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Abstract. The present paper studies the stress-strain state of a round reinforced with stiffeners plate of 
elastic-plastic material carried out of a refined theory of the type by S.P. Timoshenko It is believed that plate 
vibrations are excited by a pulsed load. The relationship between displacement and deformation is 
assumed to be geometrically non-linear. The plate consists of sheathing and rib reinforcement of a 
quadrangular cross section. The lining materials of the reinforcing ribs are considered identical and obeying 
Hooke's law. The cross sections of the ribs are constant and are independent of the radial coordinate. The 
height of the ribs and their locations are set using a single column function. The number of methods of finite 
differences the solution to the problem. In this case, deformations, forces, moments, and transverse forces 
are determined at the centers of the grid elements, and displacement and rotation angles are determined 
at the grid nodes. Given the location of the ribs, the deflection of the central point and the force calculated, 
depend on the radial co-ordinate and time. Particularly, it was found that the smallest deflection of the 
central point is achieved when the rib is located in the middle of the radius of the plate; the location of the 
ribs near the edge of the plate can lead to a decrease in the load-bearing capacity of the structure compared 
to an un-reinforced plate. 
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1. Introduction 
Thin elastic structures and their elements are widely used in modern technology and construction. In 

most cases, these elements operate under the influence of various dynamic loads of a wide range and are 
in difficult operating conditions [1, 2]. For achieving the desired structural rigidity and increase in strength, 
its thin-walled part is reinforced with ribs. The ribs increase rigidity, increase the strength of the structure 
and do not significantly increase the weight of the structure. In addition, the ribs very well transmit forces 
close to concentrated loads. At the same time, a reduction in the material consumption of structures, 
beneficial in design. Therefore, in studies of the dynamic nature of plates reinforced by stiffeners, special 
attention is paid to determining the strength characteristics of plates of increased stiffness under the 
influence of compressive loads. 

The solution to the problems pertaining to the deformation of ribbed plates has been carried out 
through both analytical and numerical methods. Using analytical methods for calculating plates and shells, 
supported by stiffeners as other elements of engineering structures, it is possible to calculate their deformed 
and stressed states with a given or acceptable accuracy.  
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In mathematical terms, the analytical methods for solving dynamic problems of ribbed plates and 
shells are complex [3]. Therefore, researchers have tried to overcome these difficulties by limiting the 
configurations of the ribbed plates and to be content with relatively simple configurations. Due to these 
difficulties in the scientific literature, till recently, little work has been done using analytical methods of 
calculation. In article [4] considers a ribbed plate with its structural orthotropy and analyzes its stressed 
state by analytical, numerical (finite element method) and experimental methods. It has been proved that 
the reinforcement of the plates with ribs of constant cross-section allows significant reduction of stress in 
its sections in comparison to an un-supported plate. It has also been noted that the literature on the 
analytical calculation of the stress-strain state of ribbed plates is quite scanty. 

The work [5] is devoted consider shells of a stepped variable thickness when a thickness variation is 
set by means of unit bar graph functions equal to a difference of two unit functions. It enables for considering 
ribs, reinforcement plates and cutouts in one structure; a rib and shell contact is arranged along a strip.  

In the process of performing dynamic calculations of the elements of structural engineering, the study 
of their natural vibrations along with the determination of natural frequencies and their natural forms, plays 
a large role [6, 7]. The same is true for ribbed plates and shells, since the reinforcements change both the 
spectrum of natural frequencies and the shape of the vibrations [8]. In this direction, one can note articles 
[9, 10], where the free vibrations of circular and annular plates reinforced on external contours were studied. 

Some questions of the dynamic stability of reinforced orthotropic gentle shells of double curvature 
and viscoelastic flexible plates of variable stiffness under compression were studied in [11, 12]. In the work 
[11] explored orthotropic shallow shells of double curvature, as well as cylindrical panels that are reinforced 
from the concave side by an orthogonal grid of stiffeners. The external transverse load acting on the 
structure is uniformly distributed and has a linear dependency on time. A geometrically nonlinear variant of 
the model which also takes into account orthotropy of the material and transverse shears are considered. 
The model is presented as a functional of total deformation energy of the shell. In the paper [12] the dynamic 
stability of viscoelastic plates of variable stiffness is analyzed. The deflections are described by partial 
integro-differential equations of motion. The Bubnov–Galerkin method based on monomial and polynomial 
approximation of deflections is used to reduce the problem to ordinary integro-differential equations with 
time as an independent variable. 

The complexity of analytical calculations forced the authors to limit themselves to a relatively small 
amount by taking into account the physical and mechanical properties of materials. Therefore, in many 
studies, numerical methods have been used to solve such problems [13, 14]. For specific ribbed plates, 
some questions of the numerical calculation of the dispersion curve and the ways to solve them using the 
finite element method were presented in the scientific work of Finnveden, S. [15]. Based on the obtained 
analytical, numerical and experimental results, a comparative analysis has been made. The features of 
wave propagation in directions parallel to the ribs were investigated numerically.  

Some problems in solving applied problems using numerical methods, in particular, the finite 
difference method, for solving the dynamics problems of ribbed rectangular and round plates, plates and 
shells under the action of pulsed loads were considered in [16–18]. The dynamic behavior of ribbed plates 
and shells under pulsed loading was also studied by [18]. The effectiveness of the various methods for 
modeling the influence of reinforcing elements using the generalized Dirac function was analyzed.  

A review and some analysis of scientific papers devoted to the method of numerical calculations of 
various aspects of ribbed structures are available were made in [19] The ideas underlying some numerical 
developments are related to the spectral finite element or wave methods of finite elements can be viewed 
in [20]. Numerical calculations of the required parameters are a relatively new and promising area of 
research into the behavior of ribbed structural elements and, in particular, the plates [21, 22].  

The dynamic behavior of a ribbed plate over a surface that moves a linear distributed load studied 
by [23]. The paper [24], based on the geometrically nonlinear theory of deformation of Mindlin–Reissner 
shells, analyzes the stress-strain state of shallow shell structures of double curvature, reinforced by the 
concavity side with a different number of edges. 

There have been numerous publications and a continuous expansion of the field of applicability of 
ribbed plates and shells. However, the problem of formulating more refined models which describe the 
dynamic processes in them and search for effective analytical methods for solving the corresponding initial-
boundary value problems of mathematical physics with allowance for nonlinear properties, such as 
boarding and ribs, still persists. 

Thus, it can be noted that in the study of dynamic processes occurring in ribbed structural elements 
under the action of pulsed and other fleeting loads, plastic properties are rarely taken into account due to 
mathematical difficulties. Therefore, to date, a small number of works in the scientific literature have 
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concerned themselves with the analytical calculation of ribbed plates and shells which take into account 
the plastic properties of their material. 

The present article is devoted to the numerical calculation of a round plate reinforced by a finite 
number of annular ring stiffeners and also taking into account for the elastoplastic properties of the plate 
and ribs materials. 

2. Methods 
2.1. Mathematical model of the problem 

In a cylindrical coordinate system ( , , )r zϕ , a round elastoplastic plate is considered, pinched at the 
edge and reinforced by the ring stiffeners. In this case, the z -axis is directly perpendicular to the plane of 
the plate. It is believed that the structure consists of a skin and rigidly reinforced ribs to it, the materials of 
which are the same and obey Hooke's law. The ribs have quadrangular cross sections and are attached to 
the inner surface of the plate.  

A pulsed load ( )P t acting on the outer surface of the plate excites oscillations of the plate. The cross 
sections of the ribs are the same and constant (Fig. 1). 

 
Figure 1. General view of the ribbed plate (a) and cross section of the ribs (b). 

The height of the ribs and their location ( )iH r  is determined by using the unit column functions
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Here / 2;i ia r c= − / 2;i ib r c= + ir  - is the coordinate of the midpoint of the contact of the i -th rib 

and casing; h  and c  are the height and width of the ribs; m is the number of ribs; 

For describing the stress-strain state of the plate, we use the Timoshenko type - nonlinear theory of 
plate’s vibration. Given the asymmetry of the problem, the equations of motion of the plate can be written 
as follows [1]: 
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where ρ is the density of the plate material; h  is the thickness of the skin; 
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( )iF r , ( )iS r , ( )iJ r  are accordingly, the cross-sectional area, the static moment, and the moment 
of inertia of the section relative to the coordinate axis of the element of the i -rib, with a width equal to unity 

and height ( )ih r  in the section ;r const= ( )P t  - is the function of the external load. 

Boundary conditions for the structure under consideration: 

a) conditions of hard pinching at the edge of the plate: 0;u w ψ= = =  

b) the conditions of symmetry in the center of the plate: 0wu
r

ψ∂
= = =
∂

 at 0r = . 

The initial conditions characterizing the state of the plate at 0t = are assumed to be zero, i.e. 
0u w= = . 

2.2. Accounting for plastic deformations 
The displacements of an arbitrary point of the normal to the middle surface of the plate with the z  

coordinate are as in [25] 

,z zu u z w wψ= + =  

in accordance with taking into account the axisymmetric loading 

0zv v= = , 

where , ,u v w are the displacements of the points of the middle surface of the plate along the coordinate 
axes; ψ  is the angle of rotation of the normal to the median surface of the plate. 

Deformation  

0 1 0 1
1 1 1 2 2 2,z zε ε ε ε ε ε= + = +  

are expressed through the displacements ,u w  and the angle of rotation of the normal to the median 
surface ψ  as follows: 

2
0 0 1 1 0
1 2 1 2 13

1 , , , , .
2

u w u w
r r r r r r

ψ ψε ε ε ε ε ψ∂ ∂ ∂ ∂ = + = = = = + ∂ ∂ ∂ ∂ 
 

To describe the dynamic deformation beyond the elastic limit, we use the theory of plastic flow [26]. 
Focusing on the step-by-step method of solving problems, we divide the loading time into N  small, 
numbered in increasing order of steps. The increment of plastic deformation at step n is denoted by 

, ( 1, 2,..., ; 1, 2,13).p
n n Nαε α∆ = =  

An algorithm for calculating plastic deformations of a plate is constructed in the light of [26, 27]. First 
find 1σ  and 2σ . In this case, the values of plastic deformation at the m -th step of loading are used. From 
the stresses thus found, it is possible to determine the stress intensity:  

( ) 2 2
1 2 1 2 ,i

γσ σ σ σ σ= + −  

γ  is the order of approximation to the strain diagram 1,2,3,... .γ =  

If (1)
iσ at the considered point of the grid region of the plate for ( 1)t n τ> +  is less than the value 

iσ  calculated at step n , then the material is elastically unloaded at the point and we proceed to consider 

the next node or layer of the grid. Otherwise, we look for the increment 1 ,p
n lε+∆ which is written in the form 

1
1

,pL
n l

L

γ
ε+

=
∆∑ after which we find the following plastic strains 
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Here the increments of plastic deformation are determined from the following relation 
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where ( )1
4 100
3 Р TE σ σ

δ
= −  is the hardening modulus, Tσ  is the yield strength, Pσ  is the tensile 

strength andδ  is the residual elongation, which were determined according to the references. 

Stresses are found by the stress intensity formula. If in the next iteration, ( )
i
γσ  exceeds the 

diagrammatic stress values at the found level of plastic deformations, the calculations are repeated. The 
approach to the deformation diagram continues until the stresses 1 2,σ σ  differ from those calculated at 
the previous iteration by less than 0.5 ... 1.0 MPa, after which the transition of consideration to the next 
node or time layer takes place, i.e. all calculations are performed before the condition 

1
1 1
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+ +∆ −∆ < , is satisfied, which provides a sufficient approximation to the deformation 

diagram. 

At the N -th loading step, the total strain iε is represented as the sum of the elastic and plastic 
components 
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2.3. Physical equations 
The relationship between stress and strain acting at the points of the sheathing and ribs are written 

as 
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where 13 ( ) ;wf z
r

ε ψ∂ = + ∂ 
,E µ  is the elastic modulus and Poisson's ratio of the material of the lining 

or ribs [26]; ( )f z  is a function characterizing the law of the distribution of stresses 13σ  across the plate 

thickness: 0( ) ( )f z f z=  for the smooth part; 1( ) ( )f z f z=  at the points where the edges are located: 
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where H  is the height of the rib. 

The forces, transverse forces and moments per unit length of the section, acting in the section of the 
plate, reinforced by ribs, have the following form: 

0 0 0 0 0
1 1 1 2 2 2 1 1 1 2 2 2, , , , .R R R R RN N N N N N M M M M M M Q Q Q= + = + = + = + = +  

The forces, transverse forces and moments related to a smooth plate have the following form [1]: 
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Here ,E µ  are the elastic modulus and Poisson's ratio of the material of a smooth plate 
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( )f z  is a function characterizing the law of stress distribution over the thickness of the structure: 
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The forces, moments, and shear forces acting in the sections of the ribs have the following form: 
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, ,E Gµ  are elastic constants of the material of 

the ribs. 

2.4. Numerical methods for solving the problem 
Below we briefly describe the main points of the finite difference method as applied to the equations 

of the theory of ribbed plates (1) - (7). The scheme of the numerical solution of the problem by the finite 
difference method is based on the determination of displacements and rotation angles at the nodes of the 
grid, and deformations, forces, moments and transverse forces - in the center of the element [27]. 

The approximation of derivatives in an element has the following form: 
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1
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where 1;i i ir r r −∆ = −  if  is function values in points ,ir  1 1.i N≤ ≤ +  

To approximate the equations of motion (1), which are centered at the nodal points, the central 
differences are used: 
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non-differentiable terms in equations (1) are reduced to a node by averaging the corresponding values in 
the elements: 
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The time derivatives were approximated by expressions of the form 
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whereτ  is time step, n  is  index defining the time layer. 

The right side of the 1st, 3rd equations of system (1) contains two unknown functions. Therefore, 
before passing to finite-difference analogues, the 1st and 3rd equations must be solved as a system of 

algebraic equations for 
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From relations (2) and (3) we obtain finite-difference expressions for calculating deformations 
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The values of stresses, forces, moments and cutting forces are found by formulas (4) - (7), using 
expressions as in (13).  

Formulas of (12) apply only to the internal points of the computational domain. For determining the 
values of the functions at the boundary points, we use the boundary conditions a) and b) described in the 
previous section. The hard pinching conditions approximated exactly, and the symmetry conditions are 
written in finite differences using the following expression:  

1 2 3

21

3 4 .
2

n n n nw w ww
r r

− +∂  = ∂ ∆ 
                                                        (14) 

The grid functions on two adjacent time layers, necessary to start the calculations, give the initial 
conditions, from which we obtain equalities of the form 

1 2 0.i iw w= =                                                    (15) 

Using the above equalities, we can find , ,n n n
i i iu w ψ  for any moment of time and any point of the 

difference grid. 

Finite-difference expressions (8) - (12), (14) provide a 2-order approximation. Equalities (15) 
approximate the initial conditions with the first order of accuracy. The general discrepancy in the 
approximation of the boundary value problem under consideration by difference relations does not exceed

2 2( )O r τ∆ + . When the grid steps tend to zero, the residuals also tend to zero. Therefore, difference 
equations approximate the original differential equations. 

The study of the stability of difference schemes is a difficult task. It is especially difficult to solve for 
circuits approximating multidimensional nonlinear boundary value problems. The stability of the circuit 
investigation (12) is studied by numerical experiments. The sighting values of the grid steps ensuring the 
stability of the calculations found from the Courant condition, are as follows 1 1/r cτ ≤ ∆  here 

2
1 / (1 )c E ρ µ= − . 

Thus, the solution of differential equations (1) is reduced to calculations using recurrence formulas 
(12).  

3. Results and Discussions 
The deflections of the central point of an unreinforced and reinforced by four edges of plates for 

different values of the amplitude 0P  of the external exponential load are calculated. The results are 
presented in Figs. 2-4 in the form of graphs according to the deflection wand time t, and various values of 
the amplitude of the external exponential load is equal to 2.5; 5; 7.5; 10 MPa. 

 
a)                                                                    b) 
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c)                                                                  d) 

              ____ without rib, elastic                                                 ____ ribbed, elastic  
              ____ without rib, elastoplastic                                        ____ ribbed, elastoplastic  

 
Figure 2. According to the deflection of the central point reinforced by four ribs and unreinforced 

plates at a)P0 = 2.5 MPa; b)P0 = 5 MPa; c)P0 = 7.5 MPa; d)P0 = 10 MPa. 

Fig. 2,a shows graphs of the deflection of central points reinforced by four ribs and unreinforced  
plates with an external load amplitude of 2.5MPa. From the graphs presented, it follows that for an 
unreinforced  plate, taking into account plastic deformation, leads to an increase in the deflection values for 
all time instants. For example, the maximum values of the deflection of the central point calculated by the 
elastic and elastic-plastic models differ by 32%. In the case when the plate is reinforced by 4 ribs, the 
graphs of the dependences of the deflection on time, in the elastic and elastic-plastic cases, merge. This 
shows that under external exponential loads, the amplitudes of which do not exceed 2.5MPa, the influence 
of plastic deformation can be neglected to calculate the plates reinforced by four edge of the plate. In a 
particular case, for the elastic model of the plate and stiffening ribs, the results obtained coincide with the 
analogous results of the work [28]. 

At an external load with an amplitude of 5MPa and higher, Fig. 2 b-d, the effect of plastic deformation 
on the deflection cannot be neglected. As the results show in Fig. 2 b-d, the larger the amplitude of the 
external load the higher is the deflection obtained by the elastic-plastic model as compared to the elastic 
model, for example, the maximum value of the elastic-plastic deformation of a smooth plate at 0P  = 2.5MPa 

is ≈0.068 m; at 0P  = 5MPa it is equal 0t  ≈0.12m; at 0P  = 7.5MPa it is equal 0t  ≈0.151m; and at 

0P  = 10MPa it is equal 0t  ≈0.190 m. 

With an increase in amplitude of the external load, the difference between the values of deflection of 
the central point calculated by the elastic and elastic-plastic models increases. For example, for a point in 
time equal to 0.003 s the specified difference reaches: а) at 0P  = 5 MPa - 0t ≈ 0,015 m;  

b) at 0P  = 7.5 MPa - 0t ≈ 0.07 m; c) at 0P  = 10 MPa - 0t ≈ 0.098 m. 

The graphs of the deflection of the central point of both smooth and reinforced plates, obtained on 
the basis of the elastic model, for all values of the external load, are pronouncedly sinusoidal in nature. At 
the same time, the graphs obtained on the basis of the elastic-plastic model, having reached a relative 
maximum under the action of average load (Fig. 2 b, c), have a straightforward character, with a transition 
to a slowly descending curve with increasing external load (Fig. 2 d). 

Fig. 3a) shows graphs of the dependence of the deflection of the central point of the plate on the 
radial coordinate with an external load amplitude equal to 0P  = 2.5 MPa, calculated by the elastic-plastic 
model. The cases of non-reinforcement and reinforcement of the plate by one ( n  = 1), two ( n  = 2) and 
four ( n  = 4) ribs for the time t  = 0.0012 s were also considered. The graphs show the effect of reducing 
deflection by reinforcing the plate with stiffeners, which is 43% for one, 62% for two, and 73% for four 
reinforcing ribs. From this it follows that the calculation method allows you to achieve the desired value of 
the deflection by varying the number of ribs. 

 



Magazine of Civil Engineering, 116(8), 2022 

 
а)                                                                               b) 

Figure 3. According to the deflection on the radial coordinate at P0 = 2.5MPa  
а)n = 1,2,4; t = 0.0012 s (___without rib, ___1rib, ___ 2rib, ___4rib);  

b)n = 4 (___t = 0.0006s,___t = 0.0012s, __t = 0.0018s). 

Fig. 3b) shows the plots of deflection of the central point reinforced by four ( n  = 4) plate edge on the 
radial coordinate at different points in time: t  = 0.0006s; 0.0012 s; 0.0018s. Calculations show that with an 
increase in the duration of the external load, the deflection values increase, for example, the deflection 
value at the time t  = 0.0018 s is four times higher than the value at the time t  = 0.0006 s, i.e. with an 
increase in the action of an external force by three times, the deflection value increases by four times. 

 
а)                                                                                         b) 

Figure 4. According to deflection on time at n = 1,2,4:   a) P0 = 2.5 MPa; b) P0 = 5 MPa 
(___without rib, ___1 rib, ___ 2rib, ___4 rib). 

Fig. 4 a) and Fig. 4b) show the graphs of deflection of the central point of unreinforced and reinforced 
by one ( n =1), two ( n =2) and four ( n =4) stiffeners for different external load amplitudes equal to - a) at

0P  = 2.5 MPa; and b) at 0P  = 5 MPa. The deflection on time in all cases are oscillatory in nature. For an 
unreinforced  plate in both cases of external load, these oscillations, after reaching the maximum value, 
have relatively small oscillation amplitudes. In reinforced plates this does not occur. Here, the oscillation 
amplitude is much higher. The difference between the deflection values at the maximum and minimum 
points in the case of n =1 and 0P  = 2.5 MPa is approximately 0.068 m at 0P  = 5 MPa; and at 0P  = 5 MPa 
it is equal to 0.032 m etc. A comparison of the dependences in Fig. 4 a) and Fig. 4 b) shows that with an 
increase in the amplitude of the external load by a factor of two, in the case of an unsupported plate, the 
deflection increases by 1.65 times; if there are two reinforcement ribs this indicator decreases by 1.5 times. 

The forces and moments in unreinforced and reinforced plates are calculated from the elastic and 
elastic-plastic models, which confirm the above conclusions. In fact, the proposed elastoplastic model for 
calculating a reinforced circular plate allows to determine the deflections, forces and moments at arbitrary 
points of the plate by coordinate and time. Comparative analysis of constitutive relations and the obtained 
numerical results of calculating the plate deflection by elastic and elastic-plastic models show that the 
proposed model is a generalization of the elastic model of the work [1] for the case of taking into account 
the plastic properties of materials of a circular plate and stiffening ribs. In this case, the proposed numerical 
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method for calculating a reinforced plate based on an elastoplastic model, in the absence of reinforcing 
stiffening ribs, coincides with the method for calculating elastic-plastic plates proposed in the work [26]. 

4. Conclusions 
The conclusions arrived at in the paper are the following: 

− an elastoplastic model for calculating a round discretely finned plate is proposed, which allows one 
to determine the deflection, forces and moments at the points of the plate.  

− the deflections of the central point of an unreinforced and reinforced by four edges of plates for 
different values of the amplitude 0P  of the external exponential load are calculated. The results are 
presented in the form of graphs of the dependence of the deflection w and time t for various values 
of the amplitude of the external exponential load equal to 2.5; 5; 7.5; and 10 МPа;  

− -the maximum deflection values of the central point of the plate, calculated by elastic and elastic-
plastic models, differ by 32 %. In the case when the plate is supported by 4 ribs, the graphs of the 
dependences of the deflection on time in the elastic and elastoplastic cases merge. This shows that 
under external exponential loads, the amplitudes of which do not exceed 2.5 MPa, the influence of 
plastic deformation can be neglected for calculating the plate, backed by a large number of stiffeners; 

− numerical calculations of the deflection, forces, and moments at the points of the fin plate show that 
the proposed model and calculation method allow us to achieve the desired value of deflection by 
varying the number of ribs. 
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