частиц [31]; линеаризованный закон Катанео-Миндлина (5) – 
тангенциальное взаимодействие прижатых частиц (силы «трения») [32-34]; 
линеаризованный закон Егера (6) (или закон Рейснера-Сагоси [35,36]) – момент Mp 
поверхностных сил, возникающий при взаимном вращении прижатых частиц вокруг 
контактной оси на угол θp; закон Лурье (7) – момент Mr поверхностных сил, 
возникающий при изгибе контактной оси на угол θr (при появлении прочного 
сцепления между частицами; см. [37], стр. 272, ур. (4.5)). В представленных 
соотношениях: r – расстояние между центрами взаимодействующих частиц, ε и d0 – 
энергетический и размерный параметры межмолекулярных сил; α – коэффициент, 
определяющий минимальный зазор между соприкасающимися частицами (r = dg), и 
устанавливающий максимальную силу адгезионного сцепления (fa,max = fa(dg)); E и n  – 
модуль Юнга и коэффициент Пуассона частиц; δ – тангенциальное смещение 
контактной площадки; a – радиус контактной площадки; µ – коэффициент трения; bσ  – 
критическое напряжение сдвига, которое характеризует сдвиговую прочность 
материала; nσ  – нормальные напряжения на контактной поверхности. 
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Появление/разрушение прочной связи между частицами описывается с помощью 
параметра chr∆ , который характеризует необходимое прижатие частиц [16]. 
Принимается, что уменьшение расстояния r между центрами частиц до значения 

min chr r≤ ∆  инициирует образование прочного сцепления. После образования прочной 
связи между частицами дальнейшее сжатие (при уменьшении r) продолжает 
соответствовать упругому взаимодействию (4), а при растяжении (увеличение r) имеем 
линейную взаимосвязь силы fe и расстояния r вплоть до значения min chr r r′ = + ∆ . При 
r r′>  вводится частичное разрушение контакта, которое описывается увеличением 
параметра rmin, так чтобы разность minr r−  оставалась равна своему максимальному 
значению chr∆ . Полное разрушение контакта между частицами происходит при 
растяжении до значения r = dg. С появлением прочного сцепления между частицами 
ограничения в соотношениях (5) и (6), связанные с коэффициентом трения µ, 
снимаются. 

В качестве материала частиц подразумевается оксид алюминия в α-фазе, для 
которого принято [16]: E = 382 ГПа, 0.25n = , 3

0 2nd = , 0 0.1da =  нм; ε =1224kB, 
0.02b Eσ = . Размер частиц dg = 10 нм, коэффициент межчастичного трения µ = 0.1, 

параметр 0.01ch gr d∆ = . Таким образом моделируемая система близка по своим 
параметрам к модельной системе II работы [16], т.е. соответствует сильно 
агломерированному нанопорошку оксида алюминия работы [38]. 

Для идентификации различных промоделированных процессов уплотнения в 
дальнейшем используются значения коэффициентов κx и κy, и процесс обозначается 
парой «κx;κy». Компьютерные эксперименты были выполнены для следующих 
процессов: 
1. «1;1» – всестороннее однородное сжатие. Тензоры приращения деформаций ijε∆  и 

напряжений ijσ  являются шаровыми, т.е. ( / 3)ij ijε ε δ∆ = , ij ijpσ δ= − , где ( )Sp ijε ε= ∆ . 
2. «0.9;1»: интенсивность девиатора тензора приращений деформаций 

( / 3)ij ij ijγ ε ε δ= ∆ −  равна | | 6 / 87γ ε= . 

3. «0.75;1»: | | 6 / 33γ ε= . 
4. «0.5;1»: | | 6 /15γ ε= . 
5. «0.25;1»: | | 6 / 9γ ε= . 
6. «0;1» – сжатие вдоль осей Oy и Oz: | | 1 / 6γ ε= . 
7. «0;0.5»: | | 2 / 3γ ε= . 
8. «0;0» – одноосное сжатие вдоль оси Oz: | | 2 / 3γ ε= . 
9. «0;–0.1», т.е. сжатие по оси Oz с одновременным незначительным растяжением по 

оси Oy: | | 74 / 9γ ε= . 
10. «0;–0.2»: | | 31 / 24γ ε= . 
11. «0;–0.3»: | | 278 /147γ ε= . 

В дополнение были промоделированы три процесса вида «κn,κn» со значениями 

1 2 3
1 3 1 1 31 4; 0.196 ; 0.103
4 23 2 31 2

κ κ κ− − −
= = ≅ = ≅ −

+ +
, (8) 

которые по величине отношения /γ ε  являются аналогами, соответственно, процессов 
«0;1», «0;0.5» и «0;–0.2». 
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3. Кривые уплотнения 
Во всех перечисленных в предыдущем разделе процессах уплотнение модельной 
ячейки проводилось до заданного уровня pmax = 5 ГПа внешней нагрузки вдоль оси Oz, 
т.е. до выполнения условия maxzp p= . Затем осуществлялась разгрузка модельной 
ячейки, в ходе которой ячейка деформировалась по всем направлениям с такими же 
относительными скоростями, что и при уплотнении, но противоположного знака. 
Кривые уплотнения и разгрузки pz(ρ) пяти процессов показаны на Рис. 1. Отметим, что 
для построения каждой кривой проводилось несколько (от 6 до 10) статистически 
независимых расчетов, после чего проводилось усреднение расчетных данных. Стадия 
разгрузки, или «упругой» разгрузки [17,19,24], характеризуется изменением плотности 

uρ∆ . Однако сброс давления помимо чисто упругой разгрузки межчастичных 
контактов сопровождается также необратимыми процессами относительного 
перемещения частиц. Поэтому название этих стадий «упругими» достаточно условно, и 
предполагает лишь то, что упругие процессы здесь, скорее всего, преобладают. 

 

 
Рис. 1. Кривые уплотнения в координатах «плотность – давление pz» для процессов 
«1;1» (сплошная линия 1), «0.5;1» (штриховая линия 2), «0;1» (пунктирная линия 3), 
«0;0» (сплошная линия 4) и «0;–0.3» (штриховая линия 5). На вставке в увеличенном 

масштабе показан начальный участок уплотнения 
 

Рисунок 1 показывает, что на стадии нагружения кривые уплотнения 
нанопорошка «плотность – максимальное давление» очень близки друг к другу. 
Процессы «1;1», «0.5;1» и «0;1» совпадают в пределах погрешности расчета (порядка 
0.3%), а отклонение от них процесса «0;0» (одноосное сжатие) по плотности составляет 
около 1%. Нечувствительность уплотняемости нанопорошка к схеме нагружения 
отмечалась ранее в работах [16-18]. Причина такой нечувствительности, по-видимому, 
состоит во взаимной компенсации двух противоположных эффектов. С одной стороны, 
переход к несимметричному нагружению (от всестороннего сжатия «1;1» к двухосному 
«0;1» и далее к одноосному «0;0») приводит при заданном уровне внешнего 
(максимального) давления (pz) к снижению среднего давления в порошке, что должно 
снижать плотность компакта. Так, для одноосного процесса «0;0» при pz = 5 ГПа 
расчетное гидростатическое давление составляет всего p = 3.9 ГПа. С другой стороны, 
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рост сдвиговых деформаций и напряжений, характеризуемых интенсивностями 
девиаторов деформаций (γ) и напряжений (τ), способствует достижению более высоких 
плотностей. Если для всестороннего сжатия , 0γ τ ≡ , то для одноосного процесса 

0.816γ = , а величина τ при максимальном давлении, как показывают численные 
оценки, достигает 1.3 ГПа. 

На стадиях «упругой» разгрузки различие по плотности между 
промоделированными процессами становится более заметным, и составляет при 
полном сбросе внешнего давления около 2% между одноосным и всесторонним 
процессами. Причем, если при нагружении одноосный процесс характеризовался 
меньшими значениями плотности, то после «упругой» разгрузки меньшая плотность 
соответствует уже процессу всестороннего сжатия-растяжения. Изменения плотности 
на стадиях разгрузки uρ∆  для процессов «1;1» и «0;0» составляют, соответственно, 
14.5% и 11.3%. 

Отдельно был исследован вопрос о значимости третьих инвариантов тензоров 
деформаций и напряжений для описания порошкового тела. Как отмечается в [12], для 
широкого класса изотропных материалов, например, классические упругие и вязкие 
тела, скалярные механические свойства определяются лишь первыми двумя 
инвариантами этих тензоров. Данное приближение вполне оправдывает себя и при 
описании порошков микронного и более крупных размеров [12,19,20]. Однако для 
наноразмерных порошков данное приближение до сих пор не проверялось. С целью 
выполнения такой проверки нами были проанализированы процессы «0;1», «0;0.5» и 
«0;–0.2» в сравнении с их аналогами – процессами «κn,κn» (8), см. Рис. 2. Несмотря на 
равенство отношений /γ ε , анализируемые пары процессов характеризуются 
различными значениями третьего инварианта тензора деформаций.  

 

 
Рис. 2. Интенсивность девиатора напряжений в зависимости от плотности компакта для 
процессов: «0;1», «0;0.5» и «0;–0.2» (сплошные линии 1, 2 и 3, соответственно); «κ1,κ1», 

«κ2,κ2» и «κ3,κ3» (штриховые линии 1, 2 и 3, соответственно) 
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Если в качестве дополнительной характеристики использовать величину 
1/3

3 /ijI γ ε=  (где ij xx yy zzγ γ γ γ=  – определитель девиатора деформаций), то для пары 

процессов «0;1» и «κ1,κ1» имеем 3 0.21I = −  и +0.21, соответственно; для пары «0;0.5» и 
«κ2,κ2» – 0 и 0.24; для пары «0;–0.2» и «κ3,κ3» – 0.56 и 0.58. Как следствие, данные пары 
характеризуются различными значениями отдельных компонент тензора напряжений и 
аналогичного третьего инварианта девиатора напряжений. Так, для пары «0;0.5» – 
«κ2,κ2» при давлении pz = 5 ГПа плотность компакта достигает 74.5ρ ≅ %, и «боковые» 
давления в процессе «0;0.5» составляют 3.6xp ≅  ГПа и 4.3уp ≅  ГПа, а в процессе 
«κ2,κ2» – 3.8x yp p≡ ≅  ГПа. Тем не менее, несмотря на явное различие в напряженном 
состоянии, реализуемом в данных процессах, кривые их уплотнения в инвариантных 
переменных p(ρ) и τ(ρ) совпадают в пределах погрешности расчета. Зависимости 
интенсивности девиатора напряжений от плотности компакта всех шести 
анализируемых процессов представлены на Рис. 2. Видно, что кривые τ(ρ) каждой пары 
удовлетворительно согласуются как на стадии нагружения, так и на стадиях разгрузки. 
Аналогичное согласие демонстрируют и кривые p(ρ). Таким образом, совпадение 
кривых p(ρ) и τ(ρ) для процессов с различными значениями третьих инвариантов 
тензоров деформаций и напряжений подтверждает традиционно используемую в 
теории пластичности гипотезу о достаточности первых двух инвариантов данных 
тензоров для описания наноразмерных порошковых систем. 
 
4. Выделение «упруго-обратимого» вклада 
В работах [17,18] упругий вклад eρ∆  в суммарном изменении плотности компакта на 
стадии уплотнения был отождествлен со значением uρ∆  – изменением плотности, 
фиксируемым на стадии сброса внешнего давления. Однако такое отождествление не 
является строгим, поскольку на стадии сброса давления в порошковой системе 
одновременно с процессами упругой разгрузки межчастичных контактов неизбежно 
происходят процессы относительного (тангенциального) проскальзывания частиц, 
соответствующие с макроскопической точки зрения процессу пластического течения 
материала. По этой же причине оценку модуля всестороннего сжатия  

p
ela

dpK
d

ρ
ρ

= , (9) 

произведенную в работе [39] по наклону кривой pz(ρ) на начальном участке сброса 
давления, можно считать лишь «оценкой снизу». Стоит также отметить высокую 
трудозатратность такой оценки упругих свойств. Анализ их изменения с ростом 
плотности компакта требует моделирования большого количества ветвей упругой 
разгрузки [17,39].  

В связи со сказанным в настоящей работе был реализован принципиально иной 
способ оценки упругих свойств компакта. Упругое приращение напряжений ijσ∆  в 
моделируемой системе, соответствующее малому приращению плотности ρ∆ , 
«замерялось» на каждом шаге деформации модельной ячейки сразу же после изменения 
ее размеров и пропорционального приращения соответствующих координат всех 
частиц. Только после этого измерения «включался» механизм релаксации, т.е. 
начиналось перемещение частиц к новым положениям равновесия. Таким образом, 
процессы взаимного проскальзывания оказываются отделены от чисто упругой 
деформации. Стоит отметить, что относительные перемещения частиц, 
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пропорциональные деформированию модельной ячейки, соответствуют известному 
приближению Фойгта для поля деформаций в сплошной среде [28].  

Принимая в качестве предположения изотропность порошкового компакта, 
можем использовать для описания его упругих свойств закон Гука в виде [40,41] 

1 2
2 , 2 3

3 1
p

ij p e ij ij e p
p

K K
nεσ ε m ε δ m
n

− ∆ = + ∆ − =  + 
, (10) 

что позволяет определить упругие модули порошкового тела Kp и pn . Выражение для 
модуля всестороннего сжатия записано выше, см. ур. (9), а коэффициент Пуассона pn  
для моделируемых процессов может быть определен по отношению приращений 
различных компонент тензора напряжений, например, 

«0.5;1»:  
1 3
2
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z pela

p
p

n
n

+∆
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∆ +
 ;    «0;1»:  2x

p
z ela
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p

n∆
=

∆
 ;    «0;0»:  

1
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z pela

p
p

n
n

∆
=

∆ −
. (11-a) 

Отметим, что для процесса «1;1» (всестороннее однородное сжатие) коэффициент 
Пуассона определить невозможно, а для процессов с тремя различными диагональными 
компонентами тензора деформаций, например, процесс «0;0.5», коэффициент Пуассона 
можно определить, используя различные пары компонент тензора напряжений: 

«0;0.5»:  ,

,

3
2

p xx

z p xela

p
p

n
n

∆
=

∆ −
 ;      ,

,

1
2

y p y

z p yela

p
p

n
n

∆ +
=

∆ −
. (11-b) 

В случае справедливости приближения изотропности значения ,p xn  и ,p yn , 
конечно же, должны совпадать. Полученные с использованием выражений (9)–(11) 
упругие модули представлены на Рис. 3 и 4. 
 

 
Рис. 3. Модуль всестороннего сжатия, рассчитанный по ур. (9), для процессов «1;1», 

«0;1», «0;0» (сплошные линии снизу вверх, почти неразрешимы) и «0;–0.3» (штриховая 
линия). Пунктирная линия – аппроксимация по ур. (12) 

 
Рисунок 4 показывает, что коэффициент Пуассона не может рассматриваться как 

однозначная функция плотности компакта - мы наблюдаем различные зависимости 
( )pn ρ  для различных процессов, а также несовпадение значений ,p xn  и ,p yn  для 
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процесса «0;0.5». Это свидетельствует о том, что упругие свойства моделируемой 
системы не могут описываться законом (10) с двумя упругими модулями, т.е. 
приближение изотропности материала для уплотняемого порошка не выполняется. 
Расчетные данные показывают, что распределение направлений межчастичных 
контактов в порошковой системе изотропно в пределах погрешности расчета во всех 
промоделированных процессах, однако распределение контактных сил имеет заметную 
угловую зависимость (см., например, Рис. 14 в [16]). Последнее, видимо, в 
совокупности с нелинейным законом упругого взаимодействия частиц (4) приводит к 
существенной анизотропии упругих свойств компакта, наведенной условиями 
внешнего нагружения. 

Несмотря на отмеченную выше наведенную анизотропию определяемый первыми 
инвариантами тензоров деформации и напряжений модуль всестороннего сжатия Kp, 
представленный на Рис. 3, определяется для большинства промоделированных 
процессов вполне однозначно, и удовлетворительно аппроксимируется общим 
выражением 

( )1 2 3( ) expK k k kρ ρ ρ ρ= + , (12) 
с коэффициентами k1 = 10.987 ГПа, k2 = 0.638 ГПа, k3 = 5.744. Исключение составляют 
лишь процессы с растяжением вдоль оси Oy. Здесь, по-видимому, проявляется близость 
к поверхности разрушения порошкового тела, которая согласно исследованиям [17,25] 
располагается на плоскости «p–τ» несколько левее кривой τ(p) процесса одноосного 
сжатия «0;0».  
 

 
Рис. 4. Коэффициент Пуассона, рассчитанный по ур. (11), для процессов «0.5;1», «0;1» 

и «0;0» (сплошные линии 1, 2 и 3, соответственно), а также коэффициенты ,p xn  
(штриховая линия 4) и ,p yn  (штриховая линия 5) для процесса «0;0.5» 

 
При известной зависимости Kp(ρ) упругую составляющую приращения плотности 

elaρ∆ , накапливаемую в процессе нагружения, можно рассчитать по уравнению: 

0 ( )

p

ela
p

dp
K
ρρ
ρ

∆ = ∫ . (13) 
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Вычисляя численно записанный интеграл вдоль кривой нагружения p(ρ), 
получаем взаимосвязь elaρ∆  с параметрами, которые определяют состояние 
порошкового компакта (ρ, p, pmax и др.). Полученные таким образом зависимости 

( )ela pρ∆  представлены на Рис. 5. Заметное различие в кривых ( )ela pρ∆  для процессов с 
практически совпадающими зависимостями Kp(ρ) обусловлено различием в кривых 
уплотнения p(ρ), которые неявно входят в подинтегральное выражение ур. (13).  

Кривые max( )ela pρ∆  имеют такой же нелинейный характер, что и кривые на Рис. 5, 
и качественно соответствуют аналогичным зависимостям, представленным в 
работе [17]. В количественном плане, полученные значения упругой деформации elaρ∆  
несколько ниже значений, соответствующих близкой по параметрам модельной 
системе II в работе [17], где упругая часть приращения плотности отождествлялась с 
величиной uρ∆ . Так, при давлении pmax = 5 ГПа для процесса всестороннего сжатия 
системы II в [17] получено 14.65elaρ∆ = %, в то время как сейчас для процесса «1;1» мы 
имеем 12.68elaρ∆ = %. Снижение расчетных значений упругой деформации связано с 
исключением в алгоритме расчета упругих свойств, используемым в настоящей работе, 
вклада процессов пластического характера (взаимное проскальзывание частиц). 
 

 
Рис. 5. Упругая часть приращения плотности компакта, вычисленная по расчетным 

кривым уплотнения и ур. (9), (13), в зависимости от гидростатического давления p для 
процессов (линии сверху вниз): «1;1», «0;1», «0;0», «0;–0.1», «0;–0.2» и «0;–0.3» 

 
Полученные зависимости ( )ela pρ∆  позволяют выделить из общей деформации 

модельной ячейки ( )pρ  необратимую (пластическую) составляющую plast elaρ ρ ρ= − ∆ . 
Зависимость величины plastρ  от внешнего давления представлена на Рис. 6. Там же для 
сравнения представлены исходные кривые уплотнения max( )pρ , содержащие упругий 
вклад elaρ∆ . Зависимости max( )plast pρ , также как и исходные зависимости, 
соответствующие различным процессам, достаточно близки друг к другу. Интересно 
отметить, что при относительно низких давлениях ( max 100p ≤  МПа) наибольшие 
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значения достигаемой плотности (как ρ, так и ρplast) реализуются в процессе 
всестороннего сжатия «1;1», а в области высоких давлений ( max 1p >  ГПа) ввиду 
высоких значений упругого вклада elaρ∆  этот процесс характеризуется уже 
наименьшими значениями пластической составляющей ρplast. Различие значений ρplast 
между процессами одноосного и всестороннего сжатия достигает 1.5% при 

max 5p =  ГПа. В гипотетическом пределе неограниченно высоких давлений ( maxp →∞ ) 
зависимости max( )plast pρ  близки к степенному виду 1/2

max/plast k pρρ ρ∞= − , что позволяет 
оценить максимально возможную плотность компактов ρ∞ . Для исследованных 
процессов, как показывает вставка на Рис. 6, она лежит в диапазоне от 67% 
(всестороннее сжатие «1;1») до 72% (процесс «0;–0.3»).  

 

 
Рис. 6. Плотность компакта ρ (штриховые линии) и пластично-необратимый вклад ρplast 
(сплошные линии) в зависимости от максимального внешнего давления (pz, вдоль оси 
Oz) для процессов «1;1», «0;1», «0;0» и «0;–0.3» (линии 1, 2, 3 и 4, соответственно). На 

вставке: величины ρplast в области высоких давлений и аппроксимация к пределу 
maxp →∞  (пунктирные линии) 

 
5. Поверхность нагружения 
Ключевым параметром деформируемого тела при описании его механических свойств 
в рамках феноменологии теорий пластичности [12-15,19,20] является поверхность 
нагружения, которая в пространстве компонент тензора напряжений определяет 
границу между областью упругих деформаций и областью пластичного течения. В 
отличие от пластически несжимаемых материалов, в частности, компактных металлов, 
поверхность нагружения порошка должна зависеть не только от интенсивности 
девиатора напряжений (τ), но и от значения первого инварианта тензора напряжений 
(p), а также в качестве параметра - от текущей плотности, переходя в пределе 
беспористого состояния в условие текучести сплошного материала. Под плотностью 
при этом в соответствие с принятой аналогией необходимо понимать величину ρplast , 
т.е. накопленные «пластические» деформации без учета упругого вклада. 
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Для описания поведения пористых тел, реакцией которых на изменение знака 
нагрузки можно пренебречь, многие исследователи используют аппроксимацию 
уравнения поверхности нагружения в виде эллипса в координатах «p – τ» [12-15,19]. К 
нанопорошковым компактам, как отмечено в предшествующих работах [17,18], 
эллиптическая поверхность неприменима. Если спеченное пористое тело 
характеризуется наличием сформированных контактов между частицами, в силу чего 
способно практически одинаково сопротивляться растягивающим и сжимающим 
деформациям, то порошок оказывает относительно слабое сопротивление 
растягивающим деформациям. Следствием этого является существенное искажение 
эллипса текучести и заметный общий сдвиг в сторону положительных значений 
гидростатического давления [17,18]. 

Другой отмеченной в [17,25] особенностью порошкового тела является наличие 
поверхности разрушения (fracture surface) в области процессов с растягивающими 
напряжениями. В пространстве инвариантов «p – τ» поверхность разрушения 
располагается несколько левее кривой τ(p), соответствующей одноосному сжатию 
«0;0». В связи с этим, в настоящей работе мы использовали процессы лишь с 
относительно небольшим растяжением («0;–0.1», «0;–0.2» и «0;–0.3»), 
располагающиеся на плоскости «p – τ» вблизи кривой одноосного сжатия. При этом, в 
основном, анализу подвергается область сжимающих деформаций, в диапазоне от 
одноосного до всестороннего уплотнения, которая отвечает за т.н. 
«консолидирующую» часть поверхности нагружения (the consolidation locus of yield sur-
face [19]).  
 

 
Рис. 7. Зависимости интенсивности девиатора напряжений от гидростатического 

давления для промоделированных процессов (номера линий соответствуют номерам 
процессов в разделе 2). Точками отмечены состояния, соответствующие значениям 

ρplast = 0.55, 0.58, 0.60, 0.61, 0.617, 0.622 и 0.627. Пунктирные линии показывают 
положения поверхности нагружения по ур. (14) для этих значений ρplast  

 
Кривые уплотнения промоделированных процессов в пространстве инвариантов 

«p – τ», а также точки (p,τ) на этих кривых, соответствующие заданным значениям 
плотности ρplast, представлены на Рис. 7. Для 4-х бóльших значений ρplast (0.61, 0.617, 
0.622 и 0.627) показаны также погрешности статистического усреднения расчетных 
данных. При меньших плотностях диапазон погрешностей становится сопоставим, или 
даже меньше, размера точек на рисунке. Кривая всестороннего сжатия «1;1» (линия 1) в 
этих координатах располагается вдоль оси абсцисс. В пределах статистического 
разброса все расчетные точки, представленные на Рис. 7, удовлетворительно 
аппроксимируются общей зависимостью τ(p) для поверхности нагружения в виде: 
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1 2 1
a a a

p p
p p p
τ τ τ

  
= + −  

  
, (14) 

где pa – величина p, соответствующая заданному значению плотности ρplast при 
всестороннем сжатии (процесс «1;1»), т.е. координата пересечения поверхности 
нагружения с осью гидростатического давления; а коэффициенты τ1 и τ2 зависят от 
плотности следующим образом: 1 2.40 3.62 plastτ ρ= − , 2 0.51 0.42 plastτ ρ= − . 
Определяемые ур. (14) изолинии показаны на Рис. 7 пунктиром. Видно, что 
расположение и форма уровней поверхности нагружения, соответствующих заданным 
значениям плотности ρplast, в целом, подтверждает выпуклость и гладкость (без угловых 
точек) поверхности нагружения порошкового компакта в виде сдвинутого и 
деформированного эллипса. 
 
6. Критерий течения оксидных нанопорошков 
Рассчитанные кривые уплотнения и построенное семейство изолиний (ρplast = const) 
поверхности нагружения, представленные на Рис. 7, позволяют провести детальный 
анализ характера течения порошкового тела. В рамках феноменологии пластичного 
тела широко используется гипотеза «ассоциированного закона» [12-14,19,20], согласно 
которой приращение деформаций при его течении должно быть ортогонально 
поверхности нагружения в пространстве компонент тензора напряжений. При этом под 
деформациями необходимо понимать именно пластические части полных деформаций. 

Приращение полных деформаций в промоделированных процессах определяется 
характером деформирования модельной ячейки. Разбивая их на упругие и пластические 
деформации, т.е. ( ) ( )e p

ij ij ijε ε ε∆ = ∆ + ∆ , определим упругие части соотношениями: 

( ) ( ) ( ), , ,
3 3 3

ye e ex z
xx yy zz

p p p

pp p
K K K

ε ε ε
∆∆ ∆

∆ = − ∆ = − ∆ = −  (15) 

которые, как нетрудно убедиться, соответствуют выражению (9) для упругого модуля 
всестороннего сжатия. Вычитая определяемые уравнениями (15) упругие части из 
полных деформаций получаем пластические деформации ( )p

ijε∆ , которые могут быть 
использованы для верификации феноменологической теории пластичного тела, и в 
частности, ассоциированного закона.  

Одним из следствий ассоциированного закона является соосность девиаторов 
тензоров напряжений и приращения деформаций, т.е. ( )p

ij ijτ γ∝ . В случае трехосного 
нагружения с заданными значениями диагональных компонент тензора приращений 
деформаций указанная соосность устанавливает соотношение между диагональными 
значениями тензора напряжений, которую можно использовать для оценки, например, 
компоненты py по известным значениям px и pz: 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

p p p p
zz yy yy xxass

y x zp p p p
zz xx zz xx

p p p
ε ε ε ε
ε ε ε ε

∆ − ∆ ∆ − ∆
= +
∆ − ∆ ∆ − ∆

. (16) 

Как видно из представленного соотношения, при равенстве двух диагональных 
компонент тензора деформаций, соответствующие диагональные компоненты тензора 
напряжений также совпадают. Таким образом, для большинства из промоделированных 
процессов выполнимость соосности гарантирована условиями симметрии: равенство 
напряжений по направлениям с одинаковой скоростью деформации. 

Все три диагональных компонента тензора деформаций различаются в процессах 
«0;0.5», «0;–0.1», «0;–0.2» и «0;–0.3». Сопоставление расчетных величин давления py и 
величин ( )ass

yp , определяемых соотношением (16), представлено для этих процессов на 
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Рис. 8. Рисунок показывает достаточно хорошее совпадение величин yp  и ( )ass
yp , т.е. в 

пределах расчетной погрешности можно констатировать выполнение соосности 
девиаторов деформаций и напряжений.  

 

 
Рис. 8. Зависимость давления по оси Oy от плотности компакта для процессов (сверху 

вниз) «0;0.5», «0;–0.1», «0;–0.2», «0;–0.3». Сплошные линии – расчетные кривые, 
штриховые линии – кривые (ass)

yp , рассчитанные по ур. (16) 
 

Применительно к инвариантам тензоров деформаций и напряжений другим 
интересным следствием ассоциированного закона для порошковых тел является 
соотношение 

( ) ( )
1( , )p pε γ λ′= ∇Φ , (17) 

где в качестве потенциала Φ выступает либо диссипативный потенциал 
деформируемого тела, либо его функция нагружения, изоуровни которой совпадают с 
уровнями поверхности нагружения (14), представленными на Рис. 7. Как было показано 
в [18], выбор в качестве потенциала Φ функции нагружения предпочтителен, поскольку 
последняя является более наглядной, однозначной и надежной характеристикой 
порошкового тела. В частности, установлено, что поверхность нагружения практически 
не зависит от промежуточных разгрузок в процессе уплотнения и, как следствие, - от 
начального состояния, определяемого начальной плотностью ρ0, прессуемого порошка. 

Соотношение (17) требует [14], чтобы направление вектора пластических 
деформаций ( ) ( )( , )p pε γ  было ортогонально изоуровням поверхности нагружения, 
показанным на Рис. 7. На Рис. 9 представлены направления векторов (ε(p),γ(p)) и 
векторов ∇Φ  для двух изолиний, при ρplast = 0.60 и 0.627. Видим, что выполнение 
ассоциированного закона (17), т.е. коллинеарность векторов (ε(p),γ(p)) и ∇Φ , 
наблюдается только в тривиальном случае всестороннего сжатия. Малейшее 
отклонение от всесторонних условий, уже для процесса «0.9;1», демонстрирует 
заметное нарушение коллинеарности (17). При этом вектор деформирования (ε(p),γ(p)) 
для всех процессов отклоняется от ∇Φ  в сторону кривой уплотнения τ(p), направление 
которой можно определить вектором ( , )p τ∆ ∆ . 
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Рис. 9. Кривые уплотнения и изолинии поверхности нагружения (линии те же, что и на 

Рис. 7). Стрелки на пересечениях кривых уплотнения и изолиний для значений  
ρplast = 0.60 и 0.627 показывают направление вектора ∇Φ , т.е. нормали к поверхности 

нагружения, (верхние пунктирные стрелки) и направление вектора (ε(p),γ(p)), 
определяющего характер деформирования, (нижние сплошные стрелки) 

 
Отмеченная особенность позволяет сформулировать альтернативный критерий 

течения оксидных нанопорошков в виде [18]: 
( ) ( )

1 2( , ) (1 ) ( , )p p pε γ ω λ ω λ τ′= − ∇Φ + ∆ ∆ , (18) 
где ω – весовой коэффициент, определяющий влияние осуществляемого процесса на 
«направление» деформаций, инициируемых в порошковой системе; λ2 – размерный 
коэффициент, определяемый следующим образом, 

2 2
2 2

2 1 1( , ) p

p
pp τ

λ λ λ τ
ττ

 ∇Φ  ∂Φ ∂Φ ′ ′  = = + ∆ + ∆     ∂ ∂∆ ∆     
. (19) 

Переходя от соотношения для инвариантов (18) к тензорам деформаций и 
напряжений, получим общую форму записи правила течения нанопорошкового тела в 
виде 

1 2(1 ) ,pp
p p paβ aβ aβ aβ

τε ω λ ω λ τ ∂Φ ∂ ∂′∆ = − ⋅ + ∆ + ∆ ∂ ∂ ∂ 
 (20) 

где 

( )1, , ,
3p

p p p p
p p p p p p

aβ
aβ aβaβ aβ aβ aβ aβ

τ

δτ τ δ
τ τ

 ∂Φ ∂Φ ∂ ∂Φ ∂ ∂ ∂ = + = = − ⋅  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

aβδ  – символ Кронекера. Первое слагаемое справа в соотношении (20) соответствует 
ассоциированному закону, а второе слагаемое определяет влияние осуществляемого 
процесса. Рис. 9 показывает, что весовой коэффициент этого влияния ω не является 
постоянным. С приближением к процессу всестороннего сжатия вектор 
деформирования (ε(p),γ(p)) становится гораздо ближе к вектору ( , )p τ∆ ∆ , т.е. весовой 
коэффициент становится близок к единице.  

Можно предположить, что величина ω является функцией производной 
/p d dpτ τ=  вдоль кривой τ(p), определяющей процесс компактирования. Вводя 

единичные векторы 
(1, )( , ) , ,

| ( , ) | | | | (1, ) |
p

p

ev n t
e

τγ
γ τ

∇Φ
= = =

∇Φ
, 
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и требуя обращения в ноль векторного произведения векторов v  и (1 ) n tω ω− + , 
получим для расчета величины ω соотношение: 

1 2 2 1

1 2 2 2 1 1( ) ( )
v n v n

v n t v n t
ω −
=

− − −
. (21) 

Значения коэффициента ω в зависимости от отношения pτ , рассчитанные по 
этому соотношению, для пересечений кривых уплотнения всех исследованных 
процессов с 7-ю изолиниями, показанными на Рис. 7 и 9, представлены на Рис. 10. 
Анализ полученных данных показывает, что функция ( )pω τ  не зависит от величины 
ρplast, т.е. является общей для всех изолиний, и удовлетворительно аппроксимируется 
выражением: 

1 2 pω ω ω τ= − , (22) 
с коэффициентами ω1 = 0.9 и ω2 = 1.0. Полученное выражение (22) замыкает систему 
предшествующих соотношений, определяющих изменение компонент тензора 
деформаций порошкового компакта при заданном внешнем воздействии, т.е. при 
заданном приращении компонент тензора напряжений. 
 

 
Рис. 10. Параметр ω, определяющий в соответствие с ур. (18)–(20) направление вектора 

пластических деформации, в зависимости от отношения скорости изменения 
инвариантов тензора напряжений 

 
7. Заключение 
Для модельной системы, которая соответствует наноразмерному порошку оксида 
алюминия, рассчитаны кривые уплотнения при компактировании в различных 
условиях. Рассмотрены процессы всестороннего однородного сжатия, двух- и 
одноосного прессования, а также ряд процессов всестороннего неоднородного сжатия, 
т.е. с различной скоростью сжатия вдоль различных направлений. Исследованы 
упругие свойства порошковых компактов. Обнаружена инвариантность модуля 
всестороннего сжатия и непостоянство коэффициента Пуассона, что говорит о 
неприменимости приближения изотропного тела к порошковому компакту и, как 
следствие, недостаточности двух упругих модулей для описания его упругих свойств. 
Тем не менее, надежно устанавливаемое значение модуля всестороннего сжатия 
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позволяет определить упругие и пластические части приращения плотности и тензора 
деформаций.  

Выполнена верификация теории пластично уплотняемого пористого тела [12-15], 
традиционно применяемой для описания порошковых компактов. Установлена 
нечувствительность механических свойств порошкового тела от значений третьих 
инвариантов тензоров деформаций и напряжений, а также соосность девиаторов 
деформаций и напряжений, что полностью согласуется с традиционными 
теоретическими представлениями. Однако, в целом, следует признать, что известное 
ассоциированное правило пластического течения неприменимо к наноразмерным 
оксидным порошкам, поскольку в пространстве инвариантов тензора напряжений 
вектор инвариантов тензора приращений пластических деформаций оказывается 
неортогонален изоуровням поверхности нагружения. Вместо традиционного 
ассоциированного закона предложен другой критерий, который позволяет предсказать 
характер деформационных процессов в системе. Согласно предложенному критерию, 
вид тензора приращений деформаций определяется не только направлением вектора-
градиента функции нагружения (ассоциированный закон), но и направлением 
«вектора», который определяет изменение компонент тензора напряжений при 
реализуемом процессе компактирования. Соотношение вкладов от этих двух векторов 
задается весовым коэффициентом ω. Сформулирована полная система соотношений, 
однозначно определяющая изменение компонент тензора деформаций в исследуемых 
системах при заданном внешнем воздействии. Помимо критерия течения данная 
система содержит аппроксимацию изоуровней поверхности нагружения и зависимость 
весового коэффициента ω от инвариантов тензора напряжений. 
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Abstract. Different compaction processes of the nanosized granular system, which is a proto-
type of an alumina nanopowder, are studied by the granular dynamics method. For all pro-
cesses: compaction curves “density vs. pressure” of the powder compact are calculated, the 
elastic and the plastic parts are extracted from the total deformation, the body elastic moduli 
are determined within the isotropic solid approximation. The inadequacy of the isotropy ap-
proximation is established. The nanopowder yield surface is constructed in the space of stress 
tensor invariants. The inapplicability of the traditional associated flow rule for description of 
oxide nanopowders compaction processes is revealed. An alternative flow rule is suggested.  
Keywords: nanopowder, yield surface, associated flow rule 
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