
Magazine of Civil Engineering. 2022. 115(7). Article No. 11504 

© Mirsaidov, M.M., Mamasoliev, K., 2022. Published by Peter the Great St. Petersburg Polytechnic University. 

 

 
ISSN 

2712-8172 
Magazine of Civil Engineering 

journal homepage: http://engstroy.spbstu.ru/ 
 

Research article 

UDC 539.3 

DOI: 10.34910/MCE.115.4 

 

Contact interaction of multilayer slabs  
with an inhomogeneous base 

M.M. Mirsaidov1 ✉  , K. Mamasoliev2   
1 Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan 
2 Samarkand State Institute of Architecture and Civil Engineering, Lolazor Samarkand, Uzbekistan 

 theormir@mail.ru 

Keywords: contact problem, multilayer strip-slab, inhomogeneous base, ultra-spherical Gegenbauer 
polynomials, integro-differential equations, infinite system, regularity 

Abstract. The article is devoted to the development of mathematical models and new methods for solving 
contact problems of multilayer elements of structures with an inhomogeneous base, considering their 
mechanical, structural features, and to the assessment of their internal force factors. A mathematical model 
was developed and an analytical method was proposed for assessing the internal force factors in multilayer 
strip slabs on an inhomogeneous base under various loads. The solution of the problems under 
consideration is based on a series expansion of the reactive pressure of an inhomogeneous base in terms 
of orthogonal ultra-spherical Gegenbauer polynomials; the solution is reduced to the study of infinite 
systems of algebraic equations. Their regularity was proved and the corresponding estimates were 
obtained. The required number of terms of the polynomial in the expansion was established. The analysis 
of the results obtained made it possible to evaluate the influence of the rigidity characteristics of the filler 
and the inhomogeneity of the base on the distribution of internal force factors in the slabs. 
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1. Introduction 
The article considers mathematical models, methods, and estimates of internal force factors in 

contact interactions of multilayer strip-slabs lying on an elastic inhomogeneous base. 

A number of structural elements, such as foundations of buildings, slabs of hydro-technical 
structures, road and airfield pavements, rails and sleepers of railway tracks, and other elements work jointly 
with the subgrade, interacting with each other under various loads. Their soil base can be homogeneous, 
or, more often, inhomogeneous. 

Today, the problem of determining the individual characteristics of multilayer structural elements 
interacting with inhomogeneous bases, taking into account mechanical, geometric, and other parameters 
of structural elements and bases remains unsolved. 

Therefore, the development of models and new analytical methods for solving contact problems of 
multilayer elements of structures with an inhomogeneous base, taking into account their mechanical, 
structural features, as well as the assessment of their internal force factors is an urgent task of structural 
mechanics. 

It should be noted that the solution to the problems of contact interactions of various elements of 
structures with the foundation is considered in fundamental publications [1–5], in which the main attention 
is paid to the analysis of the relationship of contacting structural elements. 
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To date, there are a sufficient number of published studies in which various issues of the contact of 
structural elements with the base are considered: 

− in [6], the calculation of slabs on an elastic base with a variable coefficient of one-layer and two-
layer beds is given. Calculations for a two-layer slab on an elastic base with a variable bed ratio 
are given for different heights of the upper layer using finite element methods; 

− in [7], a mathematical model of the contact interaction of two plates made of materials with different 
moduli of elasticity is presented taking into account physical and structural nonlinearities. To study 
the stress-strain state of the mechanical structure, the method of variational iteration was used, 
which makes it possible to reduce the partial differential equations to ordinary differential equations; 

− in [8], an axisymmetric quasi-static contact problem of the thermal and mechanical interaction of a 
circular punch and an inhomogeneous elastic half-space is considered, the mechanical and 
thermophysical properties of which are taken as arbitrary functions of the depth coordinate. The 
numerical implementation is performed for various dependences of material properties on the depth 
of the half-space; 

− in [9], an analytical study of the contact problem of a multilayer elastic rigid body subjected to 
eccentric indentation by a rigid circular plate within the framework of classical elasticity is presented. 
An explicit expression for the solution for an elastic field in a multilayer rigid body is presented. The 
numerical results of checking the methods adopted in the study and the illustrations of the 
inhomogeneity effect of the layered material on the elastic field are presented; 

− in [10], a mathematical model and a method for solving the problem for multilayer strip-slabs on a 
homogeneous elastic foundation under various static loads are developed. The problem under 
consideration was reduced (using the Chebyshev polynomial) to solving infinite systems of 
algebraic equations. The regularity of infinite systems of algebraic equations is proved and the 
corresponding estimates are obtained; 

− in [11, 12], a detailed review of the history of development of mathematical modeling and methods 
of elastic analysis of inhomogeneous rigid bodies and a comprehensive review of various 
theoretical models of elastic and viscoelastic foundations in oscillatory systems are presented; 

− in [13–15], dynamic problems for the structure – foundation were jointly solved, using artificial non-
reflecting boundary conditions on the boundary of the finite area of the foundations. 

A seismic analysis of the dam - base system using the finite element method is considered in [14]. 
The results show that when solving dynamic problems, the proposed artificial boundary conditions absorb 
the reflections of false waves quite well. 

Along with these publications, there is a number of articles [16–23], devoted to the study of internal 
force factors and the behavior of inhomogeneous elastic and viscoelastic systems under various influences, 
taking into account their characteristics, operating conditions, and interaction with the environment. 

When solving specific problems, each of these approaches has its own advantages and 
disadvantages; nevertheless, they are used in solving practical problems. 

Here we have presented just a few articles devoted to solving various problems in the joint operation 
of structural elements with a deformable base, which show the incompleteness of research in this direction, 
especially in the field of obtaining analytical solutions. Therefore, this article is devoted to the development 
of mathematical models and analytical methods for studying the interaction of multilayer strip-slabs lying 
on an elastic inhomogeneous base. 

2. Methods 
2.1. Mathematical models of the problem 

We consider n  layer strips-slabs 2l  wide, 1 2, ,..., nh h h  thick, respectively, having an arbitrary 
character in terms of geometrical and mechanical parameters. An elastic filler is arranged between the 
plates, and the lower plate fits tightly to an elastic inhomogeneous base. It is considered that the strip layers 
are loaded with external loads of 1 2, ,..., nq q q  intensity, respectively, constant loads longwise the slab 
and arbitrary loads across it. We assume that the reaction of the elastic filler is proportional to the 
differences in deflections of connecting strips. The normal reactive pressures of the inhomogeneous base 
(Fig. 1) affect the lower strip, in addition to external loads, and the reaction of the filler of the upper strips. 
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Figure 1. Design scheme of n -layer strip-slabs. 

An n-layer slab beam cut out with a width equal to one is taken for mathematical modeling of the n-
layer slab-strip deformation process. Under the above conditions, the calculation of n-layer strip-slabs is 
reduced to the calculation of n layer beam slabs 2l  wide, 1 2, ,..., nh h h  thick, respectively, with a width 
equal to one (Fig. 2). If we assume that the origin of the Cartesian coordinates is in the center of symmetry 
of the beam slabs, then the study along the abscissa axis is performed in a segment [ ]; ,l l−  i.e., 

,l x l− ≤ ≤  the ordinates of the slab deflection, 1 2, ,..., ny y y  are functions of the variable x, i.e., 

( ) , 1, 2,..., ,i iy y x i n= =  where yi  is the deflection of the i-th beam slab. 
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Figure 2. Design scheme of n  layer beam slabs. 

To simulate the deformation process of n layer beam slabs, one can write a system of differential 
equations for the unknown deflections of beam slabs in the following form: 

( )
( ) ( )
( ) ( )

( )

1 1

1 1 1 1 1 2 1 2

2 2 2 2 1 2 3 2 3

1 1 1 1 2 1

,

IV
n n n n n n

IV
n n n n n n n n n

IV
n n n n n n n n n
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D y q k y y k y y

D y q k y y k y y

D y q k y y p

− −

− − − − − − − −

− − − − − − − − −

⋅ = − ⋅ −

⋅ = + ⋅ − − ⋅ −
⋅ = + ⋅ − − ⋅ − 


⋅ = + ⋅ − −




       (1) 
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where 
( )

3

2
;

12 1
i i

i
i

E hD =
−ν

 ,i iE ν  are the modulus of elasticity and Poisson's ratio of the plate material; 

ik  filler rigidity coefficients; ( )i iq q x=  external loads of the i-th slab; ( )p p x=  reactive normal 
pressure of the base.  

An elastic inhomogeneous half-plane is taken as an elastic base, the deformation modulus of which 
changes according to the power law [4, 5]  

, 0 1,m
mE E y m= ⋅ ≤ <  

where Em  is the constant; m  is the inhomogeneity index. 

The equation that determines the settlement ( )V x  of an inhomogeneous base with reactive 

pressure ( )p x  of the base under plane strain, according to the solution of the theory of elasticity [4], can 
be represented as 

( ) .m
m

l

l

p s
V ds

m x s−

θ
= ⋅

−
∫                                   (2) 

where 
( ) ( ) ( )

( ) ( )

2

1

1 sin 1 1 2 1 1 2
2 ;

1 2 2m m
m

m m

m E m− −

γπ
−ν ⋅ ⋅Γ + − γ + ⋅Γ + + γ +      

θ =
π⋅ + ⋅ ⋅ ⋅Γ +

 ν  is the Poisson's ratio of 

homogeneous soil of the base; ( )xΓ  is the Euler's gamma function. 

The condition for the tight fit of the lower slab surface with the base is represented as 

( ) ( )1 , .y x V x l x l= − ≤ ≤                                   (3) 

Equation (3), as the contact conditions of the slab and the base, makes it possible to study the effect 
of base inhomogeneity on the internal forces of the slab. 

The solution to the problem of the interaction of n -layer beam slabs with an inhomogeneous elastic 
base in the case of a two-way connection is reduced to solving systems of differential equations (1) and a 
singular integral equation (2) with condition (3). Equations (1), (2) and (3) constitute a closed system of 
equations for unknown functions, i.e., the number of the equations corresponds to the number of unknowns. 

2.2. Solution method 
To solve the problems posed (1)–(3), we use the expansion in the form [4] 

( )
( ) ( )

1

2 2

0

2
1 2 ,

21 cos
2

m m m

n nm
n

m
m n C x C smx s m

−
∞

=

 ⋅Γ    = ⋅ + ⋅ ⋅ π  − Γ + ⋅
∑                      (4) 

where ( )2
m

nC x  is the orthogonal ultraspherical Gegenbauer polynomials [24] with weight functions  

( ) ( )( )1 221 .
m

x x
−

ρ = −  

From expansion (4), it is seen that for singular integrals of type (2), the orthogonal Gegenbauer 
polynomials are eigenfunctions. This confirmation makes it possible to search for the unknown reactive 
pressure of an inhomogeneous base, in the following form 
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( ) ( ) ( )2

0
,

m

n n
n

p x x A C x
∞

=
= ρ ⋅ ⋅∑                               (5) 

here nA  are the unknown constants. 

In what follows, we use the dimensionless coordinates " x " equal to the ratio of the absolute 
coordinate to the half-length of the beam .l  

If the designations P  and M  are introduced for the sum of all vertical forces and the sum of their 
moments relative to the middle of the beam slabs, respectively, then the equilibrium equations for the beam 
slabs take the form 

( ) ( ) 2

1 1

1 1
; .P Mp x dx x p x dx

l l− −
= ⋅ =∫ ∫                             (6) 

After satisfying the equilibrium equations, i.e., substituting (5) into (6) and taking into account the 
orthogonality of the Gegenbauer polynomials, the value of the first two coefficients of series (5) is 
determined in the following form 

( ) ( )1 12 22
0 10 1, ,m mA P l C A M m l C

− −
= ⋅ ⋅ = ⋅ ⋅ ⋅                  (7) 

where 2 2
0 1,m mC C  are the values of the norm of the orthogonal Gegenbauer polynomial determined 

by the following formula [24] 

( )
( ) ( )

1 2

2
2 2

.
!j

j
C

j j

− ν
ν π⋅ ⋅Γ ν +
=

Γ ν ⋅ ⋅ ν +
                              (8) 

If the remaining coefficients of series (5) are assumed zero, then we have the case of a rigid beam 
slab. The terms of series (5), starting from the values 2,n =  represent a correction that differs from the 
distribution of reactive pressure for absolutely rigid beam slabs. 

Substituting (5) into (2), and considering expansion (4) and the orthogonality of the Gegenbauer 
polynomials, for the base settlement, we obtain the following relationship 

( )2 2

0
,

2

m
m

m n n n
n

mV A n C C x
∞

=

 = α ⋅ ⋅ + ⋅ ⋅ 
 

∑                       (9) 

where 
( )

1 22
2 .

1 cos
2

m
m

m

m

mm

−  θ ⋅ ⋅Γ  
 α =

π
Γ + ⋅

 

The resulting expression (9) allows us to determine the base settlement, i.e., the vertical 
displacement of the point of the inhomogeneous base. 

3. Results and Discussion 
Now, using the above results, we solve specific problems. 

3.1. Problem 
A two-layer beam slab interacting with an inhomogeneous elastic base is considered. The system of 

differential equations for the deflections of beam slabs (1) takes the form 
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( )

( )
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1                           (10) 

The general solution of the system of differential equations (10) is represented in the following form 

( ) ( )

( ) ( ) ( )

4
4

1
1 2

2

4

1

4

1
,

i
i q p

i i q p

i

i
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−

=

=
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∑

∑

                   (11) 

( ) ( )

( ) ( ) ( )

4
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1

4

1

4

1
,

i
i q p

i i q p

i

i

ly C x f x f x
D D

D B u x x x

−

=

=

= ⋅ ⋅ + − ++ 
 + ⋅ ⋅ α +ψ +ϕ  
 

∑

∑
                   (12) 

where ,i iC B  are the integration constants determined from the boundary conditions of the problem under 
consideration: 

( ) ( )
( ) ( )

1 2

3 4

cos ; sin cos ;
;

sin ; sin cos

u x chx x u x chx x shx x

u x shx x u x chx x shx x

= ⋅ = ⋅ + ⋅ 


= ⋅ = ⋅ − ⋅ 
                (13) 

( ) ( ) ( )1 2 ;IV
qf x q x q x= +                              (14) 

( ) ( );IV
pf x p x=                                   (15) 

( ) ( ) ( ) ( )1 2
43

2 10

1 ;
4q

x q z q z
x u x z dz

D D
 

ψ = − ⋅ α −    α  
∫                  (16) 

( ) ( ) ( )43
10

1 .
4p

x p z
x u x z dz

D
ϕ = ⋅ α −  α

∫                       (17) 

Substituting (5) in (15) and (17), and performing the appropriate operations, we can write the 
following 

( ) ( )
0

,p n n
n

f x A f x
∞

=
= ⋅∑                               (18) 

( ) ( )1
1

0
,p n n

n
x D A x−

∞

=
ϕ = ⋅ ⋅ϕ∑                            (19) 

where 

( )
( )( )( )( ) ( )

( )( )( )( )( )( )( )

7 42 22
42 4 6 1

3,
1 2 3 1 2 3

mm

n
n

m m m m x C x
f x n

n n n n n m n m n m n m

+ +

−+ + + −
= >

− − − + + + + + + +
         (20) 
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( )
( )( )( ) ( )

( )( )( )( )( )

5 32 22
32 4 1
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n

m m m x C x
f x n
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                 (21) 
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3 22 22
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2
1 1,
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mm
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f x x C x n
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               (22) 

( ) ( ) ( ) ( )
1 12 22

11 0,
mm

n n
mf x x C x n

n n m

+ +

−′′′ = ⋅ − >
+

                       (23) 

( ) ( ) ( )
1

2 221 ,
mm

IV
n nf x x C x

−

= −                             (24) 

( ) ( ) ( ) ( )
1

2 22
43

0

1 1 .
4

mm

n n

x
x u x z z C z dz

−

ϕ = α − ⋅ −  α
∫                      (25) 

Identifying the explicit form of the function ( )nf x  at 4,n <  we use the following formulas [24, 25] 

( ) ( ) ( )
( ) ( )

2
2

2

0

2
1 ,

! 2 !

n j
n j

n

n

j

n j
C x x
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=

⋅Γ ν + −
= − ⋅
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0
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m
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k
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x c x
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=
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1
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c

m k

− Γ + 
 =

− Γ ⋅ 
 

                                    (28) 

Introducing (5), (26), (27) into (15) and performing the appropriate mathematical operations, we 
obtain an explicit form for the function ( )nf x  at: 

( ) ( )( )( )( )
2 4

0
0

;
2 1 2 2 2 3 2 4

k

k
k

xf x c
k k k k

+∞

=
= ⋅

+ + + +
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1
0
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k

k
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= ⋅ ⋅
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− ⋅ 
+ + + + 

∑
              (31) 
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Substituting (18) and (19) into (11) and (12), we obtain the following expressions for the deflections 
of beam slabs:  

( ) ( )

( ) ( ) ( )

4
4

1
1 2

2

4

1 0

4

1 0

1 ,
1

i
n ni q

n ni i q

i n

i n
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D D

D B u x x A x
D

−
∞

= =

∞

= =

= ⋅ + − ⋅ −+ 
 − ⋅ ⋅ α +ψ + ⋅ ⋅ϕ 

  

∑ ∑

∑ ∑
                 (33) 
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2
1 2

1
1

4

1 0
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i
i q n n

n ni i q

i n

i n
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D D
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−
∞
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∞

= =

= ⋅ + − +
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+ ⋅ α +ψ + ⋅ ⋅ϕ 

 

 ⋅∑ ∑


∑ ∑
                (34) 

Expressions (33) and (34), which determine the deflections of beam slabs, have a general character 
corresponding to an arbitrary law of distribution of external loads. In specific external loads with specific 
distribution laws, it will be possible to find the corresponding deflections of the beam slabs that satisfy the 
corresponding boundary conditions, i.e. the constant coefficients of integration ,i iB C  determined from 

the boundary conditions of the problems under consideration. It should be noted here that coefficients nA  
in formulas (9), (33), and (34) are unknown. The contact conditions (3) are used to determine these 
unknown coefficients .nA  The deflection of the lower beam slabs satisfying the boundary conditions (33) 
and the settlement of the base (9) are determined by condition (3). Further, the equality obtained is 

multiplied by ( ) ( )
1

2 221 ,
mm

nx C x
−

−  and then integrated between –1 and 1. As a result of integration with 

respect to unknown coefficients ,nA  an infinite system of algebraic equations with infinite unknowns is 
obtained. An infinite system of algebraic equations is solved by the reduction method (the use of the 
reduction method will be justified strictly mathematically). Certain coefficients nA  are substituted in (5), 
(9), (33), (34) and the regularities of the reactive pressure, the settlement of the base, and the deflections 
of the beam slabs are found. Further, with determined deflections of the beam slabs, it is possible to define 
the change patterns of the internal forces of the slabs corresponding to a change in the inhomogeneity of 
the base. 

3.2. Problem 
Consider a two-layer beam slab loaded with uniformly distributed external loads, i.e. 

( ) ( )1 2 .q x q x q const= = =  

In this case, due to the symmetry property of the load in series (5), only even polynomials are taken 
into account 

( ) ( ) ( )
1

22 2 2
0

1 .
mm

n n
n

p x x A C x
− ∞

=
= − ⋅ ⋅∑                        (35) 

From the equation of equilibrium (6), we obtain 

12
0 04 .mA q C

−
= ⋅                                 (36) 
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Expression (3) describing the base settlement takes the following form 

( ) ( )2
2 2

0
2 ,

2

m

m n n
n

mV x A n C x
∞

=

 = α ⋅ ⋅ + ⋅ 
 

∑                      (37) 

expressions (14), (16) and (17), respectively, take the forms 

( )
4

2 ,
24q
xf x q= ⋅                                    (38) 

( ) ( )1 2
13

1 2

1 1 1 ,
4q

D Dx q u x
D D
−
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1 0

1 ,p n n
n

x A x
D

∞

=
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where 
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2 23 4
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1 1 .
4
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n n

x
x x z z C z dzu

−

ϕ = α − ⋅ − ⋅  α
∫                (41) 

In this case, the deflections of the slabs that satisfy the boundary conditions of the problem under 
consideration, take the following forms: 

{

∑
∞

=








⋅+⋅+⋅⋅−

−⋅
−

−⋅++⋅⋅
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=

0
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232,212,12
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4
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2424
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n
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D
DxxuxuA

D
D

q
D

DDxqCxCq
DD
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ϕαφαφ
      (42) 

4 4
2 1 2

2 4
1 2 1

1,2 1 2,2 3 22
0

2
24 24

( ) ( ) ( ) ( )2n n nn
n

D Dl x qy q C x C q
D D D

A u x u x x f xnφ α φ α ϕ
∞

=

 −= ⋅ ⋅ ⋅ + + ⋅ + ⋅ ++ 


 + ⋅ + ⋅ + −  


⋅∑

           (43) 

where 

1/2
0

1 2
2 1

mC C
m

−
= − − ⋅

+
                             (44) 

( ) ( ){ }
11

2 22
1,2 1 1 4 2 23

1

0
2 [ (1 )] [ (1 )] (1 ) ( )

8

mm

n n
b u u z u u z z C z dzφ α α α α
α

−−
= ⋅ ⋅ − + ⋅ − −⋅∫    (45) 

( ) ( ){ }
11 1 2 2 2

2,2 3 1 2 2 23
0

2 [ (1 )] [ (1 )] (1 ) ( )
8

m m

n n
b

u u z u u z z C z dzφ α α α α
α

−−

= ⋅ ⋅ − − ⋅ − ⋅ −∫   (46) 

The integration factor 4C  can be eliminated by proceeding to relative displacement. 

Expressions (37) and (42) are substituted into (3), and then the obtained equalities are multiplied by 
1

2 2 2
2(1 ) ( )

m m

kx C x
−

− ⋅ , 1,2,3,k =  

and are integrated between –1 and 1. 
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In this case, considering the orthogonality of the ultraspherical Gegenbauer polynomials, we obtain 
the following infinite system with respect to unknown coefficients 2 :nA  

/2
2 2 ,2 2 2 2

1
2 1,2,3,

2
m

k n k n k m k
n

ma a A A k C kα
∞

=

 + ⋅ = ⋅ ⋅ + ⋅ = 
 

∑           (47) 
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         (49) 

By integrating (48), (49) by parts, it is possible to eliminate the singularities of the integrals and bring 
them to the following convenient form: 

24
2

2 2 0 1,0 1
1 2 1

3 221 22
2,0 3 0 0 2 2 2

2

1

1
2 ( )

4

( ) ( ) ( ) (1 ) ( ) ,

k
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k k

Dxla q C A u x
D D D

Du x x f x x C x dx
D

φ α

φ α ϕ α
+ +

−

−

   ′′= ⋅ ⋅ + − ⋅ ⋅ ⋅ +   +   

′′ ′′ ′′+ ⋅ + + ⋅ ⋅ ⋅ − ⋅
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                (51) 

where 

2
( 2)

2 (2 1)(2 )(2 1)k
m m

k k k m k m
α ⋅ +

=
⋅ − + + +

                          (52) 

Thus, the considered problem is reduced to the study of infinite systems of algebraic equations with 
infinite unknowns for the coefficients 2 .nA  

Infinite systems of algebraic equations (47) can be solved by the reduction method. Based on the 
infinity reduction method, systems are limited by the first r equations corresponding to the first r  
unknowns. These conditions exactly correspond to the restriction in series (35) by the first r  terms with 
unknown coefficients iA  at 0, 1, 2, ..., .i r=  

3.3. Substantiation of the solution method 
It is known that the reduction method is applicable only for regular infinite systems of algebraic 

equations. 
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Therefore, to apply the reduction method, it is necessary to prove the regularity or quasi-regularity of 
the system of infinite equations. To prove the regularity of system (47), the coefficients 2ka  and 2 ,2n ka  
are determined by formulas (50) and (51). 

Research is performed as follows. 

First, we estimate the coefficient 2ka . To estimate it, we take into account the following inequalities 
[24]: 

1/2 1/2
2 2

1 2 1 2( ) ( ) ( ) ( )
b b b

a a a

f x f x dx f x dx f x dx
      ⋅ ≤ ⋅   
      

∫ ∫ ∫               (53) 

2 2(1 ) (1 ) , , 1 1x x xβα α β− ≤ − ≥ − ≤ ≤                       (54) 

Expressions (53) are called Cauchy-Bunyakovsky inequality. 

Applying inequalities (53), (54) in (50), we obtain the following estimate 

/2 2
2 2 2 2

m
k k ka Cα α +

−≤ ⋅ ⋅                              (55) 

where 

(
14 2

2
2 0 1,0 1

11 2 1
1

2 2
1

2,0 3 0 0
2

2 ( )
2

( ) ( ) ( ) ,

Dl xq C A u x
D D D

D
u x x f x dx

D

α φ α

φ α ϕ

−

    ′′= ⋅ ⋅ + − ⋅ ⋅ ⋅ +  +    

 ′′ ′′ ′′+ ⋅ + + ⋅    

∫
 

Substituting (8) and (52) into (55), we can see that 

2ka < ∞ , at 1,2,3,...k =                              (56) 

Next, it is necessary to analyze the following infinite numerical series, consisting of coefficients 

2 ,2n ka : 

2 ,2
1

n k
n

a
∞

=
∑ , 1,2,3,...k =                               (57) 

If conditions (56) are met for the infinite system (47) and the numerical series (57) converges and 
has a sum less than one for any, then the infinite system (47) will be quasiregular 

2 ,2
1

lim 0n kk n
a

∞

→∞ =
=∑

 
                              (58) 

Based on these results, the numerical series (57) is investigated. For this, the common terms of 
series (57) defined by formula (51) are rewritten in the following form 

2 ( )n xφ′′ ( )
4

2
1,2 2,22 ,2 2 1,2 3,2 2 ,2 2 ,2

1 2 1
n nn k k k k n k n k

Dla u u f
D D D

α φ φ ϕ= ⋅ ⋅ ⋅ ⋅ + ⋅ + +
+

       (59) 

where 
1 3 22 2 2

11,2 2 2
1

( ) (1 ) ( )
m m

k ku u x x C x dxα
+ +

−
−

′′= ⋅ − ⋅∫ ;     (60) 

3

1 3 22 2 2
3,2 2 2

1
( ) (1 ) ( )

m m

k ku u x x C x dxα
+ +

−
−

′′= ⋅ − ⋅∫ ;     (61) 
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1 3 22 2 2
22 ,2 2 2

1
( ) (1 ) ( )

m m

nn k kx x C x dxφ φ
+ +

−
−

′′= ⋅ − ⋅∫ ;     (62) 

1 3 22 2 2
22 ,2 2 2

1
( ) (1 ) ( )

m m

nn k kf f x x C x dx
+ +

−
−

′′= ⋅ − ⋅∫ .     (63) 

With (13), and considering the inequalities (53), (54) in (58) and (59), we can obtain the following 
estimates 

1/2/2 2 /2 2
1 31,2 2 2 3,2 2 2;m m

k k k ku a C u a C+ +
− −≤ ⋅ ≤ ⋅                    (64) 

where 

1/21 1
4 2 4 2

1 3 3 1
1 1
4 ( ) ; 4 ( )a u x dx a u x dxα α α α

− −

      = ⋅ = ⋅   
      
∫ ∫                 (65) 

Now it is necessary to estimate the coefficients 1,2nφ  and 2,2nφ , determined by formulas (45) and 

(46), respectively. Integration by parts the coefficients are reduced to the following form 

{

}
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1,2 2 1 33
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3
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4 4 2 2

( 2 ) 2 ( ) [ (1 )]
8
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α α
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−
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∫
                (66) 
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2 (0) 2 2 ( ) [ (1 )]
8 8
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u u z z C z dz
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α α
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+

−
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∫
   (67) 

Taking inequalities (53) and (54) in (66), (67), we can obtain the following estimates 

1/2 1/2/2 2 /2 2
1,2 1 2 2,2 2 22 2 2 2;m m

n n n nk kC Cφ φ α φ φ α+ +
− −≤ ⋅ ⋅ ≤ ⋅ ⋅          (68) 

where 

1/211 2
1 1 3 4 4

0
2 ( ) ( ) ( ) ( )

4
b u u x u u x dxφ α α α α
α

−   = ⋅  ⋅ + ⋅   
  
∫                (69) 

[ ]{ }1/21 1 2
2 3 3 2 42

0

1
2 ( ) ( ) ( ) ( )

4 4
b

u u x u u x dxφ α α α α
α α

−

≤ + ⋅ ⋅ − ⋅∫             (70) 

It is necessary to estimate the coefficient 2 ,2n kφ  determined by formula (62). To do this, first, the 

function 2 ( )n xφ′′  participating in the integral (62), with (41), and by integrating by parts, is reduced to the 
following form 

3 2 22 42 2 2
2 2 2 2 1 2 2 2(1 ) ( ) ( ) (0) 4 ( )

m m m

n n n n nx C x u x C xϕ α α α ϕ
+ + +

− −′′ = ⋅ − ⋅ − ⋅ − ⋅
 
 
 

.       (71) 

Substituting (71) into (62), we obtain 

( )22 ,2 1,2 ,2 2,2 ,2 3,2 ,2nn k n k n k n kJ J Jφ α= ⋅ + +
    

               (72) 
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where 
3 31 2 22 22 2 2 2

2 2 2 21,2 ,2 1
(1 ) ( ) (1 ) ( )

m m m m

n nn kJ x C x x C x dx
+ ++ +

− −
−

= − ⋅ ⋅ − ⋅∫ ;      (73) 

312 222 2 2
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nn k kJ C u x x C x dxα
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− −
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31 24 2 2 2
23,2 ,2 2 21

4 ( ) (1 ) ( )
m m

nn k kJ x x C x dxα φ
+ +

−
−

= − ⋅ − ⋅∫ .     (75) 

Applying (53), (54) in (73), (74), (75) we obtain the following estimates 

1/2 1/23 /2 2 /2 2
2 21,2 ,2 2 24 m m

nn k kJ C Cα + +
− −≤ ⋅ ,      (76) 

1/2 1/2/2 2 /2 2
1 2 22,2 ,2 2 2

m m
nn k kJ a C C+ +
− −≤ ⋅ ,      (77) 

4 /2 2
23,2 ,2 2 28 (1) m

nn k kJ Cα ϕ +
−≤ ⋅ ⋅

        
(78) 

where 
31 2 /2 22
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4

m
m

n nu z z C z dzϕ α
α

+
+
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Applying (53), (54) in (79), we obtain 

{ }1/21 1/22 /2 2
2 4 2 23

1

1
(1) [ (1 )]

4
m

n ku z dz Cϕ α
α

+
−

−
≤ ⋅ − ⋅∫                  (80) 

Substituting (80) into (78), we obtain the following estimate 

1/2 1/2/2 2 /2 2
4 2 23,2 ,2 2 2

m m
nn k kJ a C C+ +
− −≤ ⋅ ⋅                         (81) 

where 

{ }1/21 2
4 4

1
2 ( )a u x dxα α

−
= ∫ .                                 (82) 

Taking into account (76), (77), (77) in (72), we obtain the following estimates 

( ) 1/2 1/23 /2 2 /2 2
2 1 4 2 22 ,2 2 24 m m

n nn k ka a C Cϕ α α + +
− −≤ ⋅ + + ⋅ ⋅ .               (83) 

Substituting (22) into (63), then applying (53), (54), we obtain the following estimates 

1/2 1/2/2 2 /2 2
2 2 22 ,2 2 2

m m
n nn k kf C Cα + +

− −≤ ⋅ ⋅ .                       (84) 

From equality (59), taking into account (64), (68), (83), (84), we obtain 

1/2 1/2/2 2 /2 2
2 2 22 ,2 2 2 2

m m
n nn k k ka a C Cα α+ +

− −≤ ⋅ ⋅ ⋅ ⋅                     (85) 

where 

( )
4

2
1 1 2 3 1 4

1 2 1
1

l D
a a a a a

D D D
φ φ= ⋅ ⋅ ⋅ + ⋅ + + +

+
.                      (86) 

Introducing (85) into (57), we obtain 
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1/2 1/2/2 2 /2 2
2 2 22 ,2 2 2 21 1

m m
n nn k k kn n

a a C Cα α
∞ ∞+ +

−−= =
≤ ⋅ ⋅ ⋅ ⋅∑ ∑ .                  (87) 

In this inequality, the numerical series 

1/2/2 2
2 2 21

m
n nn

Cα
∞ +

−=
⋅∑                                    (88) 

is absolutely convergent. This can be verified by substituting (52) and (8) in (88). If we denote the sums of 
series (88) by ,S  then inequality (88) takes the form 

1/2/2 2
2 ,2 2 2 21

m
n k k kn

a S a Cα
∞ +

−=
≤ ⋅ ⋅ ⋅∑ , 1,2,3,...k =                    (89) 

Taking into account (8), (10), it can be shown that 

1/2/2 2
2 2 2lim 0m

k kk
Cα +

−→∞
⋅ = .                              (90) 

Equality (90) shows that 

2 ,21
0n kn

a
∞

=
→∑ , at k →∞ .                              (91) 

The proved limit values (91) state that conditions (56) and (91) are satisfied in the problem under 
consideration. As follows from the fulfillment of these conditions, the infinite system of algebraic equations 
(47) is quasiregular. Due to the quasiregularity of the system of infinite algebraic equations (47), it is 
possible to apply the reduction method to its solution. 

3.4. Problem 
Let a two-layer beam slab lying on an elastic inhomogeneous foundation be loaded with uniformly 

distributed external loads with the following characteristics of the soil material of the base 

( ) .q x q const= =  

We take the following mechanical and geometrical parameters of the base and slabs: 

For soil of the base: 

22
0 00.3, 5 10 kg cm .Eν = = ⋅  

For slabs: 

1 2 1 2
5 2

1 2

5 , 0.45 , 0.617

1.25 10 .

l m h h m

E E kg cm

= = = ν = ν =

= = ⋅
 

First, we determine the numerical values by solving the system (47), corresponding to the specific 
values of the coefficient of inhomogeneity m  of the base and the values of the coefficient of rigidity k  of 
the fillers. Solving the system (47), it is possible to determine the deflections of the slabs and the base, and 
the internal forces of the slab and the pressure of the inhomogeneous base according to the known 
formulas. 

When solving this problem, we restrict ourselves to the first four terms in series (35). Then the system 
of infinite equations (47) turns into a system of three equations with three unknown coefficients 2,A  4,A  

6.A  The coefficient 0A  is considered known and its value is calculated by formula (36). 

The numerical values of the coefficients 0A , ,2A  4,A  6A  for different values of the filler rigidity 

coefficient k  and the base inhomogeneity coefficient ,m  are given in Table 1. 

Results of solving algebraic equations corresponding to different values of the filler rigidity ( )k  and 

the coefficient of inhomogeneity of the base ( ).m  
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Table 1.  A table of solutions of a system of algebraic equations. 

( )3k kg sm  m  0A q  2A q  4A q  6A q  

0.25 0.25 0.675059 –0.145148 0.097165 –0.008346 
0.25 0.50 0.599070 –0.127346 0.065661 0.005514 
0.25 0.75 0.543265 –0.115487 0.044763 0.002671 
2.5 0.25 0.675059 –0.145148 0.097165 –0,008316 
2.5 0.50 0.599070 –0.127346 0.065661 0.005514 
2.5 0.75 0.543265 –0.115487 0.044763 0,002671 
250 0.25 0.675059 –0.145148 0.097163 –0.008346 
250 0.50 0.599070 –0.127346 0.065661 0.005514 
250 0.75 0.543265 –0.115487 0.044763 0.002671 

 

Analysis of the results given in Table 1 shows that: 

− the change in the values of the filler rigidity coefficients does not substantially affect the change in 
the solution of system (47), it also does not affect the change in the reactive pressure of the base, 
determined by formula (35); 

− the change in the values of the inhomogeneity coefficients of elastic base substantially affects the 
change in the solution of system (47), i.e., the absolute values of the solution to system (47) 
decrease due to an increase in the base inhomogeneity, which leads to a decrease in the reactive 
pressure of the base; 

− the calculations of the internal force factors of the strip-slab can be limited to the first 4 terms of the 
series (35). 

The maximum numerical values of the bending moments of the first ( )1M x  and second slabs 

( )2M x  at 0,x =  are given in Table 2. 

The results of the maximum values of bending moments of the slabs corresponding to the values of 
the filler rigidity coefficient ( )k  and the base inhomogeneity coefficient ( ).m  

Table 2. Table of values of bending moments of plates. 

( )3k kg sm  m  

The greatest value of bending moments  
of slabs, at 0x =  

( ) ( )2
1M x ql  ( ) ( )2

2M x ql  

0.25 

0.25 1.084615 1.067307 

0.50 1.039137 1.031462 

0.75 0.994724 0.992371 

2.5 

0.25 1.039906 1.036302 

0.50 0.974743 0.974401 

0.75 0.922241 0.922186 

25 

0.25 0.923714 0.923609 

0.50 0.799507 0.798897 

0.75 0.699268 0.699260 

 

Analysis of the results given in Table 2 shows that: 

− an increase in the value of the filler rigidity coefficient (at a constant value of the base 
inhomogeneity), leads to a substantial decrease in the value of bending moments; 

− with an increase in the values of the coefficients of inhomogeneity of the base (with a constant 
value of the filler coefficient), the values of bending moments are substantially reduced; 
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− with an increase in the values of the filler rigidity coefficient and the values of the coefficients of 
inhomogeneity of the base, the values of bending moments substantially decrease (down to 36 %);  

− with an increase in the values of the filler rigidity coefficient, the values of the bending moments of 
the slabs approach each other. 

The results obtained show the effectiveness of the technique in determining the internal force factors 
in multilayer slabs. 

The results obtained show the effectiveness of the proposed model and the developed technique for 
solving contact problems on the interaction of multilayer slabs with elastic inhomogeneous bases. 

It should be noted that the results obtained, when the coefficient of inhomogeneity ( )m  of the base 
tends to zero, are similar to the results obtained in [10] for a homogeneous base. 

4. Conclusion 
1. A mathematical model was developed to assess the internal force factors of multilayer strip-slabs 

on an elastic inhomogeneous base under various static loads. 

2. To assess the internal force factors of multilayer strip-slabs interacting with an inhomogeneous 
base, an analytical method for solving the problem was proposed, based on the approximation of orthogonal 
polynomials. 

3. A theoretically substantiated possibility of using the proposed method for solving contact 
problems on the interaction of multilayer slabs with elastic inhomogeneous bases is given. 

4. The required number of terms of the Gegenbauer polynomial was established to obtain a result 
with satisfactory accuracy, and the efficiency of the method for solving the problem was shown by the 
example of solving test problems. 

5. Analysis of the results obtained made it possible to establish that: 

− an account of the rigidity characteristics of the filler leads to a redistribution of internal forces in the 
slabs; 

− an account of the inhomogeneity of the base leads to a decrease in internal forces in the slabs; 
− an account of the inhomogeneity of the base leads to a redistribution of the reactive pressures of 

the base. 
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