
Magazine of Civil Engineering. 2021. 107(7). Article No. 10707 

Tyukalov, Yu.Ya. Arbitrary quadrangular finite element for plates with shear deformations. Magazine of Civil 
Engineering. 2021. 107(7). Article No. 10707. DOI: 10.34910/MCE.107.7 

© Tyukalov, Yu.Ya., 2021. Published by Peter the Great St. Petersburg Polytechnic University. 

 This work is licensed under a CC BY-NC 4.0 

 

 
ISSN 

2712-8172 
Magazine of Civil Engineering 

journal homepage: http://engstroy.spbstu.ru/ 
 

DOI: 10.34910/MCE.107.7 

Arbitrary quadrangular finite element  
for plates with shear deformations 

Yu.Ya. Tyukalov  
Vyatka State University, Kirov, Russian Federation 
E-mail: yutvgu@mail.ru 

Keywords: finite element method, flexible plates, shear deformations, approximation of moments, 
arbitrary quadrangular finite element 

Abstract. An arbitrary quadrangular bending finite element based on a piecewise constant approximation 
of moments is proposed. The solution is based on the principles of minimum additional energy and possible 
displacements. The finite element allows you to consider the shear deformation, regardless of the ratio of 
the plate thickness to its sizes. The effect of locking in the calculation of thin plates is absent. Comparison 
of the results of the oblique plates calculation, annular and round plates with analytical solutions and 
calculation results for other programs was done. The comparison shows good accuracy in determining 
displacements and moments. Crushing the finite elements mesh makes the displacement values tend to 
exact values from above. To assess the influence of the finite element shape, the square plate calculations 
were made. To model the square plate, quadrangular elements were used, obtained from rectangular ones 
by changing the slope of one side. At the same time, the calculating accuracy of the displacements and 
moments decreased slightly. The proposed finite element is easy to implement. The problem solution did 
not require a numerical integration or the mapping of the quadrangular region to the rectangular one. The 
necessary expressions were obtained analytically. 

1. Introduction 
Bendable plates are widely used as load-bearing structures of buildings and structures for various 

purposes. A lot of scientific literature has been devoted to the development of various types of finite 
elements for bendable plates [1–2]. To date, software systems use a wide range of finite elements for 
bendable plates, developed on the basis of displacement approximations and using the Lagrange’s 
functional. Despite this, the development of new types of finite elements continues. In particular, papers 
[3–4] are devoted to new finite elements for the calculation of thin plates, developed on the basis of the 
general theory of elasticity. 

Bendable plate calculation which consider shear deformations requires the use of finite elements 
based on various shear theories. In [5], the equations of the theory of elasticity are directly applied to allow 
shear deformations, and in [6–7] the Mindline-Reissner theory of plates is used. In contrast to the classical 
Kirchhoff’s theory, in the Reissner’s theory, rotation angles and vertical displacements are considered as 
independent variables, which allows one to lower the maximum order of derivatives in the strain energy 
functional and makes it possible to use first-order functions for displacements approximations. Direct use 
of the Reissner theory for constructing of finite elements leads to the “jamming” effect, which consists in 
the impossibility of using these finite elements to calculate thin plates. The “jamming” effect allows to use 
these finite elements only for thick plates. In [8], the new finite element is proposed, constructed on the 
basis of the Reissner plate theory, but suitable for calculating thin plates. To calculate a certain class of 
plates, there are analytical methods which use trigonometric series for the representation of the differential 
equation solutions of plate bend [9–10]. This approach allows us to obtain solutions with the necessary 
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accuracy for plates of a certain shape. In particular, such method is used to calculate periodic oscillations 
of square plates [11]. 

The emergence of new composite materials for plates led to the appearance of new finite elements 
types based on various shear theories [12–13]. For such plates the Galerkin’s method is used to construct 
triangular and quadrangular finite elements according to the Reissner–Mindline theory of plates in [13]. In 
[14], the first-order shift theory was used, and displacements along the cross section vary linearly. Tasks 
of calculating various structures, including plates, which consider contact interaction with the base, are 
importance. In [15], on the basis of the finite-element contact model and the step-by-step analysis method, 
a numerical algorithm was developed, that allows simultaneous integration of the motion equations and the 
implementation of contact conditions with Coulomb friction. 

For the calculation of the plates, in addition to the Lagrange functional, mixed and hybrid functionals 
are used [16–17]. The use of such formulations makes it possible to simplify the account of shear 
deformations due to the use of transverse forces and moments as unknowns, in addition to displacements. 
But such decisions require the observance of additional conditions to ensure convergence. In [18], a 
quadrangular finite element with seven degrees of freedom in each node was presented: three 
displacements of the median surface along the coordinate axes, two shear angles, and two normal rotation 
angles. This element allows to more accurately consider shear deformations when changing material 
properties in different directions. In [19], the finite element formulation free from the “locking” effect was 
presented for calculating plates with allowance for shear based on the modified Mindline theory. A separate 
class of problems is the plates stability analysis. To solve such problems, the finite element method is 
widely used, but analytical methods are also using. In [20], the analytical solution was obtained for stability 
analysis of thin rectangular plates. Such analytical solutions can also be used to test the finite element 
solutions. 

In [21], the finite element model was proposed for calculating thin flexible plates, based on the 
moment’s approximations. The solution was obtained by using the functional of the additional energy and 
the possible displacements principle. The resolving equations for rectangular and triangular finite elements 
was obtained. Such finite element models make it possible to get convergence of displacements from 
above. Similar solutions based on the stress’ approximations were obtained for plane problems of the 
elasticity theory [22–23]. In [24], the method was proposed for considering shear deformations, based on 
the transverse forces’ approximation and the additional energy functional. Shear displacements are 
determined independently of bend displacements. This approach is free from the locking effect and can be 
used to calculate any thickness plates. In [25], the finite element model also based on the moments 
approximations was proposed for calculating plates according of the Reissner theory. 

Finite element solutions based on the moments (stresses) approximation allow one to obtain 
solutions that are alternative to solutions based on the Lagrange functional. This determines their 
relevance. 

This paper aim is to build an arbitrary quadrangular finite element designed to calculate various 
thicknesses plates, based on the moments and transverse forces approximations. The solution will be 
based on papers [21, 24], in which only rectangular and triangular finite elements were considered. To 
evaluate the accuracy of the proposed finite element, test calculations and comparison of the results with 
analytical solutions and results obtained by other methods will be performed. 

2. Methods 
We will build the solution of the problem of bending thin plates to involve the moments approximations 

on the basis of the functional [1]: 

( )( )2 2 2
3

1 12 2 2 1 d ,
2

c
x y x y xy

A
M M M M M A

E t
ν νΠ = + − + +∫

⋅
   (1) 

E is the elastic modulus of the plate material; t is the plate thickness; ν  is Poisson's ratio; xM  is bending 

moment directed along the X axis; yM  is bending moment directed along the Y axis; xyM  is torque. We 

write the functional (1) in the standard matrix form: 

T 11 d .
2

c
s s

A
A−Π = ∫ M E M      (2) 

The following notations are introduced in expression (2): 
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We introduce the notations for unknown nodal moments , y, ,, ,x i i xy iM M M  and for the nodal moments 

vector of an arbitrary quadrangular finite element 

( )T
,1 y,1 ,1 ,2 y,2 ,2 ,3 y,3 ,3 ,4 y,4 ,4 .k x xy x xy x xy x xyM M M M M M M M M M M M=M      (4) 

In the finite element region, we will approximate the moments fields by piecewise constant functions 
(Fig. 1) [21, 24]. 

 
Figure 1. An arbitrary quadrangular finite element: a) dashed lines go through the midpoints of 

sides and divide the finite elements into regions with constant moments; b) the possible 
displacement of the node; c) the nodes local numbers and the coordinate system for the finite 

element. 
To simplify the expressions recording, we introduce auxiliary stair-step functions: 

( ) ( )
( )

1, ,
, .

0, ,
i

i
i

x y A
x y

x y A
ψ

∈=  ∉
      (5) 

And introduce the corresponding diagonal matrices 

.
i

i i

i

ψ
ψ

ψ

 
 =  
  

ψ       (6) 

Then the moments approximations matrix in the finite element region will have simple form: 

[ ]1 2 3 4 .k =Z ψ ψ ψ ψ                                                           (7) 
We get 

.s k k=M Z M       (8) 
Using (8), we will express the additional strain energy of the finite element in the following form: 

( )T T 11 d .
2

c
k k k k k

Ak

A−Π = ∫ M Z E Z M      (9) 

We introduce the notation for the local flexibility matrix of the finite element: 

T 1 d .k k k
Ak

A−= ∫D Z E Z      (10) 

Note that the matrix kD  is calculated analytically and has simple block-diagonal form: 
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1 4A A÷  are the areas of the finite element parts in which the moments are constant (Fig. 1). 

From the flexibility matrices of finite elements, the global flexibility matrix D  is formed, and from 
vectors kM  the global nodes moments vector M . Using the introduced notation, we obtain the following 
expression of functional (2): 

T1 .
2

cΠ = M DM      (12) 

It is important that the matrix D  is block-diagonal and consists of square matrices measuring 3 by 
3. Therefore, the matrix D  is easily analytically reversible. This circumstance greatly simplifies the 
construction of the problem solution. 

In accordance with the principle of additional energy minimum, the moments fields must satisfy the 
equilibrium equations and static boundary conditions. To ensure the moments fields equilibrium, we 
compose the grid nodes equilibrium equations using the possible displacements principle [21, 24].  

Fig. 1b shows the possible displacement of the node and the finite elements adjoined to it. To 
approximate vertical displacements in the finite element region, which are caused by the possible 
displacement of node i, we will use the following function: 

1, 2, 3, 4,( , ) , 1 4,i i i i iw x y a a x a y a xy iδ = + + + = ÷    (13) 

,x y  are point coordinates in the local coordinate system of finite element X Y′ ′  (Fig. 1c). To determine 

the parameters j,ia  included in the expression for the approximating functions (13), it is necessary to form 

the following matrix: 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1
1

,
1
1

x y x y
x y x y
x y x y
x y x y

 
 
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 
 

B      (14) 

,i ix y  are coordinates of node i of the finite element. If the possible displacement of node is taken equal 

to unity, then the parameters ,j ia  are elements of the inverse matrix 1−B : 

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,41

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

.

a a a a
a a a a
a a a a
a a a a

−

 
 
 =
 
 
  

B      (15) 

Each column of the matrix 1−B  contains the parameters of approximating functions for possible 
displacement of one finite element node. 

The principle of possible displacements can be written as follows: 

0.i iU Vδ δ+ =       (16) 

iUδ  is the internal forces work of the finite elements adjoined to the node i; iVδ  is the external forces 
potential due to possible displacements. For one finite element k, the internal forces work, in the general 
case, is written as follows: 
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i x y xy
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δ δ δ
δ

 ∂ ∂ ∂
= + + ∫  ∂ ∂∂ ∂ 

    (17) 

From expression (12) we obtain: 

( ) ( ) ( )2

2, 4, 3, 4, 4,, , 2 2 ,i i i
xi i i yi i i xyi i

w w w
a a y a a x k a

x y x y
δ δ δ

δϕ δϕ δ
∂ ∂ ∂

= = + = = + = =
∂ ∂ ∂ ∂

      (18) 

xiδϕ , yiδϕ  are the possible rotation angles along the X and Y axes, respectively; xyikδ  is possible 

torsional curvature. 

 
Figure 2. Graphs of the rotation angles changing along the normal to the finite element sides. 

Obviously, the bending curvatures 
( )2

2
iw

x
δ∂

∂
, 

( )2

2
iw

y
δ∂

∂
 are equal to zero and the finite element 

rotates without bending. At the same time, the moments which normal to the sides of the finite element 
perform the work with the corresponding rotation angles. But the torques perform the work inside the finite 
element area. Therefore, we write the work of the finite element internal forces in the following form: 

d d ,k
i n n xy xyi

k kS A
U M S M k Aδ δϕ δ= +∫ ∫

    (19) 

Mn  is the moment normal to the borders (sides) of the finite element; nδϕ  is the angle of the section 

rotation along the normal to the borders (sides) of the finite element; kS  are the finite element borders. In 
accordance with (18), torsion curvature is constant in the finite element region, therefore 

( )4, ,1 1 ,2 2 ,3 3 ,4 4d 2 .xy xyi i xy xy xy xy
kA

M k A a M A M A M A M Aδ = + + +∫              (20) 

Cosines and sines of the angles indicated in Fig. 2, are calculated by the node’s coordinates: 

3 2 4 32 1 1 4
1 2 3 4

1 2 3 4

2 3 3 41 2 4 1
1 2 3 4

1 2 3 4

cos , cos , cos , cos ,

sin , sin , sin , sin .

y y y yy y y y
l l l l

x x x xx x x x
l l l l

α α α α

α α α α

− −− −
= = = =

− −− −
= = = =

               (21) 

The section rotation angle along the normal to the side k of the finite element, by the possible 
displacement of node i, is calculated by the following formula: 

( ) ( )2, 4, 3, 4,cos sin cos sin .n x k y k i i k i i ka a y a a xδϕ δϕ α δϕ α α α= + = + + +   (22) 

The points coordinates on the finite element sides indicated in Fig. 2 are determined by the following 
formulas: 
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                 (23) 

Substituting the points coordinates in (22), we obtain the expressions for the rotation angles of the 
section, along the normal to the sides, for the points indicated in Fig. 2: 

( ) ( )
( ) ( )

/ 2, 4, / 3, 4, /,

/ / 2, 4, / / 3, 4, / /,

cos sin ,

cos sin , , 1, 2,3, 4.

i i j i i jni j j j

i i j i i jni j j j

a a y a a x

a a y a a x i j

δϕ α α

δϕ α α

= + + +

= + + + =
        (24) 

In (24), the index i denotes the node number, whose possible displacement is considered; index j 
denotes the side number of the finite element. 

Bending moments directed along the normal to the finite element sides are calculated by the well-
known formula: 

2 2sin cos 2 sin cos .n x i y i xy i iM M M Mα α α α= − − −   (25) 
In (25), moments enter with a minus sign, since the moments external to the boundary opposite to 

the internal moments. Using (25), we calculate the normal moments values, that are constant for each half 
of the finite element side: 

2 2
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   (26) 

The rotation angles along each side of the finite element vary linearly (Fig. 2), and the moments are 
constant on the half of each side, therefore 

1,1 / 1 1,2 // 1 2,2 / 2 2,3 // 2,1 ,2 ,2,1

3,3 / 3 3,4 // 3 4,4 / 4 1,4 // 4,3 ,3 ,4 ,4

1d (
2

).

n n n n
n n ni ni ninikS

n n n n
ni ni ni ni

M S M l M l M l M l

M l M l M l M l

δϕ δϕ δϕ δϕ δϕ

δϕ δϕ δϕ δϕ

= + + + +∫

+ + +



 (27) 

Summing up the integrals (20) and (27), we obtain the internal forces work k
iUδ  of the finite element 

on the possible displacement of the node i. The work can be written in vector form: 

T ,k
i i kUδ =С M      (28) 

iС  is the vector whose elements are the total coefficients from expressions (19) and (27), which are 

multipliers of the corresponding unknown moments. The vector iС  elements will have the following 
expressions: 
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(29) 

After calculating the internal forces work on the possible displacements of the all finite element nodes, 
we obtain 

T
1 1

T
2 2

T
3 3

T
4 4

, .
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k k kk

k

U

U

U

U

δ

δ

δ
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С

С
L M L

С

С

    (30) 

The matrix kL  consists of four rows and twelve columns. From the finite elements matrices kL , in 

accordance with the nodes numbering, the global matrix L  is formed for the entire system. 

The external forces potential by the possible displacement of node i 

, ,
1

d .i z i z i z i
т

к Ak

V P q w A Pδ δ
=

= + =∑ ∫     (31) 

The integral in (31) is calculated over the area m of finite elements adjacent to node i. ,z iP  is force 

which is concentrated in the node; zq  is load which is distributed over the element area. For the case of a 
uniformly distributed load, the integral is calculated analytically. As calculations showed, without loss of 
accuracy, the uniformly distributed load can be replaced by concentrated nodes. Then we get 

, , ,
1

,i z i z i k z i
m

k
V P q A Pδ

=
= + =∑      (32) 

,i kA  is part of the finite element area adjacent to the node i (see Fig. 1). From the values ,z iP , in 

accordance with the nodes numbering, the global vector of external forces P is formed. In accordance with 
(15), we obtain the nodes equilibrium equations system 

0.+ =LM P       (33) 
Using the Lagrange multipliers, equations (33) are added to the functional (11). 
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( )T T1 ,
2

cΠ = + +M DM w LM P     (34) 

w  Is the nodal displacements vector. To consider the static boundary conditions, it is necessary to 
compose additional equations and, using the Lagrange multipliers, add it to the functional (34). Then the 
vector will include these additional parameters. The necessary equations are given in [21, 24]. 

To obtain solving equations, we equate the derivatives (34) with respect to the vectors M  and w  to 
zero: 

T 0,
0.

+ =
+ =

DM L w
LM P

               (35) 

Expressing the vector M  from the first equation and substituting it into the second equation, we 
obtain: 

1 T

1 T

,
,

.

−

−

=
=

=

K LD L
Kw P

M D L w

      (36) 

When calculating thick plates, it is necessary consider additional shear deformations. In the 
framework of the proposed methodology, we can consider the shear state regardless for the bending state 
and use the following functional [24]: 

( ) ( )2 22 11 d ,
2

с
x y

S

k
Q Q S

E t
ν+ 

Π = + ⋅ 
∫        (37) 

56=k  is coefficient which consider the parabolic law of the shear stresses change along the plate 
thickness. ,x yQ Q  are transverse forces. We introduce the notations: 

( )1 1 012 1
, .

0 15
x

s sh
y

Q
Q E t

ν−  +   = =   ⋅    
Q E     (38) 

Then 

T 11 d .
2

с
ss sh

s
S−Π = ∫Q E Q      (39) 

We consider the case when the transverse forces are assumed constant over the finite element 
region. Then for one finite element we get: 

T
,

1 ,
2

c
k k sh k kΠ = Q D Q      (40) 

kA  is the finite element area; ,

,

x k
k

y k

Q
Q
  =  
  

Q  is the finite element transverse forces vector. Then 

1
, .sh k k shA −=D E       (41) 

For whole system, we can write 

T1 ,
2

с
shΠ = Q D Q       (42) 

Q  is vector of shear forces for whole system; shD  is global flexible matrix of the shear for whole system. 

Using the possible displacements principle, we compose the nodes equilibrium equations under 
shear. To approximate possible displacements under shear, we also use expression (12). As a result of the 
node possible displacement, the shear deformations take place in the sections: 
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( ) ( ), ,
2, 4, 3, 4,, .sh i sh i

xz i i yz i i
w w

a a y a a x
x y

δ δ
δγ δγ

∂ ∂
= = + = = +

∂ ∂
  (43) 

Then the work of the internal transverse forces for the finite element k, at the possible displacement 
of node i, can be expressed as follows: 

( ), ,

2, , 3, y, , 4, y, 4,

d

d d .

k
i xz x k yz y k

i k x k i k k x k i k i

Ak

A Ak k

U Q Q S

a A Q a A Q Q a y S Q a x S

δ δγ δγ= + =

= + + +

∫

∫ ∫
                     (44) 

To calculate the integrals (44), we divide the quadrangular finite element into two triangles 1-2-3 and 
1-3-4 (see Fig. 1). Next, we will perform integration over each part using triangular coordinates. Then we 
get the following simple expression: 

( ) ( )( )

( ) ( )( )

2, , 3, y,

4,
123 1 2 3 134 1 3 4 ,

4,
123 1 2 3 134 1 3 4 ,

3

,
3

k
i i k x k i k k

i
x k

i
y k

U a A Q a A Q

a
A y y y A y y y Q

a
A x x x A x x x Q

δ = + +

+ + + + + + +

+ + + + + +

                              (45) 

123A , 134A  are the areas of the triangles 1-2-3 and 1-3-4 (see Fig. 1). We write the work k
iUδ  in matrix 

form: 

T
, ,k

i sh i kUδ =С Q                                                                  (46) 

,sh iС  is a vector whose elements are coefficients from expression (45), which are multipliers of the 
corresponding unknown transverse forces. 

( ) ( )( )

( ) ( )( )

4,
2, 123 1 2 3 134 1 3 4

,
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3 .

3
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С    (47) 

After calculating the internal forces work on possible displacements of all nodes of finite element, we 
obtain 

T
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T
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С
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    (48) 

The matrix ,sh kL  consists of four rows and two columns. From the finite element matrices , ,sh kL  in 

accordance with the nodes numbering, the global matrix is formed for the whole system shL . 

The external forces potential is calculated by (32). The nodes equilibrium equations system under 
shear: 

0.sh + =L Q P       (49) 
Including the equilibrium equations in functional (42) with the help of Lagrange multipliers, we obtain 

( )T T1 ,
2

c
sh sh shΠ = + +Q D Q w L Q P     (50) 

shw  is the nodal displacements vector, caused by the sections shear deformations. To obtain solving 

equations, we equate the derivatives (50) with respect to the vectors Q  and shw  to zero: 
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T 0,
0.

sh sh sh
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     (51) 

Expressing the vector Q  from the first equation and substituting it into the second equation, we 
obtain: 

1 T

1 T

,
,

.

sh sh sh sh

sh sh

sh sh sh

−

−

=
=

=

K L D L
K w P

Q D L w
     (52) 

To consider the static boundary conditions, it is necessary to compose additional equations and, 
using the Lagrange multipliers, add into functional (50). Then the vector will include these additional 
unknowns. The necessary equations are given in [24]. Obviously, the total nodes displacements 
considering shear deformations are determined as the sum: 

.sum sh= +w w w      (53) 

3. Results and Discussions 
As mesh refinement test, we calculated of the skew plate which is supported by hinges along the 

contour (Fig. 3). For such plate, the finite-difference solution is given in [26]. We used parallelogram finite 

elements with the largest angle of 120 degrees. The plate has the following parameters: 7 210 / ,E kN m=

0.21,µ = 0.1 ,t m= 210 /q kN m= . The geometric dimensions are shown in Fig. 3. The calculations were 
performed for three finite element grids: a 6 by 10 grid, a 10 by 20 grid, and a 20 by 40 grid. In addition, for 
comparison, the calculations of this plate were performed according to the LIRA-SCAD program. All results 
are summarized in Table 1, where SFEM is the solution according to the proposed method. 

 
Figure 3. The skew plate with hinge supports. 

Table 1. Displacements and bending moments in the plate center (Fig. 3).  
Mesh refinement test. 

Solution (grid) mmw,  mmkNM x /, ⋅  mmkNM y /, ⋅  

SFEM (6×10) 10.779 3.654 9.903 
SFEM (10×20) 10.039 3.586 9.451 
SFEM (20×40) 9.587 3.529 9.132 

LIRA-SAPR (6×10) 9.093 3.290 8.303 
LIRA-SAPR (10×20) 9.115 3.404 8.611 
LIRA-SAPR (20×40) 9.149 3.449 8.731 

Timoshenko [26] 9.719 – 8.712 
 

The results in Table 1 show that the plate center displacement obtained using the proposed finite 
element (SFEM), when crushing the mesh tends to the exact value from above. Similar results were 
obtained for rectangular and triangular finite elements, also constructed on the basis of the stress 
approximation [22]. For the smallest grid, the obtained displacement value differs from the analytical one 
by 1.4 percent. The bending moments also tend to exact values from above. The value of the maximum 
moment, obtained on the smallest grid, is 4.8 percent more than the analytical value. 

As a further example, the half-ring was calculated on the uniformly distributed load action (Fig. 6). 
The half-ring has a hinged support along the lines DE and DB, and clamped support along the line EA. Line 



Magazine of Civil Engineering, 107(7), 2021 

Tyukalov, Yu.Ya. 

AB is the symmetry axis, therefore, at the nodes lying on this line, zero torques were taken. The following 

data were accepted in the calculations: 210000 / ,E kN m= 0.3,µ = 0.1 ,t m= 210 / ,q kN m=
6 ,R m= 3 .r m=  

 
Figure 4. Finite-element meshes of the half-ring. 

The obtained results were reduced to dimensionless form: 

4 2 2
1000 , , .yx

x y
MMDw w M M

qR qR qR
= = =     (54) 

Table 2. Comparison of finite element results for the half-ring with the analytical solution.  

Solution сw  AxM ,  AyM ,  CxM ,  CyM ,  ,x BM  

SFEM (Fig. 4а) 0.374 0.0134 0.0387 -0.00460 -0.0173 -0.00226 
SFEM (Fig. 4b) 0.362 0.0133 0.0396 -0.00445 -0.0169 -0.00394 

LIRA-SAPR (Fig. 4а) 0.350 0.0098 0.0287 -0.00422 -0.0163 -0.00352 
LIRA-SAPR (Fig. 4b) 0.348 0.0108 0.0336 -0.00434 -0.0166 -0.00291 

Analytical [27] 0,358 0,0118 0,0393 -0,00439 -0,0168 -0.00234 
 
Analysis of the results shown in Table 2, demonstrates a good accuracy of the proposed finite 

element. The value of the radial direction moment ,y AM , which has the prevailing values, is very close to 

the analytical value. The maximum displacement obtained by the proposed method differs from the 
analytical value by less than one percent. The moment value in the circumferential direction is an order of 
magnitude smaller than the moment value in the radial direction. The proposed finite element gives a 
significantly greater value of this moment. It should be noted that this moment value obtained by  
the LIRA-SAPR program is also much greater than the analytical value. We also note that the values of 
another moment ,x CM  in the circumferential direction, obtained both by the proposed method and by the 
LIRA-SAPR program, are close to the analytical value. 

To assess the influence of the finite element shape (mesh distortion test), the square plate that have 
clamped support along the contour was calculated on the action of the uniformly distributed load. Figure 5 
shows the finite element grid for the plates quarter. The calculations were performed for grids with angles 
from zero to 60 degrees. 

 
Figure 5. The finite element grid for the square plates quarter.  

The sides of the AC and AB are pinched; the sides of CD and BD are symmetry axes. 
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The following data were accepted for the plate: 210000 / ,E kN m= 0.3,µ = 1 ,t m=
210 /q kN m= . Table 3 shows the results of calculations of the plate without considering shear 

deformations. Obviously, then larger the angle β , the more distorted the finite element shape, and the 
more significantly the calculation results should differ from the values obtained for the grid of square finite 
elements ( 0β = ). 

Table 3. Calculation results for the square plate (Fig. 5). Mesh distortion test. 

β , degrees ,Dw mm  , ,x DM kNm / m  y, , /DM kNm m  y, , /BM kNm m  

0 18.537 8.361 8.361 -18.251 
10 18.527 8.303 8.282 -18.143 
20 18.516 8.230 8.184 -18.024 
30 18.503 8.140 8.072 -17.901 
40 18.488 8.037 7.953 -17.774 
50 18.469 7.930 7.834 -17.649 
60 18.446 7.823 7.723 -17.535 

 
First of all, we note that the displacement of the plate center depends on the angle β  insignificant. 

At 60β = degrees, the displacement value is less than the displacement for the square grid only on 0.5 
percent. The value of the moment ,y BM  in the clamped side, taken modulus, is less than the absolute 

value of this moment at 0β =  on 3.9 percent. The value of the moment ,x DM , at 60β = , decreases by 
6.4 percent. In general, we can conclude that even with a strong distortion of the finite elements shape, 
when the maximum internal angle becomes equal to 150 degrees, the proposed arbitrary quadrangular 
finite element allows us to obtain sufficiently accurate values of displacements and moments for the square-
shaped plate. 

As the next test example (shear locking test), the calculations of the hinged and clamped support 
round plates (Fig. 6) on action of a uniformly distributed load with considering shear deformations were 
performed. For such plates, there are Timoshenko-Mindline analytical solutions center displacements. 

 
Figure 6. Finite element mesh for a quarter of the round plate. 

For a hinged round plate, this Timoshenko-Mindline decision is written as follows: 

4 25 .
62 1 4
qR qRw

D kGt
µ
µ

 +
= + + 

     (55) 

For clamped round plate: 

4 2
,

62 4
qR qRw

D kGt
= +      (56) 

R  is the plate radius; t  is the plate thickness; ( )
3

212 1
EtD

µ
=

−
 is the plate cylindrical stiffness; 

5
6

k = ; 

( )2 1
EG =
+ µ

 is shear modulus. The following parameters have been used for the plate: 
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7 2 210 / , 0.3, 10 / , 3E kN m q kN m R mµ= = = = . The calculation results are summarized on Table 4 
and Table 5. 

Table 4. The hinged round plate center displacement (Fig. 6). Shear locking test. 

,t m  
,w mm  

Fig. 6a Fig. 6b Fig. 6c Formula (55) 
0.1 57.0493 56.4158 56.3331 56.4158 
0.5 0.46989 0.46698 0.46435 0.46481 
1 0.06401 0.06337 0.06339 0.06337 

1.5 0.02157 0.02149 0.02142 0.02138 
2 0.01064 0.01062 0.01060 0.01055 

 
In formulas (55) and (56), the second terms, which are determined the value of displacements due 

to shear deformations, are the same. Note that when calculating according to the proposed method, 
displacements from shear deformations are determined independently of the bending state and will also be 
the same for the considered support options of the plates. The results in the Tables show the general 
tendency for the displacement values to approach the exact values from above, as well as good accuracy 
even for coarse grids. 

Table 5. The clamped round plate center displacement (Fig. 6). Shear locking test. 

,t m  
,w mm  

Fig. 6a Fig. 6b Fig. 6c Formula (56) 
0.1 14.3394 14.0010 13.8079 13.8908 
0.5 0.12821 0.12561 0.12415 0.12461 
1 0.02130 0.02102 0.02086 0.02084 

1.5 0.00891 0.00885 0.00882 0.00876 
2 0.00530 0.005284 0.005280 0.00524 

 
When modeling the round plate, arbitrary quadrangular elements were used, but most of them have 

a square shape. But the finite elements located along the plate border have different sizes and arbitrary 
shapes. These elements are located near the supports, therefore, the greatest transverse forces arise in 
them. They will make a significant contribution to the displacements caused by the shear, and thereby 
determine the calculation accuracy. Thus, we note that the proposed arbitrary quadrangular finite elements 
allow one consider shear deformations with high accuracy and regardless of the ratio of the plate thickness 
to its dimensions. The shear locking effect in the calculation of thin plates is absent. 

4. Conclusion 
1. An arbitrary quadrangular bending finite element based on a piecewise constant approximation 

of moments is proposed. The solution is based on the principles of minimum additional energy and possible 
displacements. The finite element allows you to consider the shear deformation, regardless of the ratio of 
the plate thickness to its sizes. The effect of locking in the calculation of thin plates is absent. 

2. There is compared the results of the oblique plates calculations, annular and round plates with 
analytical solutions and calculation results for other programs. The results comparison shows good 
accuracy in determining displacements and moments. The crushing of finite elements mesh cause the 
displacement values tend to exact values from above. 

3. To assess the influence of the finite element shape, calculations were made for skew plate. To 
model the plate, quadrangular elements were used, obtained from rectangular ones by changing the slope 
of one side. As a result, one of the finite element internal corners varied from 90 to 150 degrees. At the 
same time, the calculating accuracy of the displacements and moments decreased only by 4 and 6 percent, 
respectively. 

4. The proposed finite element is easy to implement. A numerical integration and the mapping of the 
quadrangular region to the rectangular one is not used to get the solution. All necessary expressions are 
obtained analytically. 
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