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Abstract. Shell structures with a mid surface of helicoid shape find application in many technical fields, 
mostly in civil and mechanical engineering. There is a variety of helicoid shells, but the most well-known 
and used are two types of ruled helicoids: right and oblique. The article is devoted to analytical and numeric-
analytical methodologies for shallow right and oblique helicoids. The general approach is based on 
Kirchhoff–Love linear theory of thin elastic shells. Analytical results can be used for preliminary design and 
calculations aimed at the understanding of construction physics and regularities of stress-strain state 
behavior. Two methodologies of stress-strain analysis are presented: the analytical method for shallow right 
helicoid, and the numeric-analytic method for oblique helicoid (including any special or degenerated case). 
The numerical results are verified. The results and approach outlined could be of interest to designers and 
scientists, who want to understand the generalities of thin ruled helicoid shell behavior. 

1. Introduction 
Shells of helicoidal surface form are permanently in focus among scientists because they have the 

potential to be applied in the construction [1, 2], architecture [3] and mechanical engineering [4, 5]. The 
Archimedes screw turbines become popular because of global energy-saving trend [6, 7]. The entrance 
vehicle and wheelchair ramps are in common use in most objects of urban infrastructure, so the design of 
such objects is important today. Steel and reinforced concrete helicoid shells of the three most common 
types – right, oblique and developable, are usually used while designing the objects of different purpose, 
like parking spaces, transport interchanges, railway junctions, in the most cases the shells are shallow and 
have small lead of helix. In machine construction, conversely, non-shallow shells of high helix are used. 
Despite these structures are widely used in very diverse fields [8–12], not so many papers are devoted to 
mechanics of helicoidal shells and particulary to their stress-strain state [13–17], so the topic seems to be 
not developed enough. This job is devoted to the design of shallow shells of oblique and right type for 
structural purposes. 

The present study concerns thin elastic shells, which can be calculated in Kirchhoff-Love theoretical 
model [18]. The models of shells and plates mechanical behaviour are constantly improving, but the 
Kirchhoff-Love hypothesis remains the basis of the linear elastic shell theory. Such objects have a range of 
advantages in technical-and-economical indexes, they are light in weight, the minimal thickness of these 
shells is limited by technological characteristics of erection, like pump-crete machine application. While 
implementation of special technologies, like concrete pump placing, these limitations can be eliminated. 

The research of thin elastic shells has been conducted intensively since the 60-s of 20-s century, the 
various models and algorithms have been developed [19–22]. All of them can be divided into three main 
groups: analytical, numeric and numeric analytical methodologies. The right and developable helicoid 
analyses are more developed comparative to the oblique. Obviously the first two have more simple 

https://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by/4.0/


Magazine of Civil Engineering, 106(6), 2021 

Tupikova, E.M., Rynkovskaya, M.I. 

expressions of surface equations, and therefore the quadratic forms expressions are simple too. The 
oblique helicoid equations are defined in general case in non-conjugate non-orthogonal coordinate system, 
so the expressions are cumbersome. 

Among the variety of helicoidal surfaces [23] the most popular and handy are right [24], oblique [25] 
and developable [26–28] helicoids. At the stage of design study, for comparison and verification of results 
it is very good to have a standard of reference, some simple example of precise analytical solution that can 
be used like benchmark before creating detailed complex model. Such an example can be got by analytical 
approach using modern computer technologies, which give us a powerful software and hardware means of 
analysis. The analytical methods were popular while designing real objects about  
25–30 years ago, and now they are replaced by finite element method. But they are still necessary because 
of the range of advantages, main of which is obviousness of physical meaning. Due to improvement of both 
hardware and algorithms, the most of difficulties of computation are resoluble now. If the analytical solution 
can’t be obtained, the equations can be solved by numeric methods. In this case the methodology is called 
numeric-and-analytic. The accuracy of such methodology is formally lower than the accuracy of analytical 
methodology and is defined by the numeric method applied, but the results are also valuable [14, 18]. In 
the present paper analytical and numeric-analytical methods for shallow helicoidal shells are considered 
for right and oblique helicoids. 

2. Methods 
2.1. General Methodology 

General form of helicoid surface equation can be conceived in vector form: 

( ) ( ) ( ) ( )( ), cos sin ,r u v u v i u v j f u c v k= ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅                               (1) 

Where c is a parameter of helix pitch, if 0c =  helicoid degenerates into surface of revolution. 

If Oz axis is axis of rotation, then ( )z f u=  is a generator plane curve equation. 

The basic terms of surface theory are coefficients or first quadratic form ,A , ,B F  which characterize 
the inner geometry of the surface in any point vicinity, and coefficients of second quadratic forms , ,M N
which characterize the outer geometry of the surface in any point vicinity [30]. 

Angle between coordinate lines 

2 2 2
χ, cos χ ,   tgχ ,F A B F

AB F
−

= =                                           (2) 

Ru , Rv , Ruv  are radii of curvature of normal sections along coordinate lines u and v, 

1 ,2
N

R Bv
= −

′
1 ,2

L

R Au
= −

′
1 ,M

ABRuv
=

′
                                               (3) 

( ),u u u v= is a vector of elastic displacement of a point of the middle surface which can be expanded 

in axis of basic trihedral: ,
r ru vu u u u nu v zA B

= + +  where uu , uv , uz are displacement components, n  

is normal unit vector.  

The Christoffel’s symbols of surface coordinates can be expressed in terms of A, B, χ : 
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While designing shell structure the coordinate system choice is crucial. Among the huge variety of 
any curvilinear coordinates u, v there are some coordinate lines of the important properties, these are: the 
network of conjugate lines, the network of orthogonal lines, the network of principal curvatures. Any surface 
can be attributed to curvature lines, which are defined uniquely. 

The equations of shell theory can be established in the simplest form if the network of principal 
curvature is set as coordinate lines of the shell midsurface. The problem is to find analytically curvatures of 
the surface given. There are some surfaces, which can only be set in curvilinear non-orthogonal non-
conjugate coordinate systems. 

The classical Kirchhoff-Love thin elastic shell theory is based on the assumptions, the similar to the 
beam theory. Three-dimensional problem of the theory of elasticity can be reduced to two-dimensional 
problem because of these assumptions. Stress-strain state of the shell can be presented by functions of 
two variables, which are coordinates of point on shell midsurface. In this study the non-linear effects are 
not considered, components of elastic displacement vector and their derivatives are supposed to be so 
small that the members nonlinear with respect to them, should be neglected. 

A.L. Goldenveizer suggested a full system of equations of the thin elastic shell theory, this theory is 
recognized as a classical [31]. The theory contains several groups of equations: the equilibrium equations, 
the stress-strain relations, the geometrical relations and continuity equations, (which are not of necessity in 
the current case). The positive directions of the following inner forces and moments are presented on Fig. 1. 

 
Figure 1.The axis, inner forces and moments. 

Equilibrium equations in non-conjugate non-orthogonal (most general type) coordinate system u, v: 

( )( ) ( )( )

( )

21 12 cos sin cos11sin sin
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 where  

,Nu Nv  are axial forces along u, v respectively; 

,Mu Mv  are bending moments around u, v respectively; 

Muv uMv=  are twisting moments; 

,Q Qu v  are shear forces along u, v respectively; 

,S Su v  are cutting forces along u, v respectively; 

(see Fig. 1) 

Strain-displacement relations: 

( )
21 sin 1cos ,222

uA zu u Г uv v u uB v RB v

∂
= + − +

∂
χε χ  

( )
21 sin 2 ,112cos

uB zu u Г uu u v vA u RA u

∂
= + − +

∂
χε χ  

1 ,

sin sin 11
12

sin 1 1 cos2cos 112 sin

u Г uu v uA u B A v

B Г u uv zA u R RA uv u

∂ ∂ = − + + ∂ ∂ 
  ∂

+ + − +    ∂   

χ χ χω

χ χ χχ
χ
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where uε  is relative tension of middle surface along line u; 

vε  is relative tension of middle surface along line v; 

uvε  is alteration of angle between lines u, v; 

uγ  is angle of rotation of vector ru  towards vector n in plane ( ),r nu ; 

vγ  is angle of rotation of vector rv  towards vector n in plane ( ),r nv ; 

uω  is angle of rotation of vector ru  towards vector rv  in tangent plane; 

vω  is angle of rotation of vector rv  towards vector ru  in tangent plane; 

Гn
ij  are Christoffel’s symbols (with 3 indexes). 

The two subscripts specify derivative variables for ( ),r u u v=  on the left side of the corresponding 

equality, and the superscript indicates which derivative of ( ),r u u v=  is followed by this coefficient (the 

digit 1 corresponds to the parameter u, and the digit 2 corresponds to the parameter v). 

The stress-strain (physical) relations in accordance with Hooke’s law: 
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(7
) 

Where E is modulus of elasticity, h is shell thickness, ν is Poisson’s ratio. 

These expressions form the system of 20 design equations, which makes possible to define two-
dimensional parameters of inner forces and moments. 

2.2. Oblique helicoid stress-strain analysis 
2.2.1 Theoretical base 

The oblique helicoid is a surface arising by moving oblique line along helicoidal line (Fig. 2). The 
much-used parametrical equation of this surface can be conceived of as [28]: 

( ) ( )cos , sin , ,x u v y u v z k u c v= ⋅ = ⋅ = ⋅ + ⋅  (8) 

where k is generator’s slope ratio. 

This is the equation in cylindrical coordinate system (Fig. 2, a). Also the oblique helicoid surface 
equations (5) can be established in oblique axis (Fig. 2, b): 

( ) ( ) ( ) ( ) ( )cos cos , cos sin , sin ,x u v y u v z u c v= ⋅ ⋅ = ⋅ ⋅ = ⋅ + ⋅ϕ ϕ ϕ  (9) 

v coordinate is generator rotation angle, like in cylindrical system, constϕ =  is the generator obliquity 
angle. 

This coordinate system is non-orthogonal and non-conjugate, but the expressions of quadratic forms 
would be slightly simpler in comparison to those in cylindrical system: 
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2cos sin 2 sin, , cos .
2 2 2 2 2 2 2cos
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c u cM N a
u c u c u c

= = ⋅ + = ⋅

 
⋅ ⋅ ⋅ = − = − = ⋅ ±

 
+ + ⋅ + 

ϕ ϕ

ϕ ϕ ϕχ
ϕ

 (10) 



Magazine of Civil Engineering, 106(6), 2021 

Tupikova, E.M., Rynkovskaya, M.I. 

  

a) In cylindrical coordinate system b) In curvilinear coordinate system 
Figure 2. Oblique helicoids. 

To simplify the task, assume that the helicoid has many coils, and the stress-strain state does not 
depend on the boundary conditions along the straight borders, and, consequently, does not depend on v 
coordinate. 

The methodology is well known in shells and plates theory, it is quite straightforward, like brute-force 
solution. Substituting the strain-displacement relations (6) into the stress-strain equations (7), and after that 
the forces and moments expressions into the equilibrium equations (5), finally we can obtain a system of 3 
ordinary differential equations in displacements. Actually, all parameters are expressed by displacements 
to get rid of other unknown variables, except three displacements and their derivatives. The main 
computational problem is to obtain and simplify the coefficients before them, because they are quite 
cumbersome. The full system of equations is not quoted in this article because of excessive volume, all 
procedure of dealing with those cumbersome coefficients and their’s simplification is computerized. Modern 
smart software provides an opportunity to process huge symbolic expressions and exclude mistakes of 
“human element”. 

The general form of the differential equation system is given below: 

2 2
,10 11 12 13 14 15 16 17 12 2

2 2
,30 31 32 33 34 35 36 37 32 2

4

70 71 72 73 744

d u du du d udu duu u v uz zK u K K u K K u K K K K Xu v z Xdu du du dudu du

d u du du d udu duv u v uz zK u K K u K K u K K K K Yu v z Ydu du du dudu du

du dud u u vz K u K K u K K uu v zdu dudu

= + + + + + + + +

= + + + + + + + +

= + + + + +
2

.75 76 77 72
d udu du uz zK K K K ZZdu du du

+ + +

 (11) 

The system can be reduced into the first-order system of 8 differential equations by the substitution: 

,0u yu = ,1
duu y
du

= ,2u yv = ,3
duv y
du

= ,4u yz = ,5
duz y
du

=
2

,62
d uz y
du

=
3

.73
d uz y
du

=  (12) 

This is a routine procedure of reduction of order of ordinary differential equation system. 

Finally, we can obtain the first-order system of ordinary differential equations ( ),dy f x y
dx

= , or in 

other terms ( ),y f x y′ = where: 
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(13) 

,1 10 0 11 1 12 2 13 3 14 4 15 5 16 6 17 7f k y k y k y k y k y k y k y k y= + + + + + + +  

,3 30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7f k y k y k y k y k y k y k y k y= + + + + + + +  

.7 70 0 71 1 72 2 73 3 74 4 75 5 76 6 77 7f k y k y k y k y k y k y k y k y= + + + + + + +  

The full system of 8 differential equations is not presented in the article because of excessive volume. 

The boundary conditions were considered as that: The shell was fixed rigidly along the whole contour. 
Its calculation model’s boundary conditions with this support were supplemented by conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2
' '0, 0,u v z z u v z zu u u u u u u u u u u u u u u u= = = = = = = = where 1u  and 2u  

are the coordinates of inner and outer curvilinear edges. 

These ordinary differential equation systems can be solved by numeric methods [32, 33], particularly 
by means of sweep method, which is constantly improving and being modified [34, 35]. Differential sweep 
method of the most simple modification let solve such systems in case of the most simple boundary 
conditions, that is demonstrated in the present job. Through the sweep method algorithm execution the 
corresponding Cauchy’s problems are solved by Runge-Kutta-Fehlberg 5’th order method, that is realized 
by Giac/Xcas software package for symbolic calculations. In prospect of this job, modified methods of 
orthogonal successive substitution will make possible to solve similar systems with more complex boundary 
conditions ensuring the calculation stability. 

So that, this method can be called numeric-analythical or semi-analythical, because the faithful and 
obvious in their physical meaning differential equations are solved by approximate numeric method. With 
some initial modifications and assumptions the methodology can be applied to shallow or non-shallow 
shells (the non-shallow variant is more universal, but demands more resources of computer). In the present 
article the modification for shallow shells was applied. 

After calculating the deformations and their derivatives we can calculate internal axial and shear 
forces and bending and twisting moments. 
2.2.2 Numeric experiments 

Modern computers and software have high potential for either numerical or symbolic computations, 
and provide wide opportunities for processing cumbersome expressions. Thus, computational complexities, 
like stress-strain analysis of thin shells in non-orthogonal non-conjugate system, can be fulfilled and 
realized. The series of numeric experiments were conducted for helicoidal shells with variable geometrical 
parameters. Both shallow and non-shallow shells were investigated. In the first series of numeric 
experiments the influence of the generator obliquity angle on the stress-strain state was analyzed. 

The series of numeric experiments were conducted for helicoidal shells with variable geometrical 
parameters. In the present job the shallow shells were investigated. 

The calculation example for the methodology is given for the shell of reinforced concrete material 
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(Fig. 3). Both edges are fixed, an equally distributed vertical load is applied. The generators obliquity angle 
𝜑𝜑 = 5°, contour radius R1 = 2 m, R2 = 4 m; thickness of 12 cm and pitch of 0.01·2π. The material 
characteristics: modulus of elasticity Е = 32500 MPa, Poisson’s ratio ν = 0.17. Load intensity is 10 kPa (Fig. 
4). The approach is performed by Giac/Xcas software. The test results are shown in Fig. 5. 

              
Figure 3. The model scheme.                                           Figure 4. The loading. 

  
Figure 5. Inner axial forces. 

  
Figure 6. Inner bending moments. 

 
Figure 7. Deflection. 
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2.3. Right helicoid stress-strain analysis 
The right helicoid (Fig. 5) is a surface arising by moving a straight line along helicoidal line when the 

angle between the straight line and the axis of the surface is equal to 90º. The much-used parametrical 
equation of this surface can be conceived of as: 

 
Figure 8. Right helicoid. 

2cos 4x u v b ac= − , siny u v= , z cv= ,                                              (14) 

where c is displacement of the generator upon its rotation by 1 radian, or the ratio of the translational 
velocity to the circular velocity; 

u, v are curvilinear coordinates of the point C of helicoids; 

u is the distance from point C to axis z; 

v is the rotation angle of generator AB from the plane zOx to the point C. 

For right helicoids ( ) 0f u =  and coefficients of the first and second quadratic forms are 

2 1A = , 2 2 2B u c= + , 0F = , 2=χ π , cos 0=χ , 

0L = , 2 2M c u c= − + , 0N = . 

If input the first and second quadratic form coefficients into 

2 2
0A du Fdv Fdu B dv

Ldu Mdv Mdu Ndv
+ + =
+ +

 

It can be found 

( )2 2 2 2du u c dv= + , 

2 2du dv u c= ± + ,. 

(15) 

The angle between direction du dv  and direction 0dv =  is α , 

( )
2 2cos 2 2 2

2 2 2 2 2 2 2 22

A du Fdv du du du
A du Fdudv B dv du u c dv

+
= = =

+ + + +
α  (16) 
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It means that the angle between every direction and generator 0dv = is 45º. 

Main curvatures may be found by the equation 

1
2

Ldu Mdv
R A du Fdv

+
= =

+
λ  

and for the right helicoid 

1
2 21,2

c
R u c

=
+

 , 

( )
2

1 2 22 2

ck k k
u c

= = −

+

, 0kcр = . 
(17) 

The third equation of (17) shows that right helicoid is a minimal surface, the second equation of (17) 
shows that the torsion of a helical line passing through a given point of a straight helicoid can be expressed 

by quantity 
2 2
сk

u c
− =

+
. 

Shell is considered to be shallow if the following conditions are satisfied: min min5, 20
l R

f h
≥ ≥  . 

Where minl  is minimum size of the shell projection f is shell depth, h  is shell thickness, minR is 

minimum radius. 

For shallow shells equilibrium equations can be reduced, and geometrical and physical relations can 
be essentially simplified. After the transformations finally one equation from equilibrium group and one 
equation of continuity base the system of mixed-mode method. 

Differential operators 

21 ... 1 ...2 2 2... 22 2 2 2
u c

u u vu c u c

 ∂ ∂ ∂  ∇ = + + ∂ ∂   ∂+ + 
, 

( )
2 ... ...2... 3 2 2 22 2

c u
k v u u cu c

 ∂ ∂
∇ = − − 

∂ ∂ + +
. 

(18) 

In the case of shallow helicoid analysis 2c  can be neglected in comparison to 2u , and the first and 
second quadratic forms coefficients will be: 

1A = , B u= , 0F = , 0L = , M c u= − , 0N = , 

21 ... 1 ...2... 2u
u u u u v

 ∂ ∂ ∂  ∇ = + ∂ ∂  ∂ 
, 

2 1 ... 1 1 ...2... 2 2
c H

k u u v u u vu u

∂ ∂ ∂ ∂   ∇ = − = −   ∂ ∂ ∂ ∂   π
, 

(19) 

where 2H c= π . The calculation equations for the shallow helical shells: 

1 12 2
2

uH zE h
r r vr

∂ ∂
∇ ∇ = − ⋅ ⋅ ⋅ ⋅  

∂ ∂ 
ϕ

π
 , (20) 
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1 12 2
2

uH zE h
r r vr

∂ ∂
∇ ∇ = − ⋅ ⋅ ⋅ ⋅  

∂ ∂ 
ϕ

π
,

 

which were derived by E. Reissner on the basis of K. Markever's equations for round plates having large 
deformations. They are solved for a number of particular cases ( )u u uz z= and ( )u=φ φ , u kvz =  and 

some others. V.G. Rekach and S.N. Krivoshapko proposed more general cases of solving equations (20). 
The methodology was developed in [23] and some numeric results were obtained. 

Equations (20) are equations of Eulerian type and are reduced to equations with constant coefficients 
by substitution 

tu e=  or lnt u= . 
While using the following relations 

... 1 ...d d
du u dt

= , 

2 2... 1 ... ...
2 2 2

d d d
dtdu u dt

 
 = −
 
 

, 

3 3 2... 1 ... ... ...3 23 3 3 2
d d d d

dtdu u dt dt

 
 = − +
 
 

, 

4 4 3 2... 1 ... ... ... ...6 11 64 4 4 3 2
d d d d d

dtdu u dt dt dt

 
 = − + −
 
 

, 

(21) 

Homogenous operators can be obtained: 

2 21 ... ...2... 2 2 2u t v

 ∂ ∂ ∇ = +
 ∂ ∂ 

, 

4 3 2 3 4 2 41 ... ... ... ... ... ... ...4... 4 4 4 2 44 4 3 2 2 2 2 2 4u t t t t v t v v v

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∇ = − + − + + +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

, 

12 ... 1 ...4 2k vu t

 ∂ ∂
∇ = − 

∂ ∂ 
., 

(22) 

If switching from coordinates u, v to u, t the (20) will become: 

( ) ( )4 2 4, ,H Ztt v u t v ez kD D
∇ − ∇ =φ

π
, 

( ) ( )4 2, , 0EhHt v t v uk z∇ + ∇ =φ
π

, 
(23) 

where ( )4 4 4, ... ...,t v u∇ = ∇
 

( )4 4 4, ... ...,t v uk k∇ = ∇  

In the case of determination: ( ) ( )2 , ,EhH t v t vk
 = ∇ Φ 
 

φ
π

, and ( ) ( )4 , ,u t v t vz = −∇ Φ equations 

(17) can be combined into one equation of eight order: 

( ) ( ) ( ) ( ) ( )8 2 4 4, , , , ,t
kt v t v p t v t v e Z t v D∇ Φ + ∇ Φ = − , (24) 
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where 
( )2 212 122

2 2 2

HEhHp
D h

−
= =

ν

π π
. 

The solution of equation (24) can be found in trigonometric Fourier series 

( ) ( ), sin
1

t v t mvm
m

∞
Φ = Φ∑

=
 where coefficients of the series may be obtained from differential 

equations 

( ) ( ) ( ) ( )8 2 4, , 0t m t p t m tk∇ Φ − ∇ Φ = , 

where 
( )2 212 122

2 2 2

HEhHp
D h

−
= =

ν

π π
. 

( ) ( ) ( )4 3 2... ... ... ...4 2 2 2 2, ... 4 2 2 4 4 ...4 3 2
d d d dt m m m m m

dtdt dt dt
∇ = − + − + + −  

( )2 , ... 1 ...dt m mk dt
 ∇ = ± − 
 

. 

(25) 

In this case inner forces and moments are obtained from the following formulas: 

( ) ( )
2 21 1 1 2 , sin2 2 1

EhH d mN u m u mvu k mu u u du uu v m

 ∞∂ ∂  = + = ± − ∇ Φ∑
 ∂ ∂ =  

φ φ
π

, 

( ) ( )
2 2 2 , sin2 2 1

EhH dN u m u mvv k mu du m

∞∂
= = ± ∇ Φ∑
∂ =

φ
π

, 

( ) ( )1 1 1 2 , sin
1

EhH dS m u m u mvk mu u v u du u m

∞∂ ∂   = − = − ∇ Φ∑   ∂ ∂    =

φ
π

, 

( ) ( )12 6 , sin2 1

dQ D u D u m u mvu z mu du u m

∞∂
= − ∇ = ∇ Φ∑

∂ =
, 

( ) ( )2 6 , sin3 1

D DQ u m u m u mvv z mu v u m

∞∂
= − ∇ = ± ∇ Φ∑

∂ =
, 

2 21
2 2
u u uz z zM Du u u uu v

  ∂ ∂ ∂  = − + + =
  ∂∂ ∂   

ν
 

( ) ( )
2 2 4 , sin21

d d mD u m u mvmu du udum

  ∞
  = + − ∇ Φ∑

  =   

ν
, 

2 21 1
2 2

u u uz z zM Dv u u u v u

  ∂ ∂ ∂  = − + + =
  ∂ ∂ ∂   

ν  

( ) ( )
2 21 4 , sin21

d m dD u m u mvmu du u dum

  ∞
  = − + ∇ Φ∑

  =   
ν , 

(26) 
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( )1
u uD z zMuv u v u u
∂ ∂

= − − − = 
∂ ∂ 

ν  

( ) ( ) ( )1 41 , sin
1

D d m u m u mvmu du u m

∞ = − − ∇ Φ∑ 
  =

 ν . 

where ( )2 , ... 1 ...du m m uk du
 ∇ = − 
 

, 

( )
22 2 2, ... ...2

d du m u u m
dudu

 
 ∇ = + −
 
 

. 

In order to find particular solution, it is possible to use Fourier series 

( )
22 2 2, ... ...2

d du m u u m
dudu

 
 ∇ = + −
 
 

, expand the right part of the equations (20) in trigonometric 

series: 

( ) ( )
4 4

, sin
1

t te eZ t v Z t mvmD D m

∞
− = − ∑

=
, (27) 

and obtain the solution m  member of series 

( ) ( ) ( ) ( )
44 4 2 2 2, ,
tet m p t m t Z tk k mD

 ∇ ∇ − ∇ ∇ Φ = −  
, (28) 

where ( )4 , ...t m∇  and ( )2 , ...t mk∇  are the same as for a general solution  

In the case of the loading applied only along Z axis, two cases can be considered: 
4qZm m

=
π

 for 

0 v< < π  or ( )
14 1 2

mqZm m

+
= − −

π
 for 

2 2
v− < <

π π
, when m =  1, 3, 5, …, and equation (28) can be 

rewritten as follows: 

( ) ( ) ( )
444 4 2 2 2, ,
tq et m p t m tk k m D

 ∇ ∇ − ∇ ∇ Φ = −   π
 for 0 v< < π , 

( ) ( ) ( ) ( )
1 444 4 2 2 2, , 1 2

m tq et m p t m tk k m D

+
 ∇ ∇ − ∇ ∇ Φ = −   π

 for 
2 2

v− < <
π π

, 

(29) 

and finally 

( ) 4tt AemΦ =  for 0 v< < π , 

( ) ( )
1

41 2
m

tt A em
+

Φ = − −  for 
2 2

v− < <
π π

, 
(30) 

where 

4
6 8 6 4 2 2 24 40 528 2560 9

qA
D m m m m m p m

−
=

 + − + − −  
π

. 

This method can be considered purely analythical, such solution became possible because of the 
simplicity of right helicoid quadratic forms. This solution results are precise and so that can be used as a 
benchmark for comparison to numeric and numeric-analythical solutions.  
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According to the methodology suggested in part 2.2, it is possible to analyze the stress-strain state 
of a shallow right helicoid. Several test examples are represented in comparison with results obtained by 
another methodology (part 2.1) for oblique helicoid in the case when the angle between the plane and the 
generator is equal to zero. 

3. Results and Discussion 
The numeric experiments were carried out in present investigation to verify and compare the 

methodologies given and also to define the border between shallow and non-shallow models. 

The first comparison was made for method from chapter 2.1 and finite element method. 

The comparison demonstrates close agreement of results, obtained by the numeric-analytic method 
and those obtained by finite element analysis. 

The model is identic to model in example in 2.1.2. 

The series of calculations were conducted for shells with different φ angle in limits from 0º to 15º. 

Table 1. The results comparison for different angles. 
φ 0 3 5 10 15 

Maximum deflection along z axis 
method 1*, m 8.69·10–5 8.45·10–5 8.43·10–5 7.99·10–5 4.67·10–5 

The same, method 2*, m 8.7·10–5 8.6·10–5 8.0·10–5 7.4·10–5 6.6·10–5 
Maximum bending moment Mu,  

method 1*, KN·m/m 
3914/ 
–1663 

3805/ 
–1614 

3593/ 
–1524 

2853/ 
–1191 

2076/ 
–852 

The same, method 2*, KN·m/m 
3711/ 
–1667 

3689/ 
–1656 

3639/ 
–1636 

3428/ 
–1532 

3108/ 
–1374 

* method 1, – numeric- analytical, method 2 – finite element method 

The finite element calculations were carried on by ANSYS APDL 15 software application. The finite 
element model represents a shell segment of 45º. It was proved that such a segment is sufficient to get the 
representative deflection and stress shape in the middle section [36]. The finite element SHELL181 was used 
for the calculation, quadrilateral finite elements were used according to the recommendations of official 
guideline [37], mesh size of 10 cm was sufficient to obtain the stable results. The loading was applied as 
gravity (dead load). 

 
Figure 9. Finite element model. 

Because of these results the boundary between shallow and non-shallow model can be determined 
near 10º generator obliquity angle for shells with a small pitch. This angle approximately corresponds to 
shell ratio of rise to plane size of 1/5. 

The second comparison was made for right helicoid shell, calculated by numeric-analytic method 
and purely analytic method. The method from chapter 2.1 (for oblique helicoid) is also suitable for stress-
strain analysis of shells with middle surface of special and degenerated cases of helicoid: if 0=ϕ  then 
oblique helicoid degenerates into right helicoid, if simultaneously 0c =  into flat plate; if 0c = , 0≠ϕ  into 
conus. So we can compare results for right helicoid, calculated as a special case of oblique one, and 
analytically, directly as it was shown in chapter 2. Thus, the numeric-analythical methodology can be called 
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the handiest one, combining the advantages of analytical approach and universality of numeric Runge-
Kutta solution. 

The results obtained by the numeric-analytic method also have close agreement to those obtained 
by analytical method for right helicoid. The next examples illustrate this. 

The shell of right helicoid form is analyzed below. The material characteristics: Young modulus E is 
2∙105 MPa, Poisson’s ratio is 0.3. The thickness is 0.02 m, the inner radius R1 is 5 m, the outer radius R2 is 
6.708 m, the pitch H = 0.314 m (or c = 0.05), load intensity is 10 KPa. All edges have fixed support. 

The results are presented in the Fig. 10. 

The maximum deflection is 1.51 mm, analytical method result is 1.48 mm. 

The comparison with the results, got by analytical method is given in Table 2. 

The results were obtained for analythical and numeric-analythical methodiques. First calculation was 
carried on for right helicoid as a special case of oblique helicoid by the numeric-analythical metodique, 
described in 1.1. The second one was conducted for the right helicod by the analytical methodique, 
described in 1.2. The graphs were plotted by means of free computer algebra system Giac/Xcas software. 
The result graphs are overaid on each other compare them visually. 

The graphs from Fig. 9 (a-d) were obtained for the central section of long shell, remote enough from 
the fixed edge, that is considered by one-dimentional model of the corresponding methods The plots below 
illustrate that while deflection compared the difference between the values for 2 methodiques is about 
0.03 mm, that means the discrepancy is about 2 % (Fig. 9 a). While bending moments Mu  or shear forces 

Qu  
compared, the difference is about 1 %, for it Mv  is 2.5 %. All these results can be considered close 

or almost identical with technicall accuracy. 

 
Figure 9 a. Deflection uz 

 
Figure 9 b. Shear force Qu 
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Figure 9 c. Bending moment Mu 

 
Figure 9 d. Bending moment Mv 

All forces, moments and displacements except those which are represented on the graphs are close 
or equal to zero for shallow shells. These close matching results (see Table 2) show that the numeric-
analythical methodology from 1.1 is more universal and can be used for any oblique helicoids including 
special cases, but the analythical methodology is certainly more accurate. 

Table 2. The results comparison for two methods. 
Quantity Method 1 Method 2 

Bending moment Mu, kN m
m

 

First support/midspan/second support 
2,57/–1,21/2,289 2,57/–1,20/2,28 

Bending moment Mv, kN m
m

  

First support/midspan/second support 
0,77/–0,36/0,68 0,77/–0,37/0,68 

Shear force kN 
First support/second support 

–9,208/8,00 –9,208/8,03 

 

Short finite element analysis was also conducted (see Fig. 11) by means of finite element software 
ANSYS APDL. The analogous calculation for another shell with different parameters was conducted in [38]. 
The finite element model is represented by one quarter of helicoid coil, because it is sufficient to neglects 
boundary effects [39]. The model is meshed by quadrilateral elements of 5 cm side length of ‘shell 181’ 
type, the element which behavoiur is based on Kirghoff-Love linear elastic model. This element size is 
sufficient for results convergence and appropriate accuracy of the calculation. The distributed load was 
applied, like own weight. All edges have fixed support. Finite element test also shows close agreement: 
deflection is 1.516 mm. The isofields of deflections are shown on Fig. 11. Only deflection were compared 
to avoid coordinate systems mismatch while comparing the inner force factors, because ANSYS has only 
Cartesian, cylindrical or spherical coordinates, but for corrects comparison curvilinear coordinates needed. 
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Figure 11. The deflection uz by FE analysis. 

4. Conclusion 
In this paper two methodologies of analytical and half-analytical stress-strain state analysis for thin 

shallow helicoidal structures in the shape of right and oblique helicoids are represented. The analytical 
approach which is suitable for a right helicoid structure is compared to the half-analytical methodology 
which is developed by authors for an oblique helicoid structure when the inclination angle of generator is 
equal to zero (in this case the oblique helicoid turns into the right helicoid). The results which are obtained 
by two approaches give the appropriate accuracy if compared with each other, as well as if compared with 
the finite element method results. 

The analytical approach for calculation of a right helicoidal structure is realized by the means of 
computer software based on analytical solutions obtained, while the half-analytical approach for calculation 
of an oblique helicoidal structure is performed by Giac/Xcas software. The finite element analysis was 
carried out by the means of Lira SAPR and ANSYS APDL software. The obtained results are also similar 
to the results obtained by analytical and numeric-analytical methods. 

Both methodologies are written in the compact ways and are convenient for a practical engineering 
application as a means for a preliminary calculation or a deep stress-strain analysis of right and oblique 
helicoidal structures. 

The boundary between shallow and non-shallow model was established approximately at 100 of 
generator obliquity, that corresponds to classical recommendations to apply shallow model when h/l (shell 
depth to span) ratio is less than 1/5. 

All test calculations in this paper are made for cases with simple boundary conditions, mostly fixed 
supports (rigid restraints), because such cases need less computing time. In prospect this difficulty can be 
avoided with implementation of superior modifications of sweep method [40]. Another application of the 
methodology proposed is testing finite element model with the most simple load case and boundary 
conditions by comparison with the similar analytical model and following application of real loads on it. 

To sum up, it may be said, that analytical methodology for right helicoid and numeric-analytic 
methodology for oblique and right helicoid have an advantages, as transparent physical meaning. The 
results are valid, the accuracy is appropriate, range of use is defined. 
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