Детальная информация

Название Three-field FEM for analysis of thin elastic shells // Magazine of Civil Engineering. – 2024. – Т. 17, № 3. — С. 12710
Авторы Klochkov Yu. V.; Nikolaev A. P.; Pshenichkina V. A.; Vakhnina O. V.; Klochkov M. Yu.
Выходные сведения 2024
Коллекция Общая коллекция
Тематика Техника; Сопротивление материалов; three-field FEM; elastic shells; thin elastic shells; finite element method; strain tensor; curvature tensor; трехполевой МКЭ; упругие оболочки; тонкие упругие оболочки; метод конечных элементов; тензор деформаций; тензор кривизны
УДК 539.3
ББК 30.121
Тип документа Статья, доклад
Тип файла PDF
Язык Английский
DOI 10.34910/MCE.127.10
Права доступа Свободный доступ из сети Интернет (чтение, печать, копирование)
Дополнительно Новинка
Ключ записи RU\SPSTU\edoc\73966
Дата создания записи 19.09.2024

Разрешенные действия

Прочитать Загрузить (0,6 Мб)

Группа Анонимные пользователи
Сеть Интернет

To obtain a finite element algorithm in the three-field formulation, a conditional functional was used, based on the equality of the actual work of the internal force factors (internal forces and moments) at the strains and curvatures of the middle surface. As an addition, the functional assumed the condition that the work of the residual of internal forces at the strains and curvatures of the middle surface had been equal to zero. The difference between the adopted internal forces and the internal forces represented through the strains and curvatures of the middle surface according to Hooke's law was used as the residual of internal forces. A quadrilateral fragment of the middle surface of a thin shell was used as the finite element. Kinematic quantities (displacements and their first order derivatives), strain quantities (strains and curvatures of the middle surface) and force quantities (internal forces and moments) were taken as the nodal unknowns. Approximating expressions with Hermite polynomials of third degree were used to approximate kinematic quantities. The sought strain and force quantities were approximated through the corresponding nodal unknowns by bilinear shape functions. A finite element stiffness matrix (with the dimensions 36x36) with respect to the kinematic nodal unknowns was formed through the functional minimization. Specific examples showed the efficiency of the three-field finite element algorithm in determining the displacements, strains and internal forces.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Все

Количество обращений: 64 
За последние 30 дней: 8

Подробная статистика