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Abstract. The article discusses issues of explainability of the operating principles of a machine
learning model. As the architecture of the model, one of the types of transformer is considered,
the task of which is to classify images based on the popular “ImageNet-1000” dataset. This type
of transformer is also called vision transformer and can serve either as a standalone model or
as part of a more complex architecture. The explainability methods included activation maps of
classes, which were calculated by applying algorithms based on forward and backward propagation
of image tensors through the components of the transformer: multi-head attention layers and fully
connected multilayer networks. The aim of the work is to increase the explainability of the internal
processes of the functioning of the vision transformer by analyzing the obtained activation maps
and calculating a metric to evaluate their explainability. The results of the study reveal patterns that
reflect the mechanisms of operation of the vision transformer in solving the image classification
problem, as well as evaluating the importance of the identified classification features through the
use of the explainability metric.
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AnHOoTamuaA. B ctathbe paccMaTpuBalOTCS BOMIPOCHI O0BICHUMOCTU MPUHIIUIIOB (PYHKIIMOHM -
pOBaHUS MOJEIM MAalIMHHOTO oOyueHusl. B kauecTBe apXUTEKTypbl MONIEIN PACCMOTPEH OIUH
U3 BUAOB TpaHchopMepa, 3aadya KOTOPOTO COCTOUT B KiaaccUdUKauu U300pakeHUir Ha Oa3ze
nonyagpHoro aataceta «ImageNet-1000». [JanHblil TUIT TpaHChOPMepa TaKxkKe Ha3bIBA€TCS BU-
3yaJbHBIM TPaHC(HOPMEPOM U MOXKET CITYKUTh, KaK OTAETbHON MONEbIO, TAK U COCTaBJISIIONIEH
OoJiee CIIOXHOW apXUTEKTYypbl. MeTogaMu OOBSICHUMOCTH SIBJISIUCH KapThl aKTUBALUM Kjac-
COB, KOTOPbIE PACCUYMUTHIBAIUCH MTOCPEACTBOM MPUMEHEHUS alTOPUTMOB Ha OCHOBE TPSIMOTO U
00paTHOTO pacrpoCTpaHEHUsI TEH30POB U300paXeHUs Yepe3 COCTaBHbIe YacTU TpaHcopmepa:
CJIOU MeXaHW3Ma BHUMaHUS U TTOJTHOCBS3aHHbIE MHOTOCIOMHbBIE ceTu. Lleab paboThl COCTOUT B
TMOBBIIIEHNN OOBSICHUMOCTY BHYTPEHHMX MPOIIECCOB (DyHKIIMOHUPOBAHUS BU3YAIbHOTO TPAHC-
dopmepa 3a cueT aHaNM3a TOJyYEHHBIX KapT aKTUBAIUM M pacuyeTa METPUKU OLICHUBAHUST UX
00bsiICHUMOCTHU. Pe3ynsraToM paboThI SIBISIOTCSI 3aKOHOMEPHOCTH, OTpaXkalolue MeXaHU3MbI
paboThl BU3yallbHOTO TpaHcdopMepa MpU pellieHuU 3aauu KjiaccuduKauuu n3o0paxeHus, a
TakKe Ol[EHUBAaHUE CTENEHU Ba’XKHOCTU BBIIEISIEMbIX TPU3HAKOB KJIacCU(DUKALIMU 32 CUET MPU-
MEHEHUST METPUKU OOBSICHUMOCTH.

KiroueBbie cjioBa: MOAeIb MAaIIMHHOTO O0Y4YeHUsI, 00BbICHUMOCTD, BU3YaJIbHBIN TpaHchopmep,
9HKOZEP, MEXaHM3M BHUMaHUSI, KapThl aKTUBALIMK KJIACCOB, KapThl aKTUBAIIMM OOPAaTHOTO pac-
MPOCTpaHEeHUs

Jlng murupoBanms: Utkin L.A., Shkuropatsky V.V., Pronikov A.N., Rakov E.S. The study of the
vision transformer architecture by explainability methods // Computing, Telecommunications
and Control. 2024. T. 17, Ne 1. C. 54—64. DOI: 10.18721/JCSTCS.17105

Introduction

Technical solutions based on the architecture of various transformers are well established in many areas
of science and technology. Today, this technology allows solving a wide range of problems: from object
recognition to generating images and texts. Transformers have proven to be particularly effective in the
field of natural language processing [2], which allowed a significant scientific leap with the development
of large language models. However, in addition to natural language processing, similar architectures are
also used in image classification. One of these models that allows solving the classification problem is the
Vision Transformer (ViT) [3]. The architecture of the vision transformer is an encoder with 12 layers of
multi-head attention [1] and a fully connected multilayer perceptron at the output (Fig. 1).

This diagram has a simpler structure than the one of the vanilla transformer model [10, 11]; in particu-
lar, there is no decoder unit. This and the fact that the input data are images, which are easier to visualize
than, for example, text tokens, makes the vision transformer a good ‘candidate’ for studying explainability
of the results of the functioning of models based on such solutions.

To date, existing explainability methods and algorithms allow revealing some aspects of the internal
functioning of machine learning models based on various architectures. Many explainability approaches

© YTkuH W.A., LLikyponaTtckuii B.B., MpoHukos A.H., PakoB E.C., 2024. U3paTenb: CaHKT-MeTepbyprckuii MonMTeXHUYECKUA yHuBepcuTeT MNeTpa
Benukoro
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Fig. 1. ViT Architecture Diagram

Fig. 2. Image view after passing through the embedding layer (1x197x768)

for transformer-based machine learning models are designed for large language models [16]. However,
one explainability method for machine vision models is to construct class activation maps for images to
identify areas with key features. In particular, this approach gives an explainable result for convolutional
neural networks [5]. In addition to generating activation maps for direct passage of images, gradient-based
methods [4] and their various modifications have been developed [17, 18], which take into account chang-
es in weights when training machine learning models.

The study of a vision transformer with these explainability methods allow to partially reveal the mech-
anisms of its functioning and understand what elements of the image the model pays attention to during
classification. Quantitative evaluation of how well certain activation maps display internal processes during
classification was carried out by calculating explainability metrics.

The structure of the vision transformer allows to trace the image from the initial to the final layers and
at each stage to track the changes occurring to it. When a classified image passes through the model, its
dimension changes from 1x3x224x224 to 1x197x768 and then invariably spreads through all layers to the
classification layer, where it expands or contracts depending on the number of classes.

The first way to analyze the principles of functioning of a vision transformer is to directly pass the image
through its main layers and then restore to the original dimension, similar to models based on the convo-
lutional neural network [15].

Direct image passage through the layers of the model

The first layer of the model is the embedding layer, which vectorizes the input image and adds position-
al encoding to it. Since the input image is a three-dimensional tensor, it needs to be divided into smaller
patches with a further vector representation, resulting in a dimension of 1x197x768. The image after pas-
sing through the embedding layer is shown in Fig. 2.

The vector appearance of the tensor makes it impossible to visually evaluate further processes taking
place in the layers of the transformer. To visualize the results, the original picture dimension to 3x224x224
should be restored. This is achieved through a series of matrix transformations over the resulting tensor,
where first the positional coding vector is removed, then the tensor is converted to 6-dimensional form
(1x14x3x16x16) with further rearrangement and dimension change. The software implementation of the
current transformations is presented in [6].
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Fig. 3. Original image is restored after the embedding layer.
On the left is the original image coming to the model input. On the right is the restored image

Fig. 4. Image after passing through the attention mechanism

The restored image is shown in Fig. 3.

Fig. 3 shows the structure of the original image with the loss of color and local features. After the em-
bedding layer, the image passes through 12 multi-head attention layers [14], each of which is trained to
identify image features (Fig. 4).

Fig. 4 shows the restored images after the attention mechanism. The weights of each multi-head at-
tention layer are adjusted to separate their context from the vector view of the image, which qualitatively
improves the ability of the model to classify. After multi-head attention layers, the generalized tensor enters
the input of a fully connected neural network, alternating layer normalization and dropout-type regulation
methods. The final dimension of the output layer of the model is 768x1000, where 1000 corresponds to the
number of dataset classes (in this case ImageNet-1000 is considered).

Model activation maps calculation

In addition to the direct passage of the image with restoration, an analogue of activation maps for the
transformer was obtained. The principle of the algorithm is based on the calculation of activation maps for
convolutional neural networks according to the following expression:
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where Y5 — class activation card, dimension 3x16x16; ws — weights from the last layer of direct distri-
bution activating the maximum value in the classification layer; VitEncTe ensor, — encoder output tensor.

The consistency of the tensor dimension when passing through the layers of the model also allows acti-
vation maps to be calculated separately for each attention mechanism. Calculation expression is as follows:

yiclass" _ z M};’lass * MHA: , (2)
J

class®

where y™" — attention mechanism class activation map; weess — weights from the last layer of direct dis-
tribution activating the maximum value in the classification layer; MHA; — multi-head attention layers
output tensor.

To perceive the obtained formulas on the general diagram of the vision transformer model more clearly,
the layers used are highlighted in color, where the red color indicates the layers relative to which the output
class layer is calculated (blue color) (Fig. 5).

Output tensors from layers of the attention mechanism (Fig. 6) were used as the first activation maps.
The software implementation of the current transformations is presented in [6].
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Fig. 7. Activation map of the penultimate layer and classification layer

The resulting activation maps in each layer have unique features, but do not have such a pronounced
appearance as in the case of convolution neural networks [5], where strictly defined areas of features in the
image were identified.

The activation map of the penultimate layer and classification layer is shown in Fig. 7.

Fig. 7 has a similar structure of a more vague nature. The resulting activation maps may indicate that
the designer is actually looking for features across the entire image, without any specific areas of the feature
space.

Calculation of back propagation activation maps

Another method of studying the explainability of transformer-based classification models is calculating
of back propagation activation maps [5], that is, calculating the gradient relative to the selected layers in
Fig. 5.

Back propagation activation maps were calculated using the following expressions:

dyclass
d (VitEncT ensor; )

L™ = GELU| Y VitEncTensor, * 3)
J

where VitEncTensorl.j — encoder output tensor; L9 — linear combination of weight coefficient and
dyclass

d (VitEncT ensor, )

post-activation channels, dimensions 14x14; — transformer output layer gradient

as related to the encoder output tensor.
As in the case of activation maps for intermediate layers, a back propagation through the attention
mechanism layers was calculated using the following expression:

dyclassk
d(MHA)

i

L™ =GELU| Y MHA; , 4)
J

where MHAij — multi-head attention tensors; L<** — linear combination of weight coefficient and post-
dy

d (MHA )y
nism tensor.

The software implementation of the current algorithms is presented in [6].
According to (4) the following gradient images were obtained for the case of the multi-head attention
layers (Fig. 8).

class*

activation channels; — transformer output layer gradient as related to the influence mecha-
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Fig. 9. Gradient calculation relative to the encoder output tensor

The obtained gradients on different layers of the attention mechanism indicate that each individual
layer of attention allocates certain features on the image, for example, the background of the picture, some
objects, etc.

The calculation of the gradient relative to the output tensor of the encoder according to the expression
(3) allowed to obtain the following figure (Fig. 9).

The applied approach of calculating the gradient of the output class relative to the encoder tensor does
not explicitly identify the features of the image.

Metrics for evaluating the explainability of a transformer

As was shown, the obtained transformer activation maps do not explicitly identify features of the image
classification, and therefore their significance was evaluated using the explainability metrics.

The method for calculating metrics depends on the type of problem being solved, as well as the ex-
plainability technique used. Calculations of activation maps for the transformer were used as explainability
methods. In turn, explainability evaluation metrics are numerical calculations based on derived expres-
sions [7] or more visual implementations based on the removal of image patches by painting them in a
certain color [8, 9].
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Fig. 10. Removing arecas based on MoRF/LeRF evaluation metric.
Top row refers to MoREF, bottom row refers to LeRF
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Fig. 11. Graphs showing the dependence of the probability of correct classification
and removed elements relative to the whole image

One of the evaluation metrics associated with the removal of some information from the image is the
algorithm MoRF/LeRF (most relevant first/least relevant first ) [8]. It is based on the coloring in RGB
colors (127, 127, 127) the most/least significant parts of the image according to the calculated activation
maps and their further submission to the input of the transformer in order to obtain the probability of be-
longing to the target class.

The first 10 images for explainability based on (2) are shown in Fig. 10. A total amount of 20 images
with removed areas were obtained.

The colored areas reflect the most/least important image patches with their accumulation. At the next
stage of calculation, graphs of the dependence of the probability of correct classification and removed ele-
ments relative to the whole image were constructed (Fig. 11).

These graphs reflect the fact that the probability of correct classification decreases only when half of
the image is removed. This is determined by the area below the curve (AUC — average under curve) which
corresponds to 0.55 and 0.45 for MoRF and LeRE Moreover, the MoRF graph decreases more slowly
than the LeRF graph, which characterizes the independence of the activation map results from the fea-
tures selected by the model, since the removal of more important patches affects the probability less than
less important.

Similarly, the explainability metrics of MoRF/LeRF for the back propagation activation map based on
the calculation of the output class gradient relative to the encoder tensor (Fig. 12, 13) have been calculated.

The AUC values for MoRF and LeRF graphs were 0.38 and 0.64, respectively. These values indicate
that there is weak explainability basis for the use of back propagation activation maps. For the MoRF
metric, the probability drops instantly after removing one third of the features, which may coincide with
explainability evaluation metrics for images with many small features.

The software implementation of the current algorithms is presented in [6].
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Fig. 12. Images with removed areas. The upper row refers to MoRE, the lower row refers to LeRF
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Fig. 13. Graphs showing the dependence of the probability of correct classification
and removed elements relative to the whole image for the back propagation activation maps

Conclusion

The principle of the transformer functioning, specifically its particular implementation, differs signifi-
cantly from previous technologies used to solve the problem of image classification. Almost all layers of the
image pass in a constant dimension, which, on the one hand, simplifies attempts to explain the transform-
er functioning, on the other hand, due to preliminary vectorization, complicates the process of analyzing
its direct and reverse passage through the model.

Vectorization at the stage of passing the embedding layer significantly distorts the structure of the image
and after its restoration only the main informative features are visible. Further passage through the layers
of attention mechanism made it possible to see how the model selects certain features, then transferring
them to the fully connected layers of the neural network.

The use of algorithms similar to the construction of activation maps, as in the case of convolutional
neural networks, does not allow to unambiguously indicate the areas of features that the model turns to
when classifying an image. The constant dimension when passing through the vision transformer made
it possible to evaluate separately the output tensors from the encoder and layers of attention mechanism.

The algorithm based on the reverse passage or gradient calculation partially specified the different areas
of features that the model indicates in the influence mechanisms. However, when considering gradients
relative to the output tensor of the encoder, no obvious dependencies were established.

The calculated values of the MoRF/LeRF evaluation metric for two types of activation maps poorly
characterized the significance of the features identified by these techniques. In the case of the activation
map obtained from (2), the metric showed no distinguishing features detected by this explainability meth-
od, as well as the inverse AUC values of MoRF/LeRFE However, the values of the evaluation metric of the
expression-based explainability technique [4] reflect more/less important features used by the model for
correct classification (AUC for MoRF/LeRF is 0.38 and 0.64 respectively).
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