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EFFECT OF THE SPECIMEN SIZE ON NECKING DEVELOPMENT IN 

METALS AND ALLOYS DURING SUPERPLASTIC DEFORMATION 
A.G. Sheinerman*

Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, St. Petersburg 199178, Russia 

Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia 

Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia 
*e-mail: asheinerman@gmail.com

Abstract. A model is proposed that describes the development of individual and multiple 
necks in superplastically deformed materials. Within the model, the examined samples have 
the form of round bars and are subjected to tensile superplastic deformation without strain 
hardening.  It is demonstrated that neck development and necking-induced failure occur faster 
with a decrease in strain rate sensitivity and/or an increase in the fraction of the sample length 
occupied by necks. This means that high values of strain to failure observed in small 
specimens of superplastically deformed ultrafine-grained metals and alloys, where diffuse 
necking happens in the whole specimen, can be significantly reduced in larger specimens 
where the necking regions occupy only a small part of the sample. 
Keywords: superplastic deformation, necking, ductility, failure, ultrafine-grained materials 

1. Introduction
It is known that the ductility of metals and alloys under superplastic deformation is often 
limited by cavitation or diffuse necking (e.g., [1]). In particular, diffuse necking is often 
observed in ultrafine-grained (ufg) alloys demonstrating superplastic deformation or 
superplastic behavior (e.g., [2,3]). Due to the difficulty in making nanostructured materials 
large enough for standard mechanical testing, to measure the mechanical properties of such 
materials, many researchers have been using small samples [4]. In such samples the neck, if it 
appears, propagates over the entire sample length and represents a gradual decrease in the 
sample thickness from the sample edges to its center. This is in contrast to the case of large 
samples, where a neck during superplastic deformation can occupy only a part of the sample 
length, although multiple necking can occur [5-7].  

At the same time, recent investigations [4,8,9] demonstrated that the sample length can 
have a significant effect on the ductility of metals. In particular, it was experimentally 
demonstrated that the gauge length can affect the onset of necking and postnecking behaviour 
of ufg and coarse-grained Cu [8,9]. The gauge length effect on the ductility of Cu has been 
attributed [4,9] to the difference in the fractions of the specimen length occupied by the neck 
in small and large samples. However, no relation has been established that would allow one to 
estimate the speed of the neck development and strain to failure in large samples based on the 
corresponding parameters in small samples and the strain rate sensitivity of specimens. To fill 
this gap, here we suggest a model that describes the development of individual and multiple 
necks in superplastically deformed materials and calculate the effect of the specimen length 
on the ductility of such materials. 
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Fig. 1. Deformed bar with multiple necks 

 
2. Model 
Consider a plastically deformed round bar under a uniaxial tension (Fig. 1). Assume that 
plastic deformation of the bar is accompanied by the formation of identical multiple necks 
that develop during plastic deformation. We denote the fraction of the specimen length 
occupied by necks as neckf . In considering plastic deformation of the bar, we will use the long 
wavelength approximation [10-13]. This approximation assumes that the stress state and 
strain rate are the same at every cross section of the bar, and the stress state represents 
uniaxial tension σ . This approximation neglects the Bridgman effect [14] associated with the 
formation of hydrostatic tension, in addition to uniaxial tension, in the neck regions. 
However, the comparison of the long wavelength approximation with more refined models 
[10] demonstrated that in the case of high strain rate sensitivity (which is realized in the 
examined situation of superplastic deformation), the relatively simple long-wavelength 
approximation becomes very accurate. Therefore, we will use this approximation in further 
analysis. 
 
3. Calculation of necking development during superplastic deformation 
Within this approximation, we will expand the approach adopted by [10] for the analysis of a 
bar with a single neck to the examined case of multiple necks. To do so, we consider two 
cross sections, A and B, of the bar. The true stresses, Aσ  and Bσ , in these cross sectional 
areas, AS  and BS , are related as 

A A B BS S Fσ σ= = , (1) 
where F  is the magnitude of the tensile force acting on the bar (Fig. 1). We then consider one 
of the neck regions in the bar and suppose that there is an initial nonuniformity. Let us 
introduce the coordinate system ( x , y ) with the origin in the center of the neck region 
(Fig. 1) and denote the length of the neck as 2L  (so that the neck occupies the region 

L x L− ≤ ≤ ). Then the variation of the initial cross sectional area ( )iS x  in the neck region is 
assumed to be [10] 

( ) ( )i i
BS x S f x=  , (2) 

where i
BS  is the area of the cross section in the regions without necking, and /x x L= . 

Following [10], we take the initial imperfection of the cross sectional area in the form 
1 cos( )( ) 1

2
xf x πη +

= −


 , (3) 

where 0η >  is the imperfection amplitude. For simplicity, in considering superplastic 
deformation or superplastic behavior, we focus on the common situation where strain 
hardening is absent. In this case, the true strain σ  does not depend on true strain ε  but 
depends on strain rate ε . We also employ the model strain-rate-dependent constitutive law 
(e.g., [10]) 

( / )m
R Rσ σ ε ε=   , (4) 

A 
B 

x -L L 

SA 
SB 

y 

F -F 

2 A.G. Sheinerman



where Rσ  and Rε  are the reference stress and strain rate, respectively. The true strain ε  is 
related to the engineering strain eε  as 1e eεε = − , which yields: e eεε ε=  . From the condition 
of the volume conservation during plastic deformation, we have: (1 ) i

eS Sε+ = , which can be 
rewritten as iS S e ε−= . Substitution of the latter relation to formulae (1)–(4) gives: 

// 1/( ) B mm m
Be f x e εε ε ε−− −=  . (5) 

From (5), we have: 
' /'/ 1/ '

0 0
' ( ) B

B mm m
Be d f x e d

ε ε εε ε ε−− −=∫ ∫ , (6) 

which yields: 
/1/log[1 ( ) (1 )]B mmm f x e εε −−= − − − . (7) 

 From (7) the stretch λ  (defined as 1e eελ ε= + = ) can be related to the stretch Bλ  at 
cross section B as 

1/ 1/[1 ( ) (1 )]m m m
Bf xλ λ− − −= − − . (8) 

The average stretch of the bar avλ  (defined as the ratio of the lengths of the strained and 
unstrained bar) can be obtained from (8) as 

1 1/ 1/

0
(1 ) [1 ( ) (1 )]m m m

av B neck neck Bf f f x dxλ λ λ− − −= − + − −∫   . (9) 

 To analyze the development of necking with plastic deformation, we calculate the ratio 
∆  of the cross sectional area, AS , at the center of the neck to the cross sectional area, BS , of 
the regions without necking. The ratio ∆  follows as 

m
A B B

m
B A A

S
S

σ ε
σ ε

∆ = = =




. (10) 

To relate the strain rates appearing on the right hand side of formula (10) to the stretch 
Bλ , using (7), we express the strain rate ε  as 

/1/

/1/

( )
1 ( ) (1 )

B

B

mm

Bmm
f x e

f x e

ε

εε ε
−−

−−=
− −



 



. (11) 

Substituting (11) to (10) and using the relations B
B eελ =  and ( 0)A xε ε= = , one 

obtains: 
1/ 1/[1 (1 ) (1 )] (1 )m m m

B Bη λ η λ− −∆ = − − − − . (12) 
 
4. Results and discussion 
Using formulae (9) and (12), we plot the dependencies of ∆  on the average engineering strain 

1av
e avε λ= − . These dependencies are shown in Fig. 2, for 0.01η =  and various values of the 

parameters m  and neckf . Figure 2 demonstrates the known and intuitively evident fact that the 
development of necking (characterized by a decrease of ∆  from 1 (when necking is absent) 
down to zero (when necking leads to failure) occurs faster for the materials with smaller 
values of strain rate sensitivity m .  
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Fig. 2. Dependencies of the ratio ∆  of the cross sectional area at the neck center to that in the 

regions without necks on the engineering strain av
eε  for a plastically deformed round bar, at 

various values of strain rate sensitivity m  and two different values of the fraction neckf  of 
neck regions. The solid lines correspond to the case 0.2neckf =  while the dashed lines depict 

the situation where 1neckf =  
 

Also, in the initial stage of necking development (characterized by 0.9∆ > ), for a 
specified engineering strain av

eε , the parameter ∆  is nearly independent of neckf . At the same 
time, when necking becomes pronounced (that is, ∆  becomes sufficiently small), the 
development of necking occurs at smaller strains for a smaller value of the fraction neckf  of 
necking regions. This effect becomes especially pronounced for high values of strain rate 
sensitivity m . If we assume that in small specimens there is only one neck, which occupies 
the whole length of the bar (that is, 1neckf = ), while in larger ones necks occupy only a small 
part of the bar, we can conclude from the above than in large specimens necking develops 
faster (that is, at smaller average strain) than in small ones.  
 

 
Fig. 3. Dependencies of the engineering strain to failure cε  for a plastically deformed round 

bar on the fraction of neck regions neckf , for various values of strain rate sensitivity m  
 
 Now calculate the engineering strain to failure for the plastically deformed bar that fails 
by necking. The critical value cλ  of the average stretch avλ  at which necking leads to failure 
is obtained from the relation 0∆ =  and formula (12) as [10] 

1/[1 (1 ) ]m m
cλ η −= − − , (13) 

and the corresponding critical value cε  of the average engineering strain av
eε  (that is, strain to 

failure) is given by 1c cε λ= − . The dependencies of the engineering strain to failure cε  on 
the fraction of neck regions neckf  are plotted in Fig. 3, for 0.01η =  and various values of 

0 1 2 3 4 5 6 7 
0 

0.2 

0.4 

0.6 

0.8 

1 

εe 
av 

∆ 

m=0.2 
0.3 

0.35 

0 0.2 0.4 0.6 0.8 1 
0 
1 
2 
3 
4 
5 
6 
7 

fneck 

εc 

m=0.2 

0.3 

0.35 

4 A.G. Sheinerman



strain rate sensitivity m . Figure 3 clearly demonstrates that the strain to failure cε  strongly 
increases with an increase in the fraction neckf  of necking regions, and this effect becomes 
especially strong for large values of strain rate sensitivity typical of superplastic deformation. 
This implies that very high strain to failure observed (e.g., [2,3,15-17]) in short ufg specimens 
with high strain rate sensitivity (characterized by 1neckf = )  may not be observed in similar 
long specimens where the value of neckf  can be small. 
 
5. Conclusions 
Thus, in this paper, we have suggested a model describing the development of individual and 
multiple necks in superplastically deformed materials. In the framework of the model, we 
have considered a round bar under tension, which is superplastically deformed without strain 
hardening. Within the long wavelength approximation, we have calculated the normalized 
cross sectional area in the center of neck regions and strain to failure as functions of strain rate 
sensitivity and volume fraction occupied by necks. We have demonstrated that neck 
development and necking-induced failure speed up with a decrease in strain rate sensitivity 
and/or an increase in the volume fraction occupied by necks. The latter effect (faster neck 
development and a decrease in the strain to failure with an increase of the fraction of sample 
length occupied by necks) is especially pronounced in the case of a high strain rate sensitivity. 
This implies that record values of strain to failure observed (e.g., [2,3,15-17]) in ufg metals 
and alloys in the form of bars with a small length (where the neck occupies the entire 
specimen) can be significantly reduced in large enough specimens where the necking regions 
occupy only a small part of the sample. 
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THERMOMECHANICAL INTERACTIONS DUE TO TIME 

HARMONIC SOURCES IN A TRANSVERSELY ISOTROPIC 
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Abstract. The present research deals with the mathematical modelling of two dimensional 
transversely isotropic magneto thermoelastic initially stressed solid due to time-harmonic 
source with generalized Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform 
has been used to find the solution to the problem. The expressions for the displacement 
components, stress components, and temperature distribution are obtained in the transformed 
domain. The effect of time-harmonic source is depicted graphically on the resulting 
quantities. 
Keywords: transversely isotropic Magneto thermoelastic, mechanical and thermal stresses, 
time-harmonic source 

Nomenclature 

𝛿𝛿𝑖𝑖𝑖𝑖 Kronecker delta, 
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Elastic parameters, 
𝛽𝛽𝑖𝑖𝑖𝑖 Thermal elastic coupling tensor, 
𝑇𝑇 Absolute temperature, 
𝑇𝑇0 Reference temperature, 
𝜑𝜑 conductive temperature, 
𝑡𝑡𝑖𝑖𝑖𝑖 Stress tensors, 
𝑒𝑒𝑖𝑖𝑖𝑖 Strain tensors, 
𝑃𝑃𝑚𝑚𝑖𝑖  Pre stress tensor, 
𝑢𝑢𝑖𝑖 Components of displacement, 
𝜌𝜌 Medium density, 
𝐶𝐶𝐸𝐸 Specific heat, 
𝛼𝛼𝑖𝑖𝑖𝑖 Linear thermal expansion 

coefficient, 

𝐾𝐾𝑖𝑖𝑖𝑖 Thermal conductivity, 
𝜔𝜔  Frequency, 
𝜏𝜏0 Relaxation Time, 
𝛀𝛀  Angular Velocity of the Solid, 
 𝐹𝐹𝑖𝑖 Components of Lorentz force, 
𝑯𝑯𝟎𝟎  Magnetic field intensity vector, 
𝑱𝑱 Current Density Vector, 
𝒖𝒖 Displacement Vector, 

𝜇𝜇0  Magnetic permeability, 
𝜀𝜀0  Electric permeability, 
𝛿𝛿(𝑡𝑡) Dirac’s delta function, 
𝒉𝒉 induced magnetic field vector, 
𝑬𝑬 induced electric field vector, 
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1. Introduction 
A lot of research and attention has been given to deformation and heat flow in a continuum 
using thermoelasticity theories during the past few years. When sudden heat/external force is 
applied in a solid body, it transmits time-harmonic wave by thermal expansion. The change at 
some point in the medium is beneficial to detect the deformed field near mining shocks, 
seismic and volcanic sources, thermal power plants, high-energy particle accelerators, and 
many emerging technologies. The study of the time-harmonic source is one of the broad and 
dynamic areas of continuum dynamics. Therefore, an unbounded rotating elastic medium with 
angular velocity, with rotation and relaxation time, and without energy dissipation in 
generalized thermoelasticity has been studied in this research. 

Marin [1] had proved the Cesaro means of strain and kinetic energies of dipolar bodies 
with finite energy. Marin [2] investigated and solved the initial-boundary value problem 
without recourse either to an energy conservation law or to any boundedness assumptions on 
the thermoelastic coefficients in thermoelastic bodies with voids. Ailawalia et al. [3] had 
studied a rotating generalized thermoelastic medium in the presence of two temperatures 
beneath hydrostatic stress and gravity with different kinds of sources using integral 
transforms. Singh and Yadav [4] solved the transversely isotropic rotating 
magnetothermoelastic medium equations by cubic velocity equation of three plane waves 
without anisotropy, rotation, and thermal and magnetic effects. Banik and Kanoria (2012) 
studied the thermoelastic interaction in an isotropic infinite elastic body with a spherical 
cavity for the TPL(Three-Phase-Lag) heat equation with two-temperature generalized 
thermoelasticity theory and has shown variations between two models: the two-temperature 
GN theory in presence of energy dissipation and two-temperature TPL model and has shown 
the effects of ramping parameters and two-temperature.  

Mahmoud [5] had considered the impact of rotation, relaxation times, magnetic field, 
gravity field, and initial stress on Rayleigh waves and attenuation coefficient in an elastic 
half-space of granular medium and obtained the analytical solution of Rayleigh waves 
velocity by using Lame’s potential techniques. Abd-alla and Alshaikh [6] had discussed the 
influence of magnetic field and rotation on plane waves in transversely isotropic thermoelastic 
medium under the GL theory in presence of two relaxation times to show the presence of 
three quasi plane waves in the medium. Marin et al. [7] has modelled a micro stretch 
thermoelastic body with two temperatures and eliminated divergences among the classical 
elasticity and research. 

Sharma et al. [8] investigated the 2-D deception in transversely isotropic homogeneous 
thermoelastic solids in presence of two temperatures in GN-II theory with an inclined load 
(linear combination of normal load and tangential load). Kumar et al. [9] investigated the 
impact of Hall current in a transversely isotropic magnetothermoelastic in the presence and 
absence of energy dissipation due to the normal force. Kumar et al. [10] studied the conflicts 
caused by thermomechanical sources in a transversely isotropic rotating homogeneous 
thermoelastic medium with a magnetic effect as well as two temperatures and applied to the 
thermoelasticity Green–Naghdi theories with and without energy dissipation using 
thermomechanical sources. Lata et al. [11] studied two temperature and rotation aspect for 
GN-II and GN-III theory of thermoelasticity in a homogeneous transversely isotropic 
magnetothermoelastic medium for the case of the plane wave propagation and reflection. 
Ezzat et al. [12] proposed a mathematical model of electro-thermoelasticity for heat 
conduction with memory-dependent derivative. Kumar et al. [13] analyzed the Rayleigh 
waves in a transversely isotropic homogeneous magnetothermoelastic medium in presence of 
two temperatures, with Hall current and rotation.  

Marin et.al. [14] studied the GN-thermoelastic theory for a dipolar body using mixed 
initial BVP and proved a result of Hölder's-type stability. Lata [15] studied the impact of 
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energy dissipation on plane waves in sandwiched layered thermoelastic medium of uniform 
thickness, with two temperatures, rotation, and Hall current in the context of GN Type-II and 
Type-III theory of thermoelasticity. Ezzat and El-Bary [16] had applied the magneto-
thermoelasticity model to a one-dimensional thermal shock problem of functionally graded 
half-space based on memory-dependent derivative. Kumar et al. [17] investigated the 
deformations in a homogeneous transversely isotropic magneto-Visco thermoelastic medium 
under GN type I and II theories in presence of rotation and two temperatures with 
thermomechanical sources. Despite this several researchers working on a different theory of 
thermoelasticity as Marin [18], Marin [19], Atwa [20], Marin [21], Marin and Baleanu [22], 
Bijarnia and Singh [23], Ezzat et al. [24], Ezzat et al. [25], Ezzat et al. [26], Ezzat and  
El-Bary [27], Ezzat and El-Bary [28], Ezzat et al. [29], Chauthale et al. [30] and Shahani and  
Torki [31].  

In spite of these, not much work has been carried out in thermomechanical interactions 
in transversely isotropic magneto thermoelastic solid with rotation and relaxation time and 
without energy dissipation due to time-harmonic source in generalized LS theories of 
thermoelasticity. Keeping these considerations in mind, analytic expressions for the 
displacement components, stress components, and temperature distribution in two-
dimensional homogeneous, transversely isotropic magneto-thermoelastic solids without 
energy dissipation, with rotation and various frequencies of the time-harmonic source. 
 
2. Basic equations  
Following Zakaria [32], the simplified Maxwell's linear equation of electrodynamics for a 
slowly moving and conducting elastic solid are  
𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐 𝒉𝒉 =  𝑱𝑱 + 𝜀𝜀0

𝜕𝜕𝑬𝑬
𝜕𝜕𝜕𝜕

, (1) 

𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐 𝑬𝑬 = − 𝜇𝜇0
𝜕𝜕𝒉𝒉
𝜕𝜕𝜕𝜕

, (2) 

𝑬𝑬 = − 𝜇𝜇0 �
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+  𝑯𝑯𝟎𝟎�, (3) 

𝑑𝑑𝑑𝑑𝑑𝑑 𝒉𝒉 = 0. (4) 
Maxwell stress components are given by  

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜇𝜇0(𝐻𝐻𝑖𝑖ℎ𝑖𝑖 + 𝐻𝐻𝑖𝑖ℎ𝑖𝑖 − 𝐻𝐻𝑖𝑖ℎ𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖). (5) 
For an anisotropic pre-stressed thermoelastic medium, the constitutive equation is 

given by 
𝑡𝑡𝑖𝑖𝑖𝑖 =  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑚𝑚𝑃𝑃𝑚𝑚𝑖𝑖 −  𝛽𝛽𝑖𝑖𝑖𝑖𝑇𝑇, (6) 
and the equation of motion for a uniformly rotating pre-stressed medium in the rotating frame 
of reference with angular velocity 𝛀𝛀 in the presence of external force is given by 
𝑡𝑡𝑖𝑖𝑖𝑖,𝑖𝑖 +  𝐹𝐹𝑖𝑖 =  𝜌𝜌{�̈�𝒖𝑖𝑖 + (𝛀𝛀 × (𝛀𝛀 × 𝐮𝐮))𝑖𝑖 + (2𝛀𝛀 × �̇�𝒖)𝑖𝑖 }, (7) 
where  𝛀𝛀 =  Ω𝒏𝒏, 𝒏𝒏 is a unit vector representing the direction of the axis of rotation. The term 
𝛀𝛀 × (𝛀𝛀 × 𝐮𝐮) is the additional centripetal acceleration due to the time-varying motion only, 
and the term 2𝛀𝛀 × �̇�𝒖 is the Coriolis acceleration which occurs for a moving frame of 
reference only. The total stress in the half-space is composed of Hooke's mechanical stress 
and Maxwell's stress. The Lorentz force  𝐹𝐹𝑖𝑖 is 
 𝐹𝐹𝑖𝑖 =  𝜇𝜇0(𝑱𝑱 × 𝑯𝑯𝟎𝟎) . (8) 

The Lord-Shulman model of heat conduction equation in the presence of an external 
source of heat 𝑄𝑄 is given by 
𝐾𝐾𝑖𝑖𝑖𝑖𝑇𝑇,𝑖𝑖𝑖𝑖 + 𝜌𝜌�𝑄𝑄 + 𝜏𝜏0�̇�𝑄� =  𝛽𝛽𝑖𝑖𝑖𝑖𝑇𝑇0� �̇�𝑒𝑖𝑖𝑖𝑖 + 𝜏𝜏0ё𝑖𝑖𝑖𝑖� + 𝜌𝜌𝐶𝐶𝐸𝐸��̇�𝑇 + 𝜏𝜏0�̈�𝑇�, (9) 
where      
𝛽𝛽𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖, 

 
(10) 

𝑒𝑒𝑖𝑖𝑖𝑖 =  
1
2
�𝑢𝑢𝑖𝑖,𝑖𝑖 +  𝑢𝑢𝑖𝑖,𝑖𝑖�,     𝑑𝑑, 𝑗𝑗 = 1,2,3, (11) 
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𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖,  𝐾𝐾𝑖𝑖𝑖𝑖 = 𝐾𝐾𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖,𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖,  i is not summed.  
Here  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) are elastic parameters. 

 
3. Formulation and solution of the problem 
We consider a pre-stressed 2-D homogeneous transversely isotropic magneto thermoelastic 
medium, permeated by an initial magnetic field 𝑯𝑯𝟎𝟎 = (0,𝐻𝐻0, 0) acting along 𝑦𝑦-axis. This 
initial magnetic field produces an induced magnetic field 𝒉𝒉 =  (0,ℎ, 0) and induced electric 
field 𝑬𝑬 =  (𝐸𝐸1, 0,  𝐸𝐸3). The rectangular Cartesian co-ordinate system (𝑥𝑥,𝑦𝑦, 𝑧𝑧) having origin on 
the surface (𝑧𝑧 = 0) with 𝑧𝑧-axis pointing vertically into the medium is introduced. The surface 
of the half-space is subjected to a thermomechanical force acting at 𝑧𝑧 = 0. In addition, we 
consider that 
𝛀𝛀 = (0,Ω, 0). (12) 

Following Lata et al. [10] from the generalized Ohm’s law we have 
𝐽𝐽2 = 0 . (13) 

And the density components 𝐽𝐽1and 𝐽𝐽3 are given as 
𝐽𝐽1 = −𝜀𝜀0𝜇𝜇0𝐻𝐻0

𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

, (14) 

𝐽𝐽3  = 𝜀𝜀0𝜇𝜇0𝐻𝐻0
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

. (15) 
In addition, the equations of displacement vector 𝒖𝒖 = (𝑢𝑢, 𝑑𝑑,𝑤𝑤 ) and temperature 

change 𝑇𝑇 for 2-dimensional motion of transversely isotropic thermoelastic solid are: 
𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑧𝑧, 𝑡𝑡), 𝑑𝑑 = 0,𝑤𝑤 = 𝑤𝑤(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) and 𝑇𝑇 = 𝑇𝑇(𝑥𝑥, 𝑧𝑧, 𝑡𝑡). (16) 

Following Slaughter [33] using the appropriate transformation on equations (7) and (9) 
with the aid of equation (16), yields 
𝐶𝐶11

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝐶𝐶13
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕

+ 𝐶𝐶44 �
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

+  𝜕𝜕
2𝑤𝑤

𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕
� − 𝛽𝛽1 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
− 𝜇𝜇0𝐽𝐽3𝐻𝐻0 = 𝜌𝜌 �𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜕𝜕2

− 𝛺𝛺2𝑢𝑢 + 2𝛺𝛺 𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕
�, (17) 

(𝐶𝐶13 + 𝐶𝐶44 )
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕

+ 𝐶𝐶44
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝐶𝐶33 
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

− 𝛽𝛽3 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜇𝜇0𝐽𝐽1𝐻𝐻0 = 𝜌𝜌 �𝜕𝜕

2𝑤𝑤
𝜕𝜕𝜕𝜕2

− 𝛺𝛺2𝑤𝑤 − 2𝛺𝛺 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
�,  (18) 

𝐾𝐾1
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝐾𝐾3
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜌𝜌�𝑄𝑄 +  𝜏𝜏0�̇�𝑄� =  𝜌𝜌𝐶𝐶𝐸𝐸��̇�𝑇 + 𝜏𝜏0�̈�𝑇� + 𝑇𝑇0
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝛽𝛽1 �1 + 𝜏𝜏0

𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+

 𝛽𝛽3 �1 + 𝜏𝜏0
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕
�, 

(19) 

and 
𝑡𝑡11 = 𝐶𝐶11𝑒𝑒11  + 𝐶𝐶13𝑒𝑒13 − 𝛽𝛽1 𝑇𝑇, (20) 
𝑡𝑡33 = 𝐶𝐶13𝑒𝑒11  +  𝐶𝐶33𝑒𝑒33 − 𝛽𝛽3 𝑇𝑇, (21) 
𝑡𝑡13 = 2𝐶𝐶44𝑒𝑒13, (22) 
where 𝐶𝐶11 = 𝐷𝐷11 + 𝑃𝑃11,𝐶𝐶13 = 𝐷𝐷13,𝐶𝐶33 = 𝐷𝐷33 + 𝑃𝑃33,𝐶𝐶44 = 𝐷𝐷44 + 𝑃𝑃11. 
𝛽𝛽1 = (𝐶𝐶11 + 𝐶𝐶12)𝛼𝛼1 + 𝐶𝐶13𝛼𝛼3,  
𝛽𝛽3 = 2𝐶𝐶13𝛼𝛼1 + 𝐶𝐶33𝛼𝛼3,  
where 𝛼𝛼1, 𝛼𝛼3 are linear thermal expansion coefficients. 

We consider that the medium is initially at rest. Therefore, the preliminary and 
symmetry conditions are given by 
𝑢𝑢(𝑥𝑥, 𝑧𝑧, 0) = 0 = �̇�𝑢(𝑥𝑥, 𝑧𝑧, 0), 
 𝑤𝑤(𝑥𝑥, 𝑧𝑧, 0) = 0 = �̇�𝑤(𝑥𝑥, 𝑧𝑧, 0), 
𝑇𝑇(𝑥𝑥, 𝑧𝑧, 0) = 0 = �̇�𝑇(𝑥𝑥, 𝑧𝑧, 0) for 𝑧𝑧 ≥ 0,−∞ < 𝑥𝑥 < ∞, 
𝑢𝑢(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑤𝑤(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑇𝑇(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 0 𝑓𝑓𝑓𝑓𝑐𝑐 𝑡𝑡 > 0 when 𝑧𝑧 → ∞. 

Assuming the time-harmonic behaviour as  
(𝑢𝑢,𝑤𝑤,𝑇𝑇,𝑄𝑄)(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = (𝑢𝑢,𝑤𝑤,𝑇𝑇,𝑄𝑄)(𝑥𝑥, 𝑧𝑧)𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (23) 
where 𝜔𝜔 is the angular frequency. 

To simplify the solution, mention below dimensionless quantities are used: 
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𝑥𝑥′ =  
𝑥𝑥
𝐿𝐿

,      𝑢𝑢′ =  
𝜌𝜌𝑐𝑐12

𝐿𝐿𝛽𝛽1𝑇𝑇0
𝑢𝑢,    𝑡𝑡′ =  

𝑐𝑐1
𝐿𝐿
𝑡𝑡,    𝑤𝑤′ =  

𝜌𝜌𝑐𝑐12

𝐿𝐿𝛽𝛽1𝑇𝑇0
𝑤𝑤, 𝑇𝑇′ =  

𝑇𝑇
𝑇𝑇0

, 𝑡𝑡11′ =  
𝑡𝑡11
𝛽𝛽1𝑇𝑇0

,

𝑡𝑡33′ =  
𝑡𝑡33
𝛽𝛽1𝑇𝑇0

, 𝑡𝑡31′ =  
𝑡𝑡31
𝛽𝛽1𝑇𝑇0

,      𝑧𝑧′ =  
𝑧𝑧
𝐿𝐿

,ℎ′ =
ℎ
𝐻𝐻0

, 𝛺𝛺′ =
𝐿𝐿
𝐶𝐶1
𝛺𝛺 . 

(24) 

Making use of (23) and then using dimensionless variables of eq. (24) in Eqs. (17)-(19), 
after suppressing the primes, yield 
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝛿𝛿4
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕

+ 𝛿𝛿2 �
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

+  𝜕𝜕
2𝑤𝑤

𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕
� − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
= �𝜀𝜀0𝜇𝜇0

2𝐻𝐻02

𝜌𝜌
+ 1� (−𝜔𝜔2𝑢𝑢) − Ω2𝑢𝑢 + 2Ω𝑑𝑑𝜔𝜔𝑤𝑤, (25) 

𝛿𝛿1
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕

+ 𝛿𝛿2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝛿𝛿3
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

− 𝛽𝛽3
𝛽𝛽1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �𝜀𝜀0𝜇𝜇0
2𝐻𝐻02

𝜌𝜌
+ 1� (−𝜔𝜔2𝑤𝑤) − Ω2𝑤𝑤 + 2Ω𝑑𝑑𝜔𝜔𝑢𝑢, (26) 

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

+
𝐾𝐾3
𝐾𝐾1
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

+  𝜌𝜌 �1 + 𝜏𝜏0
𝑐𝑐1
𝐿𝐿
𝑑𝑑𝜔𝜔�𝑄𝑄 = 𝛿𝛿5

𝜕𝜕
𝜕𝜕𝑡𝑡
�1 + 𝜏𝜏0

𝑐𝑐1
𝐿𝐿
𝑑𝑑𝜔𝜔�𝑇𝑇 + 

+𝛿𝛿6𝑑𝑑𝜔𝜔 �1 + 𝜏𝜏0
𝑐𝑐1
𝐿𝐿
𝑑𝑑𝜔𝜔� �𝛽𝛽1

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+  𝛽𝛽3
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕
�, (27) 

where 𝛿𝛿1 =  𝐶𝐶13+𝐶𝐶44
𝐶𝐶11

, 𝛿𝛿2 =  𝐶𝐶44
𝐶𝐶11

, 𝛿𝛿3 =  𝐶𝐶33
𝐶𝐶11

, 𝛿𝛿4 =  𝐶𝐶13
𝐶𝐶11

,   𝛿𝛿5 =  𝜌𝜌𝐶𝐶𝐸𝐸𝐶𝐶1𝐿𝐿
𝐾𝐾1

, 𝛿𝛿6 = −  𝜕𝜕0𝛽𝛽1𝐿𝐿
𝜌𝜌𝐶𝐶1𝐾𝐾1

. 
Apply Fourier transforms defined by 

𝑓𝑓(𝜉𝜉, 𝑧𝑧,𝜔𝜔) = ∫ 𝑓𝑓(𝑥𝑥, 𝑧𝑧,𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥∞
−∞ 𝑑𝑑𝑥𝑥.  (28) 

On Eqs. (25)–(27), we obtain a system of equations 
[−𝜉𝜉2 + 𝛿𝛿2𝐷𝐷2 + 𝛿𝛿7𝜔𝜔2 + Ω2]𝑢𝑢�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) + [𝛿𝛿4𝐷𝐷𝑑𝑑𝜉𝜉 + 𝛿𝛿2𝐷𝐷𝑑𝑑𝜉𝜉 − 2Ω𝑑𝑑𝜔𝜔]𝑤𝑤�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) +
         +(−iξ)𝑇𝑇�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) = 0, (29) 
[𝛿𝛿1𝐷𝐷𝑑𝑑𝜉𝜉 + 2Ω𝑑𝑑𝜔𝜔]𝑢𝑢�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) + [−𝛿𝛿2𝜉𝜉2 + 𝛿𝛿3𝐷𝐷2 + 𝛿𝛿7𝜔𝜔2 + Ω2]𝑤𝑤�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) − 

−𝛽𝛽3
𝛽𝛽1
𝐷𝐷𝑇𝑇�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) = 0, (30) 

[−𝛿𝛿6𝜔𝜔𝛿𝛿8𝛽𝛽1𝜉𝜉]𝑢𝑢�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) + [𝛿𝛿6𝑑𝑑𝜔𝜔𝛿𝛿8𝛽𝛽3𝐷𝐷]𝑤𝑤�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) + 
+ �𝜉𝜉2 − 𝐾𝐾3

𝐾𝐾1
𝐷𝐷2 + 𝛿𝛿5𝛿𝛿8𝑑𝑑𝜔𝜔� 𝑇𝑇�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) = 𝜌𝜌𝛿𝛿8𝑄𝑄�(𝜉𝜉, 𝑧𝑧,𝜔𝜔), (31) 

where 𝛿𝛿7 = 𝜀𝜀0𝜇𝜇02𝐻𝐻02

𝜌𝜌
+ 1, 𝛿𝛿8 = 1 + 𝜏𝜏0

𝐶𝐶1
𝐿𝐿
𝑑𝑑𝜔𝜔. 

Here we are considering that there is no external supply of heat source i.e. by 
taking 𝑄𝑄�(𝜉𝜉, 𝑧𝑧, 𝑠𝑠) = 0,  the non-trivial solution exists if the determinant of the coefficient 
matrix of �𝑢𝑢,� 𝑤𝑤� ,𝑇𝑇�� of (29)-(31) vanishes and the characteristic equation is 
(𝐴𝐴𝐷𝐷6 + 𝐵𝐵𝐷𝐷4 + 𝐶𝐶𝐷𝐷2 + 𝐸𝐸)(𝑢𝑢� ,𝑤𝑤� ,𝑇𝑇�) = 0, (32) 
where 
A = δ2δ3ϑ7 −  ϑ5δ2

𝛽𝛽3
𝛽𝛽1

,  

B = δ3ϑ1ϑ7 + δ2δ3ϑ6 + δ2ϑ7ϑ3 − ϑ5ϑ9𝛿𝛿2 − ϑ8𝛿𝛿1𝑑𝑑𝜉𝜉ϑ7,  

C = δ3ϑ1ϑ6 + ϑ1ϑ3ϑ7 − ϑ1ϑ5ϑ9 + δ2ϑ6ϑ3 + ϑ4ϑ8ϑ9 − ϑ8𝛿𝛿1𝑑𝑑𝜉𝜉ϑ6 − 4Ω2𝜔𝜔2ϑ7 +
ϑ2𝛿𝛿1𝑑𝑑𝜉𝜉ϑ5 − ϑ2ϑ4𝛿𝛿3,  

𝐸𝐸 = ϑ3ϑ1ϑ6 − 4Ω2𝜔𝜔2ϑ6 − ϑ2ϑ4𝜗𝜗3,  

ϑ1 =  −𝜉𝜉2 + δ7𝜔𝜔2 + Ω2,  

ϑ2 = −𝑑𝑑𝜉𝜉,  

ϑ3 = −𝛿𝛿2ξ2 + δ7𝜔𝜔2 + Ω2,  

ϑ4 = −𝛿𝛿6𝛿𝛿8𝜔𝜔𝛽𝛽1𝜉𝜉,  
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ϑ5 = 𝛿𝛿6𝛿𝛿8𝑑𝑑𝜔𝜔𝛽𝛽3,  

ϑ6 =  𝜉𝜉2 + 𝛿𝛿5𝛿𝛿8𝑑𝑑𝜔𝜔,  

ϑ7 = −𝐾𝐾3
𝐾𝐾1

,  

ϑ8 = 𝛿𝛿1𝑑𝑑𝜉𝜉,  

ϑ9 = −β3
β1

.  

The roots of the Eq. (32) are ±𝜆𝜆𝑖𝑖, (𝑗𝑗 =  1, 2, 3), are obtained by using the radiation 
condition 𝑢𝑢� ,𝑤𝑤� ,𝑇𝑇� → 0 𝑎𝑎𝑠𝑠 𝑧𝑧 → ∞ and can be written as 
𝑢𝑢�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) =  ∑ 𝐴𝐴𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕3

𝑖𝑖=1 , (33) 
𝑤𝑤�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) =  ∑ 𝑑𝑑𝑖𝑖𝐴𝐴𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕3

𝑖𝑖=1 , (34) 
𝑇𝑇�(𝜉𝜉, 𝑧𝑧,𝜔𝜔) =  ∑ 𝑐𝑐𝑖𝑖𝐴𝐴𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕3

𝑖𝑖=1 , (35) 
where 𝐴𝐴𝑖𝑖(𝜉𝜉,𝜔𝜔), 𝑗𝑗 = 1, 2, 3 being undetermined constants and 𝑑𝑑𝑖𝑖 and 𝑐𝑐𝑖𝑖 are given by 

𝑑𝑑𝑖𝑖 =
𝛿𝛿2𝜁𝜁7𝜆𝜆𝑗𝑗

4+(𝜗𝜗7𝜗𝜗1+𝛿𝛿2𝜗𝜗6)𝜆𝜆𝑗𝑗
2+𝜗𝜗1𝜗𝜗6−𝜗𝜗4𝜗𝜗2

(𝛿𝛿3ϑ7)𝜆𝜆𝑗𝑗
4+(𝛿𝛿3𝜗𝜗6+𝜗𝜗3𝜗𝜗7−𝜗𝜗5𝜗𝜗9)𝜆𝜆𝑗𝑗

2+𝜗𝜗3𝜗𝜗6
,  

𝑐𝑐𝑖𝑖 =
𝛿𝛿2𝛿𝛿3𝜆𝜆𝑗𝑗

4+(𝛿𝛿2𝜁𝜁3+𝜗𝜗1𝛿𝛿3−𝛿𝛿1𝜗𝜗8𝑖𝑖𝑖𝑖)𝜆𝜆𝑗𝑗
2−4Ω2𝑖𝑖2+𝜗𝜗3𝜗𝜗1

(𝛿𝛿3ϑ7)𝜆𝜆𝑗𝑗
4+(𝛿𝛿3𝜗𝜗6+𝜗𝜗3𝜗𝜗7−𝜗𝜗5𝜗𝜗9)𝜆𝜆𝑗𝑗

2+𝜗𝜗3𝜗𝜗6
.  

 
4. Boundary conditions 
Impulsive line tractions on the surface (z = 0). We consider that the mechanical force is 
applied on the surface (𝑧𝑧 = 0) i.e. 
𝑡𝑡33 =  −𝐹𝐹1𝜓𝜓1(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (36) 
𝑡𝑡31 = −𝐹𝐹2𝜓𝜓2(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (37) 
𝜕𝜕𝑇𝑇
𝜕𝜕𝑧𝑧

+ ℎ𝑇𝑇 = 0 , 
(38) 

where F1, F2 is the magnitude of the force applied on the boundary, 𝜓𝜓1(𝑥𝑥) and 𝜓𝜓2(𝑥𝑥) specify 
the vertical and horizontal traction distribution functions respectively along the x-axis, h is 
heat transfer coefficient and h→ 0 equation (38) corresponds to the insulated boundary and 
h→ ∞, equation (38) corresponds to the isothermal boundary. 

Applying the Fourier transform defined by (28) on the boundary conditions (36)-(38), 
and using the value of 𝑡𝑡33 and 𝑡𝑡31 from equations (21)-(22) and using values of 𝑢𝑢� , 𝑤𝑤�  and 𝑇𝑇�  
from equations (33)-(35) in the transformed equations (36)-(38), we find the solution of the 
problem by using Cramer's rule to obtain the values of 𝐴𝐴𝑖𝑖 and again using these values of 
𝐴𝐴𝑖𝑖 ,j=1,2,3 in equations (33)-(35) and equations (21)-(22) we obtain the components of 
displacement, temperature, and stress, in the transformed domain as 

𝑢𝑢� =
𝐹𝐹1𝜓𝜓�1(𝜉𝜉)

Γ
��Γ1𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕 +
𝐹𝐹2𝜓𝜓�2(𝜉𝜉)

Γ
��Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (39) 

𝑤𝑤� =
𝐹𝐹1𝜓𝜓�1(𝜉𝜉)

Γ
��𝑑𝑑𝑖𝑖Γ1𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕 +
𝐹𝐹2𝜓𝜓�2(𝜉𝜉)

Γ
��𝑑𝑑𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, 
(40) 

𝑇𝑇� =
𝐹𝐹1𝜓𝜓�1(𝜉𝜉)

Γ
��𝑐𝑐𝑖𝑖Γ1𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕 +
𝐹𝐹2𝜓𝜓�2(𝜉𝜉)

Γ
��𝑐𝑐𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, 
(41) 
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𝑡𝑡11� =
𝐹𝐹1𝜓𝜓�1(𝜉𝜉)

Γ
��𝑆𝑆𝑖𝑖Γ1𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕 +
𝐹𝐹2𝜓𝜓�2(𝜉𝜉)

Γ
��𝑆𝑆𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, 
(42) 

𝑡𝑡13� =
𝐹𝐹1𝜓𝜓�1(𝜉𝜉)

Γ
��𝑁𝑁𝑖𝑖Γ1𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕 +
𝐹𝐹2𝜓𝜓�2(𝜉𝜉)

Γ
��𝑁𝑁𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, 
(43) 

𝑡𝑡33� =
𝐹𝐹1𝜓𝜓�1(𝜉𝜉)

Γ
��𝑀𝑀𝑖𝑖Γ1𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕 +
𝐹𝐹2𝜓𝜓�2(𝜉𝜉)

Γ
��𝑀𝑀𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, 
(44) 

where 
𝛤𝛤11 = −𝑁𝑁2𝑅𝑅3 + 𝑅𝑅2𝑁𝑁3, 
𝛤𝛤12 = 𝑁𝑁1𝑅𝑅3 − 𝑅𝑅1𝑁𝑁3, 
𝛤𝛤13 = −𝑁𝑁1𝑅𝑅2 + 𝑅𝑅1𝑁𝑁2, 
𝛤𝛤21 = 𝑀𝑀2𝑅𝑅3 − 𝑅𝑅2𝑀𝑀3, 
𝛤𝛤22 = −𝑀𝑀1𝑅𝑅3 + 𝑅𝑅1𝑀𝑀3, 
𝛤𝛤23 = 𝑀𝑀1𝑅𝑅2 − 𝑅𝑅1𝑀𝑀2, 
𝛤𝛤 = −𝑀𝑀1𝛤𝛤11−𝑀𝑀2𝛤𝛤12−𝑀𝑀3𝛤𝛤13, 
𝑁𝑁𝑖𝑖 =  −𝛿𝛿2𝜆𝜆𝑖𝑖 + 𝑑𝑑𝜉𝜉𝑑𝑑𝑖𝑖 , 

𝑀𝑀𝑖𝑖 =  𝑑𝑑𝜉𝜉 − 𝛿𝛿3𝑑𝑑𝑖𝑖𝜆𝜆𝑖𝑖 −
𝛽𝛽3
𝛽𝛽1
𝑐𝑐𝑖𝑖 , 

𝑅𝑅𝑖𝑖 = �−𝜆𝜆𝑖𝑖 + ℎ�𝑐𝑐𝑖𝑖 , 
𝑆𝑆𝑖𝑖 =  −𝑑𝑑𝜉𝜉 − 𝛿𝛿4𝑑𝑑𝑖𝑖𝜆𝜆𝑖𝑖 − 𝑐𝑐𝑖𝑖.  

Concentrated normal force. We obtain the solution with concentrated normal force on 
the surface (𝑧𝑧 = 0) by taking  
𝜓𝜓1(𝑥𝑥) = 𝛿𝛿(𝑥𝑥),𝜓𝜓2(𝑥𝑥) = 𝛿𝛿(𝑥𝑥). (45) 

Applying Fourier transform defined by Eq. (28) on Eq. (45), we obtain 
𝜓𝜓�1(𝜉𝜉) = 1,𝜓𝜓�2(𝜉𝜉) = 1. (46) 

Using eq. (46) in (39)-(44), the components of displacement, stress, and temperature 
change are obtained.  

Uniformly distributed force. We obtain the solution with uniformly distributed force 
applied on the surface (𝑧𝑧 = 0)for the case of a uniform strip load of non-dimensional width 
2m applied at the origin of coordinate system x = z = 0 by taking 

𝜓𝜓1(𝑥𝑥),𝜓𝜓2(𝑥𝑥) = �1 if |x|  ≤  m
0 if |x|  >  𝑚𝑚 (47) 

The Fourier transforms of 𝜓𝜓1(𝑥𝑥) and 𝜓𝜓2(𝑥𝑥) with respect to the pair (x, ξ ) in the 
dimensionless form after suppressing the primes becomes 
𝜓𝜓�1(𝜉𝜉) =𝜓𝜓�2(𝜉𝜉) = �2 sin (𝑖𝑖𝑚𝑚)

𝑖𝑖
� , 𝜉𝜉 ≠ 0. (48) 

Using (48) in (39)-(44), the components of displacement, stress, and temperature can be 
obtained. 

Linearly distributed force. We obtain the solution with linearly distributed force applied 
on the surface (𝑧𝑧 = 0)having 2 m as the width of the strip load by taking   

{𝜓𝜓1(𝑥𝑥),𝜓𝜓2(𝑥𝑥)} = �1 −
|𝑥𝑥|
𝑚𝑚

 if |x|  ≤  m

0 if |x|  >  𝑚𝑚
 (49) 

by using () and applying the transform defined by (20) on (41), we get 
𝜓𝜓�1(𝜉𝜉) =𝜓𝜓�2(𝜉𝜉) = �2{1−𝑐𝑐𝑐𝑐 𝑠𝑠(𝑖𝑖𝑚𝑚))

𝑖𝑖2𝑚𝑚
� , 𝜉𝜉 ≠ 0 (50) 

by using () and applying the transform defined by (20) on (41), we get 
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𝜓𝜓�1(𝜉𝜉) =𝜓𝜓�2(𝜉𝜉) = �2{1−𝑐𝑐𝑐𝑐 𝑠𝑠(𝑖𝑖𝑚𝑚))
𝑖𝑖2𝑚𝑚

� , 𝜉𝜉 ≠ 0. (50) 
Using (50) in (39)-(44), the components of displacement, stress, and temperature are 

obtained. 
Thermoelastic interactions due to the thermal source. Thermal source is applied at 

surface (𝑧𝑧 = 0), so the boundary conditions become 
𝑡𝑡33 =  0, (51) 
𝑡𝑡31 = 0, (52) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ℎ𝑇𝑇 = 𝐹𝐹3𝜓𝜓1(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (53) 
where, 𝜓𝜓1(𝑥𝑥) specifies the source distribution function along z-axis, 𝐹𝐹3 is the constant 
temperature applied on the boundary surface. If ℎ = 0, Eq. (53) corresponds to temperature 
gradient boundary whereas h → ∞, Eq. (53) corresponds to the temperature input boundary. 
Applying the Fourier transform defined by (28) on the boundary conditions (51)-(53), and 
using the value of 𝑡𝑡33 and 𝑡𝑡31 from Eqs. (21)-(22) and using values of 𝑢𝑢� , 𝑤𝑤�  and 𝑇𝑇�  from 
Eqs. (33)-(35) in the transformed Eqs. (51)-(53), we find the solution of the problem by using 
Cramer's rule to obtain the values of 𝐴𝐴𝑖𝑖 and again using these values of 𝐴𝐴𝑖𝑖 ,j=1,2,3 in 
Eqs. (33)-(35) and Eqs. (21)-(22) we obtain the components of displacement, temperature, 
and stress, in the transformed domain as 

𝑢𝑢� =
𝐹𝐹3𝜓𝜓� 1(𝜉𝜉)

Γ
��Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (54) 

𝑤𝑤� =
𝐹𝐹3𝜓𝜓�1(𝜉𝜉)

Γ
��𝑑𝑑𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (55) 

𝑇𝑇� =
𝐹𝐹3𝜓𝜓�1(𝜉𝜉)

Γ
��𝑐𝑐𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (56) 

𝑡𝑡11� =
𝐹𝐹3𝜓𝜓�1(𝜉𝜉)

Γ
��𝑆𝑆𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (57) 

𝑡𝑡13� =
𝐹𝐹3𝜓𝜓�1(𝜉𝜉)

Γ
��𝑁𝑁𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (58) 

𝑡𝑡33� =
𝐹𝐹3𝜓𝜓�1(𝜉𝜉)

Γ
��𝑀𝑀𝑖𝑖Γ2𝑖𝑖𝑒𝑒−𝜆𝜆𝑗𝑗𝜕𝜕
3

𝑖𝑖=1

� 𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕, (59) 

where 
Γ11 = −𝑁𝑁2𝑅𝑅3 + 𝑅𝑅2𝑁𝑁3, 
Γ12 = 𝑁𝑁1𝑅𝑅3 − 𝑅𝑅1𝑁𝑁3, 
Γ13 = −𝑁𝑁1𝑅𝑅2 + 𝑅𝑅1𝑁𝑁2, 
Γ21 = 𝑀𝑀2𝑅𝑅3 − 𝑅𝑅2𝑀𝑀3, 
Γ22 = −𝑀𝑀1𝑅𝑅3 + 𝑅𝑅1𝑀𝑀3, 
Γ23 = 𝑀𝑀1𝑅𝑅2 − 𝑅𝑅1𝑀𝑀2, 
Γ = −𝑀𝑀1Γ11−𝑀𝑀2Γ12−𝑀𝑀3Γ13, 
𝑁𝑁𝑖𝑖 =  −𝛿𝛿2𝜆𝜆𝑖𝑖 + 𝑑𝑑𝜉𝜉𝑑𝑑𝑖𝑖; j=1,2,3, 
𝑀𝑀𝑖𝑖 =  𝑑𝑑𝜉𝜉 − 𝛿𝛿3𝑑𝑑𝑖𝑖𝜆𝜆𝑖𝑖 −

β3
β1
𝑐𝑐𝑖𝑖; j=1,2,3, 

𝑅𝑅𝑖𝑖 =  �−𝜆𝜆𝑖𝑖 + ℎ�𝑐𝑐𝑖𝑖; j=1,2,3, 
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𝑆𝑆𝑖𝑖 =  −𝑑𝑑𝜉𝜉 − 𝛿𝛿4𝑑𝑑𝑖𝑖𝜆𝜆𝑖𝑖 − 𝑐𝑐𝑖𝑖. 
Concentrated thermal source. We obtained the solution with concentrated normal 

thermal source on the surface (𝑧𝑧 = 0)by taking   
𝜓𝜓1(𝑥𝑥) = 𝛿𝛿(𝑥𝑥). (60) 

Applying Fourier transform defined by Eq. (28) on Eq. (60), we obtain 
𝜓𝜓�1(𝜉𝜉) = 1. (61) 

Using (53) in (54)-(59), the components of displacement, stress, and temperature are 
obtained.   

Uniformly distributed thermal source. We obtained the solution with uniformly 
distributed thermal source applied to the surface (𝑧𝑧 = 0)for the case of a uniform strip load of 
non-dimensional width 2m applied at the origin of coordinate system x = z = 0 by taking 

𝜓𝜓1(𝑥𝑥) = �1 if |x|  ≤  m
0 if |x|  >  𝑚𝑚 (62) 

The Fourier transforms of 𝜓𝜓1(𝑥𝑥) with respect to the pair (x, ξ ) in the dimensionless 
form after suppressing the primes becomes 
𝜓𝜓�1(𝜉𝜉) = �2 sin (𝑖𝑖𝑚𝑚)

𝑖𝑖
� , 𝜉𝜉 ≠ 0. (63) 

Using (55) in (54)-(59), the components of displacement, stress, and temperature are 
obtained. 

Linearly distributed thermal source. We obtained the solution with linearly distributed 
force applied on the surface (𝑧𝑧 = 0)having 2 m as the width of the strip load by taking   

{𝜓𝜓1(𝑥𝑥), } = �1 −
|𝑥𝑥|
𝑚𝑚

 if |x|  ≤  m

0 if |x|  >  𝑚𝑚
 (64) 

by using (24) and applying the transform defined by (28) on (56), we get 
𝜓𝜓�1(𝜉𝜉) == �2{1−𝑐𝑐𝑐𝑐 𝑠𝑠(𝑖𝑖𝑚𝑚))

𝑖𝑖2𝑚𝑚
� , 𝜉𝜉 ≠ 0. (65) 

Using (64) in (54)-(59), the components of displacement, stress, and temperature are 
obtained. 
 
5. Inversion of the transformation 
For obtaining the expressions of displacement component u, normal displacement component 
w, temperature change  𝑇𝑇, stress components 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33  given by Eqs. (39)-(44) and 
(54)-(59) in the physical domain, we invert the expressions using the formula  
𝑓𝑓(𝑥𝑥, 𝑧𝑧,𝜔𝜔) = 1

2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥∞
−∞ 𝑓𝑓(𝜉𝜉, 𝑧𝑧,𝜔𝜔)𝑑𝑑𝜉𝜉 = 1

2𝜋𝜋 ∫ |𝑐𝑐𝑓𝑓𝑠𝑠(𝜉𝜉𝑥𝑥)𝑓𝑓𝑒𝑒 − 𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖(𝜉𝜉𝑥𝑥)𝑓𝑓𝑐𝑐|∞
−∞ 𝑑𝑑𝜉𝜉, (66) 

where 𝑓𝑓𝑐𝑐 is odd and 𝑓𝑓𝑒𝑒 is the even parts of 𝑓𝑓(𝜉𝜉, 𝑧𝑧, 𝑠𝑠) respectively, which is solved numerically 
by using the software MATLAB 
 
6. Results and discussion 
To demonstrate the theoretical results and effect of angular frequency, and relaxation time, the 
physical data for cobalt material, which is transversely isotropic, is taken from Dhaliwal & 
Singh [34] is given as 𝐷𝐷11 = 3.07 × 1011𝑁𝑁𝑚𝑚−2, 𝐷𝐷33 = 3.581 × 1011𝑁𝑁𝑚𝑚−2,  
𝐷𝐷13 = 1.027 × 1010𝑁𝑁𝑚𝑚−2, 𝐷𝐷44 = 1.510 × 1011𝑁𝑁𝑚𝑚−2, 𝛽𝛽1 = 7.04 × 106𝑁𝑁𝑚𝑚−2𝑑𝑑𝑒𝑒𝑑𝑑−1, 
 𝛽𝛽3 = 6.90 × 106𝑁𝑁𝑚𝑚−2𝑑𝑑𝑒𝑒𝑑𝑑−1, 𝜌𝜌 = 8.836 × 103𝐾𝐾𝑑𝑑𝑚𝑚−3, 𝐶𝐶𝐸𝐸 = 4.27 × 102𝑗𝑗𝐾𝐾𝑑𝑑−1𝑑𝑑𝑒𝑒𝑑𝑑−1, 
𝐾𝐾1 = 0.690 × 102𝑊𝑊𝑚𝑚−1𝐾𝐾𝑑𝑑𝑒𝑒𝑑𝑑−1, 𝐾𝐾3 = 0.690 × 102𝑊𝑊𝑚𝑚−1𝐾𝐾−1, T0  =  298 K, 
H0  =  1Jm−1nb−1, ε 0 =  8.838 × 10−12Fm−1, L = 1, Ω =0.5, 𝐹𝐹1 = 1,𝐹𝐹2 = 1, 𝐹𝐹3 = 1, 
𝑃𝑃 = 𝑃𝑃11 = 𝑃𝑃33 = 0.1. 

Using the above values, the displacement component u, normal displacement 
component w, temperature change  𝑇𝑇, stress components 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33 in Eqs. (39)-(44) and 
(54)-(59) are further obtained in the physical domain by using the software MATLAB and 
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have been plotted graphically for transversely isotropic magneto-thermoelastic medium to 
study the effect of frequency of time-harmonic sources.  
Case 1: Mechanical force and concentrated load with time-harmonic source frequency 
and rotation  
Figure 1 to Figure 6 show the variations of the displacement components (u and w), 
temperature 𝑇𝑇 and stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) for a transversely isotropic magneto-
thermoelastic medium with mechanical force and concentrated load and with combined 
effects of relaxation time, rotation, time-harmonic source frequency in generalized 
thermoelasticity without energy dissipation respectively. The displacement component u 
illustrates the same pattern for 𝜔𝜔 = 0.25, 0.5 and 0.75 but having different magnitudes and 
shows the opposite pattern for = 1.0. The displacement component w illustrates the same 
pattern with different magnitude temperature  𝑇𝑇  sharply decreases for the initial range of x for 
all the values of for 𝜔𝜔. Stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) in Fig. 4 to Fig. 6 vary (increase 
or decrease) during the initial range of distance near the loading surface of the time-harmonic 
source and follow a small oscillatory pattern for the rest of the range of distance.  
 

  
Fig. 1. Variations of displacement component 

u with distance x 
Fig. 2. Variations of displacement component 

w with distance x 

  
Fig. 3. Variations of temperature T with 

distance x 
Fig. 4. Variations of stress component t11 with 

distance x 
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Fig. 5. Variations of the stress component 

𝑡𝑡13 with distance x 
Fig. 6. Variations of the stress component 

𝑡𝑡33 with distance x 
 
Case II: Mechanical force and linearly distributed load with time-harmonic source 
frequency, rotation  
Figure 7 to Figure 12 show the variations of the displacement components (u and w), 
temperature 𝑇𝑇 and stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) for a transversely isotropic magneto-
thermoelastic medium with mechanical force and linearly distributed load and with combined 
effects of relaxation time, rotation, time-harmonic source frequency in generalized 
thermoelasticity without energy dissipation respectively. The displacement components (u 
and w) and temperature 𝑇𝑇 illustrate the variation in the initial range of distance and then 
shows the small oscillatory pattern. Stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) in Fig. 10 to Fig. 12 
vary (increase or decrease) during the initial range of distance near the loading surface of the 
time-harmonic source and follow a small oscillatory pattern for the rest of the range of 
distance. A small value of 𝜔𝜔  e shows more stress near the loading surface. 
 

  
Fig. 7. Variations of displacement  

component u with distance x 
Fig. 8. Variations of displacement component 

w with distance x 
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Fig. 9. Variations of temperature T with 

distance x 
Fig. 10. Variations of stress component t11 with 

distance x 

  
Fig. 11. Variations of the stress component 

𝑡𝑡13 with distance x 
Fig. 12. Variations of the stress component 

𝑡𝑡33 with distance x 
 
Case III: Mechanical force and uniformly distributed load with time-harmonic source 
frequency and rotation  
Figure 13 to Figure 18 show the variations of the displacement components (u and w), 
temperature  𝑇𝑇  and stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) for a transversely isotropic magneto-
thermoelastic medium with mechanical force and uniformly distributed load and with 
combined effects of relaxation time, rotation, time-harmonic source in generalized 
thermoelasticity without energy dissipation respectively. The displacement components (u 
and w), temperature 𝑇𝑇 and Stress components  𝑡𝑡13 illustrate the same pattern but having 
different magnitudes with frequency. Stress components ( 𝑡𝑡11 and 𝑡𝑡33) in Fig. 16 to Fig. 18 
vary (increase or decrease) during the initial range of distance near the loading surface of the 
time-harmonic source and follow the small oscillatory pattern for the rest of the range of 
distance. Higher the value of 𝜔𝜔  higher the stress near the loading surface. 
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Fig. 13. Variations of displacement 

component u with distance x 
Fig. 14. variations of displacement 

component w with distance x 

  
Fig. 15. Variations of temperature T with 

distance x 
Fig. 16. Variations of stress component t11 with 

distance x 

  
Fig. 17. Variations of the stress component 

𝑡𝑡13 with distance x 
Fig. 18. Variations of the stress component 

𝑡𝑡33 with distance x 
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Case IV: Thermal source and concentrated load with time-harmonic source frequency 
and rotation  
Figure 19 to Figure 24 show the variations of the displacement components (u and w), 
temperature 𝑇𝑇 and stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) for a transversely isotropic magneto-
thermoelastic medium with thermal source and concentrated load and with combined effects 
of relaxation time, rotation, a time-harmonic source in generalized thermoelasticity without 
energy dissipation respectively. The displacement components (u and w) and Stress 
component 𝑡𝑡13 illustrate the same pattern but having different magnitudes of frequency. 
Temperature 𝑇𝑇  and Stress components ( 𝑡𝑡11, 𝑡𝑡33) show the same behaviour for different 
values of 𝜔𝜔.  
 

  
Fig. 19. Variations of displacement component 

u with distance x 
Fig. 20. Variations of displacement  

component w with distance x 

  
Fig. 21. Variations of temperature T with 

distance x 
Fig. 22. Variations of stress component t11 

with distance x 
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Fig. 23. Variations of the stress component 

𝑡𝑡13 with distance x 
Fig. 24. Variations of the stress component 

𝑡𝑡33 with distance x 
 
Case V: Thermal Source and linearly distributed load with time-harmonic source 
frequency and rotation  
Figure 25 to Figure 30 show the variations of the displacement components (u and w), 
temperature 𝑇𝑇 and stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) for a transversely isotropic magneto-
thermoelastic medium with thermal source and linearly distributed load and with combined 
effects of relaxation time, rotation, time-harmonic source in generalized thermoelasticity 
without energy dissipation respectively. The displacement components (u and w) illustrate the 
same pattern but having different magnitudes with frequency. Temperature 𝑇𝑇 decreases 
during the initial range of distance near the loading surface of the time-harmonic source. 
Stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) in Fig. 28 to Fig. 30 show the different behaviour with 
different frequencies.  
 
 

  
Fig. 25. Variations of displacement component 

u with distance x 
Fig. 26. Variations of displacement  

component w with distance x 
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Fig. 27. Variations of temperature T with 

distance x 
Fig. 28. Variations of stress component t11 

with distance x 

  
Fig. 29. Variations of the stress component 

𝑡𝑡13 with distance x 
Fig. 30. Variations of the stress component 

𝑡𝑡33 with distance x 
 
Case VI: Thermal source and uniformly distributed load with time-harmonic source 
frequency and rotation  
Figure 31 to Figure 36 show the variations of the displacement components (u and w), 
temperature 𝑇𝑇and stress components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) for a transversely isotropic magneto-
thermoelastic medium with thermal source and uniformly distributed load and with combined 
effects of relaxation time, rotation, time-harmonic source in generalized thermoelasticity 
without energy dissipation respectively. The displacement components (u and w) and 
temperature 𝑇𝑇 illustrate the different patterns with all values of frequencies. Stress 
components ( 𝑡𝑡11, 𝑡𝑡13 and 𝑡𝑡33) in Fig. 34 to Fig. 36 show the different patterns with different 
frequencies. Stress component shows the same oscillatory pattern for 𝜔𝜔 =  0.5, 0.75 𝑎𝑎𝑖𝑖𝑑𝑑 1.0 
and the opposite pattern for 𝜔𝜔 = 0.25. 
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Fig. 31. Variations of displacement 

component u with distance x 
Fig. 32. Variations of displacement component 

w with distance x 

  
Fig. 33. Variations of temperature T with 

distance x 
Fig. 34. Variations of stress component t11 

with distance x 

  
Fig. 35. Variations of the stress component 

𝑡𝑡13 with distance x 
Fig. 36. Variations of the stress component 

𝑡𝑡33 with distance x 
 
7. Conclusions 
From the above investigation, it is observed that frequency of time-harmonic source with  
LS-theory plays a key role in the oscillatory behaviour of the physical quantities both near as 
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well as just as far from the source. The physical quantities differ with the change in angular 
frequency. The result gives the inspiration to study magneto-thermoelastic materials as an 
innovative domain of applicable thermoelastic solids. The shape of curves shows the impact 
of different angular frequencies and fixed relaxation time and rotation on the body and fulfills 
the purpose of the study. The outcomes of this research are extremely helpful in the dynamic 
response of time-harmonic sources in transversely isotropic magneto-thermoelastic medium 
with rotation which is beneficial to detect the deformation field such as geothermal 
engineering; advanced aircraft structure design, thermal power plants, composite engineering, 
geology, high-energy particle accelerators and in real life as in geophysics, auditory range, 
geomagnetism, etc. The proposed model in this research is relevant to different problems in 
thermoelasticity and thermodynamics. 
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Abstract. The gradient thermoelasticity problem for a composite rod based on the applied 
one-parameter model is investigated. To find the Cauchy stresses, the Vishik-Lyusternik 
asymptotic approach is used, taking into account the presence of boundary-layer solutions in 
the vicinity of the rods' boundaries and interface. A new dimensionless parameter equal to the 
ratio of the second rod length and the gradient parameter are introduced. Simplified formulas 
are constructed in order to find the distribution of the Cauchy stresses depending on the new 
parameter. After finding the Cauchy stresses distribution, moment stresses, total stresses, 
displacements, and deformations are further calculated. The dependence of the Cauchy stress 
jump on the ratio of the rods' physical characteristics and the scale parameter is investigated. 
The analysis of the results provided is performed. 
Keywords: composite rod, gradient model, thermoelasticity, Cauchy stresses, moment 
stresses, asymptotic approach, boundary layer 

1. Introduction
An interest in studying the stress-strain state (SSS) of composite structures of small sizes is 
associated with the prospects for the development of microelectronics, nanostructures, 
aerospace systems, and highly sensitive equipment. In such structures, especially in coatings, 
the sizes of the studied elements may become comparable with the characteristic sizes of the 
material's microstructure. In addition, large stress concentrations can occur at the interface 
between dissimilar materials, which greatly affects the product strength. In classical 
mechanics, the constitutive equations do not include any scale parameters; therefore, they 
cannot be used in modeling scale effects. At present, gradient elasticity theories are 
commonly used to model the effects observed in ultrathin structures, as well as in 
nanostructured materials, geomaterials, and biomaterials which include length dimension 
parameters in the constitutive relations. 

The gradient elasticity theory is a generalization of the classical theory of elasticity. It 
was formulated in the 60s of the last century in the works of Toupin [1] and Mindlin [2,3]. 
Subsequently, a large number of researchers dealt with the development of the gradient 
elasticity theory [4-27]. The scientific schools of Aifantis [4-9] and Lurie [13-20] made a 
particularly large contribution to the development of gradient mechanics. In the gradient 
elasticity theory, the strain energy density depends not only on the strain but also on the first 
strain gradient. The mathematical formulation of the gradient theory of elasticity in the 
general case is completely determined by the variational Lagrange principle. The equilibrium 
equations of the gradient theory with respect to displacements or stresses have a higher order 
of differential equations compared to the classical theory, and in order to construct a solution, 
it is required to satisfy additional boundary conditions. Note that the practical use of the 
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model [3] raises the question of identifying five additional gradient modules. To overcome 
this difficulty, the applied gradient deformation models were proposed: the three-parameter 
model by D.C.C. Lam [23], the one-parameter models by E.C. Aifantis [7] and  
S.A. Lurie [13]. 

On the basis of the one-parameter model of the gradient elasticity theory, many 
problems have been recently solved, both one-dimensional and two-dimensional. In [10], the 
solutions of the gradient elasticity theory for a rod were obtained, both for static and dynamic 
statements. In [9], the problems of the gradient theory of elasticity for composite bodies are 
considered. The conditions of conjugation at the interface of materials modified in 
comparison with the classical theory are obtained. For the one-dimensional problem, the exact 
analytical solutions are obtained. In [16,17], a refined gradient theory on the bending of scale-
dependent hyperfine rods was constructed. In [13], the equilibrium problem of a two-layer 
coating under the influence of localized normal load in the framework of the plane problem is 
numerically studied. The problem statement is given on the basis of the interfacial layer 
model, which is a one-parameter version of the gradient theory of elasticity. Based on the 
variational formulation, the authors obtained the equilibrium equations, boundary conditions, 
and conjugation conditions. The solution was carried out using the integral Fourier transform 
and its numerical inversion. The dependence of the stress distribution on the layer thickness 
and the gradient parameter of the model are investigated. In [26], based on a three-parameter 
gradient model, the static deformation of a two-layer microplate was studied. It was found 
that the Cauchy stresses break at the boundary of the layers. In [27], the problem of bending a 
microbeam with a partial coating was solved. To study the scale effects, an additional scale 
parameter was introduced - the ratio of the coating thickness to the gradient parameter. The 
effect of a decrease in the scale parameter on changes in the distribution of displacements, 
stresses, and the neutral line was studied. It is found out that gradient effects play an 
important role when the scale parameter is less than unity. 

Starting from the 70s of the last century, gradient theories have begun to be applied to 
problems in the mechanics of coupled fields [12,14,15,18,19,21]. In [12], the formulation of 
the dynamic coupled problem of gradient thermoelasticity was obtained. Further, gradient 
models began to be employed to more accurately estimate the SSS of inhomogeneous 
thermoelastic bodies, including the layered ones made of functionally graded materials 
(FGM). FGM is a composite material manufactured by mixing different material components 
(e.g., ceramic and metal ones) and is characterized by a smooth change of properties along 
with the coordinate [28]. So, in [21], the SSS of a long thick-walled FGM cylinder under the 
influence of thermal and mechanical load is numerically studied. The material characteristics 
of the cylinder vary exponentially in the radial direction. The influence of the inhomogeneity 
parameter and the gradient parameter on the distribution of stresses and displacements is 
studied. In [14], the formulation of the unbound gradient thermoelasticity problem based on 
the model of the interfacial layer for the coating-substrate system is presented under the 
assumption of the one-dimensionality of the original problem. As a result of the numerical 
solution, graphs of the distribution of stresses and strains are built, taking into account the 
influence of both thermomechanical characteristics, and the gradient parameter. 

In this work, we study the SSS of a composite rod under thermomechanical loading 
based on the applied one-parameter model [7]. We have chosen a one-dimensional problem to 
study due to the fact that for such a problem one can obtain simplified analytical solutions that 
can be further used to analyze the stress state of thin coatings. The study begins with finding 
the temperature distribution. Then, on the basis of the Vishik-Lyusternik asymptotic 
approach, simplified analytical expressions for the Cauchy stresses in a dimensionless form 
are obtained. After finding the Cauchy stresses distribution, we calculate moment stresses, 
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total stresses, strains and displacements. A comparative analysis of the results obtained is 
performed. 

 
2. Constitutive relations of gradient mechanics 
In 1968, R.D. Mindlin and N.N. Eshel, put forward a position that the strain energy density is 
a function of not only the strain tensor but also the first strain gradient [3]. For a linear 
isotropic material, the expression for the strain energy density has the form: 

1 , , 2 , , 3 , , 4 , , 5 , ,
1
2 ii jj ij ij ij j ik k ii k kj j ii k jj k ij k ij k ij k kj iw c c c c c= λε ε +µε ε + ε ε + ε ε + ε ε + ε ε + ε ε .      (1)                                                                      

Here λ  and µ  are the Lame parameters, 1c , 2c ,…, 5c  are the additional gradient 

parameters, ( ), ,
1
2ij i j j iu uε = +  is the tensor of small deformations of an elastic body. Note that 

the practical use of this model raises the question of identifying additional modules. 
To overcome this difficulty, B.S. Altan and E.C. Aifantis [7] proposed an applied one-

parameter gradient deformation model based on a simplified form of the strain energy density. 

Putting in (1) 1 2 5 0c c c= = = , 2
3

1
2

c l= λ , 2
4c l= µ , we get: 

2
, , , ,

1 1( )
2 2ii jj ij ij ii k jj k ij k ij kw l= λε ε +µε ε + λε ε +µε ε .                                     (2) 

Here l  is a gradient parameter with a length dimension and associated with sizes of 
microstructural inhomogeneities. 

The constitutive relations for the components of the Cauchy stress tensor ijτ , moment 
stress tensor ijkm , and total stress tensor ijσ  have the form [7]: 

,                                                                                      (3) 

,                                                                        (4) 

.                                          (5) 
The mathematical formulation of the gradient theory of elasticity in the general case is 

completely determined by the variational Lagrange principle. By varying the functional 
compiled in [7], we obtain the equilibrium equation: 

,                                                                                   (6) 
and the natural static boundary conditions on the surface S  bounding the region V  are as 
follows: 

, .                (7)  
Here ,  are the vectors of the given forces in the body volume and on its surface,  

are the components of the unit normal vector to the body surface at the considered point. The 
formulation of the problem is supplemented by the kinematic boundary conditions: i iu u= , 

,
i

i l l
uu n
n

∂
=
∂

. 

In the case of the problem of unbound thermoelasticity, according to [21], we will 
replace  with  in the equation (2), where  is the temperature stress coefficient, 

 is the Kronecker symbol. In addition, the equilibrium equation (6) and the mechanical 
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boundary conditions (7) must be supplemented by the equation of classical thermal 
conductivity: 

                                                                      (8) 

and thermal boundary conditions 
, .                                                                (9) 

Here  is the body surface. 
As an example, we consider the equation of equilibrium, thermal conductivity, and the 

constitutive relations of gradient thermoelasticity for an inhomogeneous rod: 
0′σ = ,                                                                                                           (10) 

( ( ) ) 0k x T ′ ′ = ,                                                                                      (11) 
2l ′′σ = τ − τ ,                                                                                                   (12) 

( ) ( ) ( )E x u x T x′τ = − γ ,                                                                        (13) 
2m l ′= τ .                                                                                                  (14) 
In the formulas (10) - (14), the prime sign denotes the derivative with respect to . 

 
3. Statement of the gradient thermoelasticity problem for a composite rod 
Consider the equilibrium of a composite thermoelastic rod with a length  at the junction at 
the point 0x H= , under the influence of a combined thermo-mechanical load.  One end of the 
rod 0x =  is rigidly fixed and maintained at zero temperature; at the other end x H=  the 
force  acts, and the temperature  is maintained. The Young modulus , the thermal 
conductivity  and the thermal stress coefficient γ  are piecewise continuous functions of the 
coordinate . Because the equilibrium equations in gradient theory have an increased order of 
differential equations compared to the classical theory, then the additional boundary 
conditions are also required. As additional boundary conditions, we take ,  

( ) 0m H = . In addition, according to [14,15], the interface conditions for temperature, heat 
flux, displacements, strains, total stresses, and moment stresses must be satisfied at the 
junction. Further in the formulas, we denote the functions and parameters corresponding to 
the first and second rod by the indices "1" and "2", respectively. To simplify the calculations, 
we assume that the gradient parameter is the same for each rod, i.e. .  

The original aim of the study was to find the distribution of the Cauchy stresses  
along the length of the composite rod. For this, we express the total stresses , moment 
stresses , and displacement gradients  through the Cauchy stresses. Then the 
formulation of the thermoelasticity problem in terms of the Cauchy stresses will take the 
form: 

, ,                                                                 (15) 

,      ,                                                                  (16) 
, ,                                                                                  (17) 
, , ,                                             (18) 

, ,                                              (19) 

,                                (20) 

, .                         (21) 

( ), ,
0ij i j

k T =

1
| 0ST =

2 0|ST T=

1 2S S S= +

x

H

0p 0T E
k

x

(0) 0u′ =

1 2l l l= =
( )xτ

( )xσ
( )m x ( )u x′

2
1 1 0l′ ′′′τ − τ = 2

2 2 0l′ ′′′τ − τ =

1 1( ( ) ) 0k x T ′ ′ = 2 2( ( ) ) 0k x T ′ ′ =

1(0) 0T = 2 0( )T H T=

1(0) 0τ = 2 ( ) 0H′τ = 2
2 2 0( ) ( )H l H p′′τ − τ =

1 0 2 0( ) ( )T H T H= 1 0 1 0 2 0 2 0( ) ( ) ( ) ( )k H T H k H T H′ ′=

1 0 1 0 1 0 2 0 2 0 2 0

1 0 2 0

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

H H T H H H T H
E H E H

τ + γ τ + γ
=

1 0 2 0( ) ( )H H′ ′τ = τ 2 2
1 0 1 0 2 0 2 0( ) ( ) ( ) ( )H l H H l H′′ ′′τ − τ = τ − τ
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Let us write out the dimensionless problem (15)-(21) by introducing the following 
dimensionless parameters and functions: 

x
H

x = , 0
0

Hh
H

= , 1
H

α = , 0 0
0

0

T
E
γβ = , 0

0
0

pP
E

= , 0

0

i
i

TW
E
γ

= , 
0

i
i E

τ
Ω = , 

0

i
i

mM
E H

= , 
0

i
iS

E
σ

= , 

0

i
i

Es
E

= , 
0

i
i

kk
k

= , 
0

i
i

γγ
γ

= , 1, 2i = , 
[ ]0 0,

max ( )
x H

k k x
∈

= , 
[ ]0 0,

max ( )
x H

xγ γ
∈

= , 
[ ]0 0,

max ( )
x H

E E x
∈

= . 

The dimensionless boundary value problem of thermoelasticity (15) - (21) takes the 
form: 

, ,                                                   (22) 

, ,                                                          (23) 

, 2 0(1)W = β ,                                                                              (24) 

, , ,                                              (25) 
, ,                                              (26) 

1 0 1 0 1 0 2 0 2 0 2 0

1 0 2 0

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

h h W h h h W h
s h s h

Ω + γ Ω + γ
= ,                                                (27) 

,   .                                 (28) 
 
4. Solving the thermoelasticity problem for a rod  
The solution of the thermoelasticity problem (22) - (28) begins with finding the temperature 
distribution along the length of the composite rod based on the solution of the classical heat 
conduction problem (23), (24), (26). 

In case when both rods are made of inhomogeneous materials, the solution to the 
problem of thermal conductivity (23), (24), (26) has the form: 

1
1 0

1 0 2

( )( )
( ) (1)

fW
f h f

x
x = β

+
, 1 0 2

2 0
1 0 2

( ) ( )( )
( ) (1)

f h fW
f h f

+ x
x = β

+
, , .   (29) 

In case both rods are made of homogeneous materials, by setting in (29)  and 
, we obtain: 

2
1 0

1 0 2 1

( )
( )

kW
k h k k

x
x = β

+ −
, 1 0 2 1

2 0
1 0 2 1

( )( )
( )

k h k kW
k h k k
x + −

x = β
+ −

.                                  (30)  

After finding the temperature distribution, further, in order to find the Cauchy stresses, 
it is necessary to solve the boundary-value problem (22), (25), (27), (28). The accurate 
analytical solutions were obtained in the work when both rods were made of homogeneous 
materials. These solutions are cumbersome and therefore are not presented here: they are used 
to evaluate the accuracy of the approximate analytical solution. 

The problem (22), (25), (27), (28) contains the differential equations (22) with a small 
parameter in the highest derivative and is singularly perturbed. We obtain the approximate 
analytical solution to the boundary value problem (22), (25), (27), (28) based on the Vishik-
Lyusternik method [29,30]. 

According to the scheme of the Vishik-Lyusternik method, we construct the first 
iterative process. To do this, we present solutions for each of the equations (22) in the form of 
an expansion for the small parameter  in the form: 

,                                    (31) 

2
1 1 0′ ′′′Ω −α Ω = 2

2 2 0′ ′′′Ω −α Ω =

( )1 1( ) 0k W
′′x = ( )2 2( ) 0k W

′′x =

1(0) 0W =

1(0) 0Ω = 2 (1) 0′Ω = 2
2 2 0(1) (1) P′′Ω −α Ω =

1 0 2 0( ) ( )W h W h= 1 0 1 0 2 0 2 0( ) ( ) ( ) ( )k h W h k h W h′ ′=

1 0 2 0( ) ( )h h′ ′Ω = Ω 2 2
1 0 1 0 2 0 2 0( ) ( ) ( ) ( )h h h h′′ ′′Ω −α Ω = Ω −α Ω

1
10

( )
( )

df
k

x η
x =

η∫
0

2
2

( )
( )h

df
k

x η
x =

η∫

1k const=

2k const=

α
(0) (1) 2 (2)

1 1 1 1 1( , ) ( , ) ( ) ( ) ( ) ...G g g gΩ x α ≅ x α = x +α x +α x +
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.                                     (32) 
Substituting the expansions (31), (32) into (22) and performing the splitting by  

powers, we obtain the sequence of boundary value problems: 
(0) (0) (0) (0) (0)
1 2 2 1 0 2 0

(1) (1) (1) (1) (1)
1 2 2 1 0 2 0

( ) 0, ( ) 0, (1) 1, ( ) ( ),

( ) 0, ( ) 0, (1) 0, ( ) ( ),
.................................................................................

g g g g h g h

g g g g h g h

 ′ ′x = x = = =

 ′ ′x = x = = =



                                        (33)                   

Obviously, by solving each of the problems (33), it is impossible to satisfy all the 
boundary and conjugation conditions. It is necessary to build on additional boundary layer 
solutions that should quickly fade away with distance from the border. 

According to the scheme of the Vishik-Lyusternik method, we construct the second 
iterative process. For the first rod, the boundary layers are localized in the vicinity of the 
attachment point  and the interface point  with the second rod. For the second rod, 
the boundary layers are in the vicinity of  and . We introduce the tensile 

coordinates in the vicinity of the boundaries , , , .  

Thus, the expressions for the Cauchy stresses of each rod can be represented as:  

,                              (34) 

,                              (35) 

where ,  

, 

, 

. 

In the expansions (34), (35) we restrict ourselves to only zero approximations. Then 
approximate solutions can be represented as: 

,                                  (36) 

.                                                   (37) 

The functions ,  coincide with the solution of the problem for a 
composite rod obtained on the basis of the classical model of thermoelasticity and have the 
form: 

.                                                                              (38) 

(0) (1) 2 (2)
2 2 2 2 2( , ) ( , ) ( ) ( ) ( ) ...G g g gΩ x α ≅ x α = x +α x +α x +

α

0x = 0hx =

0hx = 1x =

1
x

η =
α

0
2

hx −
η =

α
0

3
h −x

η =
α 4

1x −
η =

α

0
1 1 1 2( , ) ( , ) , ,hG Z Z x −x   Ω x α ≅ x α + α + α   α α   

0
2 2 3 4

1( , ) ( , ) , ,hG Z Z−x x −   Ω x α ≅ x α + α + α  α α  
(0) (1) 2 (2)

1 1 1 1, ...Z z z zx x x x       α = +α +α +       α α α α       
(0) (1) 2 (2)0 0 0 0

2 2 2 2, ...h h h hZ z z zx − x − x − x −       α = +α +α +       α α α α       
(0) (1) 2 (2)0 0 0 0

3 3 3 3, ...h h h hZ z z z−x −x − x − x       α = +α +α +       α α α α       
(0) (1) 2 (2)

4 4 4 4
1 1 1 1, ...Z z z zx − x − x − x −       α = +α +α +       α α α α       

(0) (0) (0) 0
1 1 1 2( , ) ( ) hg z z x −x   Ω x α ≅ x + +   α α   

(0) (0) (0)0
2 2 3 4

1( , ) ( ) hg z z−x x −   Ω x α ≅ x + +   α α  
(0)
1 ( )g x (0)

2 ( )g x

(0) (0)
1 2 0( ) ( )g g Px = x =
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To find the first boundary-layer solution (0)
1 1( )z η , given that

2 2

2 2 2
1

1d d
d dx α η

= , 

4 4

4 4 4
1

1d d
d dx α η

= , we obtain the equation 

,                                                                                             (39) 
with the solution 

.                                                                                     (40) 

Since the boundary-layer solution  must asymptotically tend to zero for  

, we assume  in (40). Therefore, .  

To find the second boundary-layer solution , we have the equation: 

,                                                                                              (41) 
which solution has the form: 

.                                                                          (42) 

As far as the boundary-layer solution  also has to tend asymptotically to zero 

for , we assume in (42) . So, . The expressions for the 
Cauchy stress in the first rod will take the form: 

.                                                          (43) 

To find 3C , we proceed to satisfy the boundary condition on the left end of the rod  

0x = : . From this, we have . Here we take into 

account that when 0x = , only the first boundary-layer solution manifests itself (0)
1z since the 

value 0h  is such that the influence of the second boundary layer solution (0)
2z  can be omitted 

due to the small size of 
0h

e
−
α .  

Then the Cauchy stress in the first rod will take the form: 
0

1 0 5( , ) 1
h

P e C e
x−x

−
α α

 
Ω x α ≅ − + 

 
.                                                                    (44) 

Given the physical meaning, we similarly determine the third and fourth boundary-layer 

solutions in the form , . From the condition  follows the 

relationship between the constants 7C  and 8C  in the form . The expressions for 
the stress in the second rod will take the form: 

.                                                 (45) 

The Unknowns  and  are determined from the boundary conditions (27), (28), 

assuming 
0

1 1
h

e
−
α− ≅  in the calculations.  

(0) (0)
1 1 0z z′ ′′′− =

1 1(0)
1 1 2 3z C C e C eη −η= + +

( )(0)
1 1z η

1η →∞ 1 2 0C C= = (0)
1 3z C e

x
−
α=

( )(0)
2 2z η

(0) (0)
2 2 0z z′ ′′′− =

2 2(0)
2 4 5 6z C C e C eη −η= + +

( )(0)
2 2z η

2η → −∞ 4 6 0C C= =
0

(0)
2 5

h

z C e
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α=

0

1 0 5( , ) 1
h

P e C e
x−x

−
α α

 
Ω x α = − + 
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1 1 1 0 3(0) (0) 0 0g z P CΩ = + = + = 3 0C P= −

0
(0)
3 7

h

z С e
−x
α=

1
(0)
4 8z С e
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α= 2 (1) 0′Ω =

0 1
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С С e
−
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2 0 7( , )
h h

P C e e e
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α α α
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Then the expressions for the dimensionless Cauchy stresses, denoting by 0
0

1 h−
δ =

α
 the 

ratio of the length of the second rod and the gradient parameter α , can be represented as: 

( )
0

02
1 0( , ) 1 1

h

P e e e
x−x

− − δα α
 

Ω x α ≅ − +Κ − 
 

,                                             (46) 

0
0

1

2 0( , )
h

P e e e
−x x−

−δα α
 

Ω x α ≅ −Κ + 
 

,                                              (47) 

where  
( ) ( )

0

0 1 0 2 0 1 0 1 0 2 0 2 0 1 0
2

1 0 2 0 1 0 2 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ( ) ( ))

P s h s h W h s h h s h h
s h s h s h s h e− δ

− + γ − γ
Κ =

+ + −
.                  (48) 

If we put in (46), (47) 0α = , then we obtain the expressions for stresses corresponding 
to the classical thermoelasticity: 1 2 0PΩ = Ω = . 

From the formulas (46), (47) it follows that at the point 0hx =  there is a stress jump. 

Neglecting the magnitude 
0

0

h

P e
−
α  compared with 2K , we get the expression for the stress 

jump:  
1 2 2K∆Ω = Ω −Ω ≅ .                                                                               (49) 

The value of the stress jump, according to (48), (49), is determined by the mechanical 
stress 0P , the temperature 1 0( )W h , and the relation between thermoelastic characteristics and 
the parameter 0δ . From the formula (48) it follows that if a continuous change in the 
thermomechanical characteristics through the junction of the rods is ensured, then there will 
be no Cauchy stress jump. 

If 0 1δ ≤  (the relative length of the second rod is comparable to or less than the value of 
the gradient parameter α ), then scale effects will appear, consisting in the dependence of the 
Cauchy stress jump on the value of the parameter 0δ . When 0 0δ = the Cauchy stress jump is 
minimal; with the increase 0δ  from 0 to 0 1δ   comes the exponential increase of ∆Ω . At 

0 0δ = , the value ∆Ω  for a rod made of homogeneous parts, in the case of mechanical 
loading, is determined by the formula 

2
0

1

1 sP
s

 
∆Ω ≅ − 

 
.                                                                                     (50) 

If the elastic modulus of the first rod is greater than that of the second one, we have the 
following in the dimensionless form: 1 1s = , 2 [0,1)s ∈ . The maximum stress jump, equal to 

0P∆Ω ≅ , will be at 2 0s = . If the elastic modulus of the first rod is less than the second one, 
we have: 2 1s = , 1 [0,1)s ∈ . The absolute value of the maximum stress jump | |∆Ω → +∞  will 
be at 1 0s → . 

At 0 1δ   (the relative length of the second rod is much larger than the gradient 
parameter α ), the exponents 0e−δ  are very small quantities. Then in the expressions (46)-(48) 

one can put  021 1e− δ− ≅ , 0

1

0e e
x−

−δ α ≅ , 02
1 0 2 0 1 0 2 0 1 0 2 0( ) ( ) ( ( ) ( )) ( ) ( )s h s h s h s h e s h s h− δ+ + − ≅ + .  

In this case, the value of the stress jump ∆Ω  is independent of the specific parameter 
value 0δ , and it is determined by the ratio of thermomechanical characteristics. The value ∆Ω  
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for a rod made of homogeneous parts, in the case of mechanical loading, at 0 1δ  , is 
determined by the formula 

1 2
0

1 2

2 s sP
s s
−

∆Ω ≅
+

.                                                                                   (51) 

The absolute value of the maximum stress jump in this case is 0| | 2P∆Ω ≅  and will be 
reached for  1 1s = , 2 0s =  or 2 1s = , 1 0s = . 

After finding the laws of distribution of the dimensionless Cauchy stresses along the 
coordinate x , we further calculate the dimensionless moment stresses 2

i iM ′= α Ω , and the 

dimensionless strains ( )1
i i i i

i

W
s

Ε = Ω + γ , . The total stresses i i iS M ′= Ω − , based on 

boundary conditions (25), (28), are the same and equal  regardless of the 
material and gradient characteristics of the rods. The displacements distributions ,  
by the coordinate x  are found by integrating the expressions for strains , given the 
boundary condition  and the conjugation condition .  
 
5. Computation results  
This section presents the results of calculations on finding the distribution of dimensionless 
Cauchy stresses, moment stresses, total stresses, strains, and coordinate displacements for 
both mechanical and thermal loading. 

Example 1. Consider the case of mechanical loading of a composite rod ( 0β = , 

0 0.1)P = , the parts of which are made of homogeneous materials with the following 
characteristics: 0 5δ = , 1 0.5s = , 2 1s = . The influence of the gradient parameter α  magnitude 
on the accuracy of the calculation of the dimensionless Cauchy stresses by the asymptotic 
formulas (46), (47) is studied. During the calculations, it was found that the error in the 
approximate calculation of the dimensionless Cauchy stresses does not exceed 1% at 

0.02α ≤ .  
 

 
                      a)                                                                        b) 

Fig. 1. Distribution graphs along the coordinate x : a) dimensionless Cauchy stresses;  
b) dimensionless moment stresses under mechanical loading 

 

1, 2i =

1 1 0( ) ( )S S Px = x =

iU 1, 2i =

iΕ

1(0) 0U = 1 0 2 0( ) ( )U h U h=
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                                 а)                                                                     b) 
Fig. 2. Distribution graphs along the coordinate x : a) dimensionless strains; b) dimensionless 

displacements during mechanical loading 
 
Figures 1 and 2 show images of the distribution of the dimensionless Cauchy stresses 

(Fig. 1a), the moment stresses (Fig. 1b), the strains (Fig. 2a), and the displacements (Fig. 2b) 
at 0.01α = . The value 0h  is determined from the expression 0 01h = −δ α . 

From Figure 1a it follows that the Cauchy stresses: 1) near the end face  decay 
exponentially to zero in accordance with the boundary condition ; 2) experience a 
jump at the point 0hx = , which values, according to (51), is determined by the ratio of the 
elastic modulus of the rods. From Figure 1b it follows that the moment stresses equal to zero, 
except for the vicinity of the fixing and conjugation points, and reach a peak at the point of 
contact of the rods.  

Figure 2a depicts the strains and displacements. 
In the case of mechanical loading, we study the dependence of the jump of the Cauchy 

stresses ∆Ω  at the point 0hx = , calculated by the formula (49), on the value of the parameter 

0δ  at 0 0.1P = , 0.01α =  and various ratios of the elastic modulus. Figure 3 presents the results 
of calculations of the dependence of the stress jump on the parameter 0δ  for: 1) , 

2 0.5s =  (Fig. 3а); 2) 1 0.5s = , 2 1s =  (Fig. 3b). In this case, the solid line shows the 
dependence 0( )∆Ω δ , obtained in the course of the exact analytical solution, and the dots – on 
the basis of the formula (49). 

0x =

1(0) 0Ω =

1 1s =
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     а)                                                                 b) 

Fig. 3. Graph of the dependence of the jump in the dimensionless Cauchy stresses on the 
parameter 0δ  under mechanical loading 

 
From Figure 3 it follows that the minimum Cauchy stress jump occurs when 0 1δ 0 , i.e. 

when the length of the second rod is much less than the gradient parameter α . As you 
increase 0δ , the stress jump increases exponentially. Starting from 0 3δ > , i.e. when the length 
of the second rod becomes 3 times greater than the gradient parameter α , ∆Ω  almost reaches 
a stationary value. 

Example 2. Consider the case of thermal loading of a composite rod ( 0 0.1β = , 0 0P = ), 
the parts of which are made of homogeneous materials with the following characteristics: 

0.01α = , 0 8δ = , 1 1s = , 2 1s = , 1 1k = , 2 0.25k = , 1 0.5γ = , 2 1γ = .To find the temperature at 
the point 0h , we use the first formula (30). 

 

     
                        а)                                                                    b) 

Fig. 4. Distribution graphs along the coordinate x : a) dimensionless Cauchy stresses;  
b) dimensionless moment stresses under thermal loading 
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                         а)                                                                    b) 

Fig. 5. Distribution graphs along the coordinate x : a) dimensionless strains; b) dimensionless 
displacements during mechanical loading  

 
Figures 4-5 show images of the distribution of the dimensionless functions: the Cauchy 

stresses (Fig. 4a), the moment stresses (Fig. 4b), the strains(Fig. 5a), and the displacements 
(Fig. 5b). The error in calculating the distribution of the dimensionless functions was less 
than 1%. 

From Figure 4a, it follows that the Cauchy stresses are equal to zero, with the exception 
of the vicinity of the junction of the rods, where a stress jump occurs, due to the difference in 
the coefficients of the thermal stresses of the rods. From Figure 4b it follows that the moment 
stresses are equal to zero, with the exception of the vicinity of the junction of the rods and 
reach a peak at the junction point of the rods.  

The magnitude of the Cauchy stress jump during the thermal way of loading the rod 
made of homogeneous parts is: 

( )
0

1 0 1 2 2 1
2

1 2 1 2

( )
2

( )
W h s s

s s s s e− δ

γ − γ
∆Ω ≅

+ + −
.                                                                   (52) 

For the case of thermal loading, we study the dependence of the Cauchy stress jump 
∆Ω  at a point 0hx =  on the parameter 0δ  at 0 0.1β = , 1 1k = , 2 0.25k = , 1 0.5s = , 2 1s = , 

1 1γ = , 2 0.8γ = , 0.01α = . The value 0h , necessary to find the temperature, is determined 
from the expression 0 01h = −δ α . In Figure 6, the solid line shows the dependence obtained in 
the course of the exact analytical solution, and the dots – on the basis of approximate 
formulas. 
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Fig. 6. Graph of the dependence of the jump in the dimensionless Cauchy stresses on the 

parameter 0δ  under thermal loading 
 

From Figure 6 it follows that in the case of thermal loading, the maximum rate of 
change of the function 0( )∆Ω δ  is observed at 0 1δ < , i.e. when the length of the second rod is 
less than the gradient parameter α . For 0 1δ > , with an increase of 0δ , a smooth change in 
function 0( )∆Ω δ  is observed.  
   
6. Conclusion 
A statement of the gradient thermoelasticity problem for a composite rod based on the one-
parameter Aifantis model is given. After finding the temperature distribution from the 
solution of the classical heat conduction problem, simplified analytical expressions for finding 
the Cauchy stresses are obtained on the basis of the asymptotic Vishik-Lyusternik approach. 
The cases of thermal and mechanical loading of the rod are considered. A new scale 
parameter is introduced, equal to the ratio of the length of the second rod and the gradient 
parameter. After finding the distribution of the Cauchy stresses, moment stresses, total 
stresses, displacements, and deformations are calculated. It was revealed that, within the 
framework of the gradient theory, the deformations are continuous at the point of contact of 
the rods. This fact explains the jump in the Cauchy stresses in the vicinity of the point of the 
rod conjugation. The magnitude of the Cauchy stress jump depends on both the ratio of 
thermomechanical characteristics and the value of the scale parameter. The dependence of the 
Cauchy stress jump on the scale parameter is investigated. It was found out that the stress 
jump function changes most rapidly at values of the scale parameter less than the length of the 
second rod. The moment stresses are continuous, equal to zero, except for the vicinity of the 
fixing and conjugation points, and reach a peak at the rods' conjugation point. The total 
stresses, which are a combination of the Cauchy stresses and the first gradient of the moment 
stresses, are continuous in each rod and equal to the value of the mechanical load at the 
rod's end.  
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Abstract. Here we report on compressive stress-strain behavior, ordinary and burst-like shape 
memory (SM) strain recovery, and associated caloric effects in Cu – 14.02% wt. Al – 4.0% 
wt. Ni single crystals which have multiphase martensitic structure at room temperature. The 
effect of repetitive thermo-mechanical cycling on the recovery of the shape memory 
deformation is investigated. The stress-strain curves of the specimens are smooth in all tests. 
Immediately after quenching, crystals exhibited burst-like strain recovery accompanied by the 
jumping of the whole specimen in each deformation-recovery. After several days from 
quenching, crystals showed weaker jumping which was also reducing with each thermo-
mechanical cycle. The average values of the integral thermal effect remained the same from 
cycle to cycle. Although the starting temperature of burst-like reverse martensitic 
transformation stochastically varied from cycle to cycle, it showed a general tendency to 
decrease with an increasing number of cycles until the burst-like effect disappears completely. 
The heating rate does not significantly affect the position of the DSC peak. Low temperature 
aging of the specimens resulted in the gradual weakening and disappearance of the burst-like 
strain recovery. Thus, thermal treatment and loading regimes should be optimized for high-
cycle applications of Cu-Al-Ni alloys. 
Keywords: shape memory alloys (SMA); strain recovery; martensitic phase transformation; 
differential scanning calorimetry (DSC) 

1. Introduction
High-quality single crystalline shape memory alloys (SMA) outperform conventional 
polycrystalline materials in actuator applications in terms of precise control of deformation 
and long fatigue life [1,2].  

Thermomechanical and shape memory properties of single crystalline SMAs are 
strongly anisotropic. For instance, the recoverable shape memory strain differs considerably 
for different crystallographic directions. Some SMA single crystals, like Ni-Fe-Ga-Co, Cu-
Al-Fe-Mn, and Cu-Al-Ni, also exhibit strong anisotropy of shape memory kinetics [3,4]. For 
certain orientations, these crystals manifest an extraordinarily fast rate of strain recovery. This 
effect is also referred to as "burst-like strain recovery" [3-7]. In contrast to the shape recovery 
in conventional SMAs which occurs slowly over a wide temperature range of about 10 K 
showing relatively low temperature sensitivity, the burst-like strain recovery occurs in a very 
narrow temperature interval less than a few tenths of a degree [5,6]. The burst-like recovery of 
shape memory (SM) strain completes almost instantly and is often accompanied by the 
jumping of the sample. The initial velocity of the sample exceeds up to 30 m/s [3,6]. 
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Actually, the phenomenon of burst-like martensitic transitions has been known for 
many years. Machlin and Cohen [8] were possibly the first to report burst martensitic 
transformations in Fe-Ni and Fe-Ni-C alloys. Later, burst-like martensitic transformations 
were observed in Au-Cd, Ni-Ti, Fe-Ni-C, Pu-Ga alloys [9]. Such transformations occur 
apparently instantaneously in the time interval of an audible click [9]. The duration of the 
burst was estimated by Entwistle [10] to be about 10-4 to 10-3 s. However, direct experimental 
evidence for that is lacking. Most of the authors report that the burst usually stops before the 
transformation is complete. In contrast to that, we observed complete burst-like strain 
recovery in Ni-Fe-Ga-Co [3,6] and Cu-Al-Ni single crystals [11]. The origin of this effect can 
be ascribed to interphase stresses. A more in-depth analysis of the influence of elastic 
interphase stresses on the parameters of martensite–austenite transitions in SMA crystals can 
be found in [11-13].  

In recent decades, Cu-based SMAs have emerged as potential material for a variety of 
applications, such as high damping materials, sensors, and actuators [1]. Although Cu-Al-Ni 
crystals are well-known SMA materials [12,14], some of their properties like burst-like shape 
memory strain recovery require more in-depth investigation. Our present knowledge on the 
effect of burst-like strain recovery is limited only to sporadic observations of the effect in  
Cu-Al-Ni alloy crystals and estimations of the transformation energy [11]. 

Up to now, burst-like shape recovery has been observed in Ni-Fe-Ga-Co, Cu-Al-Ni, and 
Cu-Al-Fe-Mn shape memory alloy crystals [3-6,11], which can restore the original shape 
almost instantaneously in a very narrow temperature range. The burst-like recovery of SM 
strain is often accompanied by the jumping of the sample. It is of interest whether this effect 
is reproducible at multiple cyclic repetitions. We observed a good reproducibility in 
Ni49Fe18Ga27Co6

 crystals, however, multiple cyclic operations were limited by the natural 
fragility of the crystals. In this study, we focus on burst-like SM recovery at cyclic operation 
in Cu-Al-Ni crystals and calorimetric effects associated with strain recovery.  

Picornell et al. [15,16] were probably among the first researchers who reported 
anomalous DSC peaks during the burst-like shape recovery. They observed a sharp 
calorimetric peak during the heating of compressively pre-deformed Cu-Al-Ni single crystals. 
The peak was ascribed to the γ´- β type transformation of the mechanically formed γ´ 
martensite to the high temperature β phase. The γ´ martensitic phase disappeared after the first 
heating run, therefore, in the second cycle, the DSC peak reverted back to its typical form 
corresponding to a β–β' transformation. 

The objective of this article is to investigate new shape memory materials based on  
Cu-Al-Ni single crystals and their treatment for future applications of burst-like strain 
recovery.  

 
2. Materials and Methods 
Cu – 14.02% wt. Al – 4.0% wt. Ni single crystal were pulled from own melt on a seed 
orientated along [001] direction by Stepanov growth technique. This growth technology 
provides high quality and nearly net shape crystals with smooth side surfaces. Cylindrical 
(Ø5×10 mm3, mainly for the mechanical test) and prismatic (1.5×2.5×4.5 mm3 for mechanical 
and calorimetrical experiments) specimens were cut from 5 mm-diameter crystal rods by 
spark erosion. The specimens were annealed at 1233 K for 15 min and quenched in water at 
room temperature. Some experiments were performed on the specimens after additional aging 
at 455K during 4h. The samples were polished and etched in an aqueous solution of HNO3 to 
remove erosion slag and mechanically deformed layers. All specimens were compressed to a 
full shape memory strain which was over 8% along [001] in each experiment. The 
compression was performed at a near room temperature (~290-295 K) using an Instron 1342 
testing machine at a strain rate of 5×10–4 s–1. Transformation temperatures and latent heats of 
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transformations in the undeformed samples after thermal treatment were measured using a 
Mettler Toledo 822е differential scanning calorimeter with 10 K/min rate of cooling/heating. 
A heat flux type differential scanning calorimeter (DSC6300, Seiko Instr.) was used for 
calorimetric measurements of heat flows during the strain recovery in deformed specimens. 
Details of the calorimetric method can be found in [17]. 

The rate of shape recovery was measured by a homemade laser interferometer setup 
with a measurement range of 7 210 10− −−  m/s [18]. When heated to the transformation 
temperature, the deformed specimens underwent SM strain recovery which in some cases was 
accompanied with a shockwave travelling in [001] direction leading to jumping of the whole 
crystal. The jump was registered by a video camera for estimation of initial speed of the 
specimens. More than 60 experiments on compression and SM strain recovery were 
conducted with one specimen in several experimental series. 
 
3. Results and discussion 
According to differential scanning calorimetry (DSC) curves shown in Fig. 1, samples 
quenched at room temperature had both martensitic and austenitic phases. DSC heating and 
cooling diagrams reveal two main peaks with complex features implying the superposition of 
several processes. They can be ascribed to multiphase transformations with characteristic 
(start and finish) temperatures of 245K, 262K, and 281K, 301K at heating and 253K, 248K, 
and 243K, 233K at cooling, respectively. So martensitic and austenitic phases are present in 
the initial specimens at room temperature before their deformation by compression. A small 
difference between the latent heats of the direct and reverse transformations indicates good 
reversibility of the martensitic transformations. The broad asymmetric shape of the DSC 
peaks are probably because of multistage martensitic phase transformations.  

 

 
Fig. 1. DSC curves of Cu-Al-Ni single crystal after quenching near transformation 

temperatures at the first cooling and heating 
 

Figure 2 shows compression (σ–ε) curves for the crystal after quenching in water (a) 
and quenching followed by aging. Both stress-strain curves look relatively smooth and have 
no sharp stress drops similar to those observed in Cu–13.5 (13.6) wt.%Al–4.0wt%Ni [11,16] 
and other crystals with burst-like recovery [3,6,15,19]. The curves show good reproducibility 
after loading-recovery cycling (over 60 cycles). After unloading, the SM strain is about 8%. 

44 L.I. Guzilova, V.I. Nikolaev, P.N. Yakushev, S.I. Stepanov, R.B. Timashov, A.V. Chikiryaka, S.A. Pulnev



Figure 3 shows interferometer data of the shape recovery rate near the temperature of 
phase transformation for the sample heated at a constant rate of 2 K/min. It should be noted 
that the magnitude of the shape recovery rate goes above the upper limit of the instrument 
range and therefore cannot be measured by the laser interferometer. 

 

 
Fig. 2. Stress–strain curves of Cu-Al-Ni single crystalline sample  
under uniaxial compression along [100] at temperature of 293K;  
for the sample after quenched (1) and for quenched and aged (2) 

 

 
Fig. 3. Rate of strain recovery in deformed Cu-Al-Ni crystal versus time  

at heating near the temperature of reverse martensitic transformation  
measured by laser interferometer (heating rate is 2 K/min) 

 
On top of that, burst-like shape recovery is accompanied by jumping of the sample 

(Fig. 4), which complicates the measurements of strain in the specimens. For that reason, we 
employed an alternative approach and estimated the burst like shape recovery rate from the 
initial velocity of the jumping samples. Experimental measurements using a kinetic method 
[5,6] showed that the start velocity can exceed 20-30 m/s, which can serve as a rough 
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indication of shape recovery rate. Indeed, the real strain recovery rate can be much faster than 
that value and possibly can approach the speed of a shock wave in solid.  

 
Fig. 4. Video snapshot showing a jump of a 30 g load as a result of burst-like shape memory 

strain recovery in 1.6g grams Cu-Al-Ni crystal. The initial speed of the crystal is 12 m/s.  
The launcher consists of a guide tube, an SMA crystal (inside the tube), and a heater 
 

Table 1. Jump express test. Jump strength score: 3 is strong, 2 is medium, 1 is weak jump (or 
its absent). Heating rate is about ~45 K/min 
Number of 
test 1 2 3 4 5 6 7 8 9 10 11 12 13 

Days after 
quenching  0 0 1 1 1 1 1 1 1 1 5 5 9 

Temperature 
of furnace (T, 
K) 

343 339 337 342 337 340 337 339 341 347 335 342 331 

Jump strength 
(arb. units) 3 3 3 3 3 3 3 3 3 3 2 3 1 

 
The results of the jump test are shown in Table 1 where jump energy was evaluated 

using a semi-quantitate score from 1 to 3 (1 – the lowest, 3 – the highest). As can be seen 
from the table, there is a general trend that the jump energy and transformation temperature 
decrease with time after quenching. The jumps were not observed at temperatures below 
330K at the heating rate of 45K/min. Instead only slight trembling or sideways falls of the 
specimen without jumping were observed. 

Figure 5a shows a typical DSC peak for the crystal deformed along [001] during the 
shape recovery acquired at 0.1 K/min. The peak appears to be very asymmetrical so the 
maximum of the heat flow practically coincides with the onset of the transformation. It is 
noteworthy that the curve of DSC heat flow versus temperature (Fig. 5b) forms a loop instead 
of a peak. This effect can be explained by rapid heat consumption during the burst-like 
recovery of shape memory deformation which cannot be compensated by the heater. This 
results in the self-cooling of the sample so that the temperature deviates from the linear 
progression and drops down by 0.5°C. The reversal of the temperature trend produces a loop 
on the DSC curve.  
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Fig. 5. DSC measurement of heat flow in quenched Cu-Al-Ni crystal versus time (a) 

and temperature (b) during shape recovery along [001] 
 

 
Fig. 6. DSC curves for undeformed Cu-Al-Ni specimens: 1, 2 – cooling and heating of 

quenched crystal; 3, 4-cooling and heating of quenched and aged crystal.  
DSC peak of deformed crystals after quenching and aging is shown in the inset (5) 
 
Figure 6 shows DSC curves for the Cu-Al-Ni crystal deformed along [001] direction 

after quenching (curve a) and after quenching followed by aging (curve b). Aging is known to 
increase the degree of an order [21]. Also aging increases transformation temperatures by 
about 30-40 K for pristine crystals and ~25-30 K for deformed specimens. It means that at 
room temperature martensitic transformation is almost completed, and the crystal is in the 
austenitic phase. Besides, samples after the thermal treatment were less prone to fast recovery 
of SM strain. These samples exhibited only weak jumps.  

Figure 7a shows DSC curves for the sample compressed along [001] after a different 
number of deformation-recovery cycles. The maximum of the DSC curve shifts to lower 
temperatures with an increasing number of cycles. Thus, aging and thermo-mechanical 
cycling have the opposite effects on the transformation temperature.  
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Fig. 7. DSC curves for Cu-Al-Ni crystal deformed along [001]. 

The shift of transformation temperature at increasing of cycle number (a);  
DSC peaks at a heating rate 1K/min and 17 K/min 

 
It is interesting to note that the reverse transformation temperature for the deformed 

specimen at 1 K/min in cycle 1 and 17 K/min in cycle 2 are the same (Fig. 7b). The effect is 
similar to that we have recently observed in Ni-Fe-Ga-Co single crystals [22] albeit it is 
weaker.  

 
4. Summary 
We investigated shape memory and associated caloric effects in Cu-Al-Ni crystals. The shape 
recovery process shows extremely high sensitivity to temperature and completes almost 
instantly when a critical temperature is reached. DSC study revealed anomalous heat intake 
during the burst-like shape recovery. The DSC peak position does not show any strong 
dependence on the heating rate. In contrast, the DSC peak position exhibits a clear shift to 
lower temperatures with an increasing number of deformation-recovery cycles and time after 
quenching.  

We suggest that the burst-like effect is related to interphase boundary stresses which are 
typical for multiphase crystals. For that reason, the effect is stronger in quenched crystals and 
weaker in aged crystals. Relaxation of interphase boundary stresses results in a weaker burst-
like effect. The mechanism of relaxation requires further investigation.  

Our findings suggest that Cu-Al-Ni crystals and other SMA materials with burst-like 
shape recovery have the potential as new functional materials and can be used in various 
technical applications. However, further research and development aimed at the stabilization 
of the burst-like effect are needed. 
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Abstract. This paper considers positioning algorithms for rotary actuators based on shape 
memory Cu-Al-Ni crystals. The actuator function scheme is provided. An algorithm for 
positioning of the actuator based on an actual rotary angle has been developed. Experimental 
results on the control algorithm and the actuator are presented. The functional characteristics 
of the actuator (rotation speed and positioning accuracy) are considered. 
Keywords: shape memory effect, Cu–Al–Ni single crystals, cyclic rotary actuator, 
positioning algorithms 
 
 
1. Introduction 
Actuators based on shape memory alloys (SMA) are characterized by a high power-to-weight 
ratio and silent operation [1]. These properties make them ideal candidates for applications in 
robotics [2-3]. Typically a Cu-Al-Ni wire, usually shaped into a helical spring, is used as a 
force element in rotary and linear SMA actuators [4-5]. Due to a small diameter and high 
electrical resistance, the SMA wire can be directly heated by passing an electrical current 
through it. Unfortunately, force elements of this type typically have a low power output. An 
alternative approach is to use SMA cylindrical rods as force elements. In this case, the SMA 
force element has to be heated externally by a dedicated heater, but the developed force is 
substantially higher compared to that of a helical shaped force element. For example,  
a 3-mm-diameter SMA rod can develop a force up to 1500 N. In this paper we consider SMA 
actuators with rod-shaped force elements. 

In our previous publications [6-12] we investigated the design of cyclic rotary and linear 
actuators based on the shape memory effect in relation to the properties of Cu-Al-Ni single 
crystals. This publication follows up on our earlier study of the design and control system for 
a cyclic rotary actuator [13] and describes the positioning system of such an actuator with 
rod-shaped force elements. 
 
2. Actuator design 
A detailed description and design of the cyclic rotary actuator used in this study can be found 
in Ref. [13]. Figure 1 shows the actuator scheme. The actuator consists of two Cu–Al–Ni 
force elements each having an individual electric heater (not shown in Fig. 1). The shaft is 
supported by two rolling bearings mounted in a supporting body. The rotation angle of the 
shaft is measured by a rotary transducer which is attached to one end of the shaft by a 
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coupling bushing. One end of each force element is hinged to the actuator body by means of a 
sleeve and a pin. Another end is connected by the sleeve to a lever, which is rigidly attached 
to the output shaft. 
 

 
Fig. 1. Actuator scheme 

 
Force elements are 148 mm in length and have a cylindrical section with a diameter of 3 

mm. Both ends of the force element have an M6 male screw thread. Each force element has a 
dedicated heater consisting of a Ni-Cr alloy wire insulated with silica fiber and wound in coils 
around the force element. Temperatures of the force elements are measured by thermocouples 
placed between the coils of the heating wire. The end of the thermocouple is coated by 
thermal conductive grease in order to get good thermal contact with the force element. 

The main parameters of the actuator are shown in Table 1. 
 
Table 1. Actuator parameters 
 Designation Value Units 
Diameter of force element 𝑑𝑑 3 mm 
Length of undeformed force element  𝐿𝐿 148 mm 
Reversible deformations 𝜀𝜀𝑆𝑆𝑆𝑆  0.08  
Heating element power 𝑃𝑃 135 W 
Operating temperature 𝑇𝑇 60 - 200 ºC 
Type of thermocouple  Chromel-Alumel  
 

In this paper, we focus on an in-depth analysis of actuator performance characteristics 
in the positioning mode. 

 
3. Logic scheme of an actuator control system 
The actuator control system consists of the following elements: a personal computer, an 
Arduino microcontroller, a software for actuator control, a 270W power supply, a 5V DC–DC 
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stabilizer, two k-type thermocouples, two thermocouples signals amplifiers, and two high 
current transistors. 

A functional diagram of the actuator control system is shown in Fig. 2. The controller 
collects the data from the sensors, i.e. the temperature of each force element and the angular 
position of the shaft and sends them to the PC. The control software on the PC analyzes the 
sensor data and input parameters set by a user ("input parameters" on Fig. 2) and adjusts 
heating/cooling accordingly. The output power of the heaters is controlled by pulse-width 
modulation (PWM) of the transistors in the power supply circuit. Also, the software displays 
reading from the sensors and plots the results in real-time ("output parameters" in Fig. 2).  
 

 
Fig. 2. Functional diagram of the actuator control system 

 
4. A control algorithm 
Realization of the control algorithm. The control algorithm was implemented using the 
MatLab software package. The Arduino Uno microcontroller was communicated via a Serial-
USB port using the MatLab Support Package for Arduino Hardware. 

In our prior work [13] we described the control algorithm for an actuator working in a 
cyclic mode. There MatLab script was used to calculate the desired temperature of each force 
element. The power supplied to each of the heaters was adjusted using a proportional-integral 
(PI) controller to achieve that temperature set point.  

In this paper, we present an updated version of that algorithm. The key difference is the 
addition of the position feedback provided by the angular transducer. A proportional (P) 
controller is used to position the actuator shaft at the desired angle. The control diagram is 
shown in Fig. 3. 
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Fig. 3. Angle control diagram 

 
The actuator positioning without a load. We conducted a series of experiments to test 

the actuator control algorithm and analyze the specifics of using shape memory elements in 
actuators. 

The first experiment demonstrates the actuator performance when the shaft rotates from 
0° to 60° and then back to 0°. Figure 4a shows the dependence of the angular position and 
temperature versus time. Figure 4b shows strain-temperature hysteresis loops for both force 
elements. As one can see the dependence of the angle versus time is nonlinear; the fastest 
motion is achieved in the range from 15° to 60° where the rotation speed is approximately 
constant and can be controlled. It is noteworthy that the heating of the first force element 
mirrors the cooling of the second force element and vice versa (Fig. 4a). This effect originates 
from the very logic of the temperature control algorithm. The hysteresis loops of 
thermomechanical behavior of elements almost coincide with each other. The regions of the 
curve in the vicinity of the start and end temperatures of the phase transformations are special 
in the sense that the temperature variation does not produce any significant displacement. 
These regions can be defined as 80°C-120°C and 150°C -160°C for the heating branch, and 
150°C-120°C and 100°C-80°C for the cooling branch. Thus, we can conclude that the optimal 
stroke is about 50° (i.e. from 10° to 60°), which is 77% of maximum stroke. 
 

 
Fig. 4. Cyclic rotation: a) the actuator parameters diagram; b) hysteresis diagrams 

 
The next experiment demonstrates the actuator performance going through the 

following consecutive motions: from 0° to 50°, then a rotation from this position to 30°, then 
from 30° to 27°, and finally from 27° to 26° (Fig. 5 and Fig 6). It can be seen that the P 
controller can achieve the desired angle position for small and large angular displacements. 
The investigation and analysis of the positioning limit will be given in the next works. 
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Fig. 5. Rotation from some angle totarget angle: a) from 0° to 50° b) from 50° to 30° 

 

Fig. 6. Rotation from some angle to the desired angle: a) from 30° to 27° b) from 27° to 26° 
 

In the next experiments we investigated how the actuator control algorithm copes with 
large and small changes of the angular position (Fig. 7). It can be seen that the difference 
between the starting position and the setpoint does have a significant impact on the rotation 
time. Typically the actuator can reach the target position in one or two oscillations.  
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Fig. 7. Rotation from 0° to 10°, 30°, 50° 

 
The conducted experiments yielded the following important conclusions: 

• shape memory elements can be successfully employed in rotary cyclic actuators; 
• precise control of  actuator position  can be achieved by the use of a P controller; 
• the rotation angle difference does significantly impact  the rotation time; 
• the actuator can equally well cope with large and small angular displacements. 

 
5. Conclusion 
The actuator design and functional diagram are provided. An algorithm for positioning the 
actuator based on an actual angular position is designed. Experimental results on the 
performance of the control algorithm and the actuator are presented. The stabilization time is 
the same for large and small angular displacements. The positioning accuracy is better than 
1º. It is sufficient to use P controller for angular position and PI controller for temperature. 
Further research should be aimed at the investigation of the actuator performance under load.  
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Abstract. Under the assumption of structural softening of plastic deformation in metals, a 
solution of the system of equations for the ensemble of dislocations is obtained describing a 
running front for the dislocation density (soliton). Such dislocation charge is able to destroy 
deformation barriers and cause an athermal mechanism of the instability of the low-
temperature plastic deformation.  
Keywords: low-temperature deformation, kinetic instability, dynamic pile-up of dislocations 

 
 

1. Introduction 
Nowadays, the unstable character of plastic deformation is considered as a universal property 
of solid bodies, which is able to manifest itself in a wide range of temperatures [1]. In 
crystalline materials, it is caused by self-consistent collective movement of dislocations under 
the action of external and internal stresses [2,3]. At helium temperatures, the instability of 
plastic deformation (the serrated deformation) has been found in a large number of materials 
and it is typical at very low temperatures[4, 5]. Its character is determined by numerous 
parameters related to both the deformation conditions (deformation rate, temperature) and the 
properties of the material itself (lattice type, grain size, etc.). 

Several hypotheses [6,7] have been proposed to explain the physical nature of the 
serrated deformation. Physically, this phenomenon has much to do with the softening of the 
material. A typical cause of the strength loss is the anomalous damping of dislocations 
(negative friction) as it was first established by Cottrell [8]. This effect is most pronounced in 
alloys, where the dependence of the damping force )(vF  acting on dislocations on their 
velocities v  is depicted by an N-shaped curve at elevated temperatures. At low temperatures, 
this instability 0]<)([ vF  can have a dynamical nature and be due, for example, to the 
dispersion of the elastic moduli at high dislocation velocities [9] or to the thermoplastic 
instability [10,11]. 

In addition to this mechanism of the plastic deformation instability at low temperatures, 
there can be instability associated with a "dry"-friction type of the strength loss of material 
(structural softening). In the last case, the moving dislocations destroy obstacles that impede 
them (e.g., precipitates [7]) and the barrier damping of dislocations is decreased. In the 
framework of this model, in the present paper a theoretical study of wave modes of plastic 
deformation due to softening of metals at low temperatures. 

 
2. Dynamical equations of dislocation ensemble 
Mathematically, the problem of unstable modes of plastic deformation can be formulated 
using a set of nonlinear equations describing the time evolution of the density of continuously 
distributed dislocations. These evolution equations follow from the conservation law of the 
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Burgers vector of a system of dislocations. This vector is conserved during various reactions 
and multiplication of dislocations [9]. The Burgers vector conservation law can be written in 
the form of a differential consistency equation  

0,=// lmkilmik xjet ∂∂+∂α∂  
which relates the tensors of the density ikα  and the flux ikj  of dislocations [9], These tensors 
are expressed in terms of the scalar dislocation density ),( ta rr  as  

,=,= a
ma

a
kj

a
ijmika

a
ki

a
ik vblejbl rrα ∑∑  

where ),( ta rv  is the average velocity of dislocation glide and the index a  enumerates the 
possible directions of the Burgers vector b  of a dislocation relative to the unit vector l  
tangential to the dislocation line. The set of evolution equations for the dislocation density 

),( ta rr  follows from the consistency equation and has the form  

( ),=div aaaa
a G

t
rr+

∂
r∂ v  (1) 

which reduces to the continuity equation, if the local interaction of dislocations is neglected 
0)=( aG . This can be done if the plastic deformation is localized in a narrow slip band and is 

dynamical in character. In this case (further considered here) the equation of motion for 
dislocations, from which the velocity ),( ta rv  can be found, has the form [9]  

( ){ } ( ).,= fext* a
ijjmkmk

a
kjijm

a
k FCble

dt
dvm v−ψσ−σ  (2) 

In the right-hand side of equation (2), the first term is the Peach-Kohler force per unit of 
the dislocation length, with ext

mkσ  being the component of the external stress tensor in the slip 
plane of dislocations; ( )jjmk C ψσ ,f  is the "dry"-friction stress caused by various local 
obstacles, which are distributed in space with density jC  and have stopping-force 

characteristics jψ ; *m  is the effective dislocation mass; and ( )a
iF v  is the dissipative friction 

force. 
Equations (1) and (2) are derived under the assumption that the radius of curvature cR  

of the dislocation lines is much larger than the average spacing r  between dislocations. In this 
approximation, dislocations as a whole can be treated as straight lines, and, when studying the 
evolution of the entire ensemble of dislocations, one can divide this ensemble into smaller 
ensembles, each of which is a system of parallel dislocation lines. In this paper, we will 
investigate the dynamics of one of these ensembles. 

Let us consider an ensemble of dislocations in a slip band of a width rL > . The x  axis 
is taken to be along the slip direction of the given slip system of dislocations. Let the plastic 
flow involve a subsystem of positive edge dislocations )( lb ⊥  characterized by a density 

),(=),( tt rr rr+  with its equilibrium value being equal to 0
0 =),( rr+ tr . Then the plastic flow 

in the chosen slip band is described by the set of equations  
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Dry-friction stress fσ  is usually considered as a fitting parameter. However, in the case 
of structural crystal softening, the quantities jC  and jψ  can be a function of dislocation 
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density r ; therefore, one should generally assume that )(= ff rσσ . 
The set of equations (3) and (4) has a time-independent uniform solution:  

,=,= 00 vvrr  (5) 
where 0v  is determined from the requirement of the right-hand side of equation (3) being 
equal to zero,  
( ) ( ) ,== t0fext0 σrσ−σ bbbvF  (6) 

while the density 0r  is determined from the boundary conditions. 
Let us analyze the stability of the time-independent uniform solution (5) of the set of 

Eqns. (3) and (4) taking into account the above assumptions about )(int rσ  and )(f rσ . 
Linearizing the original equations and introducing dimensionless quantities  

1,),(=),(1,),(=),(
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we arrive at the equations  
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Here, we have also introduced the dimensionless variables 0/= vxx τ′  and τ′ /= tt  and 
the parameters tbvm στ /= 0

* , ( ) t
'
fa σrrσ− /= 00 , and ( ) t

' bvvF σγ /= 00 . For wavelike solutions 
)(exp, xiktun ′−′λ~ , we obtain the dispersion relation  

0,=)()2( 22 kaikik −+γ−−γλ+λ  
from which it follows that the unstable-mode branch is characterized by ω+µλ+ i=  given by  
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Therefore, the solution becomes unstable 0)>=Re( µλ+  in two cases,  
0<γ  (12) 

and  
0.>0,> γa  (13) 

In the case of inequality (12), we have an instability that is associated with negative 
friction 0]<)([ vF ′  in the dislocation dynamics (we will refer to this instability as that of the 
first type), while in the case of inequality (13), an instability (of the second type) occurs 
because the barrier damping of the dislocations in the slip band becomes weaker as the 
dislocation density increases. 

As follows from formula (10), the instabilities corresponding to inequalities (12) and 
(13) occur in the wavenumber range ∞<<0 2k . The fact that the spectrum of unstable 
modes contains zero-wavelength harmonics signifies that the set of equations (3) and (4) has 
no stationary nonhomogeneous solutions in the class of continuous functions. This will not be 
the case if the viscosity of the dislocation "gas" is taken into account. Physically, viscosity 
arises because moving dislocations pass into adjacent slip planes, thereby transferring their 
momentum into those planes. In gases, this is known to be the reason for internal friction 
between layers [12]. 

It can easily be shown that if the right-hand side of equation (3) contains the term xxvη  
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responsible for viscosity (η  is the coefficient of dynamic viscosity), the spectrum of the 
unstable modes will be limited and, therefore, the problem will become regular. In this case, 
expressions (10) and (11) for the branch of unstable modes are redefined by the change in a 
parameter γ  2( kν+γ→γ , where την 2

0
*/= vm  is the dimensionless coefficient of kinematic 

viscosity). 
 

3. Stationary structural softening waves 
Let us consider a model that exhibits instability associated with structural softening 0).>(a  
For the sake of definiteness, we assume that the dissipative damping of the dislocations is 
purely viscous; i.e., BvvF =)( , where B  is the viscous damping constant. In this case, the 
parameter γ  involved in the condition for the instability of plastic deformation is equal to 
unity. We also assume that the dependence of the dry-friction stress on the dislocation density 
has the form 1

f )( −r+σ K~ , where K  is a constant (the Michaelis-Menten law [13]). In our 
problem, this law can be shown to be valid by using the following line of reasoning. 

Let dislocations cut obstacles (e.g., precipitates) when moving through them so that 
these obstacles exhibit less resistance to each subsequent dislocation moving in the same slip 
plane and their stopping-force characteristics jψ  decrease. On the other hand, the 
deformation (cutting) of an obstacle by dislocations leads to an increase in the obstacle's 
surface energy; therefore, the obstacles tend to relax to their initial state with initial stopping-
force characteristic j0ψ . Taking these processes into account, one can write the kinetic 
equation for the variable jψ   

,= 0 rκψ−
τ

ψ−ψ

∂

ψ∂

ψ
j

jjj

t
 (14) 

which, combined with equations (3) and (4), forms a complete set. Here, ψτ  is the relaxation 
time to equilibrium value j0ψ and )( 0 jCκ  is a constant characterizing the interaction between 
the dislocations and stoppers. We assume that the recovery of the configuration of the 
obstacles occurs rather quickly )( τ<<τψ . Therefore, jψ  varies adiabatically and one can put 

0=/ tj ∂ψ∂  in equation (14); from which it follows that )/(1=)( 0 rκτ+ψrψ ψjj . Further, 
putting jψσ ~f , we finally obtain )/(1=)( 0ff rκτ+σrσ ψ , where 0fσ  is the friction stress in 
the absence of softening. It should be noted that the work-softening mechanism considered 
above is not the only possible one for which the density of structural defects jC  is constant. 

With the assumptions formulated above, the original equations take the form  
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From equation (15), the steady-state velocity can easily be determined to be 
Bbv )]//(1[= 0fext0 rκτ+σ−σ ψ . This value can differ significantly from the velocity 

Bbv )/(= 0fext σ−σ  in the absence of the softening effect. For example, if the crystal softening 
is limited by friction stress, we have ext0fexteff = σ<<σ−σσ . In this case, 

)(1/ext0 pBbvv +σ≈<< , where the parameter 1
0 )(= −

ψrκτp  is less than or of order unity. 
We will seek inhomogeneous wavelike solutions of equations (15) and (16) in the class 
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of self-similar solutions by putting )(= ξvv  and )(= ξrr , where ctx −ξ = . Substituting 
these into the original equations, we obtain  

,=)(=)(2

2

v
UvQ

d
dvvRv

∂
∂

−−
ξ

+
ξ∂
∂

η  (17) 
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( ) ( ) .1
)(
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0
0
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−

−+−
+

−−−
vcvcp

vpavvBvQcvmvR  

Equation (17) describes a nonlinear oscillator with a damping force ξ′vvR )( . Therefore, the 
problem is reduced to investigating the motion of a particle in an effective potential well 

)(vU , which has the form of an integral of )(vQ . The function )(vQ  vanishes at singular 
points 0= vv  and cvppavcvv =]))/(11/([1= 00 +−−+ , at which the potential )(vU  has 
extremal values. The maximum of U  is reached at },{min= 0 cvvv , while the minimum is at 

},{max= 0 cvvv . The equilibrium state at cvv = , which arises in the system because of the 
change of variables, is always absolutely unstable, in contrast to the physically reasonable 
state at 0= vv . This means that the solutions of equation (17) that describe finite motion can 
exist only in the vicinity of the minimum of the potential )( 0vUU −  for )(1< 0 avc + . (It is 
easy to verify that 0< vvc  if )).(1< 0 avc +  Possible solutions that describe infinite motion 
must satisfy the condition 0=)( vv ±∞ , which can be the case only if )(1> avc + , i.e., when 
the motion is represented in the ),( ξ′vv  phase plane by a separatrix going out and then 
entering the saddle point ,0)( 0v . 

First, we consider possible solutions of equation (17) that describe finite motion, which 
is a self-oscillation of the variable v . This oscillation will be undamped if the work of the 
damping force is equal to zero in the average, which will be the case if .= 00 vcc ≤  

The maximum wave velocity )=( 0cc  corresponds to small-amplitude oscillations, 

00 |<| vvv − . Stationary waves of a relatively large amplitude propagate with a velocity c , 
which is only slightly less than 0c . In this case, the stationary wavelike solutions of equations 
(15) and (16) correspond to the limit cycle of equation (17) in the ),( ξ′vv  phase plane. The 
wave velocity c is uniquely determined by the wave amplitude, which, in turn, depends on the 
given initial conditions. 

Now, we consider solitary waves in the system described by equations (17) and (18). As 
indicated above, equation (17) describes the motion of a particle of mass η  in potential )(vU  
in the presence of damping force ξ′vvR )( , which depends on the velocity of propagation of the 
solitary wave c . The possible values of c  lie in the interval maxmin << ccc . The lower limit 

)(1= 0min avc +  is determined by the boundary conditions 0=)( vv ±∞ , while the upper limit 
)](1[1= 0max pavc ++  follows from the condition cvc <  , i.e., from the condition for the 

positivity of density r . 
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Fig. 1. The shape of solitary waves in the form of solitons for density ),( txr  and velocity 
),( txv  of dislocations, normalized to 0r  and 0v , respectively 

 
For a given potential )(vU , there is only one value of the velocity c  at which the 

energy loss due to damping in an infinite motion of the particle (corresponding to the motion 
along the separatrix in the phase plane) is strictly equal to zero. A numerical solution of 
equation (17) reveals that, in this case, the motion along a closed trajectory in the phase plane 
corresponds to a soliton-like solution (Fig. 1).  

 
4. Summary 
Thus, the model considered in the article describes the formation of a slip band, in the front of 
which there is a dislocation charge moving at a velocity close to the velocity of dislocations. 
Such dislocation charge is able to destroy dislocation barriers (precipitates, grain boundaries, 
etc.) and cause an athermal mechanism of the instability of low-temperature plastic 
deformation 
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Abstract. The mechanism of localization of low-temperature plastic deformation is 
investigated within the framework of the thermal activation model. The localization 
mechanism is considered as a result of the autowave character of the stationary solution of a 
system of equations that describes both the processes of thermal conductivity and plastic 
deformation. It is established that the stationary solution of the initial problem is given by the 
wave fronts of switching waves of temperature and plastic deformation. It is shown that the 
considered autowave mechanism determines the process of localization of high-temperature 
areas of plastic deformation in the cross-section of the sample in the form of either a neck or 
separate deformation bands.  
Keywords: Deformation localization, thermally activated plastic deformation, low 
temperatures, autowaves 
 
 
1. Introduction 
An important problem of modern materials science is the instability and localization of plastic 
deformation of mono- and polycrystals in the low temperature region [1]. This phenomenon 
consists of the serrated deformation and deformation stratification of crystals into local zones 
of intense shear formation at temperatures of the order of 0.5-50 K , i.e. bands of deformation 
inside an almost undeformed crystal. Localization of deformation was found in many metals. 
However, the nature of this phenomenon remains largely unclear [2,3]. 

Since the localization of deformation is associated with an increase in the plastic flow 
velocity in a certain slip band, this increase is usually explained by a sharp increase either in 
the dislocation density in the localized zone, or in the velocity of dislocations (depending on 
temperature). Physically, this process is related to the excitation of the corresponding wave 
fronts, similar to the appearance of the Luders bands at elevated temperatures [4]. On the 
other hand, there is a point of view that the appearance of the deformation bands at very low 
temperatures is due solely to thermal effects. In this regard, this paper proposes a model for 
the formation of a localized slip band in the framework of the thermoactivation model of 
plastic deformation.  

 
2. Autowave model 
We investigate a model, which is often used to establish a criterion of plastic deformation 
instability at thermal activation sliding of dislocations, for the occurrence of autowave 
solutions [5,6]. Then for thin enough metal samples ( LR << , where R  is the radius of the 
cylindrical sample, L  is the length of the sample) the processes of deformation and thermal 
conductivity (non-uniform along the cylinder axis) can be described by the following system 
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of equations[7,8]  
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x
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t
TC  (1) 

],/[exp=,=)( TkW
t
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B−νεε
∂
ε∂

  (2) 

Here the equation (1) is the thermal conductivity equation, where T  is the temperature 
of the metal sample, κ  is the thermal conductivity coefficient, 0T  is the ambient temperature, 
h  is the heat transfer coefficient, σ  is deforming stress, C  is the heat capacity of the sample, 
which is taken to be a constant value for simplicity as in [5] . 

The thermal activation mode of plastic deformation is characterized by the Eq. (2), 
where ε  is the local rate of plastic deformation in the deformation zones, ε  is the value of 
plastic deformation, W  is the activation energy, ν  is a pre-exponential multiplier, Bk  is the 
Boltzmann constant. 

The system (1), (2) belongs to the class of autowave systems if the right side of the 
Eq. (1)  

)(2]/[exp=)( 0TT
R
hTkWTF B −−−σν  (3) 

has a descending section in a certain temperature interval and the deforming stress σ  must 
intersect the abscissa axis at least in three points [9]. From the condition 0=)(TF  we get the 
dependence ),(= Tσσ  which is characteristic for the stationary case:  

)./(exp)(2= 0 TkWTT
Ru

h
B−σ  (4) 

This dependency is N -like shape (see Fig. 1) under condition 4>/= TkW Bα  [10] and 
this implies that the autowave mode of plastic deformation (for typical values of the 
parameters [5]) is possible only at a sample temperature below < / 4 15 .BT W k K≈  

 

 
 

Fig. 1. Dependency )(= Tσσ  when the parameter = / > 4BW k Tα  
   

The line eσσ =  can intersect the )(Tσ  dependency in different ways. Let us consider 
the case when the intersection occurs at three points (Fig. 1). 

For further analysis, we write the system (1), (2) as a single equation entering a 
dimensionless temperature 0/= TTθ   
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1),(exp=)( −θβ−





θ
α

−µσθf  (6) 

,/= 0CTνµ  ,/2= CRhβ  ./= Cκη  
The graph of the dependency )(θf  at a given external stress level eσσ =  is shown in 

Fig. 2. In this case, the system (5), (6) has three equilibrium states: two stable states 
corresponding to temperatures 1= θθ  and 3= θθ  and unstable one corresponding to 2= θθ .  

 

 
Fig. 2. Dependence of the right side of the heat equation (5) on the normalized temperature 

0= /T Tθ  
   

To find stationary running solutions of the system (5) let us go to the self-similar 
variable ctx −x =  assuming )(= xθθ . Substituting a solution of the assumed type in the 
original system, we obtain  

).(= 2

2

θ+
x
θ

η+
x
θ

− f
d
d

d
dc  (7) 

We choose the following boundary conditions for the variable ),( txθ : ,=,0)( 3θ−∞θ  
.=,0)( 1θ∞θ  

We will study the system (7) on the phase plane ( W,θ ), assuming xθ ddW /= . We have  

),(= θ−−
x

η fcW
d
dW  (8) 

.= W
d
d
x
θ  (9) 

This system has three fixed points on the plane ( W,θ ) ,0)(,0),( 21 θθ  and ,0)( 3θ .  
The point ,0)( 2θ  is the focus, and the singular points ,0)( 1θ  and ,0)( 3θ  are saddle 

points, through which two trajectories pass (Fig. 3). The only stable stationary solution is 
described by a separatrix going from saddle to saddle, which corresponds to a certain value of 
the switching wave speed .c  
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Fig. 3. Phase plane of the variables W−θ   
   

The system (8), (9) can be reduced to the boundary problem 

0,=)(θ−−
θ

η fcW
d
dWW  (10) 

with the boundary conditions 0=)(=)( 31 θθ WW . 
To get analytical results we approximate )(θf  by cubic trinomial 

))()((=)( 321 θ−θθ−θθ−θγ−θf  and, assuming ))((= 31 θ−θθ−θδW , obtain  

).2(
2

= 231 θ−θ+θ
ηγc  (11) 

By integrating the function ))((=/= 31 θ−θθ−θδxθ ddW  we find the profile of the 
wave solution 

,exp1)(=),(
1

0131
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Λ
−

+θ−θ+θθ
ctxCtx  (12) 

where 1
13 )(/8= −θ−θγηΛ  is characteristic width of the wave front, 0C  is an integration 

constant. 
The obtained solution is a temperature wave of heating )(= ctx −θθ  from the state 1θ  

to the state 3θ  running to the right for > 0c  to which the wave of plastic deformation 
softening ε (x-ct) corresponds.  The wave speed sign is determined by the condition (11), i.e. 

0>c  is implemented at 1 3 2> 2θ θ θ+  under appropriate level of deforming stresses .eσ  At 
some critical stress ce σσ = , when the condition 231 2= θθ+θ  holds, the solution is a standing 
wave. 

It should be noted that the original system is invariant with respect to a change of sign 
x . Therefore, the solution of the equation (5) could be looking for the self-similar variable 

ctx +x =  with boundary conditions of the form: ,=,0)( 3θ∞θ  .=,0)( 1θ−∞θ  In this case, the 
general solution of the system takes the form similar to (13), but the corresponding switching 
wave propagates in the opposite direction at the same speed 0>c :  

1

1 3 1 0( , ) = ( ) 1 exp .x ctx t Cθ θ θ θ
−

 +  + − +   Λ  
 (13) 

In physically realistic conditions for the appearance of wave solutions, for example, 
when a slip band with corresponding heating to the temperature 3θ  is formed in cross section 
of a sample, the actual form of the running wave fronts is shown in Fig. 4 and it corresponds 
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to the temperature zone of localization in a certain section of the crystal, which expands with 
the speed .2c   

 

                
 

Fig. 4. Localized heating zone of a sample formed in its cross-section 
   

3. Conclusion  
The original system of equations (1), (2) was considered above under the constant load 
condition )==( consteσσ . In reality, this condition is got on a special machine that 
maintains the tensile speed of a metal sample constant and is described by the equation  

],),(1[=
00

* dxtx
L

G
t

L
ε−ε

∂
σ∂

∫   (14) 

where SKhG /= 0
*  is the effective modulus of elasticity, K  is machine-sample system 

stiffness, 0h  and S  are height and cross-section of the sample, 0ε  is the specified rate of 
plastic deformation. 

Solutions (12), (13) have a small width of the temperature wave fronts and, 
correspondingly, the deformation rate compared to with the sample length ( L<<Λ ). Then 
the average plastic deformation rate over the whole length ( L0, ) can be expressed 
approximately as  

,)]/)(()([)]()([1=)( 130
LlLldxctxctx

L
t rr

L
−θε+θε≈+ε+−εε ∫   (15) 

where the softening zone width rl  moves at the speed dtdlr / . In a stationary case ( 0=c , 

0=)( εε  t ) the width of plastic deformation zone rl  is determined easily from (15):  

.
)()(

)(=
13

10

θε−θε
θε−ε




Llr  (16) 

Let us consider the case when cσ≈σ . In this case, the share of randomly generated 
propagating thermal pulses (formed on the boundary or inside of the material) is small enough 
and does not lead to a noticeable change of the integral in (14). For this reason, no 
macroscopic changes of the load σ  occurs. However, if σ  exceeds cσ  slightly, then the 
softening effect takes place, as the deformation zone is continuously expanded and the value 
of the integral in (14) increases. According to (14) this reduces the load σ  to a stable 
value cσ . 

There may be a situation when this tuning occurs with some delay and then, at cσ≈σ , 
it is possible a damped pulsating mode of the zone of plastic deformation softening and 
changing of the load σ . 
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The transverse plastic zone rl  with elevated temperature, which is formed under these 
conditions, allows multiple characters. Instead of one large plastic deformation zone, there 
may be several smaller zones with the same total "width". The location and number of such 
zones are determined by the initial conditions. 

Thus, since, in general, the width of the plastic deformation zone rl  is the value, which 
is adjusted to the specified conditions of crystal deformation, then the described autowave 
mechanism determines also the process of localization of high-temperature domains of plastic 
deformation in the cross-section of the sample in the form of either a neck or separate 
deformation bands. 
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Abstract. High strength 1565 aluminum alloy was tested within impact velocity range of 250-
750 m/s in two schemes of shock loading: (i) under uniaxial strain conditions and (ii) in high-
velocity penetration. The combination of load regimes allows the different stages of 
multiscale structure formation to be retraced. The intensity of macro-meso momentum 
exchange is found to be responsible for both resistance to spallation and high-velocity 
penetration. The overall impact velocity region is found to be subdivided by three sub-regions 
of different mechanisms of dynamic straining and scales. The strength behavior of material 
differs for different regions of impact velocities. Within impact velocity regions where the 
resistance to penetration increases, the spall strength decreases. The transition from one scale 
level to another is shown to be realized through the excitation of velocity oscillations at the 
mesoscale. 
Keywords: aluminum alloy, spallation, high-velocity penetration, multiscale deformation, 
macro-meso momentum exchange, velocity oscillations 
 
 
1. Introduction 
Mechanics of dynamic deformation and fracture is developed in two approaches. The 
traditional mechanics grounded on the continuum approach deals with the representative 
volume and the concept of "point" for the effective elastic-plastic features inside the 
representative volume so the properties of individual dislocations and other defects are not 
essential. The basic mathematical apparatus for macroscale is the traditional apparatus of 
continuum elasticity, the theory of plasticity and creep. Various continuum approaches are 
being considered to address these issues, some of which are discussed in publications of 
Makarov [1,2], Baer and Trott [3], Briant [4 ], and Nesterenko [5]. As for the dynamic 
deformation and fracture, recent monograph of Kanel [6] can be considered as a total for this 
direction.  

Further development of the mechanics of deformed solid supposes the incorporating of 
multiscale mechanisms of deformation and fracture. A critical issues of this study: (i) direct 
transition from atom-dislocation scale to macroscale is impossible [7,8]; (ii) microstructural 
investigations, even extremely of high scientific level, reflect the state of the structure in post-
shocked specimens, which does not coincide with its state during the straining [9]. The 
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concept of mesoscale has been suggested in 80-th in two scientific schools simultaneously but 
of different approaches. Tomsk's school supposes the formation of mesostructure in form of 
synergetic transition. As Makarov [1,2] points out, the shocked system evolves under loading 
so that its microstructure is capable of self-organizing into definite deformation  
regions – mesoparticles. The scientific school of Saint-Petersburg (Phys-Tech. Institute of 
A.F. Ioffe) proceeds from the physical mechanisms of mesostructure formation, specifically, 
as collectivization of polarized dislocation structure [10]. 

The first problem herein is how to describe a transition from one scale to another. Hard 
coupling between dynamic variables at the macroscale and atom-dislocation scale doesn’t 
work. Specifically, well-known Eshby's formula [11] 

1 jk
ik ik ijl

l

e
b x

e
ρ ρ ρ+ − ∂

∆ ≡ − = −
∂

,                                 

which links a crystal curvature (macroscopic scale) and density of dislocations (microscale) 
can be used only for perfect crystals. Here ikρ+  and ikρ−  are the densities of positive and 
negative dislocations, b  is the value of Burgers-vector, jke  is the component of deformation.      

Adequate description of high-strain-rate processes is thought to be a combination of 
deterministic and statistical approaches. This means that instead of hard coupling, the sought 
transition must incorporate statistical variables which could provide a flexible linkage 
between neighbor scales.  

According to another Saint-Petersburg's school, the shock-induced meso-structures are 
speculated to be nucleated in the form of short-living (150-200 ns) single-sign dislocation 
groups which in their scale belong to mesoscale-1 [12,13]. In turn, the process of nucleation 
and propagation of dislocation groups results in particle velocity fluctuations which are 
registered in the form of particle velocity distribution. 

In parallel, the well-known scientific school of Sandia Laboratory (USA) performed a 
series of shock-wave experiments under uniaxial strain conditions with line-VISAR 
registration. These experiments reveal the large-scale velocity fluctuations at the mesoscale-2 
(50-500 µm) for tantalum [14] and boron ceramics [15,16]. Specifically, these experiments 
reveal a direct coupling of the particle velocity distribution with the mechanism of spallation. 
Two-scale simulation of shock-wave propagation with taking into account the particle 
velocity distribution at the mesoscale has been conducted in [17,18]. The significant result of 
the simulation is a discovery of threshold particle velocity at which the material transits into a 
structure unstable state whilst the mechanism of dynamic deformation changes from uniform 
to turbulent.  

As a rule, the investigations both theoretical and experimental, devoted to multiscale 
dynamic deformation deal with the shock-wave propagation initiated by loading under 
uniaxial strain conditions, which, however, cannot reveal the full picture of the dynamic 
deformation process. In contrast, the presented paper is devoted to studying the mesostructure 
formation in combined experiments. A critical step in having an efficient picture of multiscale 
processes is the parallel tests in two schemes of shock loading. The first scheme is the test 
under uniaxial strain conditions and the second scheme is the high-velocity penetration of 
elongated rigid rod. In the second scheme of shock tests, the impactor faces two mechanisms 
of resistance: (i) forehead resistance of plane nose of impactor and (ii) friction resistance of 
the lateral region of the rod. In shock tests under uniaxial strain condition, the target suffers 
only forehead resistance. A comparison of results in both schemes allows the role of macro-
meso momentum exchange in multiscale deformation and fracture to be revealed.  
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2. Experimental technique 
Shock tests under uniaxial strain conditions were conducted with a one-stage light gas gun of 
37 mm barrel diameter. Plane targets were the discs of 52 mm in diameter and 7 mm thick. 
Data on dynamic strength of the material, including dynamic yield limit, spall strength, and 
threshold of structural instability are inferred from the temporal profiles of the free surface 
velocity, ufs(t), which are registered with the velocity interferometer. In Figure 1 the 
qualitative pattern for three random positions of wavefront in the heterogeneous medium is 
presented. The dotted lines correspond to the mean shock front position whereas meander 
lines present the random positions of separate pieces of the shock front. In this situation, the 
shock wave can be considered as a superposition of three modes of motion: (i) mode-1 is the 
mean motion of plane shock front, (ii) mode-2 is the fluctuative motions of separate pieces of 
mesoscale-1 relatively averaged motion of mesoscale-2 and (iii) mode-3 is the fluctuative 
motions of separate pieces of mesoscale-2 relatively mean position of the shock front.   
 

 
(1)    Dms1 < Dms2                              (2)    Dms1 > Dms2           (3)   Dms1 = Dms2 

Fig. 1. Qualitative pattern of velocity-space configurations of shock front for different 
relations between velocity dispersions at mesoscale-1 and mesoscale-2 

 
The random motions of shock front pieces are quantitatively characterized by the 

velocity variance D (square root of the particle velocity dispersion). The interference 
technique allows both the mean particle velocity, ufs, and particle velocity variance, Dms1, to 
be registered in real-time [19,20]. Typical free surface velocity profile ufs(t) and particle 
velocity variance profile D(t) for 1565 aluminum alloy are presented in Fig. 2. The free 
surface velocity profile characterizes a temporal history of mean particle velocity of 
dynamically deformed medium whereas the velocity variance Dms1(t), is a quantitative 
characteristic of scattering the particle velocity at the mesoscale. 

For the steady shock waves, the particle velocity variance is maximum in the middle of 
the plastic front and decreases to zero to the top of the front. The measured with the 
interference technique value of the velocity variance characterizes an intensity of relaxation 
processes at the mesoscale-1. This means that to the top of the plastic front the relaxation 
processes at the mesoscale-1 are completed and transition to mesoscale-2 occurs.  
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Fig. 2. Free surface velocity profile, ufs(t), and velocity variance profile, D(t), at the impact 

velocity of 431 m/s 
 

One of the important characteristics of multiscale dynamic deformation is the defect of 
particle velocity. It is determined in tests under uniaxial strain conditions as a difference 
between the velocity of the impactor and free surface velocity at the plateau of compressive 
pulse, max( )def imp fsu U U∆ = −  (Fig. 2). This characteristic provides the quantitative data on 
momentum exchange between macroscale and mesoscale.  

The second dynamic characteristic which reflects a transition of material into a 
structure-unstable state is the threshold of structural instability Uin. It characterizes the 
beginning of shock-induced structural heterogenization of material. This characteristic can be 
obtained upon the series of the free surface velocity profiles registered under uniaxial strain 
conditions over the impact velocities range. The value of the free surface velocity 

( )fs impU f U= at which the velocity defect begins to increase drastically is defined as the 
threshold of structural instability, Uins. This characteristic has previously been introduced in 
[21-24]. It has been shown that material changes its structural state at the impact velocities 
which are higher than the threshold of structural instability. The threshold strain rate for such 
a kind of transition is determined for copper, steels, beryllium, aluminum alloys, and other 
materials.  

Lastly, the third dynamic strength characteristic determined in tests under uniaxial strain 
conditions is the spall strength σsp which is often determined in the form of the so-called  
pull-back velocity, W at the back front of the compression pulse [25]. It should be noticed on 
the principal specifics of our experiments under uniaxial strain conditions. The laser beam 

0

5

10

15

20

25

30

35

40

45

50

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600

ve
lo

ci
ty

 v
ar

ia
nc

e,
 D

m
s1

 , 
m

/s
 

fr
ee

 su
rf

ac
e 

ve
lo

ci
ty

 U
 fs

,  
m

/s
 

time, ns 

Uimp = 431 m/s 
ht = 6.56 mm 
himp = 2 mm 

ufs 
Dms1 

Ufs max 

ΔUdef   = Uimp - Ufsmax 
Uimp  =  431 m/s 

Investigation of multiscale mechanisms of dynamic deformation and fracture of 1565 aluminum alloy under plane... 73



spot of interferometer focused on the free surface of the target is of the order of 50-70 µm. 
This means that the free surface profiles registered in our experiments reflect the response of 
only a single structural element of mesoscale-2 (see Fig. 1). The total response of target on 
impact can be obtained by averaging over the totality of mesoscale elements.  

The high-velocity penetration tests were conducted with the same facility. To provide 
perpendicularity relatively plane target, the rod of 20 mm in length and 5 mm in diameter is 
mounted into polyvinyl carbonate sabot. The conditions for "rigid rod and studied target" are 
provided by using the high-strength 02Cr18Co9Mo5-VI maraging steel as a material for the 
rod. Typical penetration cavern in 1565 aluminum alloy target is shown in Fig. 3. 

 

 

Fig. 3. Penetration cavern in 1565 aluminum alloy at the impact velocity of 577 m/s 
 
The tests under uniaxial strain conditions provide the information on the character of 

spall fracture whilst the penetration tests allow the evolution of microstructure depending on 
the impact velocity to be retraced. In our experiments, the post shocked targets cut along the 
impact direction and after polishing and etching investigated with the optical microscope 
Axio-Observier Z-1m.  

The quasistatic characteristics of the material are provided in Table 1. 
 
Table 1. Mechanical characteristics of 1565 aluminum alloy 

Alloy Target thickness, 
mm 

σb, 
MPa 

σ02, 
MPa 

δ, 
% 

Al. 1565 7 363 221 15.8 
 
3. Experimental results and analysis 
Structural instability and spall strength. A series of shocks under uniaxial strain conditions 
within impact velocity range of 250-750 m/s was performed. In Figure 4 the dependence of 
the value of maximum free surface velocity max

fsU  for 1565 aluminum alloy is plotted as 
functions of impact velocity. The free surface velocity corresponding to change of the slope of 
dependence Ufs= f(Uimp) is accepted to be the threshold of the structural instability of material. 
The critical changes of the slope of curve happen at the impact velocities of 440 m/s and 
625.5 m/s (indicated by dotted lines). 
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Fig. 4. Maximum free surface velocity max

fsU versus impact velocity 
 

The second dynamic strength characteristic of materials registered in tests under 
uniaxial strain conditions is the spall strength. Whereas the threshold of structural instability 
characterizes the dynamic strength of the material under compression, the spall strength is the 
tensile strength characteristic.  

 
Fig. 5. Spall strength (1) and maximum free surface velocity max

fsU   (2) versus impact velocity 
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In Figure 5 the dependencies of maximum free surface velocity max
fsU and spall strength 

on the impact velocity are plotted together. The breaks at the curves happen at the identical 
impact velocities indicated with dotted lines This means that the internal processes 
responsible for multiscale dynamic deformation and strength for both regimes of loading are 
mutually related. 

Structural instability threshold and high-velocity penetration. Resistance to high-
velocity penetration is characterized, firstly, by the value of penetration depth, L, and 
secondly, by the slope of curve L= f(Uimp), namely: (i) the smaller penetration depth L, the 
higher resistance to penetration and (ii) the smaller the slope of curve  L = f(Uimp), the higher 
the resistance to penetration. 

 

 
Fig. 6. Maximum free surface velocity max

fsU   (1) and penetration depth L (2) versus impact 
velocity 

 
In Figure 6 the dependencies of max ( )fs impU f U= and penetration depth L= f(Uimp) on the 

impact velocity are plotted together. Within impact velocities from 241.9 m/s to 750 m/s the 
penetration curve suffers the breaks at the impact velocities of 440 m/s (position B') and 
625.5 m/s (position C'). The relation between the rate of change of structural instability 
threshold and rate of change of penetration depth can be summering as following:  

1). Impact velocity region of 241.9-625.5 m/s: max max
AB BCdU dU

du du
< ; ' '' ' B CA B dLdL

du du
< .                   

2). Impact velocity region of 440-750 m/s: max max
CD BCdU dU

du du
< ; ' ' ' 'C D B CdL dL

du du
< .                             

The inequality ' '' ' B CA B dLdL
du du

<  means that resistance to penetration decreases after an 

impact velocity of 440 m/s. Within the impact velocity region from 625.5 m/s to 750 m/s, 

after point C', an analogous inequality takes place: ' ' ' 'C D B CdL dL
du du

< , which means that 
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resistance to penetration after impact velocity of 625.5 m/s again increases. It may be 
concluded that the processes responsible for structural instability of material and high-velocity 
penetration are mutual related. The change of slope of curve max ( )fs impU f U=  correlates with 

the behavior of the defect of particle velocity ∆udef .  
                 

 
Fig. 7. Penetration depth L (1) and velocity defect Δudef  (2) versus impact velocity 

 
Resistance to high-velocity penetration and velocity defect. Figure 7 shows that the 

behavior of the velocity defect correlates with the behavior of penetration depth. The relations 
between the rate of change of velocity defect and rate of change of penetration depth can be 
summering as following:  

1) Impact velocity region of 241.9-625.5 m/s:  ' '' '
defdef
B CA B d ud u

du du
∆∆

>  ,  BСAB dLdL
du du

< .        

2) Impact velocity region of 440-750 m/s:     ' ' ' '
def def
C D B Cd u d u

du du
∆ ∆

> .   СD BCdL dL
du du

< .             

Within the upper region of impact velocities CD, the resistance to penetration increases. 
It should be noted that 1565 aluminum alloy has been specially created for working at high-
velocity region of dynamic loadings. The beaks for both curves happen at identical impact 
velocities (indicated with vertical dotted lines). 

Spall strength, resistance to high-velocity penetration, and velocity variance. It is 
thought to be very interesting to compare the spall strength and resistance to penetration 
behavior for different regions of impact velocities. In Figure 8 the penetration depth curve 
L = f(Uimp) for 1565 alloys is plotted together with the dependence for spall strength  
W= f(Uimp). A comparison of curves shows that the correlation between processes really 
exists. Dependence W= f(Uimp) based on tests under uniaxial strain conditions suffers two 
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breaks: at the impact velocities of 440 m/s and 625.5 m/s. The dependence of penetration 
depth L = f(Uimp) also suffers two breaks: at the impact velocities of 440 m/s and 608 m/s. 
The critical change of slope for penetration dependence happens at the velocity where the 
break for dependence W= f(Uimp) occurs (dotted lines in Fig. 8). Such behavior of curves 
evidences the common mechanism of structure behavior in tests under uniaxial strain 
conditions and high-velocity penetration. The breaks at the high region of impact velocities in 
both loading schemes also happen at close impact velocities: 625.5 m/s in-plane tests and 
608 m/s in penetration tests. This means that both breaks are of the same nature.  

 

 
Fig. 8. Spall strength, W, (1), velocity defect, ΔUdef, (2) and velocity variance, D, (3) versus 

impact velocity 
 

Now let us consider a correlation between spall strength behavior and resistance to 
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c) Impact velocity region 625.5 - 750 m/s:     ' ' 0A BdW
du

< .                

Within impact velocity region of 241.9 - 625.5m/s, the slope of penetration depth curve 

changes at point B': ' '' ' B CA B dLdL
du du

< , which means that the resistance to penetration within 

impact region A'B' of the curve (2) is higher as compared to that for piece B'C'. At the same 
time, the spall strength within the same impact velocity region shows the opposite trend. 
Within the piece AB the spall strength decreases from 137.8 m/s to 117.3 m/s. After point B, 

within piece BC, 0BCdW
du

 , which means that spall strength is approximately constant. The 

critical changes in both curves happen at an impact velocity of 440 m/s. The analogous 
situation is seen after the second critical impact velocity of ~ 625.5 m/s - within piece C'D' the 

slope of penetration curve (2) decreases: ' ' ' 'C D B CdL dL
du du

< , i.e. the resistance to penetration 

within region C'D' increases whereas 0CDdW
du

< , which means that spall strength in this 

region of strain rates decreases.  
Thus, within impact velocity range of (241.9 - 750) m/s the strength behavior of 1565 

aluminum alloy in two schemes of shock loading turns out to be opposite – when resistance to 
penetration increases, the spall strength decreases. 

In Figure 8, besides the spall strength and penetration depth, the dependence for 
velocity defect on the impact velocity is provided. In our experiments, the mean particle 
velocity, u, and velocity variance, Dms1, are registered in the form of temporal profiles (see 
Fig. 2). Independent measuring the impact velocity allows three shock-wave characteristics to 
be determined in real-time. The breaks at curves are seen to occur at identical impact 
velocities. The spall strength is seen to decrease when velocity defect increase (regions A'B' 
and C'D'). At the same time, the spall strength is practically constant when the velocity defect 
remains constant. 

Such a kind of behavior of spall strength can be explained from the position of macro-
meso energy and momentum exchange which is described by the following equation [26]:  

21
2def

Du
u

∂
∆ = −

∂
.            (1) 

The left-hand side of this equation, the velocity defect, characterizes the momentum 
which transferred from macroscale to mesoscale. This transference is realized due to a change 
of the mesoparticle velocity dispersion, D2. Eq. (1) can be written in the form 

/
/def

dD dtu D
du dt

∆ = − .                      (2) 

When the rate of change of the velocity variance equals to rate of change of mean 
particle velocity. 
dD du
dt dt

= ,                                           (3) 

the velocity defect equals velocity variance: 
defu D∆ = − .                                  (4) 

This situation corresponds to the equilibrium regime of multiscale dynamic deformation 
and corresponds to the middle region of impact velocities B'C' in Fig. 8. In the case of 
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uniaxial straining, the deformations at the macroscale and mesoscale equal, respectively, Eq. 
(2) can be written in the terms of strain and strain rate: 

/
/

ms
def ms

mc

d dt
d dt
ee e
e

∆ = − .             (5) 

Here ∆εdef  is an additional macroscopic deformation resulted from the interscale 
momentum exchange, /msd dte  is the strain rate at the mesoscale, and /mcd dte  is the strain 
rate at the macroscale. When 

/ /mc msd dt d dte e=      (6) 
all change of deformation at the macroscale resulted from interscale momentum exchange is 
determined by the value of deformation at the mesoscale =-def De e∆ . In shock experiments, 
the directly registered characteristics are the free surface velocity, fsu  velocity defect, defu∆ , 
and velocity variance, D. At the same time, the physical meaning of the processes may be 
understood from Eq. (6) which implies the equality of local strain rate and macroscopic strain 
rate. As distinct from the macroscopic strain rate, the local strain rate cannot be directly 
determined in dynamic experiments. Therefore, Eq. (4) can serve as a reliable feature for the 
equality of local and macroscopic strain rates. 

The meso-macro energy exchange can explain a non-monotonous behavior of spall 
strength depending on the strain rate. The power balance at the spalling zone can be written in 
the form: 

2 ( )1 1
2 2

def
p

u u
C u u

h
ρ h

+ ∆
= .                      (7) 

Here ρ is a density of the material, Cp is the velocity of the shock wave, η is dynamic 
viscosity of deformed material and u is the particle velocity. The left-hand side of Eq. (7) 
characterizes the power which is brought into the spalling zone from the shock wave. The 
right-hand side of the equation describes the loss of power due to the normal rupture of 
material under tension at the spalling zone and reflects a motion of spall surfaces in opposite 
directions. As particle velocity is current changes owing to meso-macro energy exchange 
mechanism the mean particle velocity for this item includes the velocity defect Δudef, and the 
total strain rate at the spalling zone equals: 

1 defu ud
dt h
e + ∆

= ,                                   (8) 

where h is the width of the spalling zone. From (7) and (8) one obtains 
1

0 1defuCh
h u

ρ
h

−∆ 
= − 
 

.        (9) 

Time for spallation can be determined as  
1

def
f

uh
u h

τ σ h
−∆ 

= = − 
 

,                                                            (10) 

where σ = ρCpu. Eq. (10) can be rewritten in the form: 

1def
f

u
h

σ h τ
∆ 

− = 
 

.                                  (11) 

Generalization of this equation  
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0

1
f

defu
dt

h

τ

σ µ
∆ 

− = 
 
∫        (12) 

can be considered as a dynamic fracture criterion that takes into account the meso-macro 
momentum exchange. In this equation, the value σ has a meaning of the spall stress which 
characterizes the resistance of the material to spallation. It is seen that spall stress decreases 
when the velocity defect increases. 
 
4. Microstructural investigations 
The initial structure of 1565 aluminum alloy contains elongated grains, i.e. texture (Fig. 9a). 
To understand the multiscale mechanisms of strength behavior of alloy in different regions of 
impact velocities it was thought to be appropriate to compare the microstructural data for 
different regions of impact velocity with the dependencies of penetration over the same 
regions. The overall region of impact velocities in accordance with Fig. 8 is subdivided into 
three sub-zones.  

              

a)                                                                 b) 
Fig. 9. Initial structural states of 1565 aluminum alloy (a), micro shears, and fault structures 

in post shocked specimen (b) 
 

The main feature of post-shocked specimens is the presence of numerous micro shears 
of 3-10 µm length oriented along the shock direction. The micro shears are nucleated owing 
to mass velocity pulsations at small impact velocities. Theoretical [12,13] and experimental 
[4] investigations of multiscale mechanisms of dynamic deformation show that the behavior 
of mesostructure under dynamic loading can be characterized by the presence of short-living 
pulsations of particle velocity. The motions of mesostructural elements in form of single-sign 
dislocation groups create the short-living mass velocity pulsations of Δt ≈ 150-200 ns 
duration. The velocity interferometer registers the particle velocity distribution in form of 
velocity variance D. In the case of 1565 aluminum alloy, the maximum value of velocity 
variance at the mesoscale-1 equals D = 4.5·103 m/s (see Fig. 2), from where the mean 
displacement equals:  
L = D · Δt = 4.5×103 · 2×10-7 = 9×10-4  cm. 

In their dimensions, the displacements belong to mesoscale-1 (1-10 µm). The 
decreasing the distance to the bank of cavern density of micro shears increases. 

Another structural element proper to high-velocity penetration is the so-called fault 
structures at the bank of the cavern. In Figure 9b a complex morphology of fault structure is 
presented – inside each cell a family of shear bands is incorporated.                        
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a)  Region AB                     b) Region BC                        c)   Region CD 

Fig. 10. Three regions of lateral structure in 1565 aluminum alloy target after penetration 
 

In Figure 10 the three states of structure for different regions of impact velocity are 
provided. Within the regions AB and CD, the specific feature of post shocked specimens is the 
presence of regular fault structures at the bank of the cavern and uniform deformation picture 
inside the region BC. The width of the region occupied by fault structures depends on impact 
velocity: within region A the width of the fault structure zone equals 7-12 µm whereas at the 
region CD the width of the zone increases up to 47-50 µm. A comparison with the reciprocal 
regions for high-velocity penetration curve (Fig. 8) shows that resistance to penetration at 
these regions increases. Within region BC where the regular faults are absent, the post-
shocked structure is uniform whilst the resistance to penetration decreases. From the point of 
view of resistance to penetration, the 1565 aluminum alloy turns out to be more preferable at 
the upper region of impact velocities. At the same time, the spall strength of 1565 alloy at the 
upper region of impact velocities decreases (see Fig. 8). 

 
5. On the resonance excitation of mesoscale  
In the light of the above experimental results, three questions arise: (i) what is the physical 
mechanism responsible for nucleation of fault structures, (ii) what parameters of shock wave 
determine the dimensions of fault structures, (iii) what is the physical mechanism for 
transition from one scale to another. To answer the questions we consider propagation of 
plane shock wave in a relaxing medium.  

In the case of a steady shock wave, two important relationships have previously been 
found. The first of them ties the particle velocity variance, D, and strain rate [26]: 

( )tD R
t

e∂
=

∂
 .                                                         (13) 

Here D is the velocity variance which is the quantitative characteristic of the intensity of 

the particle velocity chaotic pulsations in dynamically deformed solid, d
dt
e

 is the strain rate 

and R is the proportionality coefficient. An analogous relationship is known to exist in 
turbulence where the intensity of turbulent pulsations is proportional to particle 
acceleration [27]. 

Eqs. (1), (13) determine the character of coupling between macroscopic and mesoscopic 
scales of dynamic straining. We use Eqs. (1) and (13) for a description of the response of 
relaxing medium on shock loading.  
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In the case of one-dimensional propagation of shock wave, the balance equations for 
momentum conservation and medium continuity take the form 

0;t xuρ σ− =                                            (14)  

0.x tu e− =                                                                                                                  (15) 

The constitutive equation for a relaxing medium introduced by Duvall [28] and 
Taylor [29]:                                                                    

2 2 p
lCσ ρ e µe− = −                                                                                    (16) 

or in differential form                          
2

t l tC Fσ ρ e− = − .                (17) 

Here Cl is the longitudinal sound velocity, µ is the shear modulus, and the relaxation 
function 

2
p

F
t
eµ ∂

=
∂

            (18) 

is determined through the plastic strain rate which, in turn, is determined by Orowan's 

equation for density and velocity of dislocations 
p

d d
d bN V
dt
e

= . As distinct from  

Duvall-Taylor approach, in the present investigation the stress relaxation in the dynamically 
deformed medium is accepted to be realized only through the motion of elementary carriers of 
deformation at the mesoscale. Dislocations and other carriers of the deformation of atom-
dislocation scale provide the formation and motion of mesoparticles whereas the 
mesoparticles play a role of self-consistent carriers of deformation. In this situation, the stress 
relaxation is determined only by the velocity defect:                                        

( )1p
деф

l

u
t C t
e ∂ ∆∂

=
∂ ∂

.                                             (19) 

The advantage of such an approach is that the relaxation model doesn't incorporate the 
parameters of dislocations, such as density and velocity of dislocations which cannot be 
controlled under conditions of dynamic straining. As distinct from the dislocation structure, 
defect of particle velocity can be registered in real-time (see Fig. 2). In this case, the 
relaxation function takes the form: 

( )2 def

l

u
F

C t
µ ∂ ∆

=
∂

.                                                      (20) 

The equation system (14) - (17)) can be reduced to second-order differential equation         
0.tt xxρe σ− =                (21)                                                                                                                       

Substitution of (1) and (13) into (19) yields: 

( )
2

2 2
2

p

lR C
dt t

ee ∂∂
=

∂
.                 (22)                                                                                                                                                                   

Then Eq. (21) is reduced to: 
( )2 2 2

02 0tt l xx xxttC R Ce ρ e µ ρ e− − = .              (23)  

For the case of the steady propagation of shock wave, the single variable px C tζ = −  
can be used. Eq. (23) takes the form:  

( )2 2 2 2( ) 2 0l p lC C R Cςς ςςςςe µ ρ e− + = .            (24) 

Exchanging ςςe ψ=  leads to the equation for an oscillator:  

( )2 2 2 2( ) 2 0l p lC C R C ςςψ µ ρ− + Ψ = .                                  (25) 
The frequency of oscillations equals 
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2 2 2

2

( )1
2

l l pC C C
R

ρ
ω

µ
−

= .                                                             (26) 

Physically, the oscillatory regime of shock wave propagation is a sequence of positive 
back coupling provided by the Eqs. (1) and (13) which are used for locking the balance 
equations (14)-(17). The positive back coupling between macroscale and mesoscale is 
realized through the particle velocity dispersion and rate of its change.  

As noted above, in our experiments the size of the laser spot of the interferometer (50-
70 µm) at the free surface of the target corresponds to mesoscale-2 (50-500 µm) (see Fig. 1), 
so the experimental technique allows to registers: (i) the mean motion of single structural 
element of mesoscale-2 as a whole and (ii) the fine structure of shock wave including the 
high-frequency oscillations at the mesoscale-2. The temporal resolution of experimental 
diagnostics (0.6-1.0 ns), allows registering the fine structure of plastic wave including the 
high-frequency oscillations at the mesoscale-2. Where observed, the oscillations are excited at 
the top of the plastic front. Figure 11 demonstrates the velocity oscillations in 7 mm 1565 
aluminum alloy target loaded at the impact velocity of 636.5 m/s. The oscillations are seen at 
the impact velocities which are higher than the threshold of structure unstable transition, Uinst. 
The space period of oscillations equals ~ 50 µm, which coincides with the mean size fault-
structures (40-50 µm). Thus, while the mesoscale-1 structures are nucleated owing to particle 
velocity pulsations, the fault-structures of mesoscale-2 are initiated due to resonance 
interaction of mesoscale-1 structures with the plastic front oscillations, which, in turn, result 
from positive back coupling between mesoparticle velocity dispersion (mesoscale) and 
velocity defect (macroscale). 

Although oscillations are initiated due to the interaction of stochastic features of 
dynamically deformed structure in form of particle velocity dispersion, the transition itself 
happens due to swinging the high-frequency oscillations of mesostructure. Thus, it should be 
underlined that the macro-meso structural transition is not a direct transition from the chaotic 
motion of structural elements to translation motion of the next scale level as "noise-induced 
transition" [30]. This transition is thought to be realized through the oscillation regime of 
straining at the mesoscale. The oscillatory regime of dynamic deformation is found in shock-
wave experiments with copper, Armco-iron, steels, and other materials. The example of 
oscillations in shock loaded 1565 aluminum alloy is provided in Fig. 11. 

Below the dimensions of fault-structures are calculated for regions AB and CD. The 
experimental free surface profiles are used for the calculation of parameters of shock waves. 
Region AB   
1.  Impact velocity Uimp = 335 m/s.  
2. Velocity variance D = 22 m/s. 
3. Velocity of plastic front 55.478 10pC = ⋅ cm/s.  

4. Longitudinal sound velocity 56.387 10lC = ⋅ cm/s. 

5. Strain rate 57.79 10d
dt
e
= ⋅ c-1. 

6. Shear modulus 11
22.7 10 dyn cm

sek
µ ⋅
= ⋅  . 

7.  Density ρ = 2.7 g/cm3.  
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Fig. 11. Free surface velocity profiles, ufs, for 7 mm 1565 aluminum alloy target loaded at the 
impact velocity of 636.5 m/s (the oscillations are indicated by symbol *) 

From Eq. (1) 428 10
/

DR
d dte

−= = ⋅ cm and from Eq. (26) 8 12.35 10 sω −= ⋅  or 

8 1/ 2 0.374 10f sω π −= = ⋅  which corresponds to period of oscillations 81 2.672 10T s
f

−= = ⋅  . 

Then the space period of cell-structures in region AB equals: 
8 4 42.672 10 3.35 10 / 8.95 10impT U s cmcm sλ − −= ⋅ = ⋅ ⋅ ⋅ = ⋅ . The obtained value for space period 

of oscillations coincides with the dimensions of fault-structures shown in Fig. 10a.  
Region CD 
1. Impact velocity Uimp = 653.7 m/s.  
2. Velocity variance D = 52 m/s. 
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3. Velocity of plastic front 55.66 10pC = ⋅ cm/s. 

4. Longitudinal sound velocity 56.387 10lC = ⋅ cm/s. 

5. Strain rate 65 10d
dt
e
= ⋅ s-1.  

6. Shear modulus 11
22.7 10 dyn cm

sek
µ ⋅
= ⋅ .  

7. Density ρ =2.7 g/cm3. 

From Eq. (1) 410.36 10
/

DR
d dte

−= = ⋅ cm and from Eq. (26) 8 11.84 10 sω −= ⋅  or 

8 1/ 2 0.29 10f sω π −= = ⋅  which corresponds to the time period of oscillations  
81 2.35 10T s

f
−= = ⋅ . Then the dimension of fаult-structures in region CD equals 

8 4 42.35 10 6.637 10 47 10impT U cmλ − −= ⋅ = ⋅ ⋅ ⋅ = ⋅ . The obtained value for space period of 
oscillations coincides with the dimensions of fault-structures for region CD shown in Fig. 10c.  

 
6. Conclusions 
Shock tests of 1565 aluminum alloy in two schemes of loading reveal the difference in 
mechanisms and scales of mesostructure formation depending on the scheme of shock loading 
and strain rate. Formation of fault-structures increases the resistance to high-velocity 
penetration. At the upper region of impact velocities, 1565 aluminum alloy reveals the 
increased resistivity to penetration.  

Within impact velocity range of 250 - 750 m/s the strength behavior of alloy proves to 
be opposite – when resistance to penetration increases, the spall strength decreases.  

The defect of particle velocity plays a role of a control parameter in the dynamic 
deformation of the material. It defines the transition from one scale to another.  

The transition from one structural scale to another is realized through the excitation of 
mesoscale oscillations resulted from the back coupling between deformation processes at the 
macroscale and mesoscale. 

The maximum dynamic strength is realized in the impact velocity range where the 
velocity defect equal to the velocity variance. 
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Abstract. The main objective of the present work is the experimental and theoretical 
investigation of the mechanical properties of the zirconium alloys E110 and E635 in a wide 
range of strain rates (10-4÷3·103 с-1) and at different temperatures (20°С÷350°С). The strain 
rate and temperature dependencies of deformation diagrams and strength characteristics under 
tension and compression have been received using the experimental study. The investigated 
materials have shown sensitivity to strain rate and temperature. Experimental data have been 
used to identify some LS-DYNA's material models. 
Keywords: experimental investigation, strain rate, model, nuclear energy, dynamics, 
temperature, flow stress, plastic strain, ultimate strain 
 
 
1. Introduction 
The nuclear industry and energy have special requirements for the materials used. 
Conventional steels do not pass on safety indicators. Special alloys based on zirconium (Zr) 
have been developed for this industry. Zirconium is one of the key structural metals in nuclear 
energy; it is the main component of the alloys used to make the shell of the fuel elements of 
nuclear reactors. Zirconium alloys have a fairly high corrosion resistance with respect to 
water and steam and a relatively small cross-section for absorption of thermal neutrons. These 
alloys favorably differ from pure zirconium in the best mechanical properties. For example, 
alloy E110 is used as a structural material for the components of the fuel assembly. Currently, 
this material is the main material for the casings of the fuel rods, spacing grids, and in some 
cases the guide channels, for PWR (Pressurized water reactor) type reactors. Preservation of 
high ductility by E110 alloy in combination with corrosion resistance ensures the fuel 
assemblies' operability to high burnup. 

In the new generation reactors, it is assumed that conditions will cause higher stresses in 
the shells and more intense oxidation processes. In this regard, it is relevant to search for 
alternative alloys not only for the casings of fuel elements, but also for structural elements of 
a fuel assembly, such as guide channels, a central pipe, and corners of a rigid frame capable of 
providing the required fuel resource. 

Recently, a multicomponent alloy E635 has been widely used as a material for fuel 
assemblies of the water-moderated reactor with a capacity of 1000 MW. 
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During the transport and technological operations such as fuel movement,  
loading/unloading of fuel, situations may arise that are accompanied by dynamic influences. 
To obtain reliable estimates of numerical modeling, it is necessary to use deformation models 
and strength criteria corresponding to the problem being solved. In dynamics problems, it is 
important to take into account the strain rate influence on the material characteristics. 
Extensive experimental research is required to build mathematical models describing this 
effect. 

Despite the widespread use of zirconium alloys in nuclear power engineering, as well as 
the importance of studying the dynamic properties of alloys based on zirconium, there are 
very little data on this. Investigations of the mechanical characteristics of the metal alloy 
E110 were carried out in [1]. In this study, the behavior of a zirconium alloy was studied 
under shock-wave loading conditions. The authors determined the spall strength at strain rates 
of 105-106 s-1 using laser interferometers VISAR and POV. At shock compression pressures 
of above 10.6 GPa it was obtained a three-wave structure of the compression pulse. 
According to the authors, this effect is associated with polymorphic transformations α-ω. In 
[2] the dynamic characteristics of the MA-15-Ti magnesium alloy were determined using the 
Kolsky method. Zirconium is a structure modifier in this alloy and it significantly improves 
physical and mechanical properties. There are few studies [3-7], which are devoted to the 
study of the dynamic mechanical properties and microstructural features of deformation in the 
adiabatic shear bands of amorphous zirconium-based alloys at strain rates about 103 s-1. For 
the investigated alloys an increase in the strength characteristics with increasing strain rate is 
noted, microstructural features of deformation are revealed and the mechanisms of formation 
of adiabatic shear bands are studied. In [8-13] the dynamic properties of ceramics based on 
zirconium are investigated using the Kolsky method and its modifications. Dynamic diagrams 
of deformation under a uniaxial stress state, as well as strength and deformation properties 
under uniaxial strain, were obtained. 

The present work is devoted to the determination of the strain rate and temperature 
dependences of the deformation curves and ultimate plasticity characteristics of E110 and 
E635 zirconium alloys. 

 
2. Test specimens 
Specimens of two zirconium alloys E110 and E635 were subjected to quasistatic and dynamic 
tests. The chemical composition of these alloys is given in Table 1. 
 
Table 1. The chemical composition of tested alloys 

Denotation Mass content, % 
Zr Nb Sn Fe O impurities 

E110 Base 0.9-1.1 - 0.05 0.1 0.18 
E635 Base 0.9-1.1 1.1-1.5 0.3-0.5 0.1 0.15 
 

The compression test specimens were in the form of cylinders with dimensions  
Ø = 16 mm L0 = 8 mm for static tests and Ø = 10 mm L0 = 5 mm for dynamic tests. For 
tensile tests, samples with threaded heads had the dimensions of the working part: Ø = 5 mm, 
L0 = 15 mm for static tests and Ø = 5 mm, L0 = 10 mm for dynamic tests. 
 
3. Test methods 
Static compression and tensile tests of the specimens at temperatures of + 20ºС and + 350ºС 
were carried out on a ZwickRoell Kappa 50 DS experimental setup with a maximum loading 
force of ±600 kN. The measuring equipment included a class 1 force sensor in accordance 
with ISO 7500-1 and a high-precision displacement meter built into the movable beam of the 
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machine, with an accuracy of positioning of the beam in a predetermined position of not more 
than ±2 μm. To obtain the elastic modulus E of the materials, we used a high-precision high-
temperature extensometer RMA-12 / V7-1 (resolution 0.1 μm) installed on the working part 
of the sample and allowing to determine the elastic modulus at normal and elevated 
temperatures. The testing machine is equipped with a MAYTEC-HT 080/1 heating device. 

Compression and tensile tests in the dynamic range of strain rates (5 102-5 103 s-1) at 
temperatures +20ºС, +200ºС, and +350ºС were carried out using the Kolsky (or Split 
Hopkinson Pressure Bar) method [14] and its modifications [15-17]. The following formulas 
can be used to calculate stress, strain, and strain rate in a specimen based on recorded pulses 
in the measuring bars: 
σ𝑠𝑠(𝑡𝑡) = 𝐸𝐸𝐸𝐸

2𝐸𝐸𝑠𝑠0
ε1(𝑡𝑡), (1) 

𝜀𝜀𝑠𝑠(𝑡𝑡) = 𝐶𝐶
𝐿𝐿0
∫ 𝜀𝜀2(𝜃𝜃)𝑑𝑑𝜃𝜃𝑡𝑡
0 , (2) 

ε�̇�𝑠(𝑡𝑡) = 𝐶𝐶
𝐿𝐿0
⋅ ε2(𝑡𝑡). (3) 

Here 𝐸𝐸 – elastic modulus of the measuring bar, 𝐴𝐴 – measuring bar's cross-section area, 
𝐶𝐶 – sound speed in the measuring bar, 𝐿𝐿0 and 𝐴𝐴𝑠𝑠0 – initial length and initial cross-section area 
of the specimen. 

Instead of the ε1(t) and ε2(t), one of three expressions can be substituted, respectively: 
− for stress calculation: 

ε1(𝑡𝑡) = �
𝜀𝜀𝐼𝐼(𝑡𝑡) + 𝜀𝜀𝑅𝑅(𝑡𝑡) + 𝜀𝜀𝑇𝑇(𝑡𝑡)

2 ∙ �𝜀𝜀𝐼𝐼(𝑡𝑡) + 𝜀𝜀𝑅𝑅(𝑡𝑡)�
2 ∙ 𝜀𝜀𝑇𝑇(𝑡𝑡)

 (3) 

− for strain calculation: 

𝜀𝜀2(𝑡𝑡) = �
𝜀𝜀𝐼𝐼(𝑡𝑡) − 𝜀𝜀𝑅𝑅(𝑡𝑡) − 𝜀𝜀𝑇𝑇(𝑡𝑡)

2 ∙ �𝜀𝜀𝐼𝐼(𝑡𝑡) − 𝜀𝜀𝑇𝑇(𝑡𝑡)�
−2 ∙ 𝜀𝜀𝑅𝑅(𝑡𝑡)

 (4) 

Further, from the obtained parametric dependences σs(t), εs(t) and )(tsε  time is 
excluded, and a deformation diagram σs(εs) of a specimen with a known dependence )( ss εε  
is constructed. During the test, using a strain gauge on measuring bars, a loading stress 
(strain) impulse is recorded. The shape, amplitude, and duration of this impulse are set by 
choosing the length, material, and velocity of the striker which is accelerated in the barrel of 
the gas gun. In addition, stress (strain) pulses reflected from the specimen and transmitted 
through it are recorded, which are the "responses" of the material to the applied load and 
allow constructing a dynamic diagram of the test specimen. 

An experimental setup that implements the SHPB method includes a pneumatic loading 
device (gas gun with a caliber of 20 mm) with a control system, a complex of measuring and 
recording equipment, and replaceable sets of bars made of steel or aluminum alloy with a 
diameter of 20 mm for testing under various conditions. In the present investigation bars 
made of high-strength steel with a yield strength of about 2000 MPa are used. The bars are 
fixed and centered in textolite plain bearings, which allow adjustment of their relative position 
with the help of adjusting elements to ensure alignment of the bars with each other and with 
the striker. The strain is measured using small-base strain gauges glued to the lateral surface 
of the bars at a considerable distance from the specimen. Moreover, to compensate for 
bending vibrations in the bars and increase the amplitude of the useful signal in the working 
sections, 4 strain gauges connected in series are glued. To study the behavior of materials at 
elevated temperatures, a miniature tube-type furnace is used. It warms the ends of the 
measuring bars with a sample located between them. An XC thermocouple welded to the side 
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surface of the sample was used to control the temperature of the specimen. At test 
temperatures up to +350ºС any correction of the formulas and the method of processing 
experimental information was not performed, since at such temperatures, there are no 
noticeable changes in the elastic characteristics of the material of the bars (elastic wave 
velocity and elastic modulus). 
 
4. Test results 
The deformation diagrams at static compression and tension of the E110 and E635 alloys 
were constructed at temperatures T = 20ºC and 350ºC. Three samples were tested at each 
temperature, and the results were averaged. 

Dynamic tests at high strain rate tension were carried out using the Nicholas 
scheme [16]. Four conditions were implemented in terms of strain rate: 1000, 1500, 2000, and 
2800 s-1 as well as three conditions in terms of temperature: +20, +200, and + 350ºС. In each 
loading condition, five specimens were tested to determine the scatter characteristics of the 
experimental data. 

The compression schemes were used to obtain strain curves. The tensile schemes were 
used to determine the ultimate fracture characteristics. 

Figure 1 illustrates the effect of the strain rate on the strain curves of the E110 alloy. 
Dynamic curves have larger initial yield strength and the angle of the plastic part of the curve. 
In the strain rate range from 850 to 2400 s-1, the effect of strain rate hardening is weakly 
expressed. 
 

 
Fig. 1. Strain rate influence on strain curves. E110 alloy 

 
The left side of Fig. 2 illustrates the effect of temperature on the strain curves of 

E110 alloy. Dashed lines are static curves. The solid lines are the dynamic curves, obtained at 
strain rate ~1500 s-1. The corresponding temperatures in Celsius degree are shown next to the 
each line. The right part оf Fig. 2 shows slices of curves at different plastic strain levels (the 
corresponding plastic strain values are shown next to the each line). Dashed lines are static 
curves. The solid lines are the dynamic curves. If we analyze the results, it turns out that in 
the static region the influence of temperature is more pronounced. This can be seen by the 
slope of the curves on the right part of Fig. 2. 
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Figure 3 shows the deformation curves of the E635 alloy at different strain rates. It can 
be noted that this material has a higher resistance to deformation than the E110 alloy. 

Figure 4 illustrates the effect of temperature on E635. The same effect is observed as in 
the case of alloy E110. 
 

  
Fig. 2. Temperature influence on strain curves. E110 alloy 

 

 
Fig. 3. Strain rate influence on strain curves. E635 alloy 

 

   
Fig. 4. Temperature influence on strain curves. E635 alloy 
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Based on the shape of the specimens fractured in tension the ultimate plastic strains 
were determined using the formula: 
𝜀𝜀𝑝𝑝
𝑓𝑓 = 𝑙𝑙𝑙𝑙 1

1−
𝐷𝐷0
2−𝐷𝐷2

𝐷𝐷0
2

. (5) 

Here 𝐷𝐷0 – initial diameter of the specimen's cross section, 𝐷𝐷 – diameter of the fractured 
specimen's cross-section in the neck. 

The obtained data will be illustrated in the section «Model identification». 
 
5. Model identification 
To use in the numerical simulation, the obtained data must be turned into a mathematical 
model. So, the experimental surfaces were approximated by analytical functions. 

The Johnson-Cook model is widely used to describe the dynamic behavior of visco-
plastic materials. The mathematical formulation for the dependence of the radius of the yield 
surface on the strain, strain rate, and the temperature is formulated as follows [18,19]: 
𝜎𝜎 = �𝐴𝐴 + 𝐵𝐵 ∙ 𝜀𝜀𝑝𝑝𝑛𝑛��1 + 𝐶𝐶 ∙ 𝑙𝑙𝑙𝑙𝜀𝜀�̇�𝑝∗�(1− 𝑇𝑇∗𝑚𝑚). (6) 

Here 𝑇𝑇∗ = 𝑇𝑇−𝑇𝑇0
𝑇𝑇𝑚𝑚−𝑇𝑇0

, εp – equivalent plastic strain, 𝜀𝜀�̇�𝑝∗ = 𝜀𝜀�̇�𝑝 𝜀𝜀0̇⁄  – dimensionless plastic 

strain rate, 𝜀𝜀0̇ = 1.0 s-1, 𝑇𝑇0 and 𝑇𝑇𝑚𝑚 – room (or reference) temperature and melting temperature 
respectively. Five material constants are determined empirically: A, B, n, C и m. 

In addition to the classical, linear in the logarithm of strain rate multiplier 
1 + 𝐶𝐶 ∙ ln(𝜀𝜀̇∗), (7) 
other options exist to take into account the influence of the strain rate on the flow stress: 

- model of Huh-Kang [20]: 
1 + 𝐶𝐶 ∙ ln(𝜀𝜀̇∗) + 𝐶𝐶2 ∙ ln(𝜀𝜀̇∗)2, (8) 

- model of Cowper-Symonds [21]: 

1 + ��̇�𝜀
∗

𝐶𝐶
�
1
𝑝𝑝, (9) 

- model of Allen-Rule-Jones [22]: 
(𝜀𝜀̇∗)𝐶𝐶. (10) 

Approximation independent material characteristics for E110 and E635 alloys are 
shown in Table 2. 
 
Table 2. E110 and E635 properties 
Property Value Dimension 
Density, ρ 6600 kg/m3 
Young's modulus, E 95 GPa 
Poisson's ratio, ν 0.34  
The melting temperature, Tm 2106 K 
T0 293 K 
Specific heat, cp 0.24 kJ/kg/K 
 

The disadvantage of the model is that the various effects are independent of each other. 
Thus, due to the multiplicative formulation, the temperature softening is the same for statics 
and dynamics, which does not allow us to describe the effect obtained earlier. 

You can either focus on static data and well describe the effect of temperature in statics. 
In this case, the dynamic curves at different temperatures are poorly described (left side of 
Fig. 5). On the other hand, we can approximate dynamic curves well and get a poor 
description of static temperature softening (right side of Fig. 5). 
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In Figure 5 dotted lines correspond to experimental curves, solid ones – to the 
mathematical model. Blue color indicates data at room temperature, orange – at temperature 
200ºC, and red – at temperature 350ºC. Parameters of the mathematical model for static and 
dynamic temperature softening cases are given in Tables 3 and 4. 

 
Table 3. Johnson-Cook parameters. E110, focus on static temperature softening 
A 324 MPa 
B 3684 MPa 
n 1.324  
C 0.032  
m 0.36  
 
Table 4. Johnson-Cook parameters. E110, focus on dynamic temperature softening 
A 325.4 MPa 
B 3756 MPa 
n 1.34  
C 0.032  
m 0.73  
 

 
Fig. 5. E110 data approximation by the Johnson-Cook equation 

 
In addition, the modified Johnson-Cook model was considered [6]: 

𝜎𝜎 = 𝜎𝜎𝐸𝐸 + 𝐵𝐵 ∙ 𝑒𝑒−(𝛽𝛽0−𝛽𝛽1𝑙𝑙𝑛𝑛�̇�𝜀)𝑇𝑇 + 𝐴𝐴 ∙ 𝜀𝜀𝑛𝑛 ∙ 𝑒𝑒−(𝛼𝛼0−𝛼𝛼1𝑙𝑙𝑛𝑛�̇�𝜀)𝑇𝑇. (11) 
Here 𝜎𝜎𝐸𝐸, B, β0, β1, A, n, α0, α1 – model's parameters. 

 
This model has more parameters but allows describing more complex effects. It can be 

seen from Fig. 6 that this model allowed us to approximate the experimental data with 
sufficient accuracy. Modified Johnson-Cook parameters for E110 and E635 alloys are shown 
in Table 5. 
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Fig. 6. Data approximation by the modified Johnson-Cook equation for E110 (left) 

and E635 (right) 
 

Table 5. Modified Johnson-Cook parameters 
 E110 E635  
σA 0 0 MPa 
B 507 730 MPa 
β0 0.0014 0.0013  
β1 6.4⋅10-5 5.9⋅10-5  
A 6512 8956 MPa 
n 1.3 1.36  
α0 0.0022 0.0022  
α1 0.00013 6.43⋅10-5  
 

The obtained strain rate and temperature dependence of the ultimate plastic strain were 
approximated by the model: 
𝜀𝜀𝑝𝑝
𝑓𝑓 = 𝐷𝐷1 ∙ (1 + 𝜀𝜀̇)𝐷𝐷4 ∙ �1 + 𝐷𝐷5 ∙

𝑇𝑇−𝑇𝑇0
𝑇𝑇𝑚𝑚−𝑇𝑇0

�. (12) 
Parameters of approximation are given in Table 6. 

 
Table 6. The ultimate plastic strain approximation parameters 

 E110 E635 
D1 0.17 0.22 
D4 0.181 0.1 
D5 5.83 3 
 

Figure 7 illustrates the dependence of the ultimate plastic strain on strain rate and 
temperature. Markers correspond to experimental data obtained at different temperatures. The 
solid line corresponds to the mathematical model. It can be noted that the ultimate strain 
increases slightly with increasing strain rate and significantly increases with temperature rise. 
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Fig. 7. Ultimate plastic strain for E110 (left) and E635 (right) 

 
Figure 8 illustrates the approximation of the temperature dependences of the fracture 

strain for the studied alloys. It can be noted that the E635 alloy is fractured at lower values of 
plastic strain. The temperature has a greater effect on the ultimate characteristics of the 
E110 alloy. 
 

 
Fig. 8. Temperature dependence of ultimate plastic strain for E110 (left) and E635 (right) and 

its approximations 
 
6. Conclusions 
As a result of the investigation of deformation of alloys E110 and E635 under compression 
and tension in a wide range of strain rates and temperatures from 20ºC up to 350ºC, 
mechanical characteristics are obtained in the form of deformation diagrams. It is noted that 
the mechanical behavior of the investigated alloys is sensitive to the strain rate and 
temperature. Obtained data is approximated by the modified Johnson-Cook model reasonably 
well. E635 alloy has a higher resistance to deformation than the E110 alloy but is fractured at 
lower values of plastic strain. The temperature has a greater effect on the ultimate 
characteristics of the E110 alloy than on the E635 alloy. As a result of the study, the 
mathematical models of the deformation and strength criteria are constructed which can be 
used in the development of digital copies of nuclear engineering designs. 
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Abstract. The purpose of this study was to investigate the effects of turmeric microparticles 
amount on the mechanical and biodegradation properties of cornstarch-based bioplastic 
material. To produce the bioplastics, several steps were done sequentially: (1) dissolving a 
mixture of cornstarch, glycerol, and acetic acid in aqueous solution; (2) adding turmeric 
microparticles with a specific amount (i.e., 0.50; 0.75; 1.00; 1.50% (w/w)); (3) homogenizing 
the mixture at temperature of 60ºC; (4) molding process; and (5) drying process to get a solid 
bioplastic. Experimental results showed that the addition of turmeric microparticles could 
change the bioplastics strength as well as its biodegradability, while too much amount of 
turmeric may result in high strength but low biodegradability.  
Keywords: bioplastics, biodegradation, cornstarch, turmeric, mechanical properties 
 
 
1. Introduction  
Plastics have been widely used in many fields of applications (e.g., mulch films, greenhouse, 
construction materials, packaging material, etc.) because of their low cost, ease of 
manufacture, versatility, and resistance to water [1]. During the last 10 years, world plastic 
production has been reported to reach 359 tons in 2018. Amount of plastic waste continues to 
increase over the years and is considered to cause serious environmental problems. Plastic is 
mostly made from synthetic polymers (i.e., polypropylene, polystyrene, and poly (vinyl 
chloride)) derived from petrochemicals, which are difficult to degrade by microbes in the 
environment [1]. Usually, the degradation of these materials takes time up to 1,000 years to 
decompose in landfills by breaking the carbon chain [2]. 

Efforts have been made to overcome the problems arising from plastic waste. However, 
these efforts create new issues in the environmental and health [2]. The accumulation of 
plastic waste greatly disrupts the circulation of air to and from the ground because plastic 
materials generally have high barrier properties to O2 and CO2 permeability [3]. Burning 
plastic waste produces harmful substances such as dioxins, furans, and benzopyrene (a 
poisonous gas), causing cancer and damage the immune system[4]. In contrast, recycling 
plastic waste is very expensive and less effective. 
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To create a sustainable environment and prevent the harmful effects of environmental 
problems caused by plastic waste, the production of bioplastics has received a lot of 
attention [5]. Bioplastics are environmentally friendly plastics made from renewable polymer 
materials or biomass such as starch, vegetable oils, fruit waste, lignin, cellulose, and animal 
origin materials such as proteins and lipids [6]. The resulting bioplastics become 
biodegradable plastics, which are considered efficient in replacing the use of synthetic 
plastics. Starch is one of the most promising materials for the fabrication of bioplastics, 
mainly because it is easily degraded, inexpensive, abundant, and renewable [7]. 

The fabrication of starch-based bioplastics has been successful and widely developed. 
The most recent reports on the synthesis of bioplastics are represented in Table 1. However, 
when using bioplastic from starch without a reinforcing agent, the resulting bioplastic 
interactions still have disadvantages, such as not being resistant to water and low mechanical 
properties [8]. To overcome this problem, in the fabrication of bioplastics, other biopolymer 
additives are needed to improve the mechanical properties of the bioplastic. Reporting on 
bioplastics with additional reinforcing agents is essential for understanding the further 
development of bioplastics, including knowing what additives are compatible with pure 
bioplastics. Table 1 shows the results of bioplastic synthesis researches that have been done 
previously. Those research topics are usually focusing on enhancing the mechanical 
properties of the bioplastics. 

One of the potential reinforcing agents is turmeric. Turmeric also gives an advantage in 
providing a yellow color to the final product. Here, the purpose of this study was to 
investigate the effect of the number of turmeric microparticles on the mechanical properties 
and biodegradation of cornstarch-based bioplastics. Turmeric was chosen as an additional 
reinforcing agent because there is an antimicrobial activity potential as an antimicrobial 
plastic and its water-insoluble nature resulting in a water-resistant bioplastic [9]. The addition 
of turmeric microparticles may improve the mechanical properties because it has 
extraordinary interfacial interactions in the polymer. In addition, bioplastic fabrication with 
turmeric as a reinforcing agent has not been widely reported. This information is critical to 
bring benefits to the further development of bioplastic. 

 
2. Material and Method  
Preparation of bioplastic. In this study, we used micron-sized cornstarch as a basis for the 
bioplastic materials. Several chemicals used in the experiment were acetic acid (25%), 
glycerol (95%), and distilled water. For the reinforcing agent, turmeric (Curcuma Litonga) 
was sliced, washed with water to remove impurities, and dried to remove water at 60°C using 
an electric furnace at atmospheric pressure. Then, the dried turmeric was put into a saw-
milling process to transform it into powder form with a rotation speed at 18,000 rpm. To get a 
homogenous milling process, the saw-milling process was done three times, in which each 
milling has proceeded in 5 minutes. Detailed information about the preparation of curcumin 
and the apparatuses are explained in our previous studies [10,11]. 
 Fabrication of bioplastics with the addition of turmeric was done through the following 
steps. In the initial stage, cornstarch, acetic acid, and glycerol were mixed with a composition 
ratio of 3:1:3. Then, the mixture was added specific size of turmeric powder 0.50; 0.75; 1.00; 
and 1.50% (w/w), and stirred manually until homogeneous. Simultaneously, with the manual 
mixing process and process gelatinization, the mixture was heated at 60°C for 30 minutes 
using an electrical heater to obtain a viscous product. The viscous product was molded and 
dried at room temperature for more than 24 hours until it forms a solid yellow film. 
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Table 1. Reports on the synthesis of bioplastic 
Type of 

carbohydrate 
Raw material Results Ref. 

Cassava starch Cassava starch, kaolin, 
and metakaolin 

The bioplastic with addition kaolin 
decreases young's modulus. However, 
bioplastic with the addition metakaolin 
increases Young's modulus from 19 to 

25 MPa. 

[12] 

Fresh tilapia bones, 
modified tapioca flour, 
chitosan, gelatin, 6% 

hydrochloric acid (HCl), 
1% acetic acid 

(CH3COOH), glycerol, 
distilled water 

The best bioplastic with addition 2% 
chitosan and 5% gelatin concentration 
with value tensile strength 19,05 MPa, 

percent elongation 28.33% and 
degraded in the soil for 14 days 

[13] 

Potassium persulfate 
(KPS), palmitic acid, 

and dimethyl sulfoxide 
(DMSO), Ferrous 
ammonium sulfate 
(FAS) hexahydrate, 

cellulose, tapioca starch, 
and citric acid 

Compared without cellulose, bioplastic 
with cellulose had the good tensile 

strength 

[14] 

Cassava starch, 
precipitated calcium 
carbonate (PCC), and 

glycerol 

The bioplastic with the addition of 4% 
PCC optimizes tensile strength and 

increases thermal stability 

[15] 

Cassava starch, sugar 
palm fiber (SPF), 

distilled water, and 
plasticizer 

6% of SPF gave best tensile strength 
and young's modulus up to 20.7 and 

1114.6 MPa 

[16] 

Tapioca starch, NaNO3, 
H2SO4, KMnO4, 

distilled water, H2O2, 
and glycerol 

The concentration of 15% GO has the 
highest tensile strength of 3.92 MPa, 
elongation of 13.22%, and modulus 

young of 29.66 MPa. 

[17] 

Sago starch  Chicken feather, 
Natrium Hydroxide 

(NaOH), Chloride Acid 
(HCl), sago starch, 

glycerol, and lime juice 

The addition of the reinforcement (lime 
juice) effectively improve the tensile 

strength 

[18] 

Sago starch, glycerol, 
NaOH, KOH, NaClO2, 
acetic acid, and H2SO4 

The concentration of CMF 15% has the 
highest tensile strength of 10,23 MPa. 
However, compared bioplastic with 
CMF, bioplastic without CMF was 

more rapidly degraded 

[19] 

Wheat gluten  Wheat gluten, Fish 
waste (Lates calcalifer), 

water, and glycerol 

Compared without fish, bioplastic with 
fish had high tensile strength (6.5-

7.5 Pa) and good dispersion. 

[20] 
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Table 1. (continue) Reports on the synthesis of bioplastic 
Type of 

carbohydrate 
Raw material Results Ref. 

Cornstarch  Biopolymer 
(cornstarch), glycerol, 
de-ionized water, 5% 
acetic acid solution, 
natural fibers like 

cotton, jute, hair, and 
wool. 

The addition of natural fibers (cotton, 
jute, hair, and wool) increase tensile 

strength 

[21] 

Cornstarch, rice straw, 
sodium hydroxide, 

sodium hypochlorite, 
cellulose nanocrystal 

(CNC), glycerol, 
sulfuric, acid, and acetic 

acid 

The addition of the reinforcement 
(cellulose nanocrystal) improves the 

tensile strength and young's modulus. 
However, the percent elongation of 

bioplastic decreases 

[22] 

Cornstarch, glycerol, 
white vinegar, titanium 
dioxide nanoparticles 
(TiO2) as reinforcing 

agents 

The bioplastic tensile strength was 
increased from 3.55 to 3.95 MPa with 
the addition of TiO2. It also increases 
the decomposition temperature with 

homogeneous morphology and viewer 
cracks. 

[23] 

cornstarch (CS), 
distilled water, eggshell 

powder (ESP), and 
glycerol 

Compared without eggshell, bioplastic 
with eggshell improved the tensile 

strength, elongation et break, and water 
vapor 

[24] 

Cornstarch, polylactide, 
lysine diisocyanato, 
(LDI), and glycerol 

Cornstarch decreased the thermal 
stability of bioplastic. LDI increased 

the temperature of thermal degradation 
(compared to bioplastic without LDI) 
and decreased biodegradability. LDI 

allowed a homogeneous surface 
morphology 

[25] 
 

Banana starch  Banana starch was 
derived from green 

banana, glycerol 
purchased, chitosan, de-

acetylation, ZnO 
powder, NaOH, glacial 

acetic acid 

Bioplastics with the addition of 3% 
ZnO increase the tensile strength up to 
36 MPa. On the contrary, an elongation 
and swelling percentage decrease with 

increasing concentration of ZnO 

[26] 

Cassava peel Cassava peel, sorbitol, 
and microcrystalline 

cellulose (MCC) 

MCC increases the tensile strength of 
bioplastic. It was reported that the 

addition of 6% MCC has the highest 
tensile strength. However, it decreased 

elongation, density, and water 
absorption. 

[27] 
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Table 1. (continue) Reports on the synthesis of bioplastic 
Type of 

carbohydrate 
Raw material Results Ref. 

Potato starch  Sodium hypochlorite, 
glycerol, acetic acid 

chitosan (shrimp shells) 
potato starch, and 

eggshells 

Compared with bioplastics chitosan, 
bioplastic with eggshell improved 

tensile strength and good 
biodegradability 

[28] 

Bamboo Bamboo 
(Dendrocalamus asper), 

cellulose, toluene-
alcohol solvent, 

potassium chloride, and 
hydrogen peroxide 

Tensile strength of bioplastics with 
optimal conditions at 5% of 

microfibrils and 3% of potassium 
chloride 

[29] 

Tamarind seed Tamarind seed, 
microcrystalline 

cellulose, ethanol, 
NaOH, and glycerol 

 

Bioplastic with the addition of 
Microcrystalline cellulose optimization 

mechanical properties 

[30] 

Jackfruit seed 
starch 

(Artocarpus 
heterophyllus) 

Jackfruit seeds, Cocoa 
pod husk, distilled water 

(H2O), Sodium 
Hydroxide (NaOH), 

Sodium Hypochlorite 
(NaOCl), Acid Chloride 

(HCl) 

The ratio of bioplastic starch with the 
addition of microcrystalline cellulose to 
have the best mechanical properties is 

8:2. It possesses 0.637 MPa tensile 
strength and an extension of 7.04%. 

[31] 

Avocado seed Avocado seed, 
microcrystalline 

cellulose, glycerol, 
hydrochloric acid, 

potassium hydroxide, 
Sodium hypochlorite, 
sugar palm fibers, and 

water 

The ratio of bioplastic avocado seeds 
with the addition of microcrystalline to 
have the best mechanical properties is 

7:3. It possesses 2.74 MPa tensile 
strength and an extension of 3.61%. 

The Bioplastic surface morphology is 
uneven and hollow 

[32] 

Durian seed  Durian seeds, ultrapure 
water, chitosan, acetic 
acid (0.10%), and lime 

water 

The mechanical properties test result of 
bioplastic from durian seeds are still far 
from the standard when it is compared 
with the moderate bioplastic. It has a 
tensile strength of 0.1158 MPa while 

the standard has an elongation of 
2.1875% and Young's modulus of 

4.1515 MPa. 

[33] 

 
Physicochemical properties. The prepared bioplastic was characterized using a Digital 

Microscope (BXAW-AX-BC, China) to analyze the chemical structure and particle 
morphology, respectively. To support the analysis, we conducted characterizations using a 
Fourier Transform infrared (FTIR-4600, Jasco Corp., Japan) to the prepared bioplastic. 

Mechanical properties. The compression test was performed using 313 Family 
Universal Test Machine with a loading rate of 1 mm/sec at 24°C and humidity of 10%. The 
samples were tested for the compression test having a variable dimension, as shown in 
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Table 2. Before the test was carried out, the samples were measured using a Vernier caliper, 
and the compression plate was coated with Vaseline jelly as the lubricant to reduce the 
friction effect. Data collected from compression tests such as the load-displacement curves 
and the stress-strain curves were evaluated from each sample to analyze its mechanical 
properties, i.e. Young's modulus and ultimate strength. 

 
Table 2. Samples dimension 

Bioplastic with specific amount turmeric, % (w/w) Dimension, cm 
0.50 2×2×0.6 
0.75 2×2×0.6 
1.00 1.5×1.5×0.5 
1.50 1.5×1.5×0.5 

  
The following formula can be used to process the raw data from the compression test 

for further analyses: 
(1) Ultimate compressive strength (Sucs) is defined as the maximum force that can be held in 
the sample when being compressed before the material is broken. The ultimate compression 
strength can be calculated by dividing maximum stress (FM; N) with the cross-section area of 
the specimen (A; mm2)) as shown in Eq. (1) [34]. 
Sucs =

𝐹𝐹𝑀𝑀
𝐴𝐴

. (1) 
(2) Young's modulus (E) is a mechanical property that measures the stiffness of elastic 
deformation of the specimen under a given load. Young's modulus can be obtained from the 
slope of the stress-strain since defines the relationship between stress (σ) and strain (ɛ) of 
material deformation in the linear elasticity regime. Young's modulus can be determined 
using Eq. (2) [34]. 
E = 𝜎𝜎2−𝜎𝜎1

ɛ2−ɛ1
, (2) 

where ε1 and ε2 are the condition of relative elongation, and σ1 and σ2 are the stress that occurs 
at ε1 and ε2, respectively. The method of observing the slope-strain of the sample for defining 
Young's modulus is adopted since the slope of the sample can be directly observed as a 
function of the material deformation (strain).  

Biodegradability. The biodegradability tests were conducted by slicing the prepared 
bioplastics with sizes of about 5×5×5 mm and then immersing them into ultrapure water. The 
weight losses of the sample were measure at the interval time of two days. In line with this 
test, during the immersing process, it was also visually observed the change of color. Detailed 
information about the biodegradability test is reported in our previous study [35]. 
 
3. Results and Discussion  
Figure 1 is a photograph of a bioplastic fabrication with the addition of the amount of 
turmeric. The addition of turmeric gives the bioplastic end product its yellow color. The 
amount of turmeric added affects the physical condition of the bioplastic, where the bioplastic 
with a higher amount of turmeric causes the bioplastic to crack (see Figs. 1 (a) 0.50; (b) 0.75; 
(c) 1.00; and (d) 1.50% (w/w)). 

To clarify the bioplastic structure, a microscope analysis was conducted (See Fig. 2). 
The results in Figs. 2(a) and (b) are the appearances of the micron-sized cornstarch and 
turmeric powder that has been prepared. Micron-sized cornstarch is a white crystal, solid and 
dense. Turmeric powder is a yellow color, heterogeneous surface, and agglomerate. Figure 
2(c), (d), (e), and (f) are bioplastics with addition of specific amount of turmeric of 0.50; 0.75; 
1.00; and 1.50% (w/w), respectively. Bioplastics with the addition of a higher amount of 
turmeric have a more heterogeneous surface and agglomerates, making them more brittle and 
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stiffer. Figure 2(g) is the appearance of the bioplastic after being immersed for two weeks in 
water. The color of the bioplastic starts to change from yellow to brownish-yellow. It can be 
seen that after two weeks of immersion, cracks are found due to the swelling phenomenon. 
Figure 2(h) is the appearance of the bioplastic after being immersed for four weeks in the 
water in which fungi grow significantly. 
 

 
 

Fig. 1. Photograph image of cornstarch-based bioplastics with the addition specific amount 
turmeric (a) 0.50; (b) 0.75; (c) 1.00; and (d) 1.50% (w/w) 

 

 
 

Fig. 2. Microscope image of sample: (a) micro-sized cornstarch, (b) agglomerated turmeric 
powder, (c-f) bioplastic with specific amount turmeric ((c) 0.50; (d) 0.75; (e) 1.00;  

and (e) 1.50% (w/w)), (g) bioplastics after two weeks immerged in water and (h) fungi 
bioplastic after four weeks immerged in water    

 
To confirm the phenomenon during the immersion process, Fig. 3 shows the results of 

the FTIR analysis of as-prepared bioplastics, bioplastics immersed for two weeks in water, 
and the surface of the bioplastic samples immersed for four weeks. Data were then compared 
with the standard FTIR analysis [36]. The as-prepared bioplastic results were identified at 
wavelengths 1022, 1647, and 3280 cm-1. A comparison of FTIR peaks for bioplastics before 
and after two weeks of immersion in water confirms that biodegradability in water is simply a 
dilution of the outer components of the bioplastic. The reaction between water and bioplastics 
involves a dilution process and does not interfere with complicated reactions. We also found 
that in the FTIR spectra of bioplastics after four weeks of immersion, the absorption peak 
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experienced a decrease in intensity, indicating degradation that changed the chemical 
structure of bioplastics due to fungal activity. 

 

 
Fig. 3. FTIR analysis results of as-prepared bioplastic, 2-week immerged bioplastic in water, 

and fungus on the 4-week immerged sample 
 

A biodegradability test of bioplastic samples with different turmeric amounts was 
carried out by immersion method [35]. It was evaluated by analyzing the mass of the 
bioplastics as a function of days. Table 3 shows the results of the bioplastic reduction 
performed for two weeks. The analysis showed that the sample with 0.50% (w/w) of turmeric 
had the best biodegradability, which was indicated by a weight loss of 86% for two weeks. 
The possible weight loss during 2-week immersion is because the bioplastics' outer surfaces 
were diluted in water, which was confirmed by the identical FTIR patterns. This result is 
different for 2-week immersion bioplastic, in which the mass loss was followed by the 
appearance of fungus (see Fig. 2(h)) and fungus chemical structure (see Fig. 3). The present 
bioplastics were made from cornstarch, making microorganisms to break the polymer chain 
easily inside the bioplastics themselves [37]. However, we found that the biodegradability of 
the present bioplastic is slower than that of bioplastic made from starch without additional 
curcumin [36]. The main reason is that the curcumin creates an antimicrobial agent, slowing 
the growth of microbes in degrading the bioplastic.  

Figure 4 is a two-dimensional illustration model of particle crack during mechanical 
testing. The blue square and yellow circle represent the cornstarch and turmeric particle, 
respectively. The amount of turmeric added to the bioplastic fabrication process directly 
affects the mechanical and physical properties of the bioplastic. Due to the nature of a crack, 
the initiated crack propagates toward the turmeric particles because of the relatively low 
stiffness than cornstarch (see Fig. 4(a)) [38]. Furthermore, the bonding between cornstarch 
and turmeric is relatively low and easy to break [39]. This means the addition of turmeric 
amount could fasten the crack propagation (see Fig. 4(b)). However, when the turmeric 
particles are quite a lot, a polymerization between turmeric particles might occur, resulting in 
a higher stiffness of polymerized turmeric particles (see Fig. (4c)). As a consequence, the 
initiated crack tends to avoid the polymerized turmeric particles. To confirm these 
phenomena, compressive test for different turmeric amount was conducted. 
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Table 3. Weight loss bioplastics with the addition of a specific amount of turmeric during the 
immersion process  

0.50% 
(w/w) 

Days Initial 
Dimension, 

cm2 

Initial 
mass,  

g 

Mass after 
Immersion, 

g 

Mass loss, 
wt% 

Decay 
dimension, 

g/cm2 
1 1.316 0.150 0.113 24 0.030 
2 1.311 0.093 0.043 55 0.039 
4 1.120 0.107 0.037 66 0.063 
6 1.254 0.133 0.040 71 0.075 
8 1.181 0.153 0.040 74 0.096 
10 1.283 0.143 0.027 81 0.092 
14 1.460 0.143 0.020 86 0.088 

0.75% 
(w/w) 

Days Initial 
Dimension, 

cm2 

Initial 
mass,  

g 

Mass after 
Immersion, 

g 

Mass loss, 
wt% 

Decay 
dimension, 

g/cm2 
1 1.089 0.130 0.087 33 0.040 
2 1.364 0.127 0.077 40 0.039 
4 1.203 0.140 0.067 53 0.070 
6 1.071 0.147 0.057 61 0.085 
8 1.214 0.133 0.050 63 0.069 
10 0.939 0.107 0.037 66 0.075 
14 1.145 0.0133 0.037 73 0.086 

1.00% 
(w/w) 

Days Initial 
Dimension, 

cm2 

Initial 
mass,  

g 

Mass after 
Immersion, 

g 

Mass loss, 
wt% 

Decay 
dimension, 

g/cm2 
1 1.106 0.147 0.090 39 0.052 
2 1.146 0.143 0.080 44 0.055 
4 0.887 0.127 0.063 50 0.071 
6 1.070 0.133 0.053 60 0.076 
8 1.038 0.140 0.053 62 0.085 
10 1.103 0.153 0.053 65 0.095 
14 1.101 0.143 0.043 70 0.093 

1.50% 
(w/w) 

Days  Initial 
Dimension, 

cm2 

Initial 
mass,  

g 

Mass after 
Immersion, 

g 

Mass loss, 
wt% 

Decay 
dimension, 

g/cm2 
1 1.378 0.137 0.103 24 0.025 
2 1.006 0.120 0.063 48 0.065 
4 1.192 0.110 0.047 57 0.057 
6 1.168 0.127 0.047 63 0.072 
8 1.276 0.123 0.043 65 0.063 
10 1.433 0.130 0.043 67 0.061 
14 1.249 0.130 0.040 69 0.075 
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Fig. 4. Illustration progression cracking of bioplastic for (a) low density of turmeric, (b) high 
density of turmeric, and (c) high density of turmeric with polymerization 

 
Figure 5 shows the plot of stress-strain data of the bioplastic sample from the 

compression test. Refer to Fig. 4, it can be observed that the stress-strain curve of each sample 
shows a similar trend by showing the elastic deformation region and followed by the ultimate 
stress (peak stress). The observation will be focused on the ultimate strength as it represents 
the maximum compression force per unit cross-section area that the sample can survive 
before breaking up.  

To observe the ultimate strength of each sample, the stress-strain plot was particularly 
limited to the strain of 0.6 and stress of 2250 kPa, as presented in Fig. 6. The ultimate strength 
values can be then determined as shown in Table 4. The ultimate strength values of samples 
of 0.50; 0.75; and 1.00% (w/w) were 1059.0; 941.2; and 375.8 kPa, respectively, showing a 
decreasing trend of strength with increasing turmeric addition. It decreased because the 
turmeric particle has low stiffness and low bonding strength with cornstarch. As a result, it 
fastens the crack propagation and resulting in lower compressive strength. However, sample 
1.50% (w/w) shows a different behavior of having the ultimate strength of 1957.0 kPa. It 
might be due to the high turmeric content in the material, which increased the potency of 
turmeric particles to do the polymerization process (see Fig. 4(c)), causing a higher stiffness. 
The high stiffness can resist crack propagation inside the bioplastics. This behavior was then 
confirmed by observing Young's moduli values of each bioplastic sample under compressive 
load. 
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Fig. 5. Stress vs strain of bioplastic samples 

 
Fig. 6. Stress vs strain of bioplastic samples limited at strain 0.6 and 2250 kPa, respectively 
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Table 4. Ultimate strength of bioplastic samples 
Bioplastic with the addition of specific amount turmeric, % 

(w/w) 
Ultimate strength,  

kPa 
0.50 1059.0 
0.75 941.2 
1.00 375.8 
1.50 1957.0 

 
The amount of turmeric affects the stiffness of the sample as the higher turmeric amount 

may lower the intermolecular bonding that results in a heterogeneous sample structure. It 
causes the stiffness of the material to decrease. This is related to fiber interaction [40] and 
polymerization [35]. As the result, the measured Young's modulus decreased with increasing 
turmeric content. These phenomena are shown in Fig. 7, in which the slope of the stress-strain 
curve of each sample represented Young's modulus. Based on the plot, Young's moduli of 
bioplastic samples of 0.50; 0.75; and 1.00% (w/w) were concluded to be 13090, 13000, and 
7500 kPa, respectively (see Table 5). However, the bioplastic sample with a turmeric amount 
of 1.50% (w/w) showed a different trend of having two peaks. It may be correlated with the 
polymerization of between turmeric particles in the sample (see Fig. 4(c)), therefore the 
rupture characteristics affect the instability during the compression test including the stress-
strain curves [41]. Hence, the stress-strain curve showed different trends of having two peaks 
of the slope. 
 

 
Fig. 7. Slope of stress-strain curves vs. strain of bioplastic specimens  
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Table 5. Ultimate strength of bioplastic samples 
Bioplastic with specific amount turmeric,  

% (w/w) 
Young's Modulus,  

kPa 
0.50 13090 
0.75 13000 
1.00 7500 
1.50 22083 

 
5. Conclusion  
The present work investigated biodegradability and the mechanical properties of cornstarch-
based bioplastic materials by incorporating the effect of turmeric microparticles number. 
Based on FTIR analysis, the bioplastic soaked in water for two weeks does not demonstrate 
any chemical reactions, which means the dissolving process mainly causes the loss of 
bioplastic weight. In contrast, the bioplastic left for four weeks shows a chemical reaction 
caused by fungi activity. From the compressive test results, it was revealed that, for turmeric 
of from 0.50 to 1.00% (w/w), increasing the turmeric amount resulted in decreasing the 
ultimate strength value. This was likely due to the bonding between cornstarch and turmeric 
particles relatively weak. Furthermore, the low Young' modulus was recorded as the number 
of turmeric particles is high. It indicates the turmeric particles has lower rigidity than the 
cornstarch matrix. Due to the nature of the cracks, which always propagate to particles having 
lower rigidity, the bioplastic will crack more easily for higher turmeric particles. Thus, in the 
range of turmeric of 0.50 to 1.00% (w/w), the highest ultimate strength and highest Young's 
modulus of bioplastic sample were achieved by sample 0.50 (w/w) i.e. 1059 and 13090 kPa, 
respectively. However, different phenomena appeared for turmeric of 1.50%, in which the 
ultimate strength and Young’s modulus drastically increase i.e. 1957 and 22083 kPa, 
respectively. The turmeric particles are sufficient to create polymerization which causes the 
rigidity of turmeric particles to increase significantly. Thus, the crack propagates slowly in the 
bioplastic. The determination of turmeric amount in creating the cornstarch-based bioplastic is 
essential to assure the mechanical properties and biodegradability are as designed. 
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Abstract. A theoretical model of plastic deformation of nanocrystalline ceramics in the 
region of small grain sizes is proposed. In the framework of the model, deformation is 
described as the combined action of grain boundary sliding and emission of lattice 
dislocations from triple junctions of grain boundaries. Using the method of discrete 
dislocation dynamics we obtained an inverse Hall-Petch relation, which qualitatively 
coincides with the experimentally measured dependences of microhardness in nanocrystalline 
ceramics with extremely small grain sizes. 
Keywords: discrete dislocation dynamics, inverse Hall-Petch relation, ceramics, yield stress, 
hardness 

 
 

1. Introduction 
The high strength and hardness of nanocrystalline ceramics make them good candidates for 
use in various industries, including electronics, optics, and power engineering [1-6]. Usually, 
the microhardness of ceramics obeys the Hall-Petch relation, which predicts a linear 
dependence between microhardness and the inverse square root of the grain size [7-9]. At the 
same time, several research groups [10-16] have demonstrated an inverse Hall-Petch relation 
(i.e., a decrease in microhardness with a decrease in grain size) in various nanocrystalline 
ceramics at grain sizes below a certain critical value. At the same time, the authors of Refs. 
[17,18] recently succeeded in synthesizing superstrong nanocrystalline MgAl2O4 and 
ZnAl2O4 ceramics, which demonstrated the direct Hall-Petch relation down to grain sizes of  
7 and 10 nm, respectively. The reason for these contradictory results is not yet clear, and for 
their explanation, it is necessary to understand the processes of plastic deformation occurring 
in nanoceramics. 

Molecular dynamics simulations [16,19,20] and experiments [16,21] have demonstrated 
the important role of deformation processes associated with grain boundaries (for example, 
grain boundary sliding and grain rotations), as well as processes of intragranular dislocation 
plasticity and formation of shear bands. In these works, a transition was observed from 
predominantly intragrain plasticity to grain boundary mediated deformation processes with a 
decrease in the grain size. The processes of plastic deformation in nanocrystalline ceramics, as 
well as the direct and inverse Hall-Petch relation for such materials, were also studied in 
theoretical works [12,22,23]. Authors of Refs. [12,22] utilized phenomenological composite 
models, which do not take into account any physical mechanisms of plastic deformation. In a 
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recent theoretical work [23], the transition from intragranular dislocation plasticity to sliding 
along grain boundaries was considered. As a result, the authors of [23] were able to explain 
the existence of both direct and inverse Hall-Petch dependences in nanocrystalline ceramics 
with very small grain sizes. At the same time, the assumptions of the model [23] about 
thermally activated sliding along grain boundaries, predicting a significant dependence of the 
microhardness on the strain rate, could not explain the observed [15] weak dependence of the 
microhardness on the strain rate in nanocrystalline MgAl2O4 ceramics. 

At present, there is no universal physically substantiated model explaining the presence 
of the inverse Hall-Petch relation in nanocrystalline ceramics, together with other 
experimental data. In this work, we propose a model of plastic deformation of nanocrystalline 
ceramics realized via grain boundary sliding in combination with the emission of lattice 
dislocations from the regions of grain boundaries adjacent to triple junctions. To calculate the 
yield stress within the framework of this model and explain the inverse Hall-Petch relation for 
nanocrystalline ceramics, we will use the method of discrete dislocation dynamics, which is 
briefly described in the next section. 
 
2. Discrete dislocation dynamics method: brief description 
Discrete dislocation dynamics (DDD) is a common method for describing the motion of 
dislocations, which makes it possible to clearly track the positions of individual dislocations 
and calculate the accumulation of plastic deformation in a material. In this work, we propose 
a simple two-dimensional model, which in the future can be extended to the three-
dimensional case in a fairly obvious, albeit time-consuming way. In the framework of two-
dimensional DDD, edge dislocations are modeled as point sources of deformation, 
characterized by the Burgers vector b. The dislocations are assumed to be straight and 
infinitely long in the direction perpendicular to the model plane. The force F acting on a 
dislocation is given by the well-known expression (the Peach-Koehler force [24]): 

ξbσF ×⋅= )( , (1) 
where σ  is the tensor of elastic stresses created by all dislocations and the externally applied 
load, and ξ  is the unit vector specifying the direction of the dislocation line. The dislocation 
velocity v can then be determined using the law of motion [25]: 

FMv ⋅= , (2) 
where M is the mobility tensor. In the simple case considered here, when dislocations are able 
to move only in one slip plane (which is typical for fcc structures), the tensor M is given by 
the expression: 

)( nnIМ ⊗−= gm , (3) 
where gm  is dislocation mobility constant, I is the identity matrix, n is the vector normal to 
the slip plane of the dislocation. The time dependence of the dislocation position )(tri  in its 
slip plane is found as a result of the iterative process: 

ttvtrttr iii ∆+=∆+ )()()( , (4) 
where )(tvi  is the dislocation velocity v projection on the glide direction and t∆  is the time 
step. Tracking all dislocation positions we can easily calculate the total plastic strain 
accumulated in the material at any given time. 

Within the framework of the DDD approach, two main mechanisms are usually 
introduced: (1) nucleation of dislocations and (2) annihilation of dislocations. In the two-
dimensional approach, the nucleation of dislocations is described by randomly placing point 
dislocation sources of the Frank-Read type. When triggered, such a source generates a pair 
(dipole) of dislocations of opposite signs, equidistant from the source and spaced from each 
other at a certain (specified) distance sl . Nucleation occurs when the effective shear stress at 
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the source exceeds the specified critical value sτ  (source power). The distance sl  is, in fact, 
the equilibrium distance between two dislocations under the action of shear stress sτ , and 
these quantities are related to each other by the known expression: 

s
s l

Gb 1
)1(2 νπ

τ
−

= , (5) 

where G is the shear modulus and ν  is Poisson's ratio. Annihilation of dislocations is 
implemented by removing any pair of dislocations of opposite sign that approach each other 
at a given (small) distance. 
 
3. Simulation of grain boundary sliding and emission of dislocations from triple 
junctions of grain boundaries 
Commonly the method described above is used to model dislocation plasticity, which is 
realized via glide of lattice dislocations. However, it is possible to use this method to describe 
the mechanism of grain boundary sliding. This mechanism is represented (see, for example, 
[26]), similarly to lattice slip, as the nucleation and slip of grain boundary dislocations along 
the grain boundary planes. Within the framework of DDD, grain-boundary dislocations are 
similar to lattice dislocations (except for the magnitude of the Burgers vector). 
 

 
Fig. 1. A model of grain boundary sliding and emission of lattice dislocations from grain 

boundary triple junctions 
 

A schematic depiction of the grain boundary deformation model is shown in Fig. 1. 
Consider a fragment of a nanocrystalline structure under the action of external shear stress. 
The material is assumed to be elastically isotropic and consists of identical hexagonal grains 
of size d. To simulate grain boundary sliding, we will place the source of grain boundary 
dislocations on one of the grain boundaries. Since the Burgers vector of grain-boundary 
dislocations is much smaller than the lattice one, such a source is activated at lower applied 
stress as compared to the sources of lattice dislocations. Therefore, grain boundary sliding is 
at first carried out relatively easily until the emitted dislocations begin to accumulate on some 
obstacle. The main and most important obstacle to the movement of dislocations is the triple 
junctions of grain boundaries. Their role is especially important in nanocrystalline structures 
due to the small grain size. In this work, we will not consider the mechanisms of overcoming 
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barriers by dislocations, i.e., the transfer of plastic shear through a triple junction to 
neighboring grain boundaries. Consequently, under the action of the applied voltage, the 
source will successively emit dipoles of grain-boundary dislocations (see Fig. 1), 
characterized by the Burger's vector, until a sufficient amount of them is accumulated to 
"lock" the source. Emission and sliding of grain boundary dislocations cause plastic shear 
along the grain boundary. 

As a result of the source's operation, a double pile-up of grain-boundary dislocations is 
formed at the grain boundary, pressed against the triple junctions. As is known from the 
theory of dislocations [24], such pile-up is a stress concentrator and the area of the triple 
junctions are characterized by increased elastic stresses. Consequently, triple junctions can act 
as sources of heterogeneous nucleation of dislocations, which is regularly observed in 
molecular dynamics simulations [27,28]. In this work, we will also consider triple junctions as 
sources of lattice dislocations, activated in the stress field of grain-boundary dislocations pile-
ups. 

Within the framework of the DDD approach, the process of emission of lattice 
dislocations from triple joints is simulated by the following method. Near the triple junction 
where grain-boundary dislocations are accumulated, at a given short distance we place a 
virtual source of lattice dislocations (see Fig. 1). It is a virtual source in the sense that there is 
actually no actual Frank-Read source at this point. In reality, a lattice dislocation is emitted as 
a result of the splitting of the head grain-boundary dislocation of the pile-up. However, such a 
process is inconvenient to describe within the framework of the DDD formalism. Thus we 
place an ordinary dislocation source in the vicinity of the triple junction. In this case, the 
length, and, consequently, the power of the source (see formula (5)), will be determined by 
the distance to the nearest grain boundary from the dislocation source. The only difference 
between this source and the standard Frank-Read source is that we do not set a fixed sliding 
plane for it, but we check it for operation in all possible sliding planes that exist in the 
material being modeled. As a result of the activation of this source, one of the dislocations 
remains near the triple junction, and the second goes into the grain body. The dislocation 
remaining in the triple junction effectively "locks" the source, so the triple junction can emit 
only one dislocation. 

Summing up, the modeled process in this work is presented as follows (Fig. 1). The 
applied stress activates the source of grain boundary dislocations (marked as × ) in the center 
of one of the grain boundaries, causing the intergranular slip. Grain-boundary dislocations 
accumulate at the triple junction, which leads to stress concentration in the vicinity of the 
triple junction. This, in turn, can lead (if the stress is high enough) to the activation of the 
source of lattice dislocations (× ) and the nucleation of one lattice dislocation near the triple 
junction, and the emission of another lattice dislocation into the grain body. 

 
4. Results and discussion 
Following the approach outlined in the previous paragraphs, we simulated plastic deformation 
in a nanocrystalline material using the example of MgAl2O4 ceramic bulk material 
characterized by the following value of parameters. For this, we used the model system  
shown in Fig. 1 and subjected to shear stress τ . We placed the source of grain-boundary 
dislocations exactly in the center of the grain boundary and set the distance 2=sl  nm, the 
Burgers vector of lattice dislocations equal to 3.0=b  nm [23], and grain-boundary 
dislocations – 10/bbgb = . The virtual source of lattice dislocations was placed at a distance 
of 2 nm from the triple junction exactly on the grain boundary line. We defined possible 
lattice slip systems as follows. We assumed that a grain has six possible slip planes defined by 
an angle 3/πϕ n=  (where n is an integer) relative to a randomly specified orientation 
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3/0 πθ <≤  of the grain itself (relative to the reference coordinate system). Since in this work 
we are interested in the inverse Hall-Petch dependence, we simulated a material with very 
small grain size, in which there are no sources of lattice dislocations in the volume of grains 
(except for virtual sources near triple junctions). 

Figure 2 shows the calculated dependences of the plastic shear strain on the applied 
stress τ  for different grain sizes. The dependences clearly show a strain jump corresponding 
to the moment of emission of a lattice dislocation from a triple junction. Translating shear into 
tensile deformation, we also calculated the dependence of the conventional tensile yield stress 

2,0σ  on the grain size (Fig. 3). Figure 3 clearly demonstrates the inverse Hall-Petch 
dependence in the range of grain sizes from 10 to 50 nm – an increase in the yield stress with 
an increase in the grain size. 

 

 
Fig. 2. Shear strain γ  dependence on applied shear stress τ  for various grain sizes of 

nanocrystalline MgAl2O4 ceramic 
 

 
Fig. 3. Yield stress 0.2σ  dependence on the grain size d of nanocrystalline MgAl2O4 ceramic 

 
It should be noted that the simplified nature of the model does not allow obtaining 

realistic absolute values of the yield stress that coincide with the experimental data. While our 
simulations estimate yield stress at the level of 0.01–0.02G (which for MgAl2O4 ceramic with 
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100≈G GPa gives ~1–2 GPa), the experimental data on microhardness measurements in 
nanocrystalline ceramics [10-16] reports typical values of 3020−=VH  GPa, which translates 
(using standard phenomenological relation 0.23VH σ= ) to yield stress of the order of  
6–10 GPa. So our data significantly underestimate yield stress (microhardness). The 
discrepancy in absolute values of calculated and measured yield stress is most likely 
attributed to the lack of certain deformation mechanisms specific to MgAl2O4 ceramic in our 
model. For example, it is possible that the transfer of plastic shear through a triple junction to 
neighboring grain boundaries, grain rotation, and GB amorphization might play a significant 
role. Also, choice of model parameters (such as dislocation mobility and source strength) 
might be improved. 

At the same time, the qualitative nature of the dependences coincides with the 
experimental data on microhardness measurements in nanocrystalline ceramics [10-16]. 
Further research is planned to improve the proposed model.  

 
5. Conclusion 
Thus, in this work, we have proposed a theoretical model of deformation of nanocrystalline 
ceramics, which describes the inverse Hall-Petch relation in the region of small grain sizes. 
The model was verified by the method of discrete dislocation dynamics. The results of the 
model showed a qualitative agreement with the experimental data. We can conclude that grain 
boundary sliding combined with intragrain plasticity seems to reasonably explain the 
experimental observations. 
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Abstract. The article discusses a new approach to the synthesis of metallic composite 
materials based on nanostructuring of a metal frame (on the example of iron) by SiC 
nanostructures (10-50 nm). Optimal conditions are established for the nano-SiC coating on 
the porous Fe surface during sequential chemisorption of Cl2Si(CH3)2 and CH4 molecules 
from the gas phase. The resulting composite possesses enhanced strength in comparison with 
the best steel samples although the residual porosity (up to 5%) of Fe matrix is still preserved 
after pressing. 
Keywords: composite, metallic framework, iron, disperse phase, SiC, ultimate strength 

 
 

1. Introduction 
One of the crucial tasks of modern materials science is the development of new composites 
with improved functional properties [1]. The importance of an interdisciplinary approach to 
this task should be noted [2-4]. The structural organization of matter is one of the key 
problems of natural science. This is because the questions of the matter organization at 
different levels are studied by physics, mechanics, chemistry, and biology. Establishing 
physical and chemical parameters that control the properties of artificially ordered 
nanostructures materials based on them is one of the most important areas of world research. 
From the physical mesomechanics point of view, chemical nanostructuring of materials leads 
to new objects with multi-level organization, which is necessary for a more correct approach 
to the study (experimental and theoretical) of structural transformation at the nanoscale 
level [2-6]. 

Iron- or aluminum-based composites are important materials for a wide range of 
structural applications. An enhancement of the mechanical properties of iron- or aluminum-
based composites can be realized by creating a nanoscale structure with high uniformity and 
well-formed intergranular boundaries [2,7]. 

Known metal composites fabrication techniques [1,2] cannot give a uniform distribution 
of the dispersed phase in the bulk matrix. The lack of uniform distribution prevents the 
achievement of the maximal mechanical properties of the composite [6]. 

We have developed a new approach to the synthesis of composites based on the 
processes of three-dimensional nanostructuring (reinforcement) of the matrix frame with a 
dispersed nanophase [8-11]. 

Metal matrix nanostructuring involves the distribution of nano-carbide in the bulk 
porous matrix. The product is a composite material comprising an iron metallic frame 
reinforced (permeated) with silicon carbide (SiC)-based nanostructures with improved 
strength. 
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The purpose of this work was to establish the conditions for obtaining SiC nanolayers 
on the nanodispersed porous Fe powder surface. In fact, the composite formation process 
includes 3 main stages: 

1. Fabrication of Fe matrix with a pre-defined porosity; 
2. Surface modification of prepared porous Fe matrix with SiC (10-50 nm) 

nanostructures. 
3. Pressing and sintering to produce a massive (non-porous) Fe/SiC nanocomposite. 
 

2. Materials and Methods  
Chemicals. The chemicals were obtained from commercial suppliers: SiCl4 (99,6%), (Alfa 
Aesar), CCl4, Cl2Si(CH3)2. (Sigma-Aldrich), FeCl2·4H2O, NaOH (Merck), and СН4 (gaseous) 
(Lengaz).  

Methods. The powder phases were identified by powder XRD using Bruker D2 Phaser 
diffractometer with a cobalt anode. 

The morphology of samples was studied with the scanning electron microscope (Zeiss 
Merlin) operated at 10–15 kV in In-lens, SE2, and EDS modes. The magnifications from 300 
up to 600 000 (spatial resolution 1 nm) were used.  

The Mössbauer spectra were recorded at the constant acceleration in combination 
with the use of a multichannel Nuclear Data Instruments ND 60 analyzer. In our work, 
we used a 57Co radiation source that decays to 57Fe. 

Specific surface (Ssp) of the samples were determined using BET model of 
nitrogen adsorption. From specific surface values Ssp, the average size of powder 
particles can be evaluated according to the equation dav = 6/(ρ S), where ρ is substance 
density. 

The ultimate strength (σb) was determined on the AG-50kNXD desktop testing machine 
(Shimadzu) at the Resource Center for innovative composite materials technologies of 
St. Petersburg State University. 

Iron nanoparticles fabrication. As it is known, with a decrease in grain size, the 
strength increases while maintaining plasticity. The effect of low-temperature and high-speed 
superplasticity is manifested, and physical properties changes are observed. 

In order to obtain Fe NPs of high dispersion, it is necessary to use the precursors that 
could be reduced at a possibly lower temperature [1]. So, we selected the way via amorphous 
iron oxide-hydroxide FeOOH as intermediate. 

FeOOH was synthesized by precipitation from FеSO4·7Н2О using NаОН in distilled 
water. 

Final precipitate washed with distilled water and dried at 120°C for 5 h. 
Fe nanopowders were obtained by subsequent FeOOH (1 g) reduction in a quartz tube 

furnace with nichrome heaters at 400°C for 90 min. Hydrogen (≥99.99% pure) was used as 
the reductant. The rate of the H2 supply was 2–5·10-6 m3/s. As a result, we produced 
Fe nanoparticles denoted as [Fe]aH. 

Iron nanoparticles compaction. [Fe]aH (particle size of 60 nm) was uniaxially 
compacted in a cylindrical mold (internal diameter 15 mm; the height of the compact  
5-7 mm). 

Optimized pressing conditions were suggested after pre-experiments: powder weight 
9g, height of the resulting sample h = 4.96 mm, diameter = 15 mm, ρ = 4.60 g/ml. The 
pressure of 200 MPa loaded during 60 s, maintained for 180 s, then unloaded during 30 s. 

The compacts' density was determined by hydrostatic weighing with an accuracy 
of 2 %. 
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These conditions provide Fe samples with 20-30% residual porosity. This is proved to 
be sufficient for further surface chemical reactions. 

ALD deposition of SiC. SiC dispersed phase on Fe was produced by ALD [12-18] in a 
flow-type reactor. The ALD technique is based on alternating chemical reactions of low 
molecular weight reagents on the surface. As a result of each reaction cycle, new carbide unit 
was added chemically bonded to the support. Depending on the number of such cycles, layers 
of the various thickness are synthesized. The chemical composition of the samples was 
determined by photocolorimetry for silicon and chemical analysis for carbon, based on 
burning the sample in oxygen and gas chromatographic determination of carbon in CO 
and CO2. 

Stream of dry helium was used both to provide an inert atmosphere and to assist the 
removal of gaseous by-products from the reactor. The synthesis temperature was 200-500°C.  

It's important that when storing, [Fe]aH is covered by the surface oxide layer of varying 
thickness. The composition of the oxide layer (usually 3-5 nm thick) is not stable and varies 
depending on storage conditions and other factors. So, it was necessary to purify Fe surface 
from the oxide layer before deposition. For this purpose, we used surface standardization. 
According to the developed approach, at this stage, metallic Fe particles were chlorinated to 
form ═Fe-Cl groups on the surface: 
[Fe]aH + CCl4 → [Fe]a–Cl + HCl↑ .                                                               

In this way we cleaned the surface from undesired functional groups.   
Next, Fe powders (~80 nm) were pressed together with SiC nanostructures and sintered 

to produce a non-porous composite. Fe/SiC powders uniaxially compacted in a cylindrical 
mold (internal diameter of 15 mm, the height of the compacts 5-7 mm) at a pressure of up to 
500 MPa, holding under pressure for 180 seconds. 

Finally, Fe/SiC samples were sintered in a tube furnace. To achieve the lowest porosity, 
composites were sintered in H2 atmosphere at 950°C for 2 hours with preheating the press 
from 700 to 950°C for 1 h. 

 
3. Results and Discussion 
TEM images for FeOOH particles are shown in Fig. 1. FeOOH particles showed the presence 
of aggregates with a length of ≤ 50 nm. Ssp for FeOOH is found to be 198 m2/g from the 
nitrogen sorption experiment. 

 

 
Fig. 1. Electronic microphotographs of FeOOH samples 

 
Comparing the size of iron nanoparticles for FeOOH samples reduced at different 

temperatures, it follows that an increase in the reduction temperature of FeOOH samples from 
400 to 550°C leads to an increase in the size of metallic iron particles. 
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The effect of reduction conditions on the phase composition, structure, and dispersion 
of resulting Fe powder was studied. Analysis of Fe powders by Mössbauer spectroscopy after 
reduction for 90 minutes at a temperature of 400°C and after reduction for 60 minutes in the 
temperature range of 450-550°C, showed that the samples contain only α-Fe (Fig. 2). 

 

 

 
 

Fig. 2. Mössbauer spectrum of Fe sample obtained from FeOOH dried at 120°C and reduced 
by H2 at 400°C 

 
The experimental specific surface areas and the calculated average sizes of dispersed 

Fe particles are listed in Table 1. An increase of reduction temperature from 400 to 550°C 
leads to a decrease in Ssp of metallic Fe from 8.4 to 2 m2/g. Further, FeOOH reduction at 
400°C for 90 minutes was used for the experiments. 

 
Table 1. Specific surface area and the average size of Fe particles after reduction at different 
temperatures 

Starting material Ssp, m2/g Reduction 
temperature, °C Ssp, m2/g dav, nm 

     
FeOOH 150 400 8.4 90 
heated at 450 6.6 115 

120°C 500 3.7 200 
 550 2.1 380 
 
To create a nanostructured material, it is necessary at the first stage to obtain a metal 

matrix with a certain porosity. 
The pressure varied from 50 MPa to 300 MPa. The pressing time ranged from 

30 seconds to tens of minutes. The loading and unloading time varied from seconds to 
minutes. 
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The following mode was selected to get a Fe matrix with residual porosity 20-30%. For 
Fe NPs, applying a pressure of 200 MPa for 60 seconds, holding under pressure for 
180 seconds, unloading for 30 seconds, powder weight – 9 g. Residual porosity is required for 
surface chemical reactions on the pore surface of Fe NPs. 

The synthesis of SiC nanostructures on the porous iron matrix surface. SiC 
nanostructures on the porous Fe matrix surface were ALD-synthesized based on a series of 
successive surface reactions with functional groups on the surface. An important feature of 
ALD nanolayers is the absence of nucleation under certain synthetic conditions, which allows 
tuning the functional properties of the product more finely. 

The synthesis included the following sequence of operations: 
1. Porous Fe particles (1 g) were exposed to CCl4 vapors at 350°C to remove the oxide 

layer (reaction 1). 
2. Chlorinated samples underwent direct treatment by vapors of silicon-containing 

CH3SiH for attaching silicon-carbon groups to the Fe particles surface (reaction 3). 
3. Alternatively, the chlorinated sample was first converted to methylated one by 

methane treatment at 500°C (reaction 2). After that, the methylated sample reacted with 
Cl2Si(CH3)2 (reaction 4). 
[Fe]aH + CCl4 →Fe]a–Cl + HCl↑,                                                                 (1) 
[Fe]a–Cl + CH4 →[Fe]a–CH3 + HCl↑,                                                           (2) 
[Fe]a–Cl + CH3SiH →[Fe]a–CH2SiH + HCl↑,                                            (3) 
[Fe]a–СH3 + Cl2Si(CH3)2 → [Fe]a–НC =Si(CH3)2 + 2HCl↑,                      (4) 
Fe]a–НC=Si(CH3)2 + Cl2Si(CH3)2 → [Fe]a–НC=Si(CH3)2–НC=Si(CH3)2 + 2HCl.        (5) 

Reaction (3) resulted in the substitution of Cl by silicon-carbon groups. Since 
methylsilane is thermally stable up to 400°C, this reaction was performed in the range of  
300-400°C. However, in this range, the replacement of Cl with silicon-carbon groups was not 
effective enough – ca. 40% (according to the Cl content in the product). 

At the same time, methylation (reaction 2) and subsequent reaction with Cl2Si(CH3)2 is 
found to give almost 100% replacement. 

Based on these results, we further used reaction (4). Chemical analysis of modified Fe 
suggested that the Si and Cl content reaches a maximum at 400°C. The amounts of reacting 
silicon and chlorine on the sample remain approximately constant, with the Cl/Si ratio  
2.4–2.6. Above 450°C the silicon content significantly decreases. Further increase of SiC 
nanolayer thickness is performed using reaction (5). 

The reaction product comprises the Fe particles surface with silicon-carbon tails 
НC=Si(CH3)2 covalently bound to surface –CH3 groups. 

As a result of this work, Fe/SiC samples with varied SiC content were synthesized 
(Table 3). 

 
Table 3. Composition of Fe/SiC samples 

Sample 
No. 

Cycles 
number SiC content (wt%) Sample composition 

 
1 - - 100% Fe 
2 1 1.5 95.5% Fe + 1.5% SiC 
3 2 3  97% Fe + 3 %  SiC  
4 5 8.5 91.5% Fe + 8.5% SiC 
5 10 15.5 84.5% Fe+ 15.5% SiC 
6 16 25.5  74.5% Fe + 25.5 % SiC 

 
Figure 3 shows the XRD pattern of sample No. 6 (SiC content 25.5 wt. %) that confirms 

the presence of α-Fe and SiC peaks. 
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Fig. 3. XRD pattern of a Fe/SiC (25.5 wt%) sample after heating at 900°C 

 
It is found that in the range of 700-800°C, SiC is in a partially amorphous state, while 

higher heating temperatures (900°C and more) leads to the formation of polycrystalline SiC. 
Based on XRD data, the average size of SiC crystallites after heating at 700-800°C is found to 
be ~2 nm, and at 900°C is ~6 nm. 

Pressing and sintering of iron coated with hardening SiC nanostructures. Bulk 
nanocrystalline materials are of high interest because their structural and functional properties 
differ significantly from those of coarse-grained analogues [9,19]. 

Nanocrystalline materials are usually obtained by powder metallurgy, crystallization 
from an amorphous state, and severe plastic deformation. Features of nanocrystalline 
materials (grain size, a significant amount of interfaces, porosity, and other structural defects) 
depend on the preparation methods and have a significant impact on their properties. 

The optimal conditions to achieve the best strength of non-porous compacts were 
analyzed, namely, the temperature and duration of sintering and pressing, intermediate 
temperature exposures, and the sintering medium (argon or hydrogen). 

The pressure of 0.05 to 1.1 GPa was applied. A further increase in pressure does not 
lead to a significant increase in the compact density. At pressures of up to 0.5 GPa, the 
nanopowders compacted much less intensely than coarse particles. The loading time was 
varied from 1 to 23 minutes, the exposure duration under load ranged from 1 to 3 minutes, the 
duration of unloading was 2-4 minutes. The results of powder pressing show that loading for 
more than 15 minutes leads to the absence of cracks in the samples. Increasing the holding 
time under load from 1 to 3 minutes also leads to similar results. 

To achieve the lowest porosity, compacts must be sintered in H2 at 950°C for 2 hours 
with preheating of the press from 700 to 950°C for 1 h. This mode of sintering allowed to 
increase the density of the bulk sample (porosity is reduced to 5%). Sintering at a temperature 
above 1000°C did not improve the residual sample porosity. 

Figure 4 depicts the nanowire formation on the α-Fe NPs surface. A SiC nanolayer of a 
predetermined thickness is formed on the surface of α-Fe nanoparticles. During the pressing 
and sintering stages, the pore walls of α-Fe NPs with a SiC nanolayer move towards each 
other. As a result, the SiC nanolayers are combined, and finally, a SiC nanowire is formed 
that permeates the entire α-Fe volume as a "frame within a frame" structure. 
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Fig. 4. Formation of the silicon carbide nanowires in the bulk nanocomposite on α-Fe: 
a) initial α-Fe with selected pore segment designated as B; b) pore segment on the walls of 

which the SiC nanolayer grows; c) SiC layers shift during pressing; d) merged SiC in the pore 
after compaction and sintering 

 
Strength properties of metallic composites based on iron and silicon carbide 

strengthening nanomodifiers (Fe/SiC). The mechanical properties of nanomaterials depend 
significantly on the grain size. At the big grain sizes, an increase of the strength and hardness 
with decreasing grain size is due to the appearance of additional grain boundaries that are 
obstacles to dislocation motion. For small nanoscale grains, a strength increase is due to the 
low density of existing dislocations and the difficulty of new dislocations formation. 

Strength data of Fe/SiC samples are presented in Fig. 5. For comparison, also the 
strength properties of the best grades of steel according to [20] are shown. 

The ultimate strength of the obtained Fe/SiC composites is comparable to the properties 
of the best grades of steel, which contain a high percentage of alloying additives. Thus, it is 
evident that the formation of Fe/SiC composite using the surface structuring is a promising 
tool for obtaining new-generation composites. 
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а 

 
b 

Fig. 5. The ultimate strength of a) Fe-based composites with SiC dispersed phase (this work); 
b) known steels in comparison with best sample composite 

 
4. Conclusion 
The authors offered the structuration of an iron-based metal matrix with carbide nanolayers, 
which results the composite with a "frame within a frame" structure. A synthesis has been 
developed of SiC nanolayers on the porous surface of Fe matrix during sequential 
chemisorption of CH4 and Cl2Si(CH3)2 molecules from the gas phase. 

The conditions are established for pressing and sintering a Fe bulk material with nano-
silicon carbide to obtain a composite with minimal residual porosity and improved strength. 

The ways of adjustment of metal materials strength using structuring the metal matrix 
(on the example of iron) with SiC are discussed. 

The proposed approach can also be used to create analogous composites based on an 
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aluminum frame with improved mechanical properties and is implemented via a nanosized 
material with a high degree of uniformity. 
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Abstract. Basalt fiber is one of the best reinforcing materials and satisfies all the needs of a 
composite material. Flax is predominately used natural fiber which has better mechanical and 
sudden load shock-absorbing properties. The general-purpose polyester resin in one an 
excellent binding agent which equally distributes the load along the direction of applications. 
To understand the mechanical properties of the natural and synthetic fiber of these flax/basalt 
fiber combinations is essential to reduce the usage of synthetic fibers. In this paper, the 
maximum tensile strength was found on the combination of pure 10 layers of basalt and it was 
about 185MPa. The maximum flexural strength absorption was seen in the combination of 
10 layers of basalt fiber composite about 190MPa. The maximum impact energy was 
absorbed by composite D, the alternative layers of basalt and flax fiber composite. SEM 
analysis shows with matrix cracking, and fiber twist was seen, this is because of the improper 
mixing of the fiber and matrix shows this type of internal failure, the fiber pulls out and blow 
holes in between the fiber and matrix also seen in the composites. 
Keywords: basalt fiber, flax fiber, polyester resin, quasi-static mechanical behavior, tensile 
test, impact test 
 
 
1. Introduction 
Flax fiber is a food crop cultivated in cooler regions of the world. It is mainly used in textile 
industries. They have good mechanical properties and also shock-absorbing properties. Basalt 
is a dark-colored, fine-grained, igneous rock composed mainly of plagioclase and pyroxene 
minerals. It most commonly forms as an extrusive rock, such as a lava flow. The cost of the 
basalt fiber was found to be comparatively cheaper than that of carbon fiber and this 
basalt/flax combination shows better static and dynamical properties [1]. The combination of 
hybrid composite is of flax and basalt powder. It comprises of 10 layers of flax fiber and 
basalt fiber. The mechanical properties of flax fiber and basalt fiber combination possess 
better results. The fabrication of those composites was made from a compression molding 
technique which is responsible for achieving some better results. It was found the addition of 
flax layers increased the amount of energy absorption [2]. The combination of a hybrid 
combination of carbon and basalt fiber has better tensile strength were found. The materials 
included were carbon and basalt along with epoxy resin Vacuum bagging process is the 
process used to fabricate the composite. The testing included are hardness, tensile, and 
thermal conductivity tests. The carbon/basalt fiber seemed to have better mechanical 
properties orientation at the angle of 90 degrees than 45 degrees [3]. The combination of 
hybrid composite is of glass and Kevlar yarns. The effect of homogeneous and hybrid 
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external patches in weave was noted in the woven glass fibers. The composite fabrication 
with glass and Kevlar yarns and the matrix material used here is epoxy resin. The better result 
of the provides the repair applications of the Kevlar mainly as polar fibers [4]. The 
combination of the basalt and epoxy resin shows better characteristics and mechanical 
properties, while assorted with the short basalt fiber composites. The better shear and 
mechanical properties were seen, by increasing the basalt content in the composite improve 
the strength of the composite [5]. The tensile behavior of the woven basalt fiber composites 
possesses a high strain rate. Basalt dry fabric was the material used here and the resin was 
used with the epoxy composites. The testing of quasi-static and dynamic testing results with 
better results and impact applications [6]. The glass fiber and basalt fiber composite and their 
mechanical behavior were in comparison. The composite included increasing the percentage 
of glass fiber content in the composite. These composites showed better and increased tensile 
and shear strength than other combinations [7]. The combination of hybrid composite is of 
plain weave fabrics and composite sheet. At different strain rates of flax fiber-reinforced 
composites, the improved strain rate was noted [8]. The combination of hybrid composite is 
of flax/basalt fiber. With the topological approach in optimizing mechanical properties 
flax/basalt fiber hybrid composite. The flexural test, impact results shows that hybridization 
reduced the brittleness and offered good yield property, the internal damages of the 
composites studied with SEM [9]. The combination of hybrid composite has good 
environmental durability in the case of carbon/flax fiber hybrid composites. The tensile test 
and flexural test was done with hydrothermal treatment changes in surface morphology was 
studied with SEM analysis. The final result comprises, the addition of flax fiber improved the 
mechanical properties of the composites [10]. The hybrid combination of flax fiber and basalt 
fiber results with better bending strength and flexural test, the failure morphology was studied 
through SEM analysis. The increase in flax fiber as reinforcement in the composite increases 
the impact bending of the composites [11]. A thorough literature study shows that the 
combination of basalt and flax fiber possesses better mechanical properties. By nature, the 
hybridization of basalt and flax fiber offers a good bonding towards quasi-static (tensile and 
impact) and flexural mechanical studies for various applications. 
 
2. Materials and Methods 
The reinforcement material used here was woven flax and basalt fiber and matrix material as 
general-purpose polyester resin. The additives used were methyl ethyl ketone peroxide 
(MEKP) is an accelerator and cobalt napthalate as the catalyst. The flax fiber was purchased 
from vruksha fibers Guntur and the resin was purchased from vasavi Bala resins, Chennai. 
Composite prepared by varying the sequence of flax and basalt fiber. And the fabrication was 
done by compression molding technique with 100kgf/cm2 pressure at room temperature for 
3 hours.  
 
3. Result and Discussion 
In this chapter, the hybridization effect of bi-directional basalt/flax fiber and the 
morphological analysis for tensile, flexural, and impact properties are also discussed with 
scanning electron microscopy (SEM). The fiber was arranged with different stacking order 
and their mechanical properties are analyzed for further studies in this chapter. 
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Table 1. Composite type and specimen code 

Specimen code Flax/Basalt Stacking 

A 10L of Flax 

B 5L of Flax/ 5L of Basalt 

C 2L F/2LB/2L F/2LB/2L F 

D 2L B/2L F/2L B/2L F/2L B 

E 3L F/2L B/3 L F/2L B 

F 4L F/2L B/2L F/2L B 

G 3L B/2L F/3L B/2LF 

H 4L B/2L F/2L B/2L F 

I 10L of Basalt 

 
Fig. 1. Tensile strength analysis of flax/basalt fiber composite 

 
Tensile Strength. The tensile strength of the material determines the maximum strength 

that the material withstand while pulling with some force. The tensile test was carried out 
with the ASTM D3039 standard and the dimension of the specimen about 200×20×3 mm. The 
test was executed in the universal testing machine (UTM). This tensile test helps to study the 
ductile property of the material in various loading conditions. The tensile strength of the 
material depends on the like preparation of material, fabrication standard, and the temperature 
adopted for processing. The above table 1 shows the specimen code and different stacking of 
flax and basalt fiber composite. Figure 1 clearly, defines the tensile strength exhibited by 
different layers of flax and basalt fibers. The maximum tensile strength acquired by pure 
10 layers of basalt fibers (composite I) around 185MPa, by nature the strength absorbing 
capability for basalt fiber was good while compared to flax fibers. In the hybridization of 
basalt and flax fiber as alternate sequences, basalt as the first layer, and flax in the last seen in 
the composite F and G. These composites produce a better performance compared with other 
combinations of hybrids about 145MPa. Because the linear relationship between the fiber 
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arrangement and tensile modulus was good, increases the load-bearing capacity of the 
composite [6]. From the overall comparison, the hybridization of basalt/flax fiber shows 
better results compared with all other combinations except the pure basalt composite. This 
results in the combination of flax/basalt produce good tensile strength. However, the pure 
basalt layer can have performed. 

Flexural Strength. The flexural test is also known as the modulus of rapture which 
denotes the property of the material resists the deformation bending. The flexural test was 
carried out on the universal testing machine (UTM) with a three-point bending fixture. The 
test was conducted with the standard of ASTM D790 with a dimension of 125×13×3 mm. 
This flexural strength of the composite represents the highest stress experienced within the 
reinforcement fiber to the matrix material. There is a better flexural energy capability was 
noted for basalt and flax fiber composite [7]. Figure 2 shows the flexural strength analysis of 
flax/basalt fiber composite. The maximum flexural strength absorption was seen in the 
10 layers of basalt fiber composite about 190MPa, this is because the failure of the composite 
happens as a straight-line crack. This type of crack pattern does not experience a major failure 
in the composite, especially for basalt fiber composites [8]. The combination hybridization 
effect of basalt/flax alternate layers possess some better flexural results in the layering effect 
of the composite. In composite F, the alternate layers of basalt and flax fiber show some noted 
results about 140MPa.The flexural strength of the composites depends on the stress 
concentration and load absorbing capability of the composite. And the bonding of fibers with 
the matrix is also considered to be an important content while study about the flexural 
strength of the composite. As synthetic fiber basalt shows a better performance in this area 
also, reduce the usage of basalt fiber in the stack will be eco-friendly. The alternative 
sequence of basalt and flax fiber shows good strength compared with other combinations. 

 
Fig. 2. Flexural strength analysis of flax/basalt fiber composite 

 
Impact Strength. Impact strength determines the sudden load capability of the material 

and its related properties. In polymer composites, the impact strength was considered to be an 
important property of the material towards the fracture. The charpy impact test was examined 
with ASTM D256 with the specimen dimension of 65×13×3 mm. The maximum impact 
energy was absorbed by composite D, the alternative layers of basalt, and flax fiber 
composite. The energy absorbed around 25J, this shows the hybrid application of basalt and 
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flax for various mechanical applications. The impact performance of basalt hybrid composite 
depends on the elastic modulus of the supportive reinforcement. However, the combination of 
flax reinforcement with basalt always has a high elastic modulus [9] than other fibers as 
reinforcement. The other combinations as 10 layers of pure basalt (composite A) and flax 
(composite I) type of composite do not show a better impact response compared to these 
hybrids. From the overall observations, the alternative layers of basalt and flax fiber 
composite produce a good impact strength towards the application of sudden load.  

 
Fig. 3. Flexural strength analysis of flax/basalt fiber composite 

 
Morphological Analysis. Morphological analysis is one of the general problem solving 

and provides a better solution for any of the approaches. In polymer composite, the 
morphological study helped to examined through microscopy for mechanical failures. 
Scanning Electron Microscope (SEM) is one type of technique to study the failure and factors 
responsible for the failure were studied with the electron microscope. The internal structure 
specimen was affected by cracks and holes, due to the application of mechanical loads. 
Figure 4 shows the SEM analysis of mechanical testing as tensile, impact, and flexural test of 
alternate layers of flax and basalt fiber composite, which shows better results compared to 
other combinations. Figure 4a shows the failure analysis of the tensile specimen, in that the 
matrix crack was noticed this is due to not proper bonding between the reinforcement and 
matrix responsible for this type of failure [10]. Figure 4b shows the SEM analysis of the 
flexural specimens, in that the fiber twist was seen this is because of the improper mixing of 
the fiber and matrix shows this type of internal failure observation. In the impact specimen 
fiber pull out and blow holes in between the fiber and matrix were noted [11]. This is the type 
of response that can observe only improper curing time of fabrication and blowholes for the 
bending of fibers which initiate the crack without the responses of the matrix in the time of 
application of load [12], shown in Fig. 4c as impact responses. 
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Fig. 4. SEM morphological analysis of flax/basalt fiber composite 
 

4. Conclusion  
1. The maximum tensile strength acquired by pure 10 layers of basalt fibers (composite I) 

around 185MPa, by nature the strength absorbing capability for basalt fiber was good 
while compared to flax fibers. In the hybridization of basalt and flax fiber as alternate 
sequences, basalt as the first layer, and flax in the last seen in the composite F and G. 

2. The maximum flexural strength absorption was seen in the 10 layers of basalt fiber 
composite about 190MPa, this is because the failure of the composite happens as a 
straight-line crack. This type of crack pattern does not experience a major failure in the 
composite, especially for basalt fiber composites. 

3. The alternate layers of basalt and flax fiber show some noted results about 140MPa.The 
flexural strength of the composites depends on the stress concentration and load 
absorbing capability of the composite. 

4. The energy absorbed around 25J, this shows the hybrid application of basalt and flax for 
various mechanical applications. The impact performance of basalt hybrid composite 
depends on the elastic modulus of the supportive reinforcement. 

5. The SEM analysis of the tensile specimen, in that the matrix crack was noticed this is 
due to not proper bonding between the reinforcement and matrix responsible for these 
types of failure. The fiber twist was seen this is because the improper mixing of the 
fiber and matrix shows this type of internal failure observation. In the impact specimen 
fiber pull out and blow holes in between the fiber and matrix were noted. 

6. From the results obtained theoretically and experimentally, the combination of basalt 
and flax fiber composite shows better impact strength than other mechanical properties. 

a) 
b) 

c) 

Matrix cracking 

Fiber twist fracture 

Fiber pull out 

Blow holes 
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This hybrid combination has the application in automobile and aircraft components with 
the replacement of metals. 
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Abstract. Based on the solution of the dynamic contact problem of vibration of a rigid punch 
on a heterogeneous half-space, taking into account friction in the contact area, the tribological 
properties of an oil-filled composite material with a microstructure are modeled. The 
microstructure of the base is taken into account in the framework of the Biot-Frenkel model. 
The boundary-value problem is reduced to the integral equation, its approximate solution is 
constructed, which describes contact stresses, tangential displacements. The dependencies of 
the friction forces on the microstructure of the composite, the viscosity of the fluid filling the 
pores, and the degree of phase interaction are investigated. 
Keywords: dynamic contact problem with friction, oil-filled composite 
 
 
1. Introduction  
Currently, there is a considerable amount of concepts, hypotheses, and research on diverse 
friction and wear-related issues. Many attempts have been made to study the properties, 
structure, and state of the surface layers of tribological conjugations at the atomic and 
molecular levels. The core problem of surface engineering (for example, metal friction units) 
is the synthesis of coating technologies and materials with specified wear-resistant properties. 
The most remarkable result to emerge from our study [1] is that the methods of vacuum ion-
plasma treatment (PVD-method) and atomic modifications of diamond-like coatings (DLC) 
are the most appropriate among the wide array of methods aimed at hardening surface and 
improving tribological properties. However, along with increasing the strength properties of 
the materials, such technologies contribute to the formation of a damping layer with residual 
compressive stresses inside and a large number of stress micro-concentrators at the boundary 
with the main material. The above-listed aspects predetermine the formulation and solution of 
the dynamic contact problem, taking into account the friction forces on tribocontact. This 
problem is attracting an increasing interest due to the widespread application of polymer 
composite materials [2]. Recently, oil-filled nanocomposites, whose components are 
characterized with viscoelastic properties and the properties of viscous-fluid filler, have 
become extensively used in units and parts of tribotechnical purposes [3-5]. Constructing new 
composite materials with given physical and mechanical properties poses an actual, yet 
practically unexplored task to study the influence of dynamic effects that are caused by 
vibration on the antifriction properties of these materials. We undertook this study to 
investigate the patterns of changes in the stress-strain state of a composite material depending 
on its composition and dynamic loading conditions by solving a dynamic contact problem. 
The latest takes into account friction in the contact area for a base with a microstructure. The 
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equations of the heterogeneous Biot medium are used to describe the microstructure of a base 
consisting of an isotropic viscoelastic matrix and a filler fluid possessing the properties of a 
viscous amorphous liquid [6]. The mechanical properties of the matrix material were 
determined experimentally by nanoindentation. The change in the mechanical modules of the 
medium while varying porosity was studied by the differential scheme of the self-consistency 
method. It should be noted that contact problems in a quasi-static formulation for 
homogeneous viscoelastic media that simulate surface phenomena in tribology are considered 
in [7-9]. The properties of the contacting surfaces significantly affect the friction force. Much 
work on the influence of microgeometry of contacting surfaces on the friction force was 
carried out by [9]. Consideration of the base microstructure as a whole for contact stresses 
was presented in [10-12]. In these studies, contact problems in quasistatic and dynamic 
formulations were considered, and the microstructure of a heterogeneous medium was 
described in terms of the Biot-Frenkel model. In the study [12] a two-phase medium has been 
described as equivalent to a single-phase assuming that the velocities of solid and liquid 
phases are equal. The tribological properties of oil-filled composites were experimentally 
studied in [13]. Dynamic contact problems for elastic layered bases are presented in [14], 
including non-traditional for tribology formulations [15]. 

This paper outlines a new approach to the study of surface interaction in the contact 
area, taking into account the heterogeneity of the base within the model of two-phase Biot-
Frenkel medium and dynamic effects. In this context, we tried to find out the dependencies of 
the friction forces on the composite microstructure, the viscosity of the pore-filling fluid, and 
the degree of phase interaction. Interestingly, the tribological process is also characterized by 
tangential displacements under the punch. The strength and wear resistance of the composite 
depends on the energy impact in the area of contact with friction. Moreover, it is necessary to 
take into account both normal and tangential displacements in the contact area. 

 
2. Statement and solution of the contact problem for a heterogeneous half-space 
The contact problem of oscillations of rigid flat punch on the surface of a heterogeneous half-
space under the action of a force applied to it, which varies in harmonic law, is considered. 
Let a two-phase medium consisting of a viscoelastic porous matrix-skeleton and fluid filling 
pores occupy a flat region 1 2, 0x x< ∞ ≤ . On the front impenetrable boundary of the 
heterogeneous medium, a rigid punch oscillates with frequency ω  under the action of the 
force. The width of the rigid punch is 2a . Let that force be applied to the punch so as to 
ensure full contact with the surface. In the contact area 1x a≤ , the normal and tangential 
stresses are connected by the Amonton-Coulomb law. To take into account the internal 
microstructure of the base, we use, as the most tested model, described by the equations of the 
heterogeneous two-phase Biot - Frenkel medium in terms of the displacements [6]: 
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11 12 22, , , , , ,A N Q R ρ ρ ρ  are the mechanical characteristics of a two-phase medium [16],
, , , 1, 2ij ije i je =  are the strain tensors corresponding to displacement vectors of the solid 

phase 1 2{ , }u uu  and liquid phase 1 2{ , }v vv , 2 1
ob m k −= η  and , okη  – fluid viscosity and 
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permeability, , , 1, 2s f
ij ij ij i jΓ = s + δ s =  is a full stress tensor acting on a poroelastic medium, 

2s
ij ij ij ijAe Ne Qs = δ + + eδ  is a stress tensor acting on a viscoelastic skeleton, f Qe Rs = + e  is 

a pore pressure. The viscosity of the composite matrix is taken into account in the framework 
of the model of frequency-independent internal friction. According to this approach, the shear 
modulus has the form (1 )N i+ β , where the value of β  is proportional to the loss coefficient 
of a viscoelastic material [17] and can be determined experimentally [18]. As a result of this, 
a small complex component is present in the coefficients of equation (1) , , ,N A Q R  [19]. The 
oscillation mode is steady. Separate the time factor and the presentation will be carried out for 
the dimensionless amplitude values of the corresponding functions, while the linear 
dimensions are assigned to the half-width of the punch, and the stress to the shear modulus N  
of the matrix. The boundary conditions in this case are: 
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where δ is the punch upsetting, µ  is the coefficient of friction. The statement of the boundary 
value problem (1) – (2) closes the condition for the emission of waves at infinity. The contact 
pressure and horizontal displacement 1 1( ,0)u x  under the punch must be found. We represent 
the displacements in the form of two scalar and vector potentials. As a result, equations (1) 
are split into three wave equations, and the potentials correspond to three types of waves 
propagating in a heterogeneous medium: 
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2( ) ( ) 0, , 1, 2,j j j j jL L j∆ + θ = θ = ζ ϑ =x x  
, , 1, 2j jm jζ =  are the roots of the following equation: 
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The vector potential satisfies the following equation: 
2
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The velocities of longitudinal waves and shear wave are determined 
/ , 1, 2,3i iV a i= ω θ = . 

After applying the Fourier transform with respect to the variable 1x  to Eqs. (1) – (3) we 
construct Green's matrices. Further, using the inverse Fourier transform, we obtain the 
relationship of displacements and stresses of a two-phase medium: 
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The circuit ϒ  is selected in accordance with the conditions of radiation of waves at 
infinity, 2 2( , ), ( , )u vx xα αK K  are Green's matrices for skeleton and fluid displacements, 
respectively [20].  

Satisfying the boundary conditions (2) in relation (4), we have obtained the integral 
equation with a difference kernel with unknown normal contact pressure: 
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The kernel of the integral equation (4) has the form: 
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where α  is the Fourier transform parameter, the functions ( ), , 1, 2ijK i jα =  are elements of 
the Green's matrix (4) for a heterogeneous medium. The functions ( ), , 1, 2ijK i jα =  have the 
following behavior at infinity: 
lim ( ) / , lim ( ) ( 1) / ,i

ii ii ij ijK d K d i j
α→∞ α→∞

α = α α = − α ≠ . 

Next, we regularize the kernel (6) of the integral equation (5) to separate its logarithmic 
singularity. We use the function 2 2

22 /d Rα +  as a regularizer of the kernel 1( )K x −x of the 
integral equation (5). This function coincides with the function 22 ( )K α  at infinity and does 
not have poles in the complex plane. As a result, relation (6) has the form: 
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where 0 ( )K z  is zero-order Macdonald function. The integral 1 1( )I x −x  in (7) is rapidly 
convergent. The choice of a parameter 1R >>  minimizes the contribution of integrals over 

,iR i iR i≤ α < ∞ − ≥ α > − ∞  cuts [12]. The Macdonald function zero-order has the expression 
in the form of a series [21]: 
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where 0 ( )I z  is modified Bessel function of the first kind, γ  is the Euler's constant. The 
logarithmic singularity in the explicit form in relation (6) is separated. 

After regularization of the integral equation (5), the representation of the kernel (7) 
makes it possible to efficiently apply the numerical solution scheme based on the boundary 
element method. We choose the partition points 1 , 1,ix i N=  that are uniformly distributed, 
with a step 2 /h N=  on a segment [ 1 / 2,1 / 2]h h− + − . The function 2 1( )q x  is constant 

within each of the elements of the partition: 
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midpoints of the corresponding segments of the partition 1 1 1[ ; ], 1,i ix x i N+ =  are selected as 
nodes. As a result, the solution of the integral equation (5) reduces to a finite system of linear  
N - order algebraic equations with respect to unknowns , 1,iq i N= . The system has a  
quasi-diagonal matrix and converges quickly:    
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where ( )Erf z  is probability integral [22]. The integral 1 1( )m nI x −x  is calculated by 
integration over the contour ϒ  in the complex plane. The integration contour is selected in 
accordance with the radiation conditions so that the displacements of the surface of the 
heterogeneous half-space decrease with distance from the vibrating punch. This choice is 
made after finding the poles and branch points of the integrands in (7) and analyzing them 
when the internal friction of the medium tends to zero. Note that to analyze the rate of 
convergence of the process, the residual elements were estimated for the number of partitions 
N  and 3N . Number of mesh elements chosen from the condition that the residual is  
less than 410− . 
 Horizontal movements under and outside the punch are determined through the 
elements of the Green's matrix of the heterogeneous medium 11 12( ), ( )K Kα α  and contact 
pressure: 
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 Next, we perform the procedure for extracting a singularity in the function 1 1( )K x −x , 
similar to the algorithm described above. Then we discretize the contact area and determine 
the tangential displacement under the punch, taking into account contact pressures determined 
from relation (7): 
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3. Results of computational experiments 
In accordance with the above method, normal and tangential contact stresses, tangential 
displacements under the punch were determined. The calculations were carried out for the 
mechanical characteristics corresponding to a two-component composite material with a 
Phenylone-based matrix modified with a nano-additive (magnesium aluminum spinel) and 
cylinder oil-contained filler.  

Correct determination of the mechanical characteristics , , ,A R Q N  of a Biot medium for 
a heterogeneous composite is a multi-stage problem. The values of Young's modulus sE  and 
Poisson's ratio sν  were determined during field experiments when compressing a Phenylone 
sample without a filler in a loading mode that provides purely elastic deformations of the 
sample [23]. Further, the mechanical properties of Phenylone and composites with a 
Phenylone matrix [24] were determined based on the nanoindentation method with the 
previously found Poisson's ratio. The next step was to study the effect of porosity on the bulk 
modulus drained porous medium bK . The results obtained based on the self-consistent [25] 
scheme and generalized differential self-consistent scheme are compared. Note that at low 
porosity ( 0.2m < ), the relative error of the two calculation methods did not exceed 4%. Thus, 
the coefficients of equations (1) for the known bulk modulus of a viscoelastic matrix sK , 
drained porous medium bK , fluid fK  , and porosity m  were calculated by the formulas [10]. 

The calculations were carried out with the following data: sK =6.3 GPa, fK =2 GPa, 

N = 2.29 GPa, 3 31.2 10 kg/msρ = ⋅ , 3 30.93 10 kg/mfρ = ⋅ , ( 0.05)bK m = = 5.32 GPa, 
( 0.1)bK m = = 4.36 GPa, ( 0.15)bK m = = 3.40 GPa, ( 0.2)bK m = = 2.44 GPa, ω = 50 Hz. 

The Phenylone has a low tendency to creep under the action of stresses [26] and the use 
of nano-additives to modify the composite matrix allows one to suppress relaxation processes. 
The viscosity of the composite matrix was taken into account in the framework of the model 
of frequency-independent internal friction. The calculations were carried out for the range 

3 110 0.5 10− −< β < ⋅  [18]. The experimental determination of the coefficient of the interaction 
of phases, the permeability of the composite is a very laborious problem. We will rely on the 
known data for artificial media containing clay particles, they have a permeability coefficient 
in the range 14 1010 10ok− −< <  [27], and the tortuosity of the pore channels corresponds to the 
case of spherical particles [28]. 

Particular attention was paid to the analysis of the effect of porosity on the magnitude of 
contact pressures. The distribution of the real part of normal contact pressure 2 1Re ( )q x  with a 
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change in porosity m  and fluid saturation of the base is shown in Fig. 1 for values 
00.2, 1, 0.05, 0bµ = δ = β = = .  

 

 
Fig. 1. Influence of porosity of a heterogeneous base on the distribution of the real part of 

normal contact pressure 
 

Moreover, the curve marked with a marker «*» corresponds to zero porosity. This curve 
was obtained based on the solution of the dynamic problem of punch vibrations in a similar 
formulation for the case of an equivalent elastic medium [12]. 

It is established that the dependence of normal and tangential contact stresses on the 
porosity of a heterogeneous base is non-linear. Note that the contact normal and tangential 
stresses are largely dependent on the porosity and mass fraction of the filler fluid. Moreover, 
the stress distribution over the contact area is asymmetric, which is also characteristic of 
contact problems of the theory of elasticity with allowance for the friction forces. It is 
important to note that for the case of dynamic loading, the influence of the coefficient of 
friction on contact pressures is more pronounced than in problems in a quasistatic 
formulation [7,10]. 

It should be noted that the parameter 2
0/b m k= η  characterizing the interaction of the 

phases of the composite has a significant effect on contact pressures. With an increase in the 
viscosity of the fluid filling the pores and a decrease in the permeability coefficient of the 
porous elastic medium, the stress distribution under the punch changes, as illustrated in Fig. 2. 
This figure shows the distribution of the real parts of normal pressures under the punch, 
calculated with the same input data with increasing parameter 0/ kη . 

It has been experimentally shown [29] that the increase in the vibration frequency 
induces the decrease in the contact stresses. The results of the numerical analysis also confirm 
the given fact [11]. The change in the amplitude of the friction force during the period of 
vibration plays a key role. The wear resistance of the composite depends greatly on the energy 
impact in the friction area, taking into account both the normal and tangential displacements 
in the contact area [11]. An increase in the vibration frequency leads to a decrease in the 
contact stresses per unit time; however, a large amount of energy is generated in the contact 
area. Figure 3 presents the plot of the tangential contact stresses for a T-period under punch 
vibrations affected by the applied force that varies according to the 0 cosP P t= ω  law for 

10
0/ 0.01 10kη = ⋅ . The tangential contact stresses 21Γ  during the vibration period change sign, 

while its amplitude delineates a flat figure, the area of which is proportional to the energy of 
the friction force. The above information makes it possible to predict the composite's wear 
resistance. 
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Fig. 2. The effect of fluid viscosity and permeability on the distribution of the real (left) part 

and imaginary (right) part of normal contact pressures 
 

 
Fig. 3. Change in the tangential stresses during the vibration period  

 
4. Conclusions 
Contact stresses and tangential displacements under the punch for a heterogeneous base 
depend not only on the friction coefficient in the contact area, but also substantially depend on 
the vibration frequency, porosity, permeability of the medium, and fluid viscosity. A change 
in the friction coefficient during vibration has a much greater effect on contact stresses than in 
a quasistatic problem when the punch moves. Based on the considered model, it is possible to 
evaluate the energy effect over a period of oscillation, on which the wear resistance of the 
composite material depends. In this case, it is necessary to take into account not only normal 
movements but also horizontal movements in the contact area. The studies that were 
performed allow us to find the optimal ratio of the mechanical properties of a composite 
material operating under dynamic loading. 
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Abstract. The nuclear geometry was developed by analogy with the fullerene geometry. On 
the basis of this geometric approach, it was possible to design the structure of nitrogen, 
oxygen, fluorine and neon isomers and their isotopes, which can be obtained by means of 
nuclear synthesis. The most stable nuclei can be classed into two groups: basic nuclei having 
equal number of protons and neutrons and isotopes having one or two more neutrons. The 
latter ensure their mechanical stability with respect to shear stresses, sending their electron to 
the external coat of mail created by the basic nuclei. 
Keywords: fluorine, carbon, graph representation, isomer, isotope, neon, nitrogen, nuclear 
electron, nuclear geometry, nuclear reaction, nuclear synthesis, oxygen 
 
 
1. Introduction 
Earlier, by analogy with fullerenes, the nuclear geometry was designed. For hydrogen, 
deuterium, tritium and helium 3, we obtained a point, a linear and a plane structure 
respectively. Helium 4 has a tetrahedral symmetry. Three-fold symmetry prisms refer to 
lithium 6 and 7; four-fold ones are in correspondence with beryllium 8, 9, and 10; and five-
fold symmetry prisms with boron 10 and 11. Carbon is an unusual element. It has four 
isomers of different symmetry: three-fold, six-fold and tetrahedral ones. The two stable and 
one half-stable isotopes of carbon inherit the structure of these isomers. 
 The geometric models of nuclei, developed by analogy with the fullerene geometry, 
allow explain why the nuclei have a definite number of stable isotopes and isotopes having a 
large half-decay period. Contrary to the usual "arithmetic approach", when the nuclear 
reactions are written down simply as, e.g. 12C +4He → 16O or 16O +4He → 20Ne [1], we have 
used the geometric approach, when the reactions are considered if the reacting nuclei are 
compatible from the geometric standpoint. 
 In this contribution I submit the geometric approach which explains not only the 
generation of nitrogen, oxygen, fluorine and neon but also that of their isotopes and isomers 
in the framework of one and the same unified modeling. It should be emphasized that we use, 
instead of this vague notion "nuclear isomerism" [1], the clear notion accepted for molecules, 
i.e. we accept that space isomerism of nuclei is the phenomenon which consists in the 
existence of nuclei having an equal mass number but different positions of the nuclear 
constituents in the space.  
 
2. Isotopes of nitrogen and their isomers  
There are two stable isotopes of nitrogen: 7N14 (99.63 %) and 7N15 (0.37%) [2]. This brings up 
the question: how to obtain them and their space isomers? It has stated above that the reacting 
nuclei should be compatible from the geometric standpoint. Using the previous experience, 
write down the nuclear reactions which are geometrically compatible:  
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4He +6Li → (4He6Li )+4He → 14N,     4He +7Li →(4He7Li )+4He → 15N,      
They formally describe the formation of nitrogen isotopes. The reactions are written in line 
with the postulate by Svante August Arrhenius (1889) according to which a chemical reaction 
is a two-stage process. At first, there forms an intermediate compound and afterwards a usual 
chemical reaction is going on. Now we investigate this question more closely.  
 2.1. Joining a tetrahedron with a triangular prism. From the geometric point of view, 
the headline is in conformity with reaction 4He +6Li → (4He6Li ) → 10B which is illustrated in 
Fig. 1. From the figure it follows that helium is almost completely dissolved in the boron 
structure formed. As for lithium, only three protons (from six) take part actually in the 
reaction. The reacting particles are specially marked in the figure; the protons are light pink 
balls, the new proton-proton bonds are lilac, the old bonds, which have to be destroyed, are 
shown using red dot lines. The graph representation of the reaction is shown in Fig. 2. 

 
 

Fig. 1. Joining of a tetrahedron (α-particle) to a triangular-prism (6Li ): a) separate tetrahedron 
and triangular prism; proton bonds (red lines), reacting protons (light pink spheres), neutral 
atoms (dark pink spheres), b) intermediate compound: old bonds to be destroyed (red dot 

lines), new bonds (lilac lines), c) semiregular heptahedron (10B) 
 

 
Fig. 2. Graph representation of the nuclear reaction 4He + 6Li → 10B. Embedding the graph of 

α- particle into the graph of lithium: a) separate graphs corresponding to a triangular prism 
(above) and to a tetrahedron (below), b) embedding, c) graph of tri-(tetra-penta)3 polyhedron 

shown in Figure 1c. All notations are the same as before 
 
 To get a comprehensive idea of the fusion, one need to construct a tertion net and its 
graph. Since graph designing is simpler, we begin with it. There is no need to construct the 
graph of the tertion net ab ovo. One can take as a base the graph of the proton cell and put on 
its edges the tertions, and then to connect them (brown lines) (Fig. 3a). Removing the base, 
one receives the graph of the tertion net (Fig. 3b). Having this graph and the proton cell 
shown above (Fig. 1c), designing the tertion net becomes easier (Fig. 3c).  

α 

a) 

6Li  

c) 
10B 

b) 

(α, 6Li) 

+ 

a) b) 

→ 

c) 

→ 
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Fig. 3. Electronic structure of boron 10B: a) graph of tertion net being constructed on the base 

of the proton-cell graph denoted by dot red lines; b) graph of tertion net; c) tertion net 
 
 2.2. Joining a tetrahedron with a semiregular heptahedron. By analogy with the 
previous procedure one can design reaction 4He +10B → (4He10B) → 14N which is illustrated 
in Fig. 4. One can see that helium is again completely dissolved in the nitrogen structure 
formed. As for boron, only three protons (from ten) take part in the reaction. The reacting 
particles are specially marked in the figure as before: the protons are light pink balls, the new 
proton-proton bonds are lilac, the old bonds, which have to be destroyed, are shown using red 
dot lines. The graph representation of the nuclear reaction is shown in Fig. 5. The tertion net 
and its graph are presented in Fig. 6. 

 
Fig. 4. Joining of a tetrahedron to a heptahedron: a) separate tetrahedron (α-particle) and 

heptahedron (10B ), b) intermediate compound, c) regular nonahedron (14N) 
 

 
Fig. 5. Graph representation of the nuclear reaction 4He + 10B → 14N. Embedding the graph of 

boron into the graph of α- particle: a) inversion graph of α- particle above and boron graph 
below, b) embedding, c) graph of tetra6-hexa3 nonahedron shown in Fig. 4c. All notations are 

the same as before 
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Fig. 6. Electronic structure of nitrogen 14N: a) graph of tertion net being constructed on the 
base of the proton-cell graph denoted by dot red lines; b) graph of tertion net; c) tertion net 
 
 2.3. Embedding isotopy. The reactions considered above 4He +6Li → (4He6Li ) → 10B 
and 4He +10B → (4He10B) → 14N show the mechanism of obtaining the nucleus of nitrogen 14. 
If to replace in these reactions lithium 6 by lithium 7, i.e. to consider reactions 
4He +7Li → (4He7Li ) → 11B,    4He +11B → (4He11B) → 15N, 
one can construct the nucleus of nitrogen 15. The structure of the reaction components is 
presented in Fig. 7. From the figure it follows that the proton cells become the body-centered 
ones. The most drastic changes are connected with the tertion nets and their graphs. 
 

 
 

 
Fig. 7. Structure of the nuclear reaction; each column contains successively proton cell, 

tertion net and graph of the tertion net: a) lithium 7; b) boron 11; c) nitrogen 15 

c) a) b) 

a)   7Li b)   11B c)   15N 
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 2.4. Another isomer. Modeling the growth of fullerenes [3], we obtained two isomers of 
C14, one having the shape similar to that of presented in Fig. 4c; the other is shown in Fig. 8 
and corresponds to reaction C4+C10 → (C4C10) → C14. It should be emphasized that the 
second fullerene isomer was designed by the mechanisms which are typical for the fullerenes, 
but not for the nuclei. The question arises how to obtain the same shape for the nucleus of 
nitrogen 14 through the use of possible nuclear reactions only.  

 
Fig. 8. C14 as joining cluster C4 with cupola C10; Dark–red and light-blue balls are reacting 

and neutral atoms, respectively; solid and dot red lines are new covalent bonds 
 

 One has to approach the problem in stages. Fist of all it is necessary to set up a 
topological correspondence between the reacting constituents of the fullerene and those of the 
nucleus designed. Clear that cluster C4 can be associated with α-particle and cupola C10 with 
an intermediate nucleus 10B. Therefore the general problem is reduced to the problem how to 
obtain the intermediate nucleus 10B having the shape similar to cupola C10.  
 One is inclined to think that there is the following chain of nuclear reactions (Fig. 9). At 
first, two alpha-particles combine forming a dimer (a). Then the dimer combines with another 
alpha-particle forming a linear trimer having one proton, which is slightly connected with the 
trimer through the use of only one bond (b). Similar to the interactions of electronic and 
atomic degrees of freedom [4], the interaction of tertions (they are not shown in the figure) 
and protons leads to internal rotation [5] of the slightly connected proton (c). This structure 
can fold up in three dimensions (d). During the process some inter-proton bonds are destroyed 
and there appear two split protons (e). Relaxation of the structure obtained creates the boron 
nucleus having three-fold symmetry (f). The reactions can be written as 
4He +4He  → (4He4He) +4He  → (4He4He4He) → 10B+d. 

 
Fig. 9. Generation of boron-10 isomer: a) dimer formation, b) trimer formation with one 

slightly connected proton, c) internal rotation of the proton, d) folding and appearance of two 
new slightly connected protons, e) folding and splitting two new protons, f) heptahedron 

structure obtained after relaxation 

a) b) c) 

a) b) 

d) c) 

f) e) 
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 2.5. Joining a tetrahedron with another heptahedron. Now it is possible to design 
another reaction 4He +10B → (4He10B) → 14N which is illustrated in Fig. 10. One can see that 
helium is again completely dissolved in the nitrogen structure formed. As for boron, now six 
protons (from ten) take part in the reaction. The reacting particles are specially marked in the 
figure as before: the reacting protons are light pink balls, the new proton-proton bonds are 
lilac, the old bonds, which have to be destroyed, are shown using red dot lines. The graph 
representation of the nuclear reaction is given in Fig. 11. The tertion net and its graph are 
presented in Fig. 12. 
 

 
Fig. 10. Joining of a tetrahedron to a heptahedron: a) separate tetrahedron (α-particle) and 
heptahedron (10B ), b) intermediate compound, c) base-truncated triangular bipyramid (14N) 

 

 
Fig. 11. Graph representation of the nuclear reaction 4He + 10B → 14N. Embedding the graph 
of boron into the graph of α- particle: a) inversion graph of α- particle above and boron graph 
below, b) embedding, c) graph of tetra3-penta6 base-truncated triangular bipyramid shown in 

Fig. 10c. All notations are the same as before 
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Fig. 12. Electronic structure of nitrogen isomer 14N: a) constructing the graph of tertion net on 

the base of the proton-cell graph (dot red lines); b) graph of tertion net; c) tertion net 
 

 2.6. Embedding isotopy. The reaction considered above 4He +10B → (4He10B) → 14N 
shows the mechanism of obtaining the nucleus of nitrogen 14. If to replace in that reaction 
boron 10 by boron 11, i.e. to consider reaction 4He +11B → (4He11B) → 15N, one can construct 
the nucleus of another isotope of nitrogen 15 (Fig. 13). 
 

 
Fig. 13. Structure of isotope 15N: a) proton cell; b) graph of the tertion net; c) tertion net 

3. Isotopes of oxygen and their isomers  
There are three stable isotopes of oxygen: 8O16 (99.76 %), 8O17 (0.04 %) and 8O18 (0.20 %) 
[2]. As stated above, the reacting nuclei should be compatible from the geometric standpoint. 
Using our previous experience, write down the nuclear reactions which are geometrically 
compatible:  
12C +4He → 16O,    13C +4He → 17O 
8Be + 8Be  → 16O,    8Be + 9Be  → 17O,    9Be + 9Be  → 18O 
They formally describe the formation of oxygen isomers and isotopes. Now we investigate the 
reactions more closely.  
 3.1. Joining of a tetrahedron to a heptahedron. Reaction 4He +12C → (4He12C ) → 12O 
is illustrated in Fig. 14. From the figure it follows that helium is almost completely dissolved 
in the carbon structure formed. As for carbon, only three protons (from six) take part actually 
in the reaction. The graph representation of the nuclear reaction is shown in Fig. 15. The 
tertion net and its graph are presented in Fig. 16. 
 

a) b) c) 

a) b) c) 

Nuclear geometry: from nitrogen to neon 155



 
Fig. 14. Joining of a tetrahedron to a heptahedron: a) separate tetrahedron (α-particle) and 

truncated tetrahedron (12C ), b) intermediate compound, c) another truncated tetrahedron (16O) 
 

 
Fig. 15. Graph representation of the nuclear reaction 4He + 12C → 16O: a) inversion graph of 

α- particle above and carbon graph below, b) embedding, c and c’) graphs of tri4-hexa6-
truncated tetrahedron shown in Fig. 14c. All notations are the same as before 

 

 
Fig. 16. Electronic structure of oxygen isomer 16O: a) graph of tertion net constructed on the 

base of the proton-cell graph (dot red lines); b) graph of tertion net; c) tertion net 
 

 3.2. Embedding isotopy. The reaction considered above shows the mechanism of 
obtaining the nucleus of oxygen 16. If to replace in that reaction carbon 12 by carbon 13, i.e. 
to consider reaction 4He +13C → (4He13C) → 17O, one may obtain an isotope of oxygen 17 
(Fig. 17). 
 

 
 

Fig. 17. Structure of isotope 17O: a) Proton cell; b) Graph of the tertion net; c) Tertion net 
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 3.3. Fusion of two cubes. Now we can design reaction 8Be + 8Be  → 16O which is 
illustrated in Figs. 18, 19 and 20. 

 
 

Fig. 18. Joining of two cubes: a) separate cubes (beryllium) b) intermediate compound,  
c) square barrel-shape decahedron (16O) 

 

 
Fig. 19. Fusion of two cubes as connection of their graphs: a) separate graphs (beryllium) 

b) intermediate compound, c) square barrel-shape decahedron (16O) 
 

 
 

Fig. 20. Electronic structure of oxygen isomer 16O: a) graph of tertion net (brown lines) 
constructed on the basis of the proton-cell graph (dot red lines); b) graph of tertion net; 

c) tertion net 
 

 3.4. Embedding isotopy. The reaction considered above shows the mechanism of 
obtaining the nucleus of another isomer of oxygen 16. Replace again in that reaction one 

b) a) 

→ + → 

c) 

a) b) c) 

8Be 

8Be 

a) b) 

(8Be, 8Be) 

c) 
 16O 
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beryllium 8 by beryllium 9; then we obtain another isotope of oxygen 17 (Fig. 21). Replacing 
both beryllium 8 by beryllium 9, we have an isotope of oxygen 18 (Fig. 22). 

 

 
 

Fig. 21. Structure of isotope 17O: a) Proton cell; b) Graph of the tertion net; c) Tertion net 
 

 
 

Fig. 22. Structure of isotope 18O: a) proton cell; b) graph of the tertion net; c) tertion net 
 

4. Isotopes and isomers of fluorine  
There is only one stable isotope of fluorine, 9F19 (100 %), and an unstable isotope having a 
comparatively large half-decay period being equal to 109.8 min., 9F18 [2]. As we stated above, 
the reacting nuclei should be compatible from the geometric standpoint. Using the previous 
experience, write down the geometrically compatible nuclear reaction 12C +6Li → 18F. 
Consider the reaction more closely.  
 4.1. Joining of a triangular prism to a triangular barrel. The reaction is illustrated in 
Fig. 23. From the figure it follows that only three protons of lithium (from six) and three 
protons of carbon (from twelve) take part actually in the reaction. The graph representation of 
the nuclear reaction is shown in Fig. 24. The tertion net and its graph are presented in Fig. 16. 

a) c) b) 

c) a) b) 
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Fig. 23. Joining of a triangular prism to a triangular barrel: a) separate prism (lithium) and 
separate barrel (carbon) b) intermediate compound, c) (tri-penta3)2-hexa3 polyhedron (18F) 

 

 
Fig. 24. Embedding the graph of carbon into the graph of lithium: a) separate graphs,  

b) embedding, c) graph of (tri-penta3)2-hexa3 polyhedron (fluorine) 
 

 
 

Fig. 25. Electronic structure of fluorine isomer 18F: a) graph of tertion net constructed on the 
base of the proton-cell graph (dot red lines); b) graph of tertion net; c) tertion net 

 
 4.2. Embedding isotopy. If to replace in that reaction lithium 6 by lithium 7 or carbon 
12 by carbon 13, i.e. to consider reactions 7Li +12C → 19F or 6Li +13C → 19F, one haso0n one 
and the same isotope of fluorine 19 (Fig. 26). It should be emphasized that, on the basis of 
previous results, the first reaction is more probable. 
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Fig. 26. Structure of isotope 19F: a) Proton cell; b) Graph of the tertion net; c) Tertion net 

 
 4.3. Joining of a triangular prism to a truncated tetrahedron. The reaction illustrates 
an example of nuclear special isomerism (Fig. 27). Here the number of reacting protons is 
increased from six to nine. 3. The figure obtained has the shape of a truncated triangular 
bipyramid. The graph representation of the nuclear reaction is shown in Fig. 28. The tertion 
net and its graph are presented in Fig. 29. 
 

 
Fig. 27. Joining of a triangular prism to a truncated tetrahedron: a) separate prism (lithium) 

and separate truncated tetrahedron (carbon) b) intermediate compound, c) truncated triangular 
bipyramid (18F) 

 

 
Fig. 28. Embedding the graph of carbon into the graph of lithium: a) separate graphs, 

b) embedding, c) graph of truncated triangular bipyramid (fluorine) 

 

a) b) c) 

12C  

a) 

6Li  (12C, 6Li) 

b) f) 
 
18F 

+ 

a) 

b) 

→ 

c) 

→ 

160 Alexander I. Melker



 
 

Fig. 29. Electronic structure of fluorine isomer 18F: a) graph of tertion net constructed on the 
base of the proton-cell graph (dot red lines); b) graph of tertion net; c) tertion net 

 
 4.4. Embedding isotopy. If to replace in reaction 12C +6Li → 18F lithium 6 by lithium 7 
or carbon 12 by carbon 13 one obtains one and the same isotope of fluorine 19 (Fig. 30). It 
should be emphasized that, on the basis of previous results, the first reaction is more probable. 

 

 
 

Fig. 30. Structure of isotope 19F: a) proton cell; b) graph of the tertion net; c) tertion net 
 
5. Isotopes of neon and their isomers  
There are three stable isotopes of neon: 10Ne20 (90.51 %), 10Ne21 (0.27 %) and 10Ne22 (9.22 %) 
[2]. The crucial question is how to obtain them and their space isomers in the framework of 
one and the same assumptions. Consider the nuclear reactions which are geometrically 
compatible. 
 5.1. Fusion of two pentagonal pyramids. The reaction is written as 10B + 10Be  → 20Ne.  
It is illustrated in Figs. 31, 32 and 33. 
 

 
Fig. 31. Joining of two prisms: a) separate prisms (boron) b) intermediate compound, 

c) dodecahedron (20Ne) 

a) b) c) 

b) a) c) 
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Fig. 32. Fusion of two prisms as connection of their graphs: a) separate graphs (boron)  
b) intermediate compound, c) dodecahedron (20Ne) 

 

 
Fig. 33. Electronic structure of neon isomer 20Ne: a) graph of tertion net constructed on the 

base of the proton-cell graph (dot red lines); b) graph of tertion net; c) tertion net 
 
 5.2. Two-stage reactions. The reactions can be written as 
12C +4He → 16O,      16O +4He → 20Ne. 
As it was shown, carbon 12 has several space isomers. Therefore there appear several space 
isomers of neon.  
 5.2.1. Joining two tetrahedrons with a hexagonal prism. Those two- stage reactions 
are illustrated in Figs. 34-35. The graph representation of the nuclear reactions is shown in 
Fig. 36. . The tertion net and its graph are presented in Fig. 37. 
 

 
Fig. 34. Joining of a tetrahedron (α-particle) to a hexagonal prism (12C ): a) separate 

tetrahedron and hexagonal prism; proton bonds (red lines), reacting protons (light pink 
spheres), neutral atoms (dark pink spheres), b) intermediate compound: old bonds to be 

destroyed (lilac dotted lines), new bonds (lilac lines), c) cupola of three-fold symmetry (16O) 
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Fig. 35. Joining of a tetrahedron to a cupola: a) separate tetrahedron (α-particle) and cupola 

(16O ), b) intermediate compound, c) tetra3-penta6-hexa3 dodecahedron (20Ne) 
 

 
 

 
Fig. 36. Embedding the graph of α-particle into the graph of carbon (a, b, c); embedding the 

graph of cupola into the graph of α-particle (d, e, f) 
 

 
 

Fig. 37. Electronic structure of neon isomer 20Ne: a) graph of tertion net constructed on the 
base of the proton-cell graph (dot red lines); b) graph of tertion net; c) tertion net 

 5.2.2. Joining two tetrahedrons with a triangular barrel. Those two- stage reactions 
are presented in Figures 37-38. The graph representation of the nuclear reactions is shown in 
Fig. 39. The tertion net and its graph are illustrated in Fig. 40. 
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Fig. 37. Joining of a tetrahedron (α-particle) to a triangular barrel (12C ): a) separate 

tetrahedron and triangular barrel, b) intermediate compound, c) tri-(tetra-penta-hexa)3 
decahedron (16O) 

 

 
 

Fig. 38. Joining of a tetrahedron to a decahedron: a) separate tetrahedron (α-particle) and 
decahedron (16O ), b) intermediate compound, c) (tetra-hexa)6 dodecahedron (20Ne) 

 

 

 
Fig. 39. Embedding the graph of α-particle into the graph of carbon (a, b, c); embedding the 

graph of oxygen into the graph of α-particle (d, e, f) 
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Fig. 40. Electronic structure of neon isomer 20Ne: a) graph of tertion net constructed on the 
base of the proton-cell graph (dot red lines); b) graph of tertion net; c) tertion net 

 
 5.3. Embedding isotopy. If to replace in the previous reactions carbon 12 (hexagonal 
prism) by carbon 13 (body centered hexagonal prism), one obtains the isotope of neon 21 
shown in Fig. 41. Replacing carbon 12 (triangular barrel) by carbon 14 (dimer embedded 
triangular barrel) leads to appearance of the isotope neon 22 (Fig. 42). It should be 
emphasized that here only the most probable reactions of the isotopes are considered. 
 

 
 

Fig. 41. Structure of isotope 21Ne: a) proton cell; b) graph of the tertion net; c) tertion net 
 

 
Fig. 42. Structure of isotope 22Ne: a) proton cell; b) graph of the tertion net; c) tertion net 

 
6. Discussion 

As stated above, there are two stable isotopes of nitrogen, 7N14 (99.63 %) and 7N15 (0.37%), 
three stable isotopes of oxygen, 8O16 (99.76 %), 8O17 (0.04 %) and 8O18 (0.20 %), only one 
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a) c) b) 

c) b) a) 
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stable isotope of fluorine, 9F19 (100 %), and three stable isotopes of neon, 10Ne20 (90.51 %), 
10Ne21 (0.27 %) and 10Ne22 (9.22 %) [2]. Consider the most stable isotopes: nitrogen 7N14 
(99.63 %), oxygen 8O16 (99.76 %), fluorine 9F19 (100 %), neon: 10Ne20 (90.51 %) and neon 
10Ne22 (9.22 %). They can be classed into two groups: basic nuclei having equal number of 
protons and neutrons (Fig. 43) and isotopes having one or two more neutrons (Fig. 44). 
 

 
Fig. 43. Protonic and electronic structure of basic nuclei: a) nitrogen, b) oxygen c) neon 

 
 It should be noted that the nuclei of the first group have several space isomers. By 
analogy with fullerenes, only such isomers were chosen which have the most probability of 
generation. What all the nuclei have in common is that their proton structure is stable with 
respect to mechanical shear stresses. At the same time basic nuclei of the second group are 
unstable with respect both shear stresses and thermal vibrations. However they acquire 
stability incorporating one or two neutrons. It is believed that the stability is ensured also by 
the coat of mail (tertion net) which becomes denser after the nuclei embed the extra neutrons. 

 

 
 

Fig. 44. Protonic and electronic structure of isotopes: a) fluorine, b) neon 
 
7. Summary 
By analogy with fullerenes, the nuclear geometry has been designed. For nitrogen, oxygen, 
fluorine and neon the protonic and electronic structures both for basic isomers and their 
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isotopes were obtained. The most stable nuclei can be classed into two groups: basic nuclei 
having equal number of protons and neutrons and isotopes having one or two more neutrons. 
The latter ensure their mechanical stability with respect to shear stresses, sending their 
electron to the coat of mail created by the basic nuclei. 
 
Acknowledgements. No external funding was received for this study. 
 
References 
[1] Prokhorov AM. [Ed.] Physical Encyclopedic Dictionary. Moscow; 1995. (In Russian) 
[2] Grigoriev IS, Meilikhov ES. [eds.] Physical Values, Handbook. Moscow: 
Energoatomizdat; 1991. (In Russian) 
[3] Melker AI, Vorobyeva TV, Zarafutdinov RM. Fullerenes of the Δn=6 series. J. Appl. 
Theor. Phys. Res. 2018;2(1): 1-4. 
[4] Melker A.I. Fiftieth anniversary of molecular dynamics. Proceedings of SPIE. 
2007;6597: 659702. 
[5] Krupina MA, Melker AI. Unified approach to vibrations and rotations of molecules and 
macromolecules. St. Petersburg State Polytechnical University Journal. Physics and 
Mathematics. 2009;2(77): 112-116. 

Nuclear geometry: from nitrogen to neon 167



 

 

NUCLEAR GEOMETRY: SODIUM, MAGNESIUM, ALUMINUM  
Alexander I. Melker 

St. Petersburg Academy of Sciences on Strength Problems, Peter the Great St. Petersburg Polytechnic University 

Polytekhnicheskaya 29, 195251, St. Petersburg, Russian Federation 

e-mail: ndtcs@inbox.ru 
 
 

Abstract. The nuclear geometry has been developed by analogy with the fullerene geometry. 
On the basis of this geometric approach, it was possible to design the structure of sodium, 
magnesium and aluminum isomers and their isotopes, which can be obtained by means of 
nuclear synthesis. The most stable nuclei can be classed into two groups: basic nuclei having 
equal number of protons and neutrons and isotopes having one or two more neutrons. The 
latter ensure their mechanical stability with respect to shear stresses, sending their electron to 
the coat of mail created by the basic nuclei. 
Keywords: aluminum, graph representation, isomer, isotope, magnesium, nuclear electron, 
nuclear geometry, nuclear reaction, sodium 
 
 
1. Introduction 
Earlier, by analogy with fullerenes, the nuclear geometry has been designed The geometric 
models of nuclei, developed by analogy with the fullerene geometry, allow explain why the 
nuclei have a definite number of stable isotopes and isotopes having a large half-decay period. 
Contrary to the usual "arithmetic approach", when the nuclear reactions are written down 
simply as in chemistry, the geometric approach was used when the reactions are considered, if 
the reacting nuclei are compatible from the geometric standpoint. 
 In this contribution I expand the geometric approach which explains not only the 
generation of sodium, magnesium and aluminum but also that of their isotopes and isomers in 
the framework of one and the same unified modeling. It should be emphasized again that I 
use, instead of the vague notion "nuclear isomerism" [1], the clear notion accepted for 
molecules, i.e. I accept that space isomerism of nuclei is the phenomenon which consists in 
the existence of nuclei having an equal mass number but different positions of the nuclear 
constituents in the space.  
 
2. Isomers of sodium and their isotopes 
There is only one stable isotope of sodium, 11Na23 (100 %), and an unstable isotope having a 
comparatively large half-decay period being equal to 2.602 y, 11Na22 [2]. Previously it was 
suggested that nuclei can be separated into two main types: basic nuclei having equal number 
of protons and neutrons and isotopes having one or two more neutrons. First consider simpler 
basic nucleus, 11Na22 that can be obtained by two ways: 
 through the use of reaction d + 10Ne20 → 11Na22, and 
 by means of two-stage reaction 12C +4He → 16O, 16C +6Li → 22Na. 
Consider the first reaction more closely.  
 2.1. Joining a dimer to a (tetra-hexa)3-penta6 dodecahedron. The reaction is illustrated 
in Figs. 1, 2 and 3. Here a deuteron is incorporated into a basic nucleus of neon having three-
fold symmetry. From Fig. 1 it follows that for neon only four protons from twenty take part 
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really in the reaction. They are specially marked in the figure; the protons are pinked, the new 
proton-protons bonds are lilac, the old bonds, which were destroyed, are shown using red dot 
lines. Here tertions are omitted.  

 
Fig. 1. Attachment of deuteron to neon: a) separate particles; b) intermediate compound; 

c) sodium 22Na after relaxation  

 

 
 

Fig. 2. Graph representation of the nuclear reaction d + 10Ne20 → 11Na22. Embedding the 
graph of deuteron into the graph of neon: a) separate graphs corresponding to a dimer (at the 
left) and to a tetra3-penta6-hexa3 dodecahedron (at the right); b) embedding, c) graph of the 
tetra-penta10-hexa2 triacaidecahedron shown in Fig. 1c. All notations are the same as before 

 

 
Fig. 3. Electronic structure of sodium 22Na: a) graph of tertion net being constructed on the 
base of the proton-cell graph (red dot lines; b) separate graph of tertion net; c) tertion net 

 
 2.2. Two-stage reaction. Now consider the two-stage reaction which is written above as 
12C +4He → 16O,  16O +6Li → 22Na. The first stage is illustrated in Fig. 4 and consists in 
joining a tetrahedron with a hexagonal prism. Earlier this reaction was already analyzed as the 
fist stage for obtaining neon having the shape of tetra3-penta6-hexa3 dodecahedron. The 
second stage is shown in Fig. 5. It consists in joining a triangular prism to a cupola of three-
fold symmetry which was formed at the fist stage. The graph representation of the two-stage 
reaction is presented in Fig. 6.  
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Fig. 4. Joining a tetrahedron (α-particle) to a hexagonal prism (12C ): a) separate tetrahedron 
and hexagonal prism; proton bonds (red lines), reacting protons (light pink spheres), neutral 

atoms (dark pink spheres); b) intermediate compound: old bonds to be destroyed (red dot 
lines), new bonds (lilac lines); c) cupola of three-fold symmetry (16O) 

 

 
Fig. 5. Joining a triangular prism to a cupola: a) separate prism (6Li ) and cupola (16O ), 

b) intermediate compound, c) tri-penta9-hexa3 triacaidecahedron (22Na) 
 

 

 
Fig. 6. Graph representation of the two-stage nuclear reaction 12C +4He → 16O +6Li → 22Na. 
a) separate graphs corresponding to a tetrahedron (above) and to a hexagonal prism (down); 

b) embedding the graph of helium into the graph of carbon; c) graph of cupola oxygen; 
d) graphs corresponding to a triangular prism (above) and to a hexagonal cupola (below); 

e) embedding the graph of oxygen into the graph of lithium; f) graph of sodium 

c) 
22Na 

a) 

6Li 

16O 

(6Li,16O) 

b) 

a) 

+ → 

b) 

→ 

c) 

a) 
α 

12C  

b) 

(α, 12C)  

c) 
16O 

d) 

+ 

e) 

→ 

f) 

→ 

170 Alexander I. Melker



 One additional remark is necessary. The final graph shown in Figure 6f reflects the 
three-fold symmetry of the sodium shape obtained. However we can consider this structure 
from another point of view. As noted above, the nuclei can be separated into two types: basic 
nuclei having equal number of protons and neutrons and isotopes having one or two more 
neutrons. Let's extend the classification. Among the basic nuclei we will recognize two 
subgroups: ideal (perfect) nuclei and imperfect ones. Similar to crystals, the perfect nuclei are 
highly symmetric. The imperfect nuclei have lost high symmetry and the loss is connected 
with structural defects. By analogy with crystals, one can consider the structure shown in 
Fig. 5f as a perfect classical dodecahedron by Plato which was spoiled by adding a defect in 
the form of an extra interstitial dimer. Following such approach developed for fullerenes [3] 
one defines such nuclei as having topological symmetry. The situation is illustrated in Fig. 7, 
where two graphs, corresponding with the shape shown in Fig. 5c, are presented. The graph at 
the left reflects the symmetry induced by an extra dimer, whereas the graph at the right 
emphasizes the topological symmetry.  

 

 
 

Fig. 7. Two graphs of one and the same structure shown in Fig. 5c, reflecting different sides 
of symmetry: a) ordinary symmetry; b) topological symmetry 

 
To gain a more penetrating insight into the electronic structure of imperfect nuclei, it is 

better to use topological symmetry. The tertion net and its graph, which are presented in 
Fig. 8, are designed through the use of topological symmetry.  

 
Fig. 8. Electronic structure of sodium 22Na: a) graph of tertion net being constructed on the 
base of the proton-cell graph (red dot lines); b) separate graph of tertion net; c) tertion net 

 
 2.3. Stability due to neutron embedding. Let’s replace in the previous reactions neon 20 
having the shape of a (tetra-hexa)3-penta6 dodecahedron by neon 21 (the same dodecahedron 
but body centered). Then there arises the isotope of sodium (23Na) shown in Fig. 9. If to 
replace in the previous reactions carbon 12 (hexagonal prism) by carbon 13 (body centered 
hexagonal prism), there appears the isotope of sodium 23 shown in Fig. 10. It should be noted 
that in the first case additional tertions have the charge of ½ e, in the second case of ⅓ e. The 
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reasons are connected with the number of hexangular facets which incorporate the electrons 
of internal neutrons. So there leaves room for two isomers of sodium isotope, 23Na.  
 Why the basic nuclei are unstable and the isotopes are stable? One can submit the 
following explanation. It is clear that any nucleus structure (proton cell) must be stable with 
respect to mechanical stresses which appear due to thermal vibrations of protons. It is 
assumed that the stability is insured by the coat of mail that dictates geometry of a proton cell. 
On the basis of the previous experience, one can envision that the coat of mail (tertion net), 
which ensures such stability, doesn’t contain hexagons. The coat of mail of both basic isomers 
has the hexagons (Figs. 3 and 8). Embedding extra neutron eliminates the hexagons and does 
the coat of mail denser (Fig. 9 and 10). In its turn it leads to increasing stability and 
transforming the basic nuclei into the corresponding isotopes. 
 

 
 

Fig. 9. Structure of isotope 23Na: a) proton cell; b) graph of the tertion net; c) tertion net 
 

 
Fig. 10. Structure of another isotope 23Na: a) proton cell; b) tertion-net graph; c) tertion net 

 
3. Isomers of magnesium and their isotopes 
There are three stable isotopes of magnesium: 12Mg24 (78.99 %), 12Mg25 (10.00 %) and 12Mg26 
(11.01 %); beside there is an unstable isotope 12Mg28, which has a reasonably small half-
decay period being equal to 21.07 hours [2]. The crucial question is again how to obtain them 
and their space isomers in the framework of one and the same assumptions. Previously it was 
suggested that the nuclei can be separated into two main types: the basic nuclei having equal 
number of protons and neutrons and the isotopes having one or two more neutrons. A better 
understanding can be gained if to begin with the basic nucleus, 12Mg24 that can be obtained by 
various ways through the use of the most probable geometrically compatible reactions: 
12C + 12C → 24Mg,     8Be + 16O + → 24Mg. 

c) a) b) 

a) b) c) 

172 Alexander I. Melker



 3.1. Joining two hexagonal prisms. The reaction is illustrated in Figs. 11, 12 and 13. 
Here both configurations have six-fold symmetry. From Fig. 11 it follows that for each carbon 
only half protons take part in the reaction. They are specially marked in the figure; the protons 
are pinked, the new proton-protons bonds are lilac, the old bonds, which were destroyed, are 
shown using dotted lines. Here tertions are also omitted.  
 

 
 

Fig. 11. Joining two hexagonal prisms: a) separate prisms (carbon); b) intermediate 
compound; c) regular penta12-hexa2 tettarecaidecahedron (24Mg) 

 

 
 

Fig. 12. Graph representation of the nuclear reaction 6C12 + 6C12 → 12Mg24; embedding a 
graph of carbon into another: a) separate graphs corresponding to carbon nuclei; 

b) embedding, c) graph of the penta12-hexa2 polyhedron (24Mg) 
 

 
Fig. 13. Electronic structure of six-fold symmetry magnesium 24Mg: a) graph of tertion net 

constructed on the base of the proton-cell graph (red dot lines; b) separate graph of tertion net; 
c) tertion net 
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 3.2. Joining a cube to a square barrel. The reaction is shown in Figs. 14, 15 and 16. 
Here both configurations have four-fold symmetry. From Fig. 14 it follows that for beryllium 
half protons take part in the reaction but for oxygen only four protons from sixteen do it. They 
are specially marked in the figure; the protons are pinked, the new proton-protons bonds are 
lilac, the old bonds, which were destroyed, are shown using dotted lines. Here tertions are 
also omitted.  

 
Fig. 14. Joining a cube to a square barrel: a) cube (beryllium) at the top, barrel (oxygen) at the 

bottom; b) intermediate compound; c) regular tetra2-penta8-hexa4 polyhedron of four-fold 
symmetry (24Mg) 

 
Fig. 15. Graph representation of the nuclear reaction 8Be + 16O + → 24Mg; embedding the 

graph of oxygen into the graph beryllium: a) separate graphs corresponding to the nuclei; b) 
embedding, c) graph of the tetra2-penta8-hexa4 polyhedron having four-fold symmetry (24Mg) 
 

 
Fig. 16. Electronic structure of four-fold symmetry magnesium 24Mg: a) graph of tertion net 

constructed on the basis of the proton-cell graph (red dot lines0;  
b) separate graph of tertion net; c) tertion net 
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 3.3. Joining two truncated tetrahedra I. The reaction is illustrated in Figs. 17, 18 and 
19. As a result we have obtained a basic nucleus of three-fold symmetry having equal number 
of protons and neutrons.  

 
Fig. 17. Mirror-symmetry joining two truncated tetrahedra: a) separate tetrahedra (carbon); 

b) intermediate compound; c) regular tri2-tetra3-hexa9 polyhedron of three-fold 
symmetry (24Mg) 

 

 
Fig. 18. Graph representation of the nuclear reaction 6C12 + 6C12 → 12Mg24; embedding a 

graph of carbon into another one: a) separate graphs corresponding to carbon nuclei;  
b) embedding, c) graph of the tri2-tetra3-hexa9 polyhedron of three-fold symmetry (24Mg) 

 

 
Fig. 19. Electronic structure of three-fold symmetry magnesium 24Mg: a) graph of tertion net 

being constructed on the basis of the proton-cell graph (red dot lines);  
b) separate graph of tertion net; c) tertion net 
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Joining two truncated tetrahedra considered refers to mirror reflection. However there is 
also rotatory reflection joining. This type is illustrated by the example of fullerenes. By 
analogy with the fullerenes consider the corresponding reaction.  

 3.3. Joining two truncated tetrahedra II. The reaction is shown in Figs. 20, 21 and 
22.  
 

 
Fig. 20. Rotatory-reflection joining two truncated tetrahedra: a) separate tetrahedra (carbon); 

b) intermediate compound; c) tri2-penta6-hexa6 polyhedron of three-fold symmetry (24Mg) 
 

 
 

Fig. 21. Graph representation of the nuclear reaction 6C12 + 6C12 → 12Mg24; embedding a 
graph of carbon into another one: a) separate graphs corresponding to carbon nuclei;  

b) embedding, c) graph of the tri2-tetra3-hexa9 polyhedron of three-fold symmetry (24Mg) 
 

 
Fig. 22. Electronic structure of three-fold symmetry magnesium 24Mg: a) graph of tertion net 

being constructed on the base of the proton-cell graph (red dot lines);  
b) separate graph of tertion net; c) tertion net 
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From the results obtained it follows that the basic nucleus magnesium 24 has few 
isomers having three, four and six-fold symmetry. Expanding the analogy, one can assume 
that the magnesium isotopes, having one, two or four internal neutrons, inherit also that 
symmetry. 
 3.4. One-neutron embedding isotopy. From the results obtained it may be concluded 
that magnesium isotopes 12Mg25 having different symmetry can be formed by various ways. 
In the reactions described above  
12C + 12C → 24Mg,     8Be + 16O + → 24Mg, 
here only basic nuclei having equal number of protons and neutrons are taken into attention. 
Let us replace one carbon 12 (hexagonal prism) with carbon 13 (body centered hexagonal 
prism) and beryllium 8 (cubic cell) with beryllium 9 (body centered cube), i.e. think over the 
reactions 
13C + 12C → 25Mg,      9Be + 16O + → 25Mg. 
In the first case we obtain the isotope of magnesium 25 having six-fold symmetry. It is shown 
in Fig. 23. In the second case replacing leads to appearance of the isotope magnesium 25 
having four-fold symmetry, which is illustrated in Fig. 24. It should be emphasized that here 
only the most probable reactions with isotopes are considered.  
 

 
 

Fig. 23. Structure of six-fold symmetry isotope 25Mg: a) proton cell;  
b) graph of the tertion net; c) tertion net 

 
Fig. 24. Structure of four-fold symmetry isotope 25Mg: a) proton cell;  

b) graph of the tertion net; c) tertion net 
 

 From the results obtained, it follows also that in the first case the neutron decays into a 
proton and two negatively charged particles, having charge ½ e. In the second case the charge 
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is equal to ¼ e. It was shown previously that the difference can be attributed to the Stark 
effect, if to associate splitting with symmetry of a nuclear cell and the number of hexagonal 
faces. 
 3.5. Two-neutrons embedding isotopy. Magnesium isotopes 12Mg26 having different 
symmetry can be obtained by different ways: through the use of geometrically compatible 
reactions 13C + 13C → 26Mg, rotatory reflection (Fig. 25) and mirror reflection (Fig. 26), and 
rotatory reflection one 12C + 14C → 26Mg (Fig. 27).  

 
Fig. 25. Structure of three-fold mirror-symmetry isotope 26Mg: a) proton cell; 

 b) graph of the tertion net; c) tertion net 

 
Fig. 26. Structure of isotope 26Mg having three-fold rotatory reflection symmetry:  

a) proton cell; b) graph of the tertion net; c) tertion net 

 
Fig. 27. Structure of isotope 26Mg having six-fold symmetry: a) separate prisms; b) proton 

cell; c) core of the nucleus with the nearest cell protons and the binding tertions 
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 3.6. Four-neutrons embedding isotopy. Magnesium isotopes 12Mg28 can be obtained 
through the use of the geometrically compatible reaction 14C + 14C → 28Mg. The reaction is 
shown in Fig. 27. Here one runs into a new phenomenon. Up to now, when there were two 
internal neutrons, they were decomposed into protons and tertions by the external 
surroundings, the protons being tightly connected with the electronic coat of mail and maybe 
only slightly connected, if are connected at all, one another. Now it is seen that the internal 
protons form the core, they being tightly connected one another and slightly connected with 
the external electronic coat of mail (Fig. 28). Four internal neutrons give 12 tertions; 6 of 
them form the coat of mail of the core, 4 refer to the bonds connecting the core and the 
external proton cell and 2 are incorporated into the external coat of mail. All tertions have the 
charge ⅓ e; they are specially marked in emerald in Fig. 28.  
 

 
 

Fig. 27. Structure of isotope 28Mg having six-fold symmetry: a) separate prisms (carbon 14); 
b) proton cell; c) core of the nucleus with the nearest cell protons and the binding tertions 

 

 
Fig. 28. Electronic structure of six-fold symmetry magnesium isotope 28Mg: a) core tertion 

net (octahedron); b) binding tertion net (tetrahedron); c) tertion net of an external coat of mail 
 

4. Isotopes of aluminum and their isomers  
There is only one stable isotope of aluminum, 13Al27 (100 %), and an ‘unstable’ isotope 
however having a very large half-decay period being equal to 7.2∙105 y, 13Al26 [2]. The latter 
is a basic nucleus having equal number of protons and neutrons. From the aforesaid, it follows 
that it is easier to consider at first a simpler basic nucleus. It can be obtained by several ways, 
but the simplest one is through the use of reaction d + 12Mg24 → 13Al26. 

a) b) c) 

28Mg 
c) 

14C 

14C 
a) b) 

28Mg core 

Nuclear geometry: sodium, magnesium, aluminum 179



 4.1. Incorporating a dimer into a penta12-hexa2 polyhedron. The reaction is illustrated 
in Figs. 29 and 30. Here a deuteron is incorporated into a basic nucleus of magnesium having 
six-fold symmetry. From Fig. 29 it follows that for magnesium only four protons from twenty 
four take part really in the reaction. They are specially marked in the figure; the protons are 
pinked, the new proton-protons bonds are lilac, the old bonds, which were destroyed, are not 
shown. Here tertions are omitted.  

 
 

Fig. 29. Attachment of deuteron to magnesium: a) separate particles; b) intermediate 
compound; c) aluminum (26Al) after relaxation  

 
 

Fig. 30. Graph representation of the nuclear reaction d + 12Mg24 → 13Al26. Embedding the 
graph of deuteron into the graph of magnesium: a) separate graphs corresponding to a dimer 
(at the left) and to a penta12-hexa2 polyhedron (at the right); b) embedding, c) graph of the 

penta12-hexa3 polyhedron. All notations are the same as before 
 

One can consider aluminum 26 obtained as a polyhedron having topological six-fold 
symmetry. At the same time it has ordinary three-fold symmetry as it shown in Fig. 31. The 
electronic structure corresponding to three-fold symmetry is illustrated in Fig. 32. 

 
Fig. 31. Structure of aluminum 26 and its graph showing three fold symmetry 
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Fig. 32. Electronic structure of aluminum 26: a) graph of tertion net being constructed on the 

base of the proton-cell graph; b) separate graph of tertion net; c) tertion net 
 
 4.3. Neutron embedding. Let's replace in the previous reaction magnesium 24 having 
the shape of a penta12-hexa2-polyhedron by magnesium 25 (the same polyhedron but body 
centered). Then we obtain the isotope of aluminum (27Al) shown in Fig. 33. It should be noted 
that in this case additional tertions have the charge of ⅓ e. The reasons are connected with the 
number of hexangular facets which incorporate the electrons of an internal neutron.  
 Why the basic nucleus and the isotope are stable? One can suggest the following 
explanation. It is clear that any nucleus structure (proton cell) must be stable with respect to 
mechanical stresses which appear due to thermal vibrations of protons. Assume that the 
stability is insured by the coat of mail that dictates geometry of a proton cell. On the basis of 
the previous experience, we came to conclusion that the coat of mail (tertion net), which 
ensures additional stability, doesn't contain hexagons.  

 
Fig. 33. Structure of isotope 27Al: a) proton cell; b) graph of the tertion net; c) tertion net 

 
5. Summary 
By analogy with fullerenes, the nuclear geometry has been designed. For sodium, magnesium 
and aluminum, the protonic and electronic structures both for basic isomers and their isotopes 
were obtained. The most stable nuclei can be classed into two groups: basic nuclei having 
equal number of protons and neutrons and isotopes having one or two neutrons. The latter 
ensure their mechanical stability with respect to shear stresses, sending their electrons to the 
coat of mail created by the basic nuclei. 
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Abstract. The von Mises and Hill yield criteria are commonly used when the stress-strain 
state of parts under complex loading conditions is calculated. However, those yield criteria 
are not suitable in some materials and do not reliably describe the inelastic behavior of the 
material under complex stress conditions. The development of a simple and accurate criterion 
of plastic flow is relevant. This paper presents the results of the yield criterion development 
for a single crystal nickel-based superalloy (ZhS32) based on the systematization of 
experimental data. Various types of stress state were realized during the experiment: tension, 
compression, torsion, as well as combinations of tension-torsion, compression-torsion. 
Keywords: single-crystal, crystallographic orientation, anisotropy, stress-strain state, 
plasticity, yield strength, ultimate strength, complex stress test 

 
 

1.  Introduction  
The complex geometric shapes of gas turbine engine parts and the loads acting on them lead 
to an inhomogeneous complex stress-strain state. The stress state can be estimated using the 
Lode-Nadai coefficient (1) [1,2] or the stress triaxiality factor (2) [3]: 
µ =  2

𝜎𝜎2 −  𝜎𝜎3
𝜎𝜎1 −  𝜎𝜎3

− 1, (1) 

𝜂𝜂 =  −
𝜎𝜎0
𝜎𝜎𝑖𝑖
− 1, (2) 

where 𝜎𝜎1, 𝜎𝜎2, and 𝜎𝜎3 are the principal stresses, 𝜎𝜎0 is the mean stress among the normal 
stresses or hydrostatic pressures, and 𝜎𝜎𝑖𝑖 is the stress intensity. 

When parameters (1) and (2) at the nodes of the finite element model (FEM) of a 
modern turbine blade are calculated, large areas of the blade cover a complex stress state. 
Fig. 1 shows the distribution histograms of the Lode-Nadai coefficient at the nodes of the 
FEM of the blades with convective and perspective cooling systems, respectively. 

Many criteria can quantitatively evaluate the complex stress state and the complex 
strain state. These criteria apply to various types of materials [4-6]. One of the main yield 
criteria studied by engineers is the criterion of maximum shear stress or the Tresca criterion 
(3) [7,8]. The yield criterion is as follows: plastic strains in the material occur when the 
maximum shear stress reaches its critical value. 
𝜎𝜎1 − 𝜎𝜎3 = 𝜎𝜎𝑌𝑌, (3) 
where 𝜎𝜎𝑌𝑌 is the yield strength. 
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a) convective cooling system b) perspective cooling system 

Fig. 1. Distribution histograms of the Lode-Nadai coefficient for the  different blades 
 
The next and most popular yield criterion is the von Mises criterion (4) [7,8]. This 

criterion is also called energetic because it is based on the potential energy of shape change.  
1
√2
�(𝜎𝜎1 − 𝜎𝜎2)2 + (𝜎𝜎2 − 𝜎𝜎3)2 + (𝜎𝜎3 − 𝜎𝜎1)2 = 𝜎𝜎𝑌𝑌. (4) 

Another criterion is called the Ishlinsky criterion (5) or the criterion of the greatest 
reduced stress. The reduced stress is the maximum among the normal components of the 
stress deviator. 

𝑚𝑚𝑚𝑚𝑚𝑚{|𝜎𝜎1 − 𝜎𝜎0|, |𝜎𝜎2 − 𝜎𝜎0|, |𝜎𝜎3 − 𝜎𝜎0|} =
2
3
𝜎𝜎𝑌𝑌. (5) 

Currently, many yield criteria have been developed based on the systematization of 
experimental data, such as Mohr, Pisarenko-Lebedev, Hill, and Tsai-Wu [9,10]. If a criterion 
based on the systematization of experimental data is used, determining its coefficients from 
tests is required [e.g., Mohr's criterion (6) or the Pisarenko-Lebedev criterion (7)].  
𝜎𝜎1 − 𝜒𝜒𝜎𝜎3 = 𝜎𝜎𝑌𝑌, (6) 
𝜒𝜒σ𝑖𝑖 + (1 − 𝜒𝜒)σ1 = 𝜎𝜎𝑌𝑌, (7) 
where 𝜒𝜒 is the tensile/compressive yield strength ratio, σ𝑖𝑖 – stress intensity. 

Hill yield criterion is often used when stress-strain state calculations for anisotropic 
parts are performed. 
𝐹𝐹�𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦�

2
+ 𝐺𝐺�𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑧𝑧�

2
+ 𝐻𝐻(𝜎𝜎𝑧𝑧 − 𝜎𝜎𝑥𝑥)2 + 2𝐿𝐿𝜏𝜏𝑥𝑥𝑦𝑦2 + 2𝑀𝑀𝜏𝜏𝑦𝑦𝑧𝑧2 + 2𝑁𝑁𝜏𝜏𝑧𝑧𝑥𝑥2 − 𝜎𝜎𝑌𝑌2 = 0 (8) 

where 𝐹𝐹 = 1
2
� 1
𝑅𝑅𝑥𝑥2

+ 1
𝑅𝑅𝑦𝑦2
− 1

𝑅𝑅𝑧𝑧2
�, 𝐺𝐺 = 1

2
� 1
𝑅𝑅𝑦𝑦2

+ 1
𝑅𝑅𝑧𝑧2
− 1

𝑅𝑅𝑥𝑥2
�, 𝐻𝐻 = 1

2
� 1
𝑅𝑅𝑧𝑧2

+ 1
𝑅𝑅𝑥𝑥2
− 1

𝑅𝑅𝑦𝑦2
�, 𝐿𝐿 = 3

2
� 1
𝑅𝑅𝑥𝑥𝑦𝑦2

�, 

𝑀𝑀 = 3
2
� 1
𝑅𝑅𝑦𝑦𝑧𝑧2
�, 𝑁𝑁 = 3

2
� 1
𝑅𝑅𝑧𝑧𝑥𝑥2
�, where 𝑅𝑅𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑌𝑌

𝜎𝜎𝑌𝑌
, 𝑅𝑅𝑦𝑦 = 𝜎𝜎𝑦𝑦𝑌𝑌

𝜎𝜎𝑌𝑌
, 𝑅𝑅𝑧𝑧 = 𝜎𝜎𝑧𝑧𝑌𝑌

𝜎𝜎𝑌𝑌
, 𝑅𝑅𝑥𝑥𝑦𝑦 = √3 𝜏𝜏𝑥𝑥𝑦𝑦𝑌𝑌

𝜎𝜎𝑌𝑌
, 𝑅𝑅𝑦𝑦𝑧𝑧 = √3 𝜏𝜏𝑦𝑦𝑧𝑧𝑌𝑌

𝜎𝜎𝑌𝑌
,  

𝑅𝑅𝑧𝑧𝑥𝑥 = √3 𝜎𝜎𝑧𝑧𝑥𝑥𝑌𝑌

𝜎𝜎𝑌𝑌
, 𝜎𝜎𝑖𝑖𝑖𝑖𝑌𝑌  – yield stress values. 

When calculations are carried out for single-crystal (SX) parts considering the cubic 
symmetry of mechanical characteristics, Hill yield criterion is simplified and transformed 
into (9). 

��𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦�
2

+ �𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑧𝑧�
2

+ (𝜎𝜎𝑧𝑧 − 𝜎𝜎𝑥𝑥)2 + 𝐾𝐾𝑝𝑝(𝜏𝜏𝑥𝑥𝑦𝑦2 + 𝜏𝜏𝑦𝑦𝑧𝑧2 + 𝜏𝜏𝑧𝑧𝑥𝑥2 ) − 𝜎𝜎𝑌𝑌 = 0, (9) 

Material behaviour during a complex stress test of thin-walled, cylindrical single-crystal specimens 183



where 𝐾𝐾𝑝𝑝 = 4 𝜎𝜎𝑌𝑌<001>
2

𝜎𝜎𝑌𝑌<011>
2 − 1, 𝜎𝜎𝑌𝑌<001>  – yield strength in <001> crystallographic direction, 

𝜎𝜎𝑌𝑌<011>  – yield strength in <011> crystallographic direction. Further, it will become clear 
that in such formulation the criterion describes the material behavior worse than the Mises 
criterion. However, using the adjusted parameter (𝐾𝐾𝑝𝑝 = 4 𝜎𝜎𝑌𝑌<001>

2

𝜎𝜎𝑌𝑌<111>
2 − 1, where 𝜎𝜎𝑌𝑌<111>2  – yield 

strength in <111> crystallographic direction) it is possible to achieve good agreement between 
theoretical and experimental data. 

Based on Schmid's law [11] crystallographic approach is widely used for the stress-
strain state determination of SX blades. According to Schmid's law, octahedral or cubic slip 
systems are realized when plastic deformation of the crystal lattice occurs. 
min
𝑘𝑘

{𝑛𝑛𝑘𝑘}[𝜎𝜎]{𝑙𝑙𝑘𝑘} > 𝜏𝜏0, (10) 
where {𝑛𝑛𝑘𝑘} – the normal direction to the slip plane, [𝜎𝜎] – stress tensor, {𝑙𝑙𝑘𝑘} – slip direction,  
𝜏𝜏0 – critical resolved shear stress. 

A.S. Semenov proposed an approach [12] to generalize the crystallographic criterion 
using smooth dependences based on the Hill yield criterion (11). 

�
𝐼𝐼𝑐𝑐𝑐𝑐1
𝜎𝜎𝑌𝑌

�
𝑛𝑛

+ 𝐾𝐾𝑝𝑝1 �
𝐼𝐼𝑐𝑐𝑐𝑐2
𝜎𝜎𝑌𝑌
�
𝑚𝑚

− 1 = 0, (11) 

where 𝐼𝐼𝑐𝑐𝑐𝑐1 = �1
2
��𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦�

2
+ �𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑧𝑧�

2
+ (𝜎𝜎𝑧𝑧 − 𝜎𝜎𝑥𝑥)2�, 𝐼𝐼𝑐𝑐𝑐𝑐2 = �𝜏𝜏𝑥𝑥𝑦𝑦2 + 𝜏𝜏𝑦𝑦𝑧𝑧2 + 𝜏𝜏𝑧𝑧𝑥𝑥2 , 𝐾𝐾𝑝𝑝1, 𝑛𝑛, 

𝑚𝑚 – dimensionless material constants (𝐾𝐾𝑝𝑝1 = 1.3, 𝑛𝑛 = 2.4, 𝑚𝑚 = 2.4 [12]). 
Studies show that no plasticity criterion can accurately describe the behavior of a 

material under a complex stress state. Different criteria are more consistent with the 
experimental data obtained from testing various materials and conditions. 

In the present work, we focused on investigating SX material behavior under complex 
loading and a yield criterion based on the systematization of experimental data. 
 
2.  Experimental investigation  
An experimental investigation of the yield criteria was conducted by testing thin-walled 
tubular specimens loaded by tensile/compressive force, and torque. In addition to the yield 
strength, several characteristics at various stress levels were studied. The stress state was 
assumed to be approximately plane. 
 

 
a) view of the specimen b) drawing of the specimen 

Fig. 2. Thin-walled tubular specimen for testing under the complex stress state 
 
SX specimens were cast so that the axis of the specimen matched with the 

crystallographic orientation (CO) <001> [13]. A drawing and view of the specimen are shown 
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in Fig. 2. A secondary orientation does not affect the general deformed state of axisymmetric 
specimens. Nevertheless, its search makes sense because SX materials are known to have a 
strong anisotropy of properties. Therefore, plastic strains could be unevenly distributed 
around the circumference of the specimens.  

The test method corresponded with the requirements of regulatory documents [13]. The 
tests were conducted on a certified testing machine (Fig. 3). The testing machine works with 
tubular thin-walled specimens and is capable of loading them with tensile or compressive 
forces, torque, and internal pressure. However, in this work the specimens were not loaded by 
internal pressure. 

 

  
Fig. 3. Testing machine POZ 0909 manufactured by Schenk GmbH (Germany) with a control 
system BiSS (India), a maximum tensile/compressive load of 630 kN, and a maximum torque 

of 8 kNm 
 
The specimen was fixed in the testing machine using special equipment, excluding its 

slipping both at tension and at torsion. The tests were carried out under the control of the axial 
load and torque at a temperature of 20°C. 

Strain gauges were used to measure the strains of the specimens. When a tension, 
compression, or torsion test is performed, conducting strain gauging becomes intuitively 
clear. However, if the stress state is complex, how to choose the angles for gluing on the 
specimen of the strain gauges is unclear. Strain gauges (Fig. 5) can measure only tensile or 
compressive strains. Thus, strain gauges are glued to the specimens in the directions where 
there are no shear strains (i.e., in the direction of the principal strains). The feature of isotropic 
materials is that normal stresses do not cause shear strains and that shear stresses do not cause 
tensile or compressive deformations. In this case, the directions of the principal stresses and 
principal deformations coincide, and determining these directions can be carried out 
according to a known stress state. Determining the principal stresses is a well-known 
eigenvalue problem described by Equation (12): 
[𝜎𝜎 − 𝜆𝜆𝜆𝜆]{𝑙𝑙} = 0, (12) 
where 𝜎𝜎 is the stress tensor, 𝜆𝜆 is one of the principal stresses, and 𝜆𝜆 is the unit tensor. If 
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relation (13) holds, the system (12) will have a solution. 
𝑑𝑑𝑑𝑑𝑑𝑑|𝜎𝜎 − 𝜆𝜆𝜆𝜆| = 0. (13) 

The definition of the determinant leads to a cubic equation, the solution of which 
contains the eigenvalues or principal stresses. Then, the system of Equation (12) is solved 
given Equation (14): 
𝑙𝑙12 + 𝑙𝑙22 + 𝑙𝑙32 = 1, (14) 
where 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 are the directing cosines.  

When SX specimens (anisotropic) are tested, tensile stresses can cause shear strains and 
vice versa. In this case, the directions of the principal stresses may differ from the directions 
of the principal strains, and recalculating the stresses into the strains is necessary using the 
generalized Hooke's law for an anisotropic material (15) [14]. Next, calculating the principal 
strains and their directions is necessary in the same way as in the stresses. 
{ɛ} = [𝑆𝑆]{𝜎𝜎}, (15) 
where {ɛ} is the strain column vector, [𝑆𝑆] is the anisotropic compliance tensor, and {𝜎𝜎} is the 
stress column vector. 

In the beginning, we were faced with the issue of an unknown azimuthal orientation of 
the SX. The annular plates were cut from the end face of the specimen blanks (Fig. 4) and 
marked with marks on the cut and mating parts to identify the azimuthal orientation. The 
specimen blanks were sent for mechanical treatment, and the annular plates were sent for 
etching to identify the SX texture and determine the azimuthal CO. After etching and 
specimen fabrication, the separated parts were combined according to the previously 
identified marks. Thus, the azimuthal orientation of the SX in the specimens was determined. 

 

    
Fig. 4. Annular plates after etching and the SX texture 

 
The known azimuthal orientation of the SX shows how to recalculate the elastic tensor, 

as it depends on the orientation of the SX in the specimen, and to calculate the strain tensor. 
After determining the principal strains and their directions, the gluing of the strain gauge was 
conducted (Fig. 5).  

The experimental design and yield strength values are presented in Table 1. Seven SX 
specimens were tested. 

As a result of the tests, all specimens were destroyed in a brittle manner. Figure 6 shows 
the destroyed specimens after the tensile, compression, and torsion tests. 

The following types of stress state were realized: uniaxial tension (σ1 =  σ𝑇𝑇𝑇𝑇𝑛𝑛, σ3 =  0), 
uniaxial compression (σ3 =  σ𝐶𝐶𝐶𝐶𝑚𝑚, σ1 =  0), pure shear (σ1 =  −σ3), and the combinations of 
tension–torsion and compression–torsion. The stress-strain diagram was obtained under a 
complex stress state in the coordinates of stress intensity–strain intensity. The yield strengths 
were calculated based on the fact that residual strains after unloading should not exceed 0.2% 
(Fig. 7a, black line). 
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Fig. 5. Specimen with strain gauges before torsion testing (principal strains are located at an 

angle of 45º to the axis of the specimen) 
 

Table 1.  The ratio of torque and tensile load when SX specimens were tested and 
experimental results 

Number of 
points on the 

figure 

Ratio of torque 
and tensile load 
�𝑀𝑀
𝑁𝑁
� , kN∙mm

kN
 

Ratio of 
principal 

stresses ��𝜎𝜎1
𝜎𝜎3
�� 

Yield strength 
(𝜎𝜎Y), MPa 

Ultimate 
strength 

(𝜎𝜎u), MPa 

1 0 Inf. 873 960 
2 7.57 3 952 1067 
3 17.5 3/2 1219 1276 
4 Inf. 1.0 1306 1368 
5 -17.5 2/3 1415 1445 
6 -7.57 1/3 1181 1235 
7 -0 0 999 1029 
Note: Sign «-» indicates that the specimen is under compression. 
 

   
a) tension  b) compression c) torsion 

Fig. 6. Brittle destruction of specimens from SX alloy 
 
To trace the evolution of plastic strains, the proportionality limit, the stresses at which 

residual strains were 0.1%, and the ultimate strength were determined. To determine the 
proportional limit, a black dashed line was used (Fig. 7a) (the tangent between the black 
dashed line and the abscissa axis is 50% less compared to Young's modulus). The stress-strain 
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diagram was compared to various types of stress states (Fig. 7b). These curves are clearly 
shown to be significantly different. This is explained by the anisotropy of the material and the 
fact that the modulus of elasticity and modulus of shear are not dependent quantities. 

 

 

 
a) an example of the determination of some alloy 

characteristics 
b) strain-stress curves for various types of stress 

states 
Fig. 7. Stress-strain curves for the SX nickel-based alloy 

 
The diagram for the dimensionless reference axis σ1-σ3 was obtained (Fig. 8a). An 

attempt was made to describe the experimental results using the most popular plasticity 
criteria [4-6,10-12]: Tresca yield criterion (3), von Mises (4), Pisarenko-Lebedev (7) Hill 
(8,9), Schmid (10),  modified Hill criterion (11) and a modified Pisarenko-Lebedev yield 
criterion developed by the authors in (16). 

𝜒𝜒�
𝜎𝜎12 + 𝛾𝛾𝜎𝜎1𝜎𝜎3 + 𝜎𝜎32

2
+ (1 − 𝜒𝜒)σ1 = 𝜎𝜎𝑌𝑌, (16) 

where 𝛾𝛾 is the shear/tensile yield strength ratio. The values of constant of the proposed 
criterion: 
𝜎𝜎𝑌𝑌 = 873 𝑀𝑀𝑀𝑀𝑚𝑚 (yield strength in <001> crystallographic direction),    𝜒𝜒 = 0.874, 𝛾𝛾 = 1.495. 

Credibility was evaluated (Table 2) using Equation (17) and (18) for various yield 
criteria. This value shows the accuracy of matching with the experimental data of one or 
another plasticity criterion. 

𝐾𝐾𝐸𝐸𝐶𝐶 = 1 −
∑|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
∑|𝑦𝑦𝑖𝑖|

, 
(17) 

𝑅𝑅2 = 1 −
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 , 
(18) 

where 𝑦𝑦𝑖𝑖 is the experimental value of the yield strength, and 𝑦𝑦�𝑖𝑖 is the predicted value of the 
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yield strength, 𝑦𝑦� is the average value among experimental data of yield strength. 
 
Table 2.  Evaluation of credibility of various yield criteria 

Estimation 
criteria 

Yield criteria 

von 
Mises Tresca Pisarenko-

Lebedev 
Schmid's 

low Hill Hill 
(SX) 

Power 
criterion 

Modified 
Pisarenko-
Lebedev 

𝐾𝐾𝐸𝐸𝐶𝐶 78% 74% 83% 92% 94% 73% 94% 96% 
𝑅𝑅2 - - - - 41% - 42% 75% 

 
Most of the widely used yield criterion was not capable of describing the behavior of a 

given SX alloy. Therefore, the development of a modified criterion, which allows the reliable 
evaluation of the behavior of the material under complex stress–inelastic state, is required. 

Based on the developed modified yield criterion, an attempt was made to trace the 
behavior of the material along the entire strain path (Fig. 8b). Four points were selected for 
each deformation curve:  proportionality limit, stress at which the residual strain after 
unloading becomes 0.1%, yield strength, and ultimate stress limit. The behavior of the 
material changed depending on the type of stress state. The researched values and stress range 
between the proportionality limit and the ultimate stress limit changed, directly affecting the 
tangent modulus. 
 

  
a) description of the yield strength using the 

popular yield criteria and the modified 
Pisarenko-Lebedev (MPL) yield criterion 

b) description of several characteristics of the 
alloy using the modified Pisarenko-Lebedev 

plasticity criterion 
Fig. 8. Diagrams of the characteristics of the SX alloy depending on the type of stress state 

 
The approach proposed by the authors allows to describe the behavior of the material 

more accurately than previously developed approaches (Table 2 and Fig. 8a). Taking into 
account the tension–compression asymmetry of the material is an additional advantage of the 
proposed approach. 

 
3.  Conclusions 
Test data analysis of specimens made from an SX nickel-based alloy, which were tested at 
various types of stress states at a temperature of 20°C, showed that the widely used yield 
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criteria of von Mises, Pisarenko-Lebedev, and Tresca were not able to reliably describe the 
behavior of the material under a complex stress state. A specialized criterion based on the 
systematization of experimental data was developed that could accurately describe the 
behavior of most materials. The type of stress state could affect the tangent modulus. In this 
case, the law of hardening of the material depends on the type of stress state. 

This work may be further developed by conducting experimental studies on the alloy 
under complex stress conditions at elevated temperatures and tests under biaxial tension and 
their combination. 
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Abstract. In this paper, a thin round plate of isotropic micropolar elastic material is 
considered, in which the elastic deflections are comparable with their thickness, and small in 
relation to the basic size, also both the angles of rotation of the normal elements to the middle 
plane before deformation and their free rotations are small. Thus, the strain tensor and tensor 
of bending-torsion takes into account not only linear but also the nonlinear terms in the 
gradients of displacement and rotation. The stability problem is solved in the case when the 
solid round plate is hinge supported along the contour and is under the action of radial 
compressive forces. After solving the obtained boundary value problem, the critical value of 
the external force is determined. The critical force of the micropolar problem is compared 
with the value of the classical solution. The important properties of micropolar material are 
established. 
Keywords: micropolar, elastic, thin round plate, curvilinear coordinates, geometrically 
nonlinear, applied model, stability 
 
 
1. Introduction 
As structural elements, thin rods, plates, and shells are widely used, the bearing capacity of 
which is determined mainly by their stability. The theory of stability of thin rods, plates, and 
shells in the framework of the classical theory of elasticity is described in monographs 
[1,2,etc.]. The work [3] is devoted to the stability problem in the framework of the micropolar 
(momental) theory of elasticity. Review of works on the micropolar theory of thin plates and 
shells was carried out in work [4]. In works [5-8], on the basis of the hypothesis method 
(which has an asymptotic substantiation), the linear theory of micropolar elastic thin plates 
and shells is constructed. In works [9,10], the theory of micropolar elastic flexible plates and 
shells are constructed. In work [11] the stability problem of micropolar elastic rectangular 
plates is studied. 

In this paper, the stability problem of micropolar elastic round solid plate in an 
axisymmetric formulation is studied, when on its contour uniformly distributed radial load is 
applied. To obtain stability equations, disturbance is given to the initial state of the plate, 
equations of micropolar flexible plates are used, performing linearization. The boundary-
value problem of stability of micropolar elastic round plate is solved exactly using Bessel 
functions; as a result, the critical value of the load is determined. After comparison with the 
classical case, effective manifestations of the micropolarity of the material are established. 
 
2. Geometrically nonlinear mathematical model of micropolar elastic thin plates in 
curvilinear coordinates with independent fields of displacements and rotations 
We consider a plate of constant thickness h2  as a three-dimensional elastic isotropic body. 
We assign the plate to the curvilinear coordinate system z,, 21 αα . The coordinate plane 
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21 ,αα  will be combined with the median plane of the plate. The axis Oz is directed along the 
normal to the median plane. 

The basic equations and the natural boundary conditions of micropolar elastic 
geometrically nonlinear thin plates with independent fields of displacements and rotations in 
curvilinear coordinates have the form [10]: 
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1 1 1 1( ) ( ) ( ),j jiii i

ii jj ji ij i i
i i i j i j j i j j

A ST AT T S S p p
A A A A A Aα α α α

+ −∂ ∂∂ ∂
+ − + + + = − −

∂ ∂ ∂ ∂
 

3
1 1 1 1( ) ( ) ( ),j jiii i

ii jj ji ij i i i
i i i j i j j i j j

A MM AM M M M N h p p
A A A A A Aα α α α

+ −∂ ∂∂ ∂
+ − + + + − = − +

∂ ∂ ∂ ∂
 

( )

( )

2 2 2
2 13 1 23 2 1

11 22 12 212 2
1 2 1 2 1 1 2 2 1 2

12 212 11 2 1 2
11 112

1 1 1 1 1 1 1 2

1 22 1 2 1
22 222

2 2 2 2 2 2 2

( ) ( )1

1 1
2

1

A N A N A Aw w wT T S S
A A A A

S SA T A A Aw T T
A A A

A T A A Aw T T
A A A

α α α α α α

α α α α α

α α α α

 ∂ ∂ ∂ ∂ ∂ + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 
∂ + ∂ ∂ ∂∂

+ − + + +∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂∂
+ − + +
∂ ∂ ∂ ∂

( )12 21
3 3

1

1 ( ),
2

S S
p p

α
+ −

∂ +  = − − ∂  

 

3 3

1 1 1 1( ) ( )

( 1) ( ) ( ),

j jiii i
ii jj ji ij

i i i j i j j i j j

j
j j i i

A LL AL L L L
A A A A A A

N N m m

α α α α
+ −

∂ ∂∂ ∂
+ − + + + +

∂ ∂ ∂ ∂

+ − − = − −

 

2 13 1 23
12 21 3 3

1 2 1 2

( ) ( )1 ( ) ( ),A L A L S S m m
A A α α

+ − ∂ ∂
+ + − = − − ∂ ∂ 

 

2 13 1 23
33 12 21 3 3

1 2 1 2

( ) ( )1 ( ) ( ).A AL M M h m m
A A α α

+ − ∂ L ∂ L
− + − − = + ∂ ∂ 

 (1) 
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Boundary conditions 
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Here 21 ,uu  – are displacements of the points of the median plane of the plate around 
the axes 21 ,αα ; w  – is displacement of the points of the median plane of the plate in the 
direction of the axis z; 21 ,ψψ  – are complete rotation angles; 321 ,, ΩΩΩ  – are certain free 
rotations of the initially normal elements around the axes z,, 21 αα ; ι  – is intensity of the free 
rotation 3ω  around the axis z; iiΓ  – are elongation deformations in the directions 21 ,αα ; 

iiijii 33 ,,, ΓΓΓΓ  – are shears in the corresponding planes; iiK  – are flexures of the plate 
median plane caused by the stresses; ijK  – are torsions of the plate median plane caused by 
the stresses; 33,κκ ii  – are flexures of the plate median plane caused by the couple stresses; 

ijκ  – are torsions of the plate median plane caused by the couple stresses; 3il  – are hyper 
shears of the plate median plane caused by the couple stresses; iiijii NNST 33 ,,,  – are 
averaged forces from the stresses, ijii HM ,  – are averaged moments from the stresses; 

333 ,,, LLLL iijii  – are averaged moments from the couple stresses and 3iL  – are hyper 
moments from the couple stresses; µεγβαν ,,,,,,E  – are physical elasticity parameters of 
material; −+−+

iiii mmpp ,,,  – are external forces and moments on the  planes hz ±= ; iA  – are 
Lame coefficients [8]. 

Let us note that from this model we can obtain the corresponding geometrically linear 
model by discarding nonlinear terms [8]. We also can get a geometrically nonlinear classical 
Timoshenko-type model, if to put 0=α . 
 
3. Geometrically nonlinear applied model of micropolar elastic thin round plates 
In the case of round plates in Equations (1) - (4) we will accept rAA == 21    ,1  and use the 
polar coordinates θ,r . As a result, we get: 
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Now we consider the axisymmetric problem, in this case, we will have: 
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To the Equations (5), (6), or (7), (8) need to join the corresponding boundary 
conditions (4). From systems (5), (6), and (7), (8) we can obtain the basic equations regarding 
the displacements and rotations. 
 
4. The linearized equations of stability of micropolar elastic round plates. The critical 
force of compressed round micropolar plate 
Let us consider micropolar elastic round solid plate under the action of radial compression P , 
which is uniformly distributed along the contour. The flat stress-strain state (SSS) has been 
implemented, we will call it the main subcritical state, and it is the solution to the following 
linear system of equations of the generalized plane stress state of micropolar elastic thin round 
plate (as in the case of the classical theory [2]): 
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The following boundary conditions must be satisfied on the contour of round solid plate 
(Fig. 1): 

PT −=0
11 , 00

2 =u , 00
13 =L , at Rr = , where constp = . (11) 

 

 
Fig. 1. Middle surface of the round plate 
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The components of displacements, deformations, force, and moment stresses 
corresponding to this SSS are marked with superscripts zero. In case of loss of stability, 
subcritical SSS will receive some disturbances. The values characterizing the SSS caused by 
these disturbances, we will imagine that they are marked with the asterisk at the top. The 
perturbed SSS in the plate is characterized by the values of the corresponding sums with 
indices of zero and asterisk. 

Perturbations (i.e. the values with asterisks at the top) are small and during the 
transformations, we will neglect their powers higher than the first. 

It is easy to notice that the solution of the subcritical boundary value problem (9) - (11) 
has the form (which satisfy the indicated equations and boundary conditions): 
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The displacement 0

1u  is determined on the basis of the expressions for 0
11T  and 0

22T
from (10). 

We investigate the stability of a round solid plate of radius R , with the hinge supported 
contour and under the action of radial compressive forces P  uniformly distributed along the 
contour of the plate. We assume that the curved surface is axisymmetric [2]. 

We substitute the noted total relations into the system of equations of the geometrically 
nonlinear theory of micropolar plates (7), (8), then we obtain the equations of the perturbed 
stress state in the form: 
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Hinge supported boundary conditions: 
0   ,0    ,0 1321 =L==Ω ψ , at Rr = , (17) 
0    ,0    ,0 1211 === LMw , at Rr = . (18) 

Problem (13), (15), (17) has a trivial solution, and problem (14), (16), (18) can be 
reduced to the following form with respect to displacement w and rotations 1ψ  and 2Ω : 
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Here we note 
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By integrating equation (19) we can obtain: 
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In the case of the solid plate we have 01 =C . 
Then we can obtain a differential equation along the 1ψ : 
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If we have a solution of differential equation (25), then w  and 2Ω  are defined as 
follows: 
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Differential equation (25) can be represented as: 
0))(( 121 =−∆−∆ ψλλ , (29) 

where 21 ,λλ  are the roots of the next second-degree equation: 
03

2
2

3
1 =++ BBB λλ , (30) 

or 

1

31
2

22
2,1 2

4)(
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The solution of differential equation (29) for a solid plate has the form: 
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1
211

1
11 )( λλψ −+−= . (32) 

Substituting (32) into (17) and (28) and integrating the result, we obtain: 
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where )(),( 10 xJxJ -are the Bessel functions of the valid argument of the zero and first orders. 

( ) 1
2

2

2

2
2

2
13

n

n

n C

h
P

Eh

C






 −









+

−
=

µ

µλ
ν

, (35) 

( ) ( ) 1
2

2

2

2

3

2
2

1322
2

213
n

nn

n C

h
P

Eh
h

PEh

C
µ

λ
να

αµµλ
α
αµ

ν

−










−
−

+
++

+
−

−= . (36) 

To satisfy the boundary conditions (22), we obtain homogeneous algebraic equations 
along to the 2

3
1
2

1
1 ,, CCC . Further, demanding a nonzero solution, as a result, we obtain the 

transcendental equation with respect to P, which we can represent in compact form: 
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(38) 

Here )(),( 10 xIxI  – Bessel functions of purely imaginary argument of the zero and the 
first orders. 
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Fig. 2. Dependence of the dimensionless quantity 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚./𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. on the dimensionless physical 

parameter α/μ 
 

We consider a specific numerical example for hypothetic material: 𝑅𝑅 = 0.07 𝑚𝑚,    
ℎ = 𝑐𝑐

40
, µ =  2 𝑀𝑀𝑃𝑃𝑀𝑀, λ = 3 𝑀𝑀𝑃𝑃𝑀𝑀, γ = ε = 150 Н. On Fig. 2 the dependence of the 

dimensionless quantity 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚./𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. on the dimensionless physical parameter, 𝛼𝛼/𝜇𝜇 is 
presented, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. is the critical value of the external force for micropolar theory, 𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. is the 
same quantity for classical theory. As we note we can get a geometrically nonlinear classical 
Timoshenko-type model from the micropolar model if to put 0=α . For more large values of 
𝛼𝛼, we obtain more large values for the 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. compared to the value 𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.. So it is easy to 
verify that with increasing 𝛼𝛼/𝜇𝜇, the value 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚./𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. increases, which means that in the case 
of micropolar material the round plate is more stable. 

 
5. Conclusion 
In the work, the stability problem of micropolar elastic round plates is studied. During the 
study of the problem, the stability equations are obtained using the linearization procedure in 
the geometrically nonlinear equations.  

The concrete stability problem of round micropolar plate was studied, and it was shown 
that, with other parameters being equal, the round micropolar plate is more stable than the 
round plate with the classical material. 
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Abstract. Quantum effects occurring during current filamentation in a chalcogenide glass are 
considered. Under the conditions considered, the current filament appears as a set of 
concentric tubes with different temperatures. In every tube, the electron has a specific wave 
function and a specific energy level. The radii of the tubes appear to be proportional to natural 
numbers n. The dependence of maximal temperature on the electrical field is obtained. The 
Schroedinger equation is reduced to the first order differential equation. The type of energy of 
an electron at the tube is close to exciton energy dependence. The potential energy of an 
electron is described with the first order polynom of temperature. The temperature distribution 
in the filament is shown as an interference of the electron. 
Keywords: chalcogenide glasses; current filament; quantization  

 
 

1. Introduction 
Formation of current filaments (current filamentation, or crowding) is a phenomenon that 
often occurs in chalcogenide glasses, which are considered to be the material of choice for the 
next-generation phase-change memory (PCM) devices [1,2]. This effect consists of a 
significantly higher current density in a certain coordinate region [3,4]. When the radius of the 
current filament decreases down to tens of nanometers, one can expect the appearance of 
quantum effects consisting in the fact that the diameter of the filament would take only 
certain, albeit close to each other, values. Taking into account that quantization of current and 
conductance were observed in, e.g., superconductors [5], carbon nanotubes [6], and metallic 
nanowires [7], this hypothesis is worth verification in application to chalcogenide glasses, too. 

In this paper, the formation of a current filament is analyzed with allowance for 
quantum effects, and a simple analytical formula describing the quantization phenomena is 
presented. Additionally, a description of the filament is proposed as an object in which the 
energy of an electron has a form similar to the energy of an exciton in a solid or an electron in 
a hydrogen atom. 

 
2. The model 
In general, quantization can take place in all three coordinates. In the case of the current 
filament, however, only the radius will take certain values, since we assume that the length of 
the filament is L ~ 10-6 m, which is too large a value for the manifestation of quantum effects. 
Assuming in the first approximation that the electrons do not interact with each other, we 
suggest that it is possible to describe the quantum scale of the resulting filament with the 
formula: 
∫ �2𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟)𝑟𝑟𝑐𝑐
0 𝑑𝑑𝑟𝑟 = 𝑛𝑛ℎ. (1) 
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Here T is the temperature, k is Boltzmann's constant, m is the electron mass. 
Expression (1) is an integral of work in time, and when it becomes of the same order of 
magnitude as Planck's constant h, quantum effects should appear. Here, we integrate from 
zero to the radius of the filament rc the momentum of an electron moving along the radial 
coordinate r in a medium with a certain temperature distribution. As a result, a value is 
obtained that has the same dimension as that of the angular momentum, yet is not exactly the 
momentum, as the angular momentum of an electron moving along the radius is equal to zero. 
The temperature in the stationary case is represented by the formula: 
𝑚𝑚(𝑥𝑥) = 𝑚𝑚0 + (𝑚𝑚𝑚𝑚 − 𝑚𝑚0)𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑎𝑎𝑥𝑥

2

4
�. (2) 

Here 

𝑥𝑥 = 𝑟𝑟
𝑟𝑟0

,  𝑎𝑎 = 𝐹𝐹2

𝐹𝐹𝑠𝑠2
𝑒𝑒𝑥𝑥𝑒𝑒 �−1

𝑡𝑡𝑚𝑚
� 1
𝑡𝑡𝑚𝑚2
− 1;𝐹𝐹𝑠𝑠2 = 2𝜆𝜆𝜆𝜆𝜆𝜆

𝜎𝜎0𝐿𝐿𝐿𝐿
,  

where F is the electric field, F0=106 V/m, λ is the heat sink coefficient, ΔE is the energy of 
activation of conductivity, Tm is a filament temperature of radius xc(n), T0 is the room 
temperature, σ0 is the initial conductivity, r0 is a constant of the order of 1 μm, 𝑡𝑡𝑚𝑚 = 𝐿𝐿𝑘𝑘𝑚𝑚

𝜆𝜆𝜆𝜆
. In 

this consideration, the conductivity of the glass was taken in the form that summarizes its 
temperature and electric field dependences [3],[8],[9]: 
𝜎𝜎 = 𝜎𝜎0exp(−𝜆𝜆𝜆𝜆

kT
+ 𝐹𝐹

𝐹𝐹0
). 

Expression (2) describes the temperature in the filament as satisfactory; therefore, rc can 
be taken as the radius of the filament, since outside the radius of the filament as the coordinate 
increases, the sample temperature is not described by a simple analytical formula. Taking into 
account that the action takes place on a small scale, formula (2) can be expanded in Taylor's 
series up to the second term and substituted in (1). As a result, we get an equation of the third 
degree: 
𝑒𝑒𝑚𝑚𝑥𝑥 − 𝑒𝑒𝑚𝑚

𝑘𝑘𝑚𝑚−𝑘𝑘0
𝑘𝑘𝑚𝑚

𝑎𝑎𝑥𝑥3

24
= 𝑛𝑛 ℎ

𝑟𝑟0
, (3) 

where 𝑒𝑒𝑚𝑚 = �2𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚. Equation (3) is then reduced to the canonical form: 
𝑥𝑥3 − 24𝑘𝑘𝑚𝑚

𝑎𝑎(𝑘𝑘𝑚𝑚−𝑘𝑘0)𝑥𝑥 + 24𝑛𝑛ℎ𝑘𝑘𝑚𝑚
𝑟𝑟0𝑝𝑝𝑚𝑚𝑎𝑎(𝑘𝑘𝑚𝑚−𝑘𝑘0) = 𝑥𝑥3 + 𝑒𝑒𝑥𝑥 + 𝑞𝑞 = 0. (4) 

The roots of a given polynomial can be found using Cardano's formulas. Omitting the 
consideration of the choice of the legible roots, which will be presented in details elsewhere, 
we come straight to the expression for the current filament radius with a number n: 
𝑥𝑥𝑐𝑐(𝑛𝑛) = 3𝑛𝑛ℎ

2𝑟𝑟0𝑝𝑝𝑚𝑚
; 𝑒𝑒𝑚𝑚 = �2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. (5) 

The quantized radius was defined as Bohr radius or quantized resistance by using the 
Heisenberg principle. The current filament is formed gradually. First, a filament with a large 
radius is formed, then a filament of a smaller radius is formed inside the first filament, and in 
a few nanoseconds, a structure consisting of a number of concentric tubes is obtained. 

The authors attempted to describe a behavior of an electron in every ring considering a 
thermal potential: 
𝑈𝑈(𝑥𝑥) = 𝐶𝐶 − kT(𝑥𝑥). 

Here C is a constant with its value laying in the range from 1 to 4 eV; it describes total 
energy of an electron and cannot exceed the value of work function, otherwise, the electron 
will leave the filament and the material. The subtrahend in this equation is the kinetic energy 
of the electron. 

The first order Schroedinger equation of this potential: 
𝑦𝑦′ + 𝑦𝑦2 + 𝑦𝑦

𝑥𝑥
− 2𝑚𝑚𝑟𝑟02

ℏ2
𝑈𝑈(𝑥𝑥) + 2𝑚𝑚𝑟𝑟02

ℏ2
𝐸𝐸 = 0, (6) 

𝑦𝑦(𝑥𝑥) = �𝑓𝑓′(𝑥𝑥)�,𝜓𝜓(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑥𝑥𝑒𝑒�𝑓𝑓(𝑥𝑥)�,𝜓𝜓(𝑥𝑥) is a Schroedinger function. 
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The thermal electron energy depends on the quantum filament radius. The dependence 
is similar to that of the exciton energy. 
𝐸𝐸𝑛𝑛 = 𝑈𝑈�𝑥𝑥(𝑛𝑛)� − ℏ2

8𝑚𝑚𝑟𝑟02𝑥𝑥𝑛𝑛2
  (7) 

If 𝑛𝑛 → ∞,𝐸𝐸𝑛𝑛 → 𝐶𝐶 − 𝑚𝑚𝑚𝑚0 . This result does not contradict physical meaning. 𝐸𝐸𝑛𝑛 is the 
absolute value of energy for the electron in the conduction band. 

The probability of the appearance of the filament with zero radius is zero because of 
ψ2(x)x = 0 when n=0. Indeed, from the classical theory of the current filament [2], it follows 
that a filament with zero radius should be formed at an infinitely high electric field. The 
energy of an electron in a filament of zero radius is infinite and negative. This can be 
interpreted as if the electron is placed in an infinite field and at the same time is located in a 
quantum well. When T0 → 0, Tm decreases for a given n. On the contrary, the difference 
between the adjacent radii xc(n) increases. All this leads to a more pronounced manifestation 
of quantum effects. 

In addition to the analytical solution, values of En were calculated numerically by 
solving the Schroedinger equation using Matlab software. The results are presented in Table 
1. A good agreement between the analytically and numerically calculated values is observed. 
The subtrahend ℏ2

8𝑚𝑚𝑟𝑟02𝑥𝑥𝑛𝑛2
≪ 𝐶𝐶 − 𝑚𝑚𝑚𝑚, which, in fact, means, that the quantization effects are rather 

weak. The most interesting is the first (more precisely, zero) energy level. As can be seen in 
Table 1, this energy very much differs in value from the subsequent values lying in the 
interval kTm. The change of the sign of the potential energy did not affect the position of the 
energy level E0. The wave functions were calculated and the behavior of an electron seems 
similar to the interference of light. For the electron, the probabilities to be found exist in a 
certain area of the sample appear to be periodical with different magnitudes (Fig. 1). The ring-
like (or, rather, tube-like) areas with different temperatures are separated from each other. The 
temperature distribution is continuous in the case of large areas where quantum effects 
disappear. Thus, we assume that this energy near zero coordinates corresponds to the colder 
region of the glass and that the filament has the shape of empty tubes with similar temperature 
distributions with a cold area existing at the center of the current filament. 
 
Table 1. Calculated values of electron energy 
n, quantum number En, eV (numerical) En, eV (analytical) 

0 1.6092 - 
1 1.9482 1.9512 
2 1.9594 1.9591 
3 1.9670 1.9665 
4 1.9717 1.9711 

 
Also, the formula for calculation of the temperature 𝑚𝑚𝑚𝑚 in each ring was derived: 

9𝑛𝑛2ℎ2

𝑟𝑟02
= 𝐹𝐹′(𝑡𝑡𝑚𝑚), 𝐹𝐹′(𝑡𝑡𝑚𝑚) = 2𝑚𝑚𝜆𝜆𝜆𝜆𝑡𝑡𝑚𝑚4

�𝛽𝛽𝑒𝑒𝑥𝑥𝑝𝑝�−1𝑡𝑡𝑚𝑚
�−𝑡𝑡𝑚𝑚2 �(𝑡𝑡𝑚𝑚−𝑡𝑡0)

  (8) 

Here β=F2/Fs
2, 𝑡𝑡𝑚𝑚 = 𝐿𝐿𝑘𝑘𝑚𝑚

𝜆𝜆𝜆𝜆
is the maximum temperature of heating for each ring, 𝑡𝑡0 = 𝐿𝐿𝑘𝑘0

𝜆𝜆𝜆𝜆
. 

The value of 𝑡𝑡𝑚𝑚  cannot possibly be smaller than 𝑡𝑡0  and 𝑛𝑛 → ∞  if 𝑡𝑡𝑚𝑚 → 𝑡𝑡0 . It means that 
filaments do not form at low currents. The width of every filament is of the order of 10 nm. 
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Fig. 1. The wave functions of the electron at the potential 𝑈𝑈(𝑥𝑥) = 𝐶𝐶 − kT(𝑥𝑥), 
𝑚𝑚0 = 300𝐾𝐾,𝑚𝑚𝑚𝑚 = 1000𝐾𝐾,𝐹𝐹 = 4 ⋅ 106 𝑉𝑉 𝑚𝑚⁄  

Figure 2 shows the relation between the maximum temperature and the electric field. In 
the case presented in Fig. 2, the quantum number n (in this case, n = 2 and 9𝑛𝑛

2ℎ2

𝑟𝑟02
= 5.49 ⋅ 10−5, 

which is shown as a solid blue horizontal line) intersects the graph of the function F. The 
maximum temperature 𝑡𝑡𝑚𝑚 is searched at the points of the intersection of the two lines. The 
most probable 𝑡𝑡𝑚𝑚 is the maximal root of equation (8). 

 
Fig. 2. The relation between the maximum temperature and the electric field. In the case 

considered, n = 2 and 9𝑛𝑛
2ℎ2

𝑟𝑟02
= 5.49 ⋅ 10−5 (shown as a horizontal line) 

3. Conclusion 
In this work, an attempt was made to develop a quantum approach to the formation of a 
current filament in a cylindrical sample of chalcogenide glass with a conductivity that 
exponentially depends on the inverse temperature taken with a negative sign. It is shown that 
quantum effects can manifest themselves in current filaments on scales of tens of nanometers 
at high fields and a glass sample thickness of the order of a micrometer. The radius of the 
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filament has been refined; the formed filament has a certain radius and a certain maximum 
temperature in the center. A law has been established according to which the maximum 
temperature depends on the electric field. Every filament represents a set of concentric tubes, 
each up to ten nanometers wide, with a specific temperature that drops sharply from 
maximum to room temperature. An exception is the central region of the filament; the authors 
believe that a cold "spot" is formed in the very center of such a filament. The second-degree 
differential equation describing the probability of an electron to be in a certain quantum of the 
filament has been replaced by an equation of the first degree, which simplified the approach. 
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Аннотация. Рассмотрены основные особенности физического моделирования роста 
расслоений при циклическом растяжении квазиизотропных композиционных 
материалов с использованием модели снижения начальной жесткости. Отмечено, что 
эти особенности имеют значительные отличия от положений классической механики 
межслойного разрушения композиционных материалов. В качестве определенного 
развития этого направления на основе использования модели деградации жесткости 
предложен ряд новых соотношений, позволяющих более точно, чем существующие 
модели, выполнять расчетные оценки скорости роста расслоений. Проведена 
верификация предложенных соотношений на примере расчетных оценок скорости 
роста расслоений в квазиизотропном ламинате углепластика XAS/914 [45/90/-45/0]s. 
Ключевые слова: квазиизотропные композиционные материалы, расслоение, 
циклическое растяжение, деградация жесткости, скорость роста расслоения 

 
 

1. Введение 
Известно, что расслоение является одним из наиболее опасных и трудно 
контролируемых повреждений слоистых полимерных композиционных материалов 
(ПКМ). Именно поэтому исследованию возникновения и роста расслоений в ПКМ 
посвящены работы многих авторов. 

Исследования по определению доминирующей моды разрушения при начале и 
росте расслоения сфокусированы на механике межслойного разрушения, в рамках 
которой требуется определить, прежде всего, изменение энергии деформации за 
единицу площади приращения расслоения [1]. Этот параметр называется 
интенсивностью высвобождения упругой энергии в вершину трещины G. С целью 
определения, будет ли расслоение расти, вычисленные значения G сравниваются с 
критическими значениями Gс и делается вывод о разрушении при статическом 
нагружении. Как правило, рассматриваются три моды разрушения: мода I (от 
напряжений отрыва); мода II (от напряжений поперечного сдвига) и мода III (от 
напряжений продольного сдвига). Моды I и II считаются наиболее критичными и 
поэтому им уделяют наибольшее внимание при разработке методов испытаний и в 
расчетных исследованиях [2-3]. Подобный подход требует как компьютерного 
моделирования, так и определения целого ряда экспериментальных характеристик. 

Второй подход заключается в оценке роста расслоений при циклическом 
(усталостном) нагружении. В работах [2-7] представлен ряд уравнений для оценки 
скорости роста расслоений при различных модах разрушения. В работе [3] 
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представлено, например, следующее уравнение для оценки скорости роста расслоения 
для смешанной моды разрушения (I+II): 
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где: 

• 
dn
dL  – рост расслоения за один цикл усталостного нагружения; 

• IG  – действующее значение интенсивности высвобождения упругой энергии по 
моде I при рассматриваемом цикле нагружения; 

• IIG  – действующее значение интенсивности высвобождения упругой энергии по 
моде II при рассматриваемом цикле нагружения; 

• IcG  – критическое значение интенсивности высвобождения упругой энергии по 
моде I - характеристика трещиностойкости (определяется экспериментально, как 
правило, меньше значения IcG  при статическом разрушении); 

• IIcG  – критическое значение интенсивности высвобождения упругой энергии по 
моде II – характеристика трещиностойкости (определяется экспериментально, 
как правило, меньше значения IIcG  при статическом разрушении); 

• 2121 ,,, nnmm  – константы материала. 
Анализируя уравнение (1) можно заключить, что оно является достаточно 

сложным и предполагает значительный объем предварительных экспериментальных 
исследований, что ставит под сомнение перспективы широкого использования этого 
уравнения для инженерных оценок начала и длительности расслоения в конкретных 
слоистых материалах. 

Следует также отметить, что представленное уравнение практически непригодно 
для инженерных оценок роста расслоений в слоистых ПКМ при циклическом 
растяжении. Вместе с тем известно, что подобный расчетный случай и подобная мода 
повреждения являются достаточно распространенными и поэтому заслуживают 
отдельного рассмотрения и анализа. 

 
2. Физическая модель роста расслоений при циклическом растяжении 
квазиизотропных композитов 
В работах [8-10] представлены основные положения физической модели роста 
повреждений при циклическом нагружении слоистых ПКМ, которые имеют 
значительные отличия от методов линейной механики межслойного разрушения. 

В работе [11] в качестве одного из частных случаев этой модели представлены 
основы физического моделирования роста расслоений в слоистых ПКМ при 
циклическом растяжении. Иллюстрация моды "расслоение" при подобном нагружении 
представлена на Рис. 1. 

К основным особенностям физического моделирования роста расслоений в 
слоистых ПКМ при циклическом растяжении по данным работы [11] можно отнести 
следующие. 

Введено понятие параметра расслоения D как нормализованное расслоение 
площади 0/ AA , где A  – фактическая (измеренная) площадь расслоения, а 0A  – общая 
площадь, доступная для расслоения. 
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Рис. 1. Иллюстрация моды "расслоение" при растяжении слоистых ПКМ: 
a) ламинат без расслоения; b) полное расслоение; c) частичное расслоение 

 
Предполагается, что существует соотношение между параметром D и модулем 

упругости Юнга для рассматриваемого слоистого композита, которое можно записать 
как: 

)(0 DgEE ⋅= , (2) 
где Е – текущее значение модуля упругости; 0E  – начальное значение модуля 
упругости для неповрежденного материала; g(D) – некая функция. 

Предложена простая модель для оценки снижения значения модуля упругости 
при росте расслоений: 

0
0

*
0 )(

A
AEEEE −+= , 

где *E  – значение модуля упругости, соответствующее полному расслоению 
композита. На основании обработки известных экспериментальных данных в 
работе [12] сделан вывод, что когда 1/ 0=AA , 0/ 0.65E E = . 

Функция g(D) в выражении (2) в виде 
DbaDg ⋅+=)(  

может быть построена по двум точкам: ;1)(;01 == DgD  2 1; ( ) 0.65.D g D= =  
Таким образом, функцию g(D) в выражении (2) можно записать как 

( ) 1 0.35g D D= − . 
Из этого следует, что: 

0
0
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На Рис. 2 представлены экспериментальные данные зависимости 

0

12.857
UTS

dD dE f
dn E dn

σ
σ

   D
= − =   

   
 (3,a) 

для квазиизотропного ламината углепластика XAS/914 [45/90/-45/0]s при циклическом 
растяжении с R=0.1, где UTSσ =550 МПа - предел прочности рассматриваемого ламината 
на растяжение (данные работы [12]). Там же приведен пример аппроксимации 
рассмотренных экспериментальных данных, выполненный в работе [12] с 
использованием уравнения, сходного по форме с известным уравнением Пэриса: 
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Рис. 2. Экспериментальные данные зависимости (3,а) и зависимость (4) для ламината 

углепластика XAS/914 [45/90/-45/0]s при циклическом растяжении с R=0.1 
 
По результатам анализа данных, представленных на Рис. 2, можно сделать вывод, 

что аппроксимация экспериментальных данных зависимостью (4) в области малых и 
больших значений параметра UTSσσ /D  не может быть признана достаточно успешной, 
так как в этих областях можно отметить значительное расхождение между расчетными 
и экспериментальными данными. 

Следует также отметить следующее. Соотношение (3) содержит достаточно 
важный параметр – dndE / , который отсутствует в соотношении (4). Таким образом, 
соотношение (4) практически не учитывает влияние на скорость роста расслоения 
изменения жесткости слоистого композита в процессе накопления усталости, что с 
физической точки зрения является очевидным недостатком этого соотношения. Ввиду 
этого соотношение (4) можно считать достаточно приближенным, при использовании 
этого соотношения отсутствует возможность исследования изменения скорости роста 
расслоения в процессе накопления усталости, что, безусловно, представляет 
значительный научный интерес. 

 
3. Оценка скорости и длительности роста расслоений при циклическом 
растяжении квазиизотропных композитов с использованием модели деградации 
жесткости 
Известно, что в процессе накопления усталости происходит снижение (деградация) 
начальной жесткости слоистых композитов. Этой проблеме посвящено достаточно 
большое количество зарубежных исследований, среди которых, прежде всего, можно 
отметить работы [13-18]. В этих работах сформированы основные положения модели 
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деградации жесткости слоистых композитов, причем эти положения, как правило, не 
связаны с расслоением композита, как с конкретной модой разрушения. 

По результатам обзора и анализа данных, представленных в этих работах, можно 
сделать следующие выводы. 

1. Остаточная жесткость композиционного материала, также как и остаточная 
прочность, является функцией уровня и числа циклов приложенных 
напряжений. 

2. Модели деградации жесткости интересны многим исследователям, так как 
остаточная жесткость может быть использована как «неразрушающая» мера 
оценки повреждения ПКМ. 

3. Для представления остаточной жесткости как функции уровня и числа циклов в 
работе [18] для однонаправленного ламината при одноосном циклическом 
нагружении с постоянной амплитудой приведено следующее уравнение: 
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)25.0lg()lg(1)()( ,  (5) 

где: 
• )(nE  – остаточная жесткость; 
• 0E  – начальная (статическая) жесткость; 
• σ  – величина прикладываемых напряжений; 
• fε  – средняя деформация при статическом разрушении; 
• n – число приложенных циклов; 
• N – усталостная долговечность (число циклов до разрушения) при уровне 

напряжений σ , определятся, как правило, с использованием S-N кривой 
усталости слоистого ПКМ (кривой Веллера); 

• λ  и γ  – экспериментальные параметры. 
Предполагается, что уравнение (5) может быть использовано для решения 

рассматриваемой задачи – оценки скорости и длительности роста расслоения при 
циклическом растяжении квазиизотропных композитов. 

Действительно, производная функции )(nE  равна: 
1
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Подставляя соотношение (6) в соотношение (3), может быть определена скорость 
роста расслоения в процессе накопления усталости при растяжении квазиизотропного 
композита: 

)/,,()('857.2 1
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NnRf
E

nE
dn
dD σ=








−= . (7) 

Анализируя соотношение (7), можно сделать вывод, что с использованием этого 
соотношения возможна оценка скорости роста расслоения не только в зависимости от 
уровня действующих напряжений, но и от уровня накопленной усталости, которая 
характеризуется величиной n/N. В этом плане можно утверждать, что соотношение (7) 
описывает изменение скорости расслоения более "физично", чем соотношение (4). 

Уравнение (5) можно переписать в следующем виде: 
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Очевидно, что с использованием соотношения (8) могут быть построены 
графические зависимости  

),,,()(
2

0

NnRf
E

nE σ= , (9) 

с помощью которых можно продемонстрировать процесс накопления меры расслоения 
в рассматриваемом ламинате. 

Расчетная оценка «разрушающей» меры расслоения выполняется при Nn = . 
 
4. Верификация предложенных соотношений 
Верификация предложенного соотношения (7) проведена на примере расчетных оценок 
скорости роста расслоения в рассмотренном выше квазиизотропном ламинате 
углепластика XAS/914 [45/90/-45/0]s при циклическом растяжении с R=0.1 при 
максимальных напряжениях цикла maxσ =300, 360, 420, 515 МПа. 

При выполнении расчетных оценок использованы следующие уравнения и 
значения: 

1. UTSσ =550 МПа – предел прочности рассматриваемого ламината на растяжение 
(данные работы [12]). 

2. Уравнение S-N кривой усталости – уравнение Менделла [19] для ламината из 
углепластика XAS/914 [45/90/-45/0]s при циклическом растяжении с R=0.1, 
получено по результатам обработки данных работы [12]: 

max 801.664 71.666 lg Nσ = − ⋅  – для 515300max ÷=σ  МПа. 
3. fε =0.0136 – средняя деформация при статическом разрушении - значение 

принято на основании данных работы [20]. 
4. 40441/0 == fUTSE εσ МПа – начальная (статическая) жесткость. 
5. 14.57λ =  и 0.3024γ =  – значения параметровλ  и γ  – приняты на основании 

данных работы [20]. 
На Рис. 3-4 представлены зависимости (7), построенные для рассматриваемого 

ламината при рассматриваемых уровнях нагружения. 
На Рис. 5 приведены результаты расчетных оценок максимальных скоростей роста 

расслоений, выполненных с использованием соотношения (7), и сравнение этих 
результатов с экспериментальными данными и расчетными данными, полученными с 
использованием соотношения (4). 

На Рис. 5 представлены также результаты аппроксимации расчетных оценок 
максимальных скоростей роста расслоений, выполненной с использованием 
экспоненциальной зависимости (10): 

9 11.2362 10dD e
dn

σ− D= × × , (10) 

где UTSσσσ /D=D . 
Верификация соотношений (8)-(9) проведена на примере расчетных оценок 

«разрушающей» меры расслоения ( ) 0/ EnE  в рассмотренном ламинате при 
максимальных напряжениях цикла maxσ =360, 420, 500 МПа. 

 

212 В.Е. Стрижиус



 
 

Рис. 3. Зависимости (7) для ламината углепластика XAS/914 [45/90/-45/0]s при 
максимальных напряжениях циклического растяжения maxσ =300 и 360 МПа 

 

 
 

Рис. 4. Зависимости (7) для ламината углепластика XAS/914 [45/90/-45/0]s при 
максимальных напряжениях циклического растяжения maxσ =420 и 515 МПа 
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Рис. 5. Результаты расчетных оценок максимальных скоростей роста расслоений и 

сравнение этих результатов с экспериментальными данными для ламината 
углепластика XAS/914 [45/90/-45/0]s  

 

 
Рис. 6. Графические зависимости (9) для ламината углепластика 

XAS/914 [45/90/-45/0]s  
 

214 В.Е. Стрижиус



На Рис. 6 для рассматриваемого ламината при рассматриваемых уровнях 
напряжения представлены графические зависимости (9), с использованием которых 
могут быть выполнены оценки «разрушающей» меры расслоения при достижении 
наработки Nn =  . 

В Таблице 1 представлено сравнение выполненных таким образом расчетных 
оценок «разрушающей» меры расслоения ( ) 0/ EnE  с экспериментальными данными, 
приведенными в работе [12]. 
 
Таблица 1. Сравнение расчетных оценок «разрушающей» меры расслоения ( ) 0/ EnE  в 
ламинате углепластика XAS/914 [45/90/-45/0]s с экспериментальными данными 
работы [12] 

 
maxσ , МПа 

 
N , циклы 

( ) 0/ EnE , 
расчет (9) 

( ) 0/ EnE , 
эксперимент 

360 1 455 000 0.65 0.67 
420 212 000 0.76 0.78 
500 16 190 0.91 0.94 

 
5. Обсуждение результатов 
Анализ представленных на Рис. 3-4 зависимостей (7) для квазиизотропного ламината 
углепластика XAS/914 [45/90/-45/0]s при циклическом растяжении с R=0.1 позволяет 
сделать следующие выводы. 

1. Расчетные скорости роста расслоения в рассматриваемом ламинате находятся в 
очевидной зависимости от уровня накопленной усталости, которая 
характеризуется величиной Nn / . Можно предположить, что с точки зрения 
исследования закономерностей изменения скоростей роста расслоения от 
накопленной усталости использование зависимостей (7) будет представлять 
значительный интерес. 

2. Расчетные скорости роста расслоения в рассматриваемом ламинате ожидаемо 
зависят от уровня действующих напряжений. 

Анализ представленных на Рис. 5 зависимостей позволяет сделать следующие 
выводы. 

1. Результаты расчетных оценок максимальных скоростей роста расслоений, 
выполненные с использованием соотношения (7), хорошо согласуются с 
экспериментальными данными. Очевидно, что в рассмотренном примере 
расчета с использованием соотношения (7) были получены более точные 
результаты расчетных оценок, чем с использованием соотношения (4). 

2. Результаты аппроксимации расчетных оценок максимальных скоростей роста 
расслоений, выполненной с использованием экспоненциальной зависимости 
(10), показали достаточно хорошее совпадение зависимости (10) с 
экспериментальными данными. Величина достоверности собственно 
аппроксимации составила R2=0.9848. 

3. Очевидно, что зависимость (10) более точно, чем соотношение (4), описывает 
изменение скоростей роста расслоений в рассматриваемом ламинате в 
зависимости от параметра UTSσσσ /D=D . 

На основании анализа данных, представленных на Рис. 6 и в Таблице 1, можно 
заключить следующее. 

1. Графические зависимости (9), представленные на Рис. 6, достаточно наглядно 
демонстрируют накопление «разрушающей» меры расслоения в 
рассматриваемом ламинате. 
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2. Расчетные оценки «разрушающей» меры расслоения, выполненные с 
использованием зависимостей (9), достаточно хорошо согласуются с 
экспериментальными данными, приведенными в работе [12]. 

Как отмечалось выше, базовые соотношения (5)-(7) для оценки скоростей роста 
расслоения справедливы для квазиизотропных композитов и не могут быть применимы 
для многослойных композитов с анизотропией слоев. Тем не менее, следует отметить 
следующее. 

По данным работ [21-24] для многослойных композитов может быть 
использовано следующее соотношение: 














×








×−×= n

E
kEnE

k
a

2

0
11 1)(

σ
,       (11) 

где: 
• )(nE  – остаточная жесткость; 
• 0E  – начальная статическая жесткость; 
• 1E  – начальная циклическая жесткость; 
• aσ  – амплитуда циклических напряжений; 
• n – число приложенных циклов; 
• 1k  и 2k  – постоянные для рассматриваемого материала, получаемые по 

результатам обработки экспериментальных данных. 
В этом случае производная функции )(nE  равна: 

2
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11)('
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dn
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××−==

σ . (12) 

Подставляя соотношение (12) в соотношение (3), может быть определена 
скорость роста расслоения в процессе накопления усталости при растяжении 
многослойного анизотропного композита: 

)()('857.2 2
0

af
E

nE
dn
dD σ=








−= . (13) 

Очевидно, что при наличии экспериментальных данных достаточного объема 
могут быть определены значения всех необходимых параметров соотношений (11-13) и 
может быть выполнена оценка скоростей роста расслоения в многослойных композитах 
с анизотропией слоев. 

К сожалению, подобные экспериментальные данные в открытых публикациях 
практически не представлены и поэтому верификация соотношений (11)-(13) вызывает 
в настоящее время определенные затруднения. 
 
6. Заключение 
Представлены основные особенности физического моделирования роста расслоений в 
слоистых ПКМ при циклическом растяжении, изложенные в работе [11]. Отмечено, что 
эти особенности имеют значительные отличия от положений классической механики 
межслойного разрушения ПКМ. 

С использованием известной модели снижения (деградации) начальной жесткости 
квазиизотропных композитов в процессе накопления усталости предложены новые 
соотношения (7) и (10), позволяющие более точно, чем существующие модели, 
выполнять расчетные оценки скорости роста расслоений при циклическом растяжении 
рассматриваемых ПКМ. 
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Проведена верификация предложенных соотношений на примере расчетных 
оценок скорости роста расслоений в квазиизотропном ламинате углепластика XAS/914 
[45/90/-45/0]s при циклическом растяжении с R=0.1. Показана приемлемая точность 
расчетных оценок. 

Отмечено, что при наличии экспериментальных данных достаточного объема 
могут быть определены значения необходимых параметров соотношений (11-13) и в 
этом случае будет возможна оценка скоростей роста расслоения в многослойных 
композитах с анизотропией слоев. 
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Abstract. The main features of physical modeling of the growth of delaminations under 
cyclic tension of quasi-isotropic composite materials are considered using the model of 
decreasing the initial stiffness. It is noted that these features are significantly different from 
the provisions of the classical mechanics of interlayer fracture of composite materials. As a 
definite development of this direction, based on the use of the stiffness degradation model, a 
number of new relationships have been proposed, which make it possible to more accurately 
than the existing models to carry out calculated estimates of the growth rate of delamination. 
Verification of the proposed relations is carried out on the example of calculated estimates of 
the growth rate of delaminations in a quasi-isotropic CFRP laminate XAS/914 [45/90/-45/0]s. 
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