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Abstract. An algorithm developed for enhancing the accuracy of the calculation of frames formed by thin-
walled open-section bars is presented. The existing bar models for analysis of frame systems consisting of 
open-section bars subjected to restrained torsion require improvement. Some authors have shown that the 
traditional premise of a balance of bimoments at the junction of such bars may be violated in many cases. The 
methodology described in this article is formulated on the condition that the disbalance on bimoments in 
connecting nodes of rods reinforced with transversal ribs can be taken into account on the basis of the 
eccentric moments transfer on the bar junctions. An approach based on the Lagrange variational principle to 
the construction of equations of finite element analysis while taking into account such disbalances is proposed. 
Herewith, some additional nodal bimoments are introduced. They allow us to correct the solution of the 
problem and do not affect the global stiffness matrix of the finite element system. A presented rapidly 
converging iterative process makes it possible to estimate the values of such bimoments. The performance of 
the suggested methodology has been illustrated via an example of the calculation of frames made of I-beams 
and U-beams. The comparison of the results of bimoments definition using the developed bar calculation 
schemes and shell models have shown that the suggested algorithm allows describing the disbalance of 
bimoments in bar connection nodes to a fairly high degree of precision for practical goals. This result may 
have significant importance for improving computer modelling of deformations of the thin-walled open-section 
bar structures. 

1. Introduction 
Calculations of thin-walled bars and bar systems while taking into account torsion can be performed 

efficiently using shell models [1–3] or three-dimensional analysis [4]. However, the implementation of such 
approaches for real constructions, especially for carrying out multivariant calculations is often associated with 
fairly lengthy computational process working hours. Using bar design models is more promising for 
engineering practice. 

It should be noted that the modern regulatory requirements for steel structures (Russian State Standard 
SP 16.13330.2017 "Steel Structures. Updated revision of SNiP II-23-81*") stipulates consideration of 
bimoments when determining normal stresses in bar cross sections. First of all, this factor can be significant 
for thin-walled open-section bars if there is restrained warping of cross sections during torsion. Theories of 
calculating thin-walled bars while taking into account restrained torsion within a one-dimensional approach are 
described in sufficient detail in scientific literature. The best known theory is the shear theory by A.A. Umansky, 
the shearless theory by V.Z. Vlasov, and the semi-shear theory by V.I. Slivker [5–7]. Much attention was also 
paid to the development of bar finite elements for thin-walled bars based on models of various types [8–26]. 

Several approaches to taking into account restrained torsion using the finite-element method based on 
bar models are presented in [8]. For the shearless theory, a double-node open-section finite element has been 
considered with approximation of rotation angle using Hermite cubic polynomials. For the semi-shear theory, 
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some stiffness matrices of open- and closed-section thin-walled bar finite elements have been constructed for 
three models of description of rotation angles and measures of warping of cross sections: linear 
approximations of rotation angle and measure of warping in a double-node finite element, quadratic 
approximation of rotation angle and linear approximation of measure of warping in a three-node finite element, 
quadratic approximations of rotation angle, and measure of warping for a three-node finite element. In [9] 
precision of finite-element analysis has been studied using the shearless and semi-shear theories for thin-
walled open-section bars. A double-node finite element constructed within the shearless theory with cubic 
approximation of rotation angle and offset of the line along which the approximation of longitudinal 
displacements was performed is considered during analysis of deformations of plate-and-bar systems in [10]. 
In [11] an issue of calculation has been elaborated using a finite-element method for thin-walled open-section 
curved bars. 

Different variants of thin-walled open-section finite elements have been constructed using analytical 
solutions of differential equations [13, 14, 19, 20]. In [21] an approach has been considered for implementation 
of the shearless theory in finite-element analysis using a double-bar finite element. By introduction of the main 
and dummy bar, a possibility is ensured to set the seventh degree of freedom in the node, which allows taking 
into account the restrained torsion within the existing software systems which traditionally use six degrees of 
freedom in a node. 

However, the frame calculation methodology taking into account the strain warping needs to be further 
developed. The most widely used supposition is that presented in [6], concerning the balance of bimoments 
and the equality of measures of warping at bar junctions. The analysis on this basis of flat-space frames made 
of open-section bars [27, 28] was considered. However, [29, 30] note that such conditions are often violated, 
and bar interaction behavior depends significantly on their connection design. This problem can be 
fundamentally solved using a combined approach, where bar finite elements are introduced outside the 
junction node zone, and the junction strains are described using shell finite elements [31]. At the same time, 
the structural designs are complicated significantly in this case. 

In [32–34] the regularity of the transfer of internal force factors in bar connection nodes equipped with 
transversal ribs has been studied in respect to disbalance of bimoments. It has been noted that such 
disbalance can be taken into account based on the consideration of eccentric moments transfer in the bar 
junctions. In [34] a step-by-step scheme for accounting of this phenomenon has been introduced within the 
finite element method by changing position of auxiliary linking elements between the bars. Fairly high precision 
of this methodology has been illustrated by an example of calculation of thin-walled structures consisting of 
two and three channel bars. At the same time, this approach supposes re-forming the matrix of a system of 
resulting equations during each iterative process step. 

The aim of this work is the development of a rapidly converging, iterative scheme for accounting of 
physical prerequisites of [32–34] by introducing some additional nodal bimoments which do not influence the 
global stiffness matrix of the finite element method and do not require any changes of positions of auxiliary 
connection links. 

2. Methods 
2.1. Definition of the bimoment relationship condition 

Let us consider a linearly elastic frame made of thin-walled open-section bars equipped with transversal 
ribs. We will assume that the frame bar has a longitudinally uniform cross-section and can be generally 
subjected to tension-compression, cross bending in two principal planes, and restrained torsion. Let us deem 
Vlasov’s restrained torsion theory to be true for bars. We will discretise the object using thin-walled bar finite 
elements placing nodal points in the bending centers of their extreme cross sections. Herewith, we initially 
form bar system S , where thin-walled bars T  are located between nodes U  of the finite-element model, and 
the external load is reduced to such nodes. In system S  bars T  can be directly pairwise connected on nodes 
U  or using stiff inserts D  (Fig. 1). Let us assume that measures of warping cross sections are transferred 
through such inserts without any changes. The potential energy for bar T  (Fig. 2) can be written as 

( )
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2 0

2
,
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x x x y y
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where l  is the bar length, 

N  is a longitudinal force, 
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 is the strain per unit of length along axis Ox , 

u  is the cross section center-of-gravity displacement vector projection on axis Ox , 

,y zM M  are the bending moments in relation to the main central axes Oy , Oz  of cross section, 

2

2y
d w
dx

χ = , 
2

2z
d v
dx

χ =  are the bar bending strains in relation to axes Oy  and Oz , 

,w v  are the cross section center of bending displacement vector projections on axes Oz  and Oy , 

Mθ  is a pure torsion moment, 

xd dxθ φ=  is a measure of warping, 

xφ  is the cross section rotation angle relative to axis Ox , 

Bω  is a bimoment, 

xiR  is the force acting on the bar along axis Ox  in cross section from node i ( )1, 2i = , 

iu , iv , iw  are the values , ,u v w  in node i , 

,yi ziR R  are the forces applied to the bar from node i  in the center of bending iP  of cross section iH , 

, ,xi yi zim m m , iBω  are the axial moments and a bimoment acting on the bar from node i , 

xi yi zi, ,φ φ φ  are the cross section iH  rotation angles relative to axes Ox,Oy,Oz , 

iθ  is the measure of warping for node i . 

 
Figure 1. Example of introduction of a stiff insert D  between nodes of thin-walled bars I  and II : 

IC , IIC , IP , IIP  are respectively centers of gravity and centers of bending of cross sections  
of bars to be joined. 

 

Figure 2. Bar T of system S by the example of a channel section: H1, H2 are the nodal cross 
sections with centers of gravity C1, C2 and bending centers P1, P2; f



 is a vector connecting the 
cross section center of gravity and center of bending. 
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Let us present the bimoment of node i  as 

( ) ( ) ,i yi zi i R i RiB B m B m B Bω ω ω ω ω α= + + +        (2) 

where ( )B myiω , ( )B mziω  are bimoments created in such a node by moments yim , zim  respectively with 

due allowance for the actual conditions of their application to the bar, 

iBω  is a bimoment which we will treat as one conditioned via transfer of bimoments from neighboring 
bars, 

R iB ω  is an external bimoment applied in cross section iH , 

Riα  is the relative share of the bimoment R iB ω  taken up by the finite element. 

For example, as shown by calculations [33], for I-section (Fig. 3a), connected with some bar L through 
flange Π , moment yim  from such a bar will be actually transferred in the plane spaced from plane iC xz  

approximately at distance 0.6d hα= , where hα  is half the distance between the middle planes of the flanges. 

Let us introduce a self-balanced system of force couples acting in plane iC xz  with moments Am , Bm  

provided A B yim m m= = . Herewith, moment Am  bends the bar, and the self-balanced system of 

moments yim , Bm  will be treated as a bimoment ( )yiB mω , the modulus of which 

( ) .yi yiB m m dω =               (3) 

a.      b.  

Figure 3. Transfer of a moment to I-section (a)  
and channel section (b): R are the transversal ribs. 

 
Figure 4. Principal sectorial coordinates for a channel section. 
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For channel section (Fig. 3b) during transfer of moment zim  through the channel web Π  it can be 

approximately assumed that it acts in the middle plane of this web [34]. Let us consider moments Am , Bm , 

which are equal in absolute value to moment zim  and which are in the plane parallel to plane iC xy  and 
spaced from the middle plane of the channel web Π  by distance t . This distance corresponds to the position 
of points with zero values of principal sectorial coordinates [6] shown in Fig. 4, where aω , bω  are coordinates 
depending on the dimensions of the cross section. 

Then we get 

( ) .zi ziB m m tω =               (4) 

According to the researches of [33, 34], we assume that in system S at the junction of two or more bars 
T connected directly on nodes U or using inserts D the following relationship on bimoments is fulfilled: 

( )( ) ( )
1

* 0,i k R i k
ko

k
B Bω ω

=
+ =∑            (5) 

where ok  is the number of bars to be connected, 

( )i kBω , ( )R i kB ω  are magnitudes iBω , R iB ω  for bar k  in the connecting node, 

*( )  is a designation indicating that the signs of the bimoments in brackets are adjusted according to 
Fig. 5. 

 
  a.                                       b.                                       c. 

Figure 5. Sign rules for bimoments in terms of their action on connecting nodes U   
when applied relative to axes X и Y (a), Y и Z (b), and X и Z (с). 

2.2. Forming the finite-element model and iterative problem solution process 
Let us discretise the bar system S using the concept of the finite element method within the displacement 

method based on approximations used in [8, 10]. We will consider the next scheme of the description of 
displacements in the bar finite element of bar T (see Fig. 2). Let us represent the vector of generalised strains 
of the finite element as follows: 

{ } .
T

e x y z x
θε ε χ χ θ ∂ =  ∂ 

          (6) 

Vector of generalised stresses corresponding to vector { }ε  

{ } { } .
T

e y zN M M M Bθ ωσ =          (7) 

Let us set down the vector of generalised displacements of finite element node i  as 

{ } { }T
i i i i xi yi zi iu v wδ φ φ φ θ= ( )1, 2 .i =       (8) 
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Taking into account Equations (6) and (7), let us represent the finite element elasticity matrix [ ]eD  

determined by relationship { } [ ]{ }e e eDσ ε=  [35] as follows: 

[ ] { }diag ,e y z tD EA EI EI GI EIω=         (9) 

where E, G are material elasticity modulus and shear modulus, 

A  is the bar cross section area, 

yI  and zI  are the cross-sectional moments of inertia relative to axes Cy  and Cz , 

tI  is the geometrical stiffness factor for pure torsion, 

Iω  is the principal sectorial moment of inertia. 

Let us approximate displacement u  along axis Ox  using linear law, and displacements v , w  and 

rotation angle xφ  using third-degree polynomials. We represent the vector of nodal displacement of the finite 
element as 

{ } { }
{ }

1
2

.e
δδ δ

 =  
 

              (10) 

Then taking into account Equations (6), (8), and (10), let us report the finite element strain matrix [ ]eB  

determined by expression { } [ ]{ }e e eBε δ=  [35] in terms of 

[ ] [ ] [ ]1 2 ,e e eB B B =               (11) 

where 

[ ]

2 3 2

2 3 21

2 2

2 3 2

2 3 2

1 0 0 0 0 0 0

6 12 4 60 0 0 0 0
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6 12 4 60 0 0 0 0
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Let us calculate the finite element stiffness matrix using numerical integration based on Gaussian 
quadrature on three points. In such a case, if an auxiliary variable 2( / 2) /x l l= −ζ  is used, it can be set 
down as 

[ ] ( ) [ ] ( )
3

,
2 1

T
e j e j e e j

lK B D B
j

ψ ζ ζ   = ∑    
=

        (12) 

where 1 3 5 9ψ ψ= = , 2 8 9ψ = , 1 3 0.6ζ ζ= − = , 2 0ζ =  are coefficients and coordinates of Gaussian 
integration points. 

When a finite element system is formed, one should transfer to nodal points in bending centers iP . Let 
us note the correctness of the equality 

,i Pi zi y yi zu u f fφ φ= + −             (13) 

where Piu  is the projection of the displacement vector of cross section iH  bending center on axis Ox ; 

yf , zf  are the projections of vector f


 on axes Oy  and Oz  (see Fig. 2). 

Taking into account Equations (8) and (13), let us express vector { }iδ  through vector { }Piδ  of 

generalized displacements for node in the point iP : 

{ } [ ]{ },i Piδ δ= ∆             (14) 

where 

[ ]

1 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0

,0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

z yf f− 
 
 
 
 

∆ =  
 
 
 
 
 

 

{ } { }T
Pi Pi i i xi yi zi iu v wδ φ φ φ θ= ( )1, 2 .i =  

Then the finite element stiffness matrix for nodal points in bending centers will be determined by 
relationship 

[ ] [ ] [ ][ ]1 ,Pe eK K−= Ω Ω            (15) 

where matrix 

[ ] [ ]
[ ]
0

.
0

 ∆
Ω =  ∆ 

 

Taking into account Equations (1), (2), (10), (14), and (15), the system of equations for the finite element 
formed on the basis of the variational principle of Lagrange can be represented a follows: 

{ }( ) [ ] { } { } { }( )1 ,pe Pe e BM eK Q R Rδ − ∗∗
  = Ω + +        (16) 

where { }Peδ  is the finite element displacement vector for nodes in points iP : 
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{ } { }
{ }

1
2

,P
Pe

P

δδ δ
 =  
 

 

{ } { }1 1 1 1 2 2 2 2 2 2 2 ,
T

e x yi zi x y zi y y y x x zQ R R R m m m B R R R m m m Bω ω=    

{ } { }1 20 0 0 0 0 0 0 0 0 0 0 0 ,T
BM M MR B Bω ω=  

( ) ( ) ( 1, 2),M i yi ziB B m B m iω ω ω= + =  

{ }eR  is the vector of parts of external nodal forces applied in cross sections 1H , 2H . 

Taking into account relationships (5) and (16) let us set down the system of linear algebraic equations 
for the finite-element model of bar system as 

[ ]{ }( ) { } { }( ) ,BMK R Rδ ∗ ∗= +          (17) 

where [ ]K  is the global stiffness matrix, 

{ }δ  is a vector of nodal displacement of the finite-element model, 

{ }BMR  is a vector formed on the basis of bimoments ( )yiB mω  and ( )ziB mω , 

{ }R  is a vector of external generalized nodal forces. 

Let us introduce the following iterative process for solution the system of Equations (17): 

[ ]{ } { } { }( ) ( 1)s s
BMK R Rδ −= + ( )1, 2 .. ,s =        (18) 

where s  is an iteration number, 

{ }( 1)s
BMR −  is the vector { }BMR  obtained from the results of iteration 1s −  with { }(0) 0.BMR =  

As shown by calculations, iterative process (18) usually practically converges on highest values of 
internal force factors in 3 to 6 iterations. In the first iteration one can perform LU decomposition [36] the matrix 
of system of equations. Then contribution of subsequent iterations into the overall labor intensity of the solution 
of the problem will be insignificant. 

3. Results and Discussion 
Let us provide the results of the calculations using the suggested methodology for two examples. In 

example 1 a steel deformable system formed by bars I  and II  was considered (Fig. 6). Bar I  is made of  
I-section No. 20B1 according to Russian State Standard GOST R 57837-2017, bar 2 is made of channel 
section No. 10P according to Russian State Standard GOST 8240-97. The bars have transversal ribs R. The 
system has rigid fixing H and loading with force couple with moment M. This object was calculated using a 
shell finite element model (Fig. 7) in the finite element analysis program Autodesk NEi Nastran (license of 
Federal State Budget Educational Institution of Higher Education “Bryansk State Engineering Technological 
University”, No. PR-05918596) and using a bar model (Fig. 8). 6450 quadrangular shell-type finite elements 
and 10 thin-walled bar finite elements were considered, respectively. Further refinement of both meshes did 
not lead in any significant changes of the calculation results. Fig. 9 illustrates a diagram of bimoments in bars 
obtained using a shell model. Fig. 10 and 11 illustrate bimoments calculated using the considered bar finite 
element without adjustment on bimoments and with implementation of the iterative process (18). Here the 
signs of bimoments correspond to local coordinate systems ( )I, IIi i ix y z i =  for the beams (see Fig. 6). For 
the shell model, during calculation of bimoments according to Fig. 4 and 12 an approximate relationship was 
used 

1
,j j j j

n

j
B t lω σ ω

=
= ∑             (19) 
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where n  is the number of finite elements separated by the cross section in question into line segments iΛ  
of its middle surfaces, 

jσ  is the membrane stress for this cross section in finite element j  averaged on line segment jΛ , 

jt  is the thickness of finite element j , 

jl  is the length of line segment jΛ , 

jω  is the principal sectorial coordinate of the center of this line segment. 

  
Figure 6. Double-bar system. Figure 7. System of shell finite elements for 

example 1. 

  
Figure 8. Splitting of example 1 object into bar 
finite elements: U are the finite element nodes. 

Figure 9. Diagram of bimoments according to 
calculation results in Autodesk NEi Nastran 

(N·m2). 
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Figure 10. Bimoment calculation results for bar 
model without considering the disturbance on 

bimoments (N·m2). 

Figure 11. Diagram of bimoments obtained 
upon introduction of correcting nodal 

bimoments (N·m2). 

 

Figure 12. Principal sectorial coordinates for I-section: dω  is a value depending  
on the dimensions of the cross section. 

Fig. 9–11 show that on the maximum absolute value of bimoment in I-section the result obtained in the 
bar model without implementation of iterative process (18) is different from the shell model by 26 %, and on 
bimoment in channel section by 28 %. When the correcting bimoments were used, the respective 
discrepancies amounted only 6.5 % and 6.3 %. Fig. 13 illustrates the graphs of the behavior of these 
bimoments during the iterative process. It shows that the convergence on them is actually achieved in 3 
iterations. 

a.  b.  
Figure 13. Bimoments in example 1 for the joined node in I-section (а)  

and channel section (b) depending on the iteration number. 
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In example 2 the steel frame (Fig. 14) is calculated. Its columns are channel sections, and the cross bar 
is I-section. The dimensions of cross sections are assumed to be the same as for the dimensionally identical 
sections in example 1. The bars are reinforced with transversal ribs R. The columns are fixed rigidly at the 
bottom in supports H. The system is loaded with moments 1M , 2M , 3M , concentrated forces 1F , 2F , 3F , 
acting in the median planes of the channel webs, and distributed load q , acting in the main vertical plane of 
the crossbar. 

The calculation results were compared using shell and bar models. For the shell scheme (Fig. 15) 
31,850 finite elements were used. When the bar model was formed, 92 thin-walled bar finite elements were 
introduced. By analogy with example 1, the results of the calculation of bimoments using Autodesk NEi Nastran 
are provided in Fig. 16. The bimoments obtained for the bar model based on iterative adjustment are shown 
in Fig. 17. The signs of bimoments in these diagrams were assumed in accordance with the position of the 
local coordinate axes shown in Fig. 14. Comparing Fig. 16 and 17 one can conclude that in terms of the 
bimoment value maximum for joined nodes, the result obtained using the suggested methodology is different 
from the shell model by 6.6 %, and in terms of the maximum value of bimoment in the columns, by 5.2 %. The 
bimoment values calculated in the iterative process for joined node A  are shown in Fig. 18, where it is clear 
that in terms of these magnitudes, the convergence was actually achieved in 4 to 6 iterations. 

 
Figure 14. Double-span frame: I, II, III are the structurally identical columns;  

IV is the cross bar; A, B, C are the bar connection nodes. 

 
Figure 15. System of shell finite elements for example 2. 
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Figure 16. The results of bimoments calculation based on the shell model (N·m2). 

 
Figure 17. The results of bimoments calculation using  
a correcting iterative scheme in the bar model (N·m2). 

a.  b.  

Figure 18. The change of bimoments of node A for column (а)  
and cross bar (b) in the iterative process. 

It should be noted that in the structures where the bar connection nodes have significant reinforcement, 
including that using inclined ribs, some additional disturbances in terms of bimoments may appear. At the 
same time, such disturbance types may appear also in some straight bars if there are any design factors 
determining the local restrained warpings [5]. In such cases, in addition to the suggested approach, both for 
frames and individual bars, it is necessary to introduce into the design model some stiffening elements 
resistant to the bimoment transfer. According to [33, 34], when using only transversal ribs with thickness in 
accordance with the requirements of Russian State Standard SP 16.13330.2017, such additional disturbances 
are insignificant. At the same time, as follows from results of the presented work, when the bar models are 
used, taking into account the disbalance on bimoments in bar connection nodes caused by moment transfer 
behavior can increase the calculation precision significantly. 

4. Conclusions 
1. An algorithm of correcting bimoments has been developed. It allows taking into account the 

disbalance on bimoments in joined nodes of frames which are generated via open-section bars equipped with 
transversal ribs based on a rapidly converging iterative process. In this calculation scheme, the same matrix 
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of system of equations is used during each iteration. It determines the main labor intensity of the calculation 
process for execution of the first iteration. 

2. Strains of each bar are simulated within V.Z. Vlasov’s shearless theory. Based on the approach of 
V.V. Lalin and V.A. Rybakov, stiffness matrices have been constructed for double-node bar finite elements in 
which the cross section rotation angles are described using cubic law. 

3. Using the variational principle of Lagrange and taking into account the conditions of the moment 
transfer at bar junctions, the finite element method resulting system of equations is formed. It includes the 
global stiffness matrix constructed in the supposition of the bimoment balance in the bar connection nodes, 
and on the right hand side of the equations, the correcting bimoments are included. They are determined 
during iterations. 

4. The results are provided for finite element method calculation on bimoment values for two frames 
using shell models and the suggested algorithm. When corrective bimoments were used, the iterative process 
practically converged in 3 to 6 iterations. Herewith, the deviation of the calculation results in the presented bar 
models as compared with the shell schemes amounted to no more than 7 % of the maximum absolute 
bimoment values. 
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