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Annoranus. Ha ocHOBe cnieniMasibHON TEOPUM OTHOCUTEBHOCTU B pabOTe MPOaHaTU3UPO-
BaHa JMHAMUKA PEJSITUBUCTCKONM YACTULIBI, HE UMEIOIICH 3JIeKTPUUEeCKOro 3apsiia, moji neu-
CTBUEM BHellHel cuibl. MccieqoBaHO YCKOpEHHOE JBMKEHKME TAKOW YacTUIIbl U B OTCYTCTBHE
BHEIIIHETO 3JIeKTPOMArHUTHOTO TOJIsl, 3aaHHOTO CKAISIPHBIM U BEKTOPHBIM MOTEHIIMATIAMMU.
PazpaboTan ananutuueckuit Metos 3 MEKTUBHON 3aMTMCH KJIACCUUYECKNUX YPABHEHUI PEJIATH-
BUCTCKOW TWHAMWKM W TIPOBeIeHa OIleHKAa WHTETPAJOB JABUKEHUS. YCTAaHOBJIEHO, YTO WHTE-
rpajl ABMKECHUSI CIIpaBEIUB U JUISI 3apSIKeHHBIX YacTUII, W JJIsl He3apsikeHHbIX. Kcronb3oBa-
HME MHTETPAJIOB ABMKEHHUS TTO3BOJIMIIO OMKCATh CBSI3b JMHAMUYECKUX MmapaMeTpoB. [TonyueHa
TaKXe 3aBUCUMOCTb MIPOCTPAHCTBEHHO-BPEMEHHOW KOOPIUHATHI & OT MHTErpaia ABIKEHUSI.

Kniouesbie cioBa: MHTCrpal IBUXKCHUA, DHCPIUA peHHTI/IBPICTCKOfI 4yaCTulbl, paanaliioH-
HO€ TPECHUE, NHTCHCUBHOCTDL U3JTYUCHUSA HC3apH)KCHHOI>i YaCcTULbI

®unancupoBanme: VccienoBaHue BBITIOJHEHO TP YaCTUYHON (DMHAHCOBOM IOANEPKKE
rpanToB Ne JC2020137 u JC2020138 IIpoekta HaHBTYHICKOTO HAyYHO-TEXHUYECKOTO TUIAHA,
a taxcke rpanta BE2021013-1 KitoueBoil mporpamMMbl ucciaenoBaHuil 1 pa3pabotok Kwuraii-
cKkoit mpoBuHLMM LI3gHCy.

Hdna matuposanusa: AxkuHioB H. C., Heseuepsa A. Il., MapteiHOB A. A. AHanu3 OvHa-
MUKW WHTETPUPYEMBIX WHTETPATOB IBUKEHUS HE3aPSIKEHHOW PEISITUBUCTCKOW YacTUIIHl //
Hayuno-texnnueckue Begomoctu CIIOITTY. ®usuko-marematuueckue Hayku. 2023. T. 16.
No 2. C. 132—145. DOI: https://doi.org/10.18721/ JPM.16212

Cratbsl OTKpPBITOTO goctyna, pacmpoctpansemas no juiieHsnu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction

The motion equation of a particle of mass m and a charge g in the electromagnetic field has
been studied extensively in classical relativistic electrodynamics, and has the following form [1]:

(1

)

The change de in the energy of the particle was widely established to be determined by the
equation

de

=qE-V, 3)
where dt

“4)

From Egs. (1) and (4) the relationship between the energy € and the longitudinal component
n'p of the momentum p of the particle can be represented as an integral of motion in the
following form:

mc(l1—n-p A%
S—H'pC:’YOC, Yo = ( )9 B:—, (5)
J1-p° c
where n is the normal vector directed along the particle’s trajectory.

© AxunuoB H. C., Heseueps A. [1., MapteinoB A. A., 2023. Usnatens: Caukr-IleTepOyprckuili moJnTeXHUIECKUI
yauBepcutet Iletpa Benaukoro.
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It was demonstrated in Ref. [2] that the integral (5) was the same for a plane monochromatic
electromagnetic wave and a constant uniform magnetic field.

The acceleration and radiation of relativistic particles were explored in several works [3, 4].
However, generally, the dynamics of particle acceleration was considered under the action of
external ponderomotive forces of electromagnetic nature [5 — 9].

In Refs. [2, 10 — 14], the motion integrals of a charged particle were obtained, and the
particle momentum was demonstrated to be written as an explicit function of the zero coordinate
§ (§ =t —z/c where t, z are the laboratory time and coordinate respectively, and c is the velocity
of light in vacuo).

In the absence of external forces acting on the particle, the particle's motion is free and obeys
the basic dynamics equation. In this study, we focused on the non-electromagnetic 2D force
action upon a particle. We intend to show that the motion integral (5) is valid for any particle
motion in free space.

The objective of this study is to analyze the dynamics of an uncharged relativistic particle in
the absence of external electromagnetic fields, i. e., E = H = 0, scalar ¢ = 0, and vector field
potentials F for the following force acting A = 0, on the particle is of the form

F= P #0, (6)
dt
where p is the relativistic momentum of the particle (see Eq. (2)).

Eventually, we show that the integral of motion is also applicable in the absence of fields
(E=H=0,9 =0, A=0). We consistently derive formulas for the space-time coordinate &,
coordinate r, velocity B, momentum p, energy € and radiation intensity / =— de/dt of the particle,
depending on the motion integrals QO and Q..

Finally, we demonstrate the dependence of the dynamic parameters (§, r, B, p, € and /) on
the motion integral vy.

The main goal of this work is to obtain invariant forms of the integrals of motion

y=y(r.1,0)and 0, = 0, (0, 1.)

in 1 + 1 dimensions, which are mutually expressed in terms of the coordinate n'r =n-r(z, O, v)
and proper time ¢ = #(n'r, O, y) of the particle, based on the law of conservation of energy —
momentum for a relativistic particle (4).

Moreover, the aim is to search for an invariant form as the motion integrals for energy
E=E(r,t,v, Q) and momentum n-P =n-P(r, ¢, y, Q) of the particle.

An analysis of the space — time coordinate &
We introduce the space — time coordinate & [1, 2, 10 — 15] such as

g=t- 2%, 7)
C

where ¢ is the laboratory time, n is the normal vector, r is the laboratory coordinate, ¢ is the speed
of light, and f characterizes the direction of motion of a particle or wave and takes a value of +1
or —1 when the particle moves to the right or left, respectively, relative to the observer located at
the initial space — time point (r, ).
Differentiating (7) with respect to time ¢, we obtain
dg dt n dr

Vv
—— f——=1-fa—=1-fn-B, 8
g a ea s ®)

where B =V/c, V = dr/dt.
From Eq. (7), we can express ¢ as follows:

t=é+f%}, ©)

and by differentiating (9) with respect to &, we obtain
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d d n dr n dr
=T R 12 (10)
dg dt " cdt dg
. L dg dt .
Multiplying Egs. (8) and (10), and considering that Ed_ﬁ =1, we obtain:

S Lo il (1)

By substituting % = Z_ﬁ% into Eq. (11), we can find out that the condition given by Eq. (8)
is satisfied, and the following equalities are true:
dr_ fnc@-ﬁj, (12
dt
a__v (13)
dé 1-f-p
dg g, d i)
—=fac—|1-—|, 14
dt / dr ( dt (14
1- -
ﬁ = ﬂ (15)
dr A\
Differentiating (11) with respect to d/dt gives the following:
2 2
1+l |- (l—lfnﬂ -0, (16)
dt d§ a’tdi c” dt
and similarly, by differentiating (11) with respect to d/d&, we obtain
2 2
dx f dr) drfy g, (17)
d@dt dg ) dg ¢’ dt
Adding (16) and (17) gives
2 2 2 2
I dr el pde) far, dx (1_lfnﬂj:0. (18)
dt® d&dt dg dtd& dg c” dt
We subsequently introduce new variables O, and Q such as
1 dé
Q. =1+— f—= Q———f— 1- fn- B— (19)
dg 1-fo-p’
Egs. (19) show that Q‘g and Q, integrals of motion, have a one-to-one correspondence, i.e.,
0.0-0,0.~1. (20)

135



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023. Vol. 16. No. 2>

Invariant representation of Qé and Q in the Q;Q, and Qg o,

From Egs. (19), we propose the following notation for Q, and Qéz

00/ =00 =1,
00 (21)
:Q;'er =0, Qg =0, Qg =0, Qth an
where
1
Q:ZI—H'B, Qg:l—n-B’ (22)
1
G =t b O=y 0y
One can see from Egs. (22) that
2 + - 1
Q:QZZI_B and QgQ@ :W

are invariants and have direct and inverse representations, and that

O +0 =2 or O, +0; =200, .

We can express f in terms of OO, to obtain

B=ny1-0'0 . (23)

Relations of special relativity in the Q;Q, and Qg O, representations

Let us introduce the dimensionless momentum of a particle P = p/mc, and the dimensionless
energy of the particle £ = e/mc?.
Thus, Egs. (2) and (3) can be rewritten as

p-_2b (24)
1-p>

=1+P (25)
1-p

E* =

Substituting Eq. (23) into Eq. (24), we obtain the P representation of the momentum in terms

of 0/Q;, i.e,

P=n1-0/0 00, =nJ00; -1, (26)
and the corresponding representation for energy (following Eq. (25)) will be
E=,0!0;, (27)

where £ > 0.
The problem involving eigenfunctions and 9/, O;, O, O, 0;0;, 0;0;,

as well as B=n\1-Q'Q; from d/dt

We determine the eigenvalues with respect to time . We obtain the following:

d d d
Eq:mi:mﬁgazwq, (28)

dt dr
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where
dp
T=-n—0". 29
K dt O @
Similarly, we obtain the following eigenvalues for the O, O, O., 0'Q,, 0;0. and
B =n 1_Q1+Qz_ :
d dp ap .. .. _
_— =N——=n—0. = , 30
& Ty TN %Y =G G0
_ dp .
=n— . 31
g =n— 0. (31
d o> dB dp
20" =(1=-n- n—=n—0'0 =¢' 07, 32
2 ( B) o " 0.0 =¢4. 0. (32)
+ dB +
=n— . 33
q: o (33)
d o> dp ap .~
—Q0. =—(1+n- n—=-n—~0. 0. =q.0;., 34
- dap .-
=-n—-~0.. 35
d _ _ o dp
—( O =q'0'0 +0’ =-2p—. 36
dt(Qt 0, )=4,0/0,+04,0, B (36)
d + - + - - + 2B dl;
E(QéQ‘i):QéQ& (qi+qé):(1_l32)2 dt G7)
n—dB
dB 1 + - —~ d + - dt
- _ 1_ 2, =—p, 38
_dt 211( Qz Qz ) dt(Qt Qz ) \/@B ( )
where the eigenvalue of the velocity modulus is determined by the expression
dp
ni
p=——L— (39)

N

Substituting the values from Eq. (39) into Egs. (36) and (37), then taking into account that
B = np, we obtain:

%(QJQZ) =2(1-0'0 )2, (40)

d +)- + - 2 + - 1
—(oro)=2(0:0. 1) (0:0. ) (41)
Variables &, nr and 7 in the Q7Q; representation. We now represent Eq. (23) by the
c

following form:

poldr_1_ dr d(Qsz_):nm. )

Ccdt cd(QQ) di
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Substituting Eq. (40) into (42), and integrating over the d (Qth‘) from 0 to Q'Q;", we obtain

nr 1 .
T:Eln(l—Qt ). (43)
From Eq. (8), we now express dt as follows:
dt = d§+fn£. (44)
c
It is known that d€ = Q dt, O, = 1 — fn-B, and hence, substituting them into Eq. (44), we obtain
(1- Q)dt—fn—, or laart_ﬂ (45)
c
Substituting B from Eq. (23) and dr rom Eq. (42) into Eq. (45), we obtain
14{1-9,9
dt = Q (46)
(o0 )
Subsequently, integrating this over d (1 -0’0 ) from 0 to Q'Q, results in
t=1 —;. (47)
(1-0'0))
Finally, substituting Eqgs. (43) and (47) into Eq. (7) results in
1 1 e
e=l-——-/In(1-0'0); (48)
(1-0'0))

then, differentiating Eq. (48) with respect to d/dt gives a relationship between Q'O and 0, as

follows:
ﬁzl_f\/@:l—fn-ﬁzg- (49)

The relationship between Q7Q; and 0. Eq. (49) demonstrates the following relationship

between Q'Q; and Q;
J1-0/0; = f(1-0,). (50)
By considering Eq. (50), we can represent the following formulas:
B=ny1-0'0" = m(1-0). (51)
9y 50 -n(1-0). o

TZEIH(I QQ):-ln[(l—Q,)z], (53)
I D
Ji-oor  f(-0) >4
S LTy
£=1 o) len[(l Qt)]. (55)

Eigenfunctions and eigenvalues of Q, and Q We now take the derivative of & from Eq. (55)
with respect to time, i. e.,
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ﬁ:_f o do,
dt (1-Q,) dt

d
and substitute 7&' =(, into Eq. (56) to obtain
t

do, _
dt f( Q) Qtha
where
g,=-1(1-0) Q. =—f(0.-2+Q).
Using the relationship ( )
(09, dQ, a9 _
dt QE @ dt =
we can derive _ta as follows:
do, dQ,
‘;5§'= (QE) ’
d 2 2 2
%#(pg) (0.) =r(1-0) 0.

and finally, 5
9.=/(1-0) 0.= f(0.-2+0,).

Egs. (58) and (62) show that
q,+q. =0.

Differentiating Eq. (55) with respect to dié

40, (1-0)
d& - f QI Qng’
where
1-0Y 2
p=1! QQ’) 0. =-f(0.-1) .
Using the following identity
d(g’Qi) — th Qa_l_Qt%:O,
g dg dg
a’Qé
we find that d_é to be
do 1-0,
d; :f( 0 ) QgQg ngga
where
1-0Y 2
png( QQt) Qg_f(Qg 1) >
y2 + pg =0

, we obtain the following:

(56)

(37)

(38)

(39)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)
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Integrals of motion

From Eq. (5) we can introduce the dimensionless integral of motion y = yo/mc, and then using
Eq. (50) we obtain

(I-faB) [1-fnB_ 0 0, ! (70)

T VeaB o0 Jo-(o) V20T

Expressing O and Qé in terms of the motion integral y, we obtain:

2y2 1+ y2
== =) 71
Qz 1 + ’Y2 Qz’; 2'}’2 ( )
where
2
1-0 = (72)
1+ y

Substituting Eq. (72) into the obtained definition for laboratory time ¢ within Eq. (54), the
laboratory coordinate n'r/c in Eq. (53), and space-time coordinate & in Eq. (55), we obtain the
dependence of these parameters on the integral of motion vy:

DT S 1 f1+y

f(l—Qt)
[(inﬂa

1 yz ’
1- (1+y J ' (75)
The dependences of energy and momentum on Qé and y. By considering Egs. (21) and (50),
the particle energy, as shown in Eq. (27) dependent on both Qé and vy, takes the following form:

e 0 1
E=070; =—i=Q§y=2—(1+y2). (76)
\/2Qg -1 Y
In the absence of an initial velocity of the particle (p = 0, y = 0), the particle’s energy is

E=1,1i.e., equal to mc’.
Following the particle momentum as given by Eq. (26), we can substitute Egs. (21) and (50)

to obtain
P=n/0;0.-1=n /Q—é_l)—1=fn(ga—1)y=§—‘y'(1—y2). (77)

(73)

g=t—f1r=1
C

(20.
Subtracting the longitudinal component of momentum (as given in n-P, Eq. (77)) from the
energy E (see Eq. (76)), we obtain the integral of motion in the form

E-nP=y, (78)

where y* =40 /0, vy =1L o
Adding the energy E given by Eq. (76) and the longitudinal component of the momentum n-P
into Eq. (77), we obtain the inverse integral of motion:

E+nP=vy. (79)
We then use Egs. (78) and (79) to conclude that

E-faP=y. (80)
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Assuming that the momentum P of the system is equal to the sum of the longitudinal and
transverse components, we can see from Eqgs. (25), (78) and (79) that the transverse component
of the momentum is zero for this P = 0 system.

For a freely moving particle with a sufficiently small change in energy and momentum, the
particle velocity is determined by the following expression:

dE_i(«/—HpZ):B:p=fn(1—Q[)=fn[1_y ] (81)

dP 4P E 1+ v?

Acceleration of an uncharged relativistic particle in a force field
and intensity of its radiation
We now investigate the dynamics of a relativistic charged particle in a force field (following

Eq. (6)), i. e.,
n =2 (Joro:-1)=le:e )0 p=rp. ®)
where
r=\(0:0. -1)0:0; =P\J0:0; = PE:

n-P, :\/(QgQg—l)QgQg =P,/0; 0. =PE. (84)
Differentiating Eq. (82) with respect to time and using Eq. (25), we obtain the radiative
friction acting on an uncharged particle as follows:

4P

rad dtz

=(2+3P")P°P. (85)

The radiation intensity of an uncharged particle is determined from the total energy (see Eq.
(27)), and without considering the radiative friction force in Eq. (85), the radiation intensity takes

the form
dE d | = e e 2\
I:__dt :_dt(\[ngQg ):_(QgQg _1) =-P :_8];3 (1—Y ) i (86)

where 1> 0.

Generalization of the obtained results

To generalize the above results to electrons accelerated by the transverse electromagnetic field
of an incident laser pulse on the frontal surface of the target and estimate the temperature of fast
electrons, similar to the authors of Ref. [16], we substitute the expression for the amplitude of an
electron oscillating in a field of a plane monochromatic wave, i. e.,

22
E
P =00 -1=-120 (87)
g =¢ m2 Cz (02
and obtain a formula for the kinetic energy of an electron oscillating in the transverse field of an
incident light wave as follows,

202 )2 2
_ q°E I\
I(e:l’l’lec2 1+(m202((1)2] -1 zmecz[ 1+W—1J, (88)

where m , g, is the electron mass; ¢, km/s, is the speed of light; £, V/m, is the amplitude of the
electric field of the incident electromagnetic wave; o, s’!, is the carrier frequency; I, W/cm?, is
the intensity of the incident wave; A, um, is the wavelength.
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A similar formula has been used to theoretically estimate the temperature of fast electrons on
the frontal surface of the target and to analyze experimental results [17 — 20].

Further, it is of interest to use this method to describe the dynamics of a relativistic particle
in stationary electrical, magnetic and electromagnetic fields [1 — 23], and to study the Doppler
effect of a particle displacement in high-intensity fields.

Conclusion

In this study, we have obtained the direct and inverse integrals of the particle motion and
demonstrated the advantage of using these approaches to investigate the dynamics of relativistic
particle dynamics. It was demonstrated that the relativistic root can be represented by the
form /1-p? = '{Qth_a and further calculation of the arbitrary partial in Q" and Q, considerably
simplifies calculations in relativistic particle dynamics. The total energy of a particle is related
to its momentum (25) through Qg Qg also simplifies the calculations since the total energy and
momentum can be represented as E :,ng o and P=n,/ g 0. -1, respectively. It was shown
that the energy (76) and momentum (77) could be separately eXpressed in terms of the integral
of motion vy, and their difference gave the direct integral of motion (78), while the sum did the
inverse integral of motion (79). Additionally, a relationship between QQ; and Q, was obtained.
A detailed analysis is given for the space-time coordinate § and its dependence on Q;Q;, O, and
the integral of motion y.

Furthermore, we demonstrated that as |[V| — ¢, t — 0, to interpret the dependence of the
physical quantities ¢ (47) and n'r / ¢ (43) on |B|, it is necessary to apply the following gauge
transformations, — ¢ — f and —n'r /¢ — n-r /c, its dependence on Qg Qg . The radiation intensity
of a particle in the far-field was obtained, and its dependence of y on Qg O, was shown. The
results appeared from the special theory of relativity. This approach can also be generalized for
tensor use, allowing a more detailed description of the dynamics of relativistic particles in a
medium.

The proposed approach has all the limitations of the special theory of relativity.

Further, the generalization of this approach to the Lagrangian and Hamiltonian formalism is
significant.

The future scope of this work will be to investigate the spectral-angular characteristics of
particle radiation and particle dynamics in a force field in the presence of radiative friction forces.
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