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Abstract. Neural networks are widely used in various scientific fields and practical research. 
They are sometimes implemented in the modeling of nonlinear economic dynamics. However, 
neural networks are often not suitable for modeling nonlinear economics. An effective 
alternative to neural networks in economics is the Elementary image of the Kolmogorov-
Gabor polynomial. It has proven to have a more powerful ability to model nonlinearity than 
the artificial neural network. At the same time, the coefficients of this polynomial are estimated 
much simpler and faster than the coefficients of the artificial neural network. This observation 
provides grounds for the idea to replace neurons in the network by the Elementary images of 
the Kolmogorov-Gabor polynomial, thus creating an alternative polynomial network. This 
network is trained in just a few steps, while a neural network is trained over several tens of 
thousands of steps. Additionally, a Bayesian approach can be applied to polynomial networks, 
while it is not possible with neural networks. What is more, polynomial networks describe 
nonlinear processes no worse, and some-times even better, than neural networks. Therefore, 
when modeling nonlinear economic processes, polynomial networks not only prove to be 
simpler and faster in calculations, but also are capable of Bayesian parameter re-estimation 
with significant accuracy.
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Аннотация. Нейронные сети активно используются в самых разных областях науки и в 
практических исследованиях. Встречаются случаи использования нейронных сетей в мо-
делировании нелинейной экономической динамики. Но чаще всего нейронные сети ока-
зываются малопригодными для моделирования нелинейной экономики. Эффективной 
альтернативой применению нейронных сетей в экономике может служить элементарный 
образ полинома Колмогорова-Габора. Показано, что элементарный образ полинома Кол-
могорова-Габора обладает более мощной способностью моделирования нелинейности, 
нежели модель искусственного нейрона. При этом коэффициенты этого полинома оце-
ниваются значительно проще и быстрее, чем коэффициенты искусственного нейрона. 
Данное утверждение позволяет предложить замену нейронным сетям – вместо нейронов 
в сеть подставляются элементарные образы полинома Колмогорова-Габора и получается 
альтернативная полиномиальная сеть. Эта сеть обучается за несколько шагов в то время 
как нейронная сеть обучается за несколько десятков тысяч шагов. К тому же к полино-
миальной сети применим байесовский подход, в то время как к нейронным сетям его 
использовать не удаётся. Показано также, что полиномиальные сети описывают нели-
нейные процессы не хуже, а иногда даже лучше, чем нейронные сети. В этой связи, при 
моделировании нелинейных экономических процессов предлагается использовать поли-
номиальные сети как более простые и быстродействующие в вычислениях, способные к 
байесовской переоценке параметров и не менее точные, чем нейронные сети.

Ключевые слова: нейронные сети, полиномиальные сети, полином Колмогорова-Габо-
ра, элементарный образ KGp, нелинейная экономическая динамика
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Introduction
The successful use of neural networks in natural and engineering sciences has prompted 

economists to search for opportunities to apply them to solve various tasks, including economic 
forecasting. However, attempts to use them for this purpose have not been very successful so 
far; after all, neural networks were created to solve image recognition tasks, and their applica-
tion to modelling dynamic systems has been unsuccessful yet.

Since objects of economic forecasting often possess some inertia in their dynamics, it became 
possible to take this property into account in neural networks by using feedback connections. 
Such connections in neural networks are called “recurrent”. Therefore, neural networks with 
such connections are also called recurrent (RNN). If in simple neural networks the input data 
is considered unordered, in recurrent networks, the presence of feedback connections models 
the order of the data sequence, making them more suitable for modelling dynamic processes.

Materials and Methods
Currently, the scientific community is increasingly publishing results of successful applica-
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tions of RNN in economic modelling and forecasting. There are some successful examples of 
economic forecasting using RNN. For instance, Hansika Hewamalage, Christoph Bergmeir, 
and Kasun Bandara (Hewamalage, Bergmeir, and Bandara, 2021) showed that RNN can be 
more accurate than such popular forecasting models as exponential smoothing (ETS) and au-
toregressive integrated moving average (ARIMA). However, unlike RNN, ETS and ARIMA 
models are reliable, efficient, convenient, and easily formalized. RNN, on the other hand, still 
represents poorly formalized models that need to be tailored for each case, with the success or 
failure depending on the qualifications of the researcher using them.

When considering the possibility of applying artificial intelligence and machine learning to 
economic forecasting, Stephan Kolassa wrote about the three major issues: scarce, opaque, 
and brittle data (Kolassa, 2020). And yet, the main tool of artificial intelligence and machine 
learning is neural networks! If we also consider that building RNN requires not only advanced 
programming skills but also knowledge of complex mathematical optimization methods that 
are a significant part of machine learning, it becomes clear why RNN in modelling nonlinear 
economic dynamics and economic forecasting are still relatively rare.

What needs to be done to make neural networks a usable tool in economic modelling and 
economic forecasting? How can we make them simpler so that any researcher applying math-
ematical methods in economic modelling but not possessing perfect forecasting skills could 
use them? How can we make the process of building and evaluating such a model simple and 
universal?

The answers to these questions can be found by turning our attention to alternative models. 
Pursuing this goal, the research focuses specifically on a mathematical model of an artificial 
neuron, the Kolmogorov-Gabor polynomial and the Wiener series, an elementary image of the 
Kolmogorov-Gabor polynomial, neural networks, and polynomial networks.

Results and Discussion
Mathematical Model of an Artificial Neuron
A neural network represents a set of j interconnected neurons. Each individual neuron has 

one or more inputs and one (and only one) output. Its mathematical model is a superposition 
of a linear multifactorial function and a non-linear function:
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where:
y j  – output signal of the j-th neuron;
f – transfer function; 
ai – weight of the i-th signal (factor); 
xi – i- th component of the input signal (factor);
i = 1, …, n – neuron input number; 
n - number of neuron inputs; 
a0 – free coefficient;
y’ – the result of the sum of the weighted input signals.
To avoid problems that may arise with data scales when working with neural networks, all 

variables are pre-normalized.
Artificial neuron models (1) differ from each other in the type of transfer function f(y'). 

Depending on the tasks that the researcher sets when forming a neural network, this transfer 
function can be a simple activation function, where the output signal takes a value of 0 or 1, 
or a more complex function that converts the sum of weighted input signals into a numerical 
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output. This conversion can be performed using a linear or nonlinear function.
One of the simplest variants of an artificial neuron model is when the transfer function is 

written as:
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Here, y’b and y’e are some predetermined constants of the minimum (base) and maximum 
(final) values of the output changes, and b is the proportionality coefficient.

At the output of the neuron, a signal is obtained that represents a superposition of two lin-
ear functions, and the coefficients ai and b can be easily estimated using statistical methods. 
But how can a nonlinear dependence between input factors and output be described using a 
linear neuron model? In order to do this, it is necessary to connect many linear neuron models 
to each other. And the more complex the configuration of such a neural network, the more 
accurately it will describe non-linearity. This process is reminiscent of the well-known piece-
wise-linear approximation method (Leenaerts, van Bokhoven, 2013). Since such networks rep-
resent a superposition of linear functions, their coefficients can be estimated using standard sta-
tistical methods, for example, the least squares method (LSM). However, since there are many 
coefficients in the neural network model, it is easier to solve this learning task using one of the 
numerical methods. Such simple neural networks are suitable for describing weak nonlineari-
ties. The more complex the nonlinear phenomena being described, the more cumbersome the 
neural networks with piecewise-linear transfer functions become. Therefore, neural networks of 
this type are rarely used in practice.

Most often, an S-shaped nonlinear function, called a sigmoid, is used as a transfer function. 
Networks with such transfer functions excellently describe nonlinearities and are less cumber-
some than networks with piecewise-linear transfer functions.

Among many possible functions with S-shaped forms, the most convenient ones are logistic:
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and the hyperbolic tangent
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However, in practice, these transfer functions are often simplified by setting all their co-
efficients bi equal to one. Direct application of well-known statistical methods, such as the 
method of least squares, to estimate the coefficients of an artificial neuron (1) turns out to be 
impossible, since the mathematical model of an artificial neural network in this case represents 
a superposition of many nonlinear functions of parameters. Therefore, to estimate the coeffi-
cients of an artificial neuron and a neural network, one of the numerical methods is used, most 
often the gradient method. In the gradient method, as is known, the value of the first derivative 
(gradient in the multifactor case) is calculated. Functions (3) and (4) differ from many other 
sigmoidal functions in their derivatives that are expressed through the function itself, with the 
gradient method easily applicable to them. It is precisely for this reason that the logistic func-
tion and the hyperbolic tangent have become the most popular types of transfer functions in 
neural networks.

Hereinafter, when considering an artificial neuron model, we will assume that its transfer 
function is represented in the form of (3) or (4). We will not consider the transfer function in 
linear form.
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Kolmogorov-Gabor polynomial and Wiener series 
In the work “Theory of Functionals, Integral, and Integro-Differential Equations” from 

1930, V. Volterra derived series that allow studying systems with soft inertial nonlinearities 
(Volterra, 1930). In 1958, N. Wiener, in his monograph “Nonlinear Problems in the Theory of 
Random Processes”, presented a modification of Volterra's series for the discrete case (Wiener, 
1958). This same problem for continuous processes was solved in 1956 by A.N. Kolmogorov 
(Kolmogorov, 1956), and in 1961, D. Gabor proposed a discrete variant of the “extended pre-
diction operator” based on it (Gabor, Wilby, Woodcock, 1961).

It turns out that the same scientific research tool was developed independently by two groups 
of researchers: V. Volterra and N. Wiener, as well as A.N. Kolmogorov and D. Gabor. This 
mathematical tool can be referred to as “Wiener series” or the “Kolmogorov-Gabor polyno-
mial”.

In published scientific works, results of forecasting obtained via the “Kolmogorov-Gabor 
polynomial” are encountered. For example, Hamidreza Marateb and other authors use this pol-
ynomial to predict COVID-19 hospital stays (Marateb, Norouzirad, Tavakolian, et. al., 2023), 
and Wei Liu and colleagues use this polynomial to forecast electrical load (Liu, Dou, Wang, 
2018). The term “Wiener Series” is not found in applied works but is used in published articles 
and monographs of mathematicians. For example, in the work of Wim van Drongelen, where 
the differences between the Wiener and Volterra series are discussed, which is helpful to derive 
the expressions for the zero-, first-, and second-order Wiener kernels (Wim, 2010). There are 
many other publications on solving practical problems where authors use not the concept of 
“Wiener series” but “Kolmogorov-Gabor polynomial” (Anjorin, Ricks, 2023; McElroy, Ghosh, 
Lahiri, 2024; Nelles, 2020; Razif, Shabri, 2023).

Since we are not considering the theoretical properties of this mathematical tool but are 
studying its practical applicability, we will adhere to the term that is commonly used in practical 
research, namely “Kolmogorov-Gabor polynomial” (hereinafter, KGp).

This polynomial can be represented in general form as:
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For example, for two factors, it will take the following form:
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It is obvious that estimating the values of 6 coefficients of such a model from statistical data 
does not present any difficulties. However, for three factors, the KGp will become significantly 
more complex and cumbersome, containing 20 unknown coefficients:
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If the number of factors increases to i = 4, then the number of KGp coefficients will grow to 
N = 70, and for i = 5, the number of coefficients to be estimated becomes equal to N = 252.

In general, the number of KGp coefficients grows nonlinearly with the increase in the num-
ber of factors i. This number is calculated using a well-known formula from combinatorics.

The enormous dimensionality of the KGp construction task with many original variables 
limits the practical application of this tool for modeling nonlinear dependencies. Therefore, “It 
may be mentioned that parameter-saving approximations to KG polynomials have interested 
researchers for a long time” (Terasvirta, Kock, 2010). The prominent Ukrainian scientist A.G. 
Ivakhnenko proposed a method of step-by-step decomposition of the KGp model construction 
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process, which he called a “multi-level system” (Ivakhnenko, 1963). He repeatedly used this 
method to solve practical problems and tried to popularize it (Ivakhnenko, 1971;1975). Frankly 
speaking, most scientific research using KGp employs the approach proposed by Ivakhnenko. 
Although it simplifies the method of estimating KGp coefficients, it remains cumbersome and 
is only suitable for cases with a small number of variables xi. The work (Svetunkov, 2024) shows 
that A.G. Ivakhnenko's method leads to the construction of a different polynomial, not KGp. 
For example, when i = 3, the polynomial constructed by Ivakhnenko's method contains 80 
terms, while KGp in this case should consist of 20 terms. This means that Ivakhnenko's “mul-
ti-level system” represents a different model than the KGp model, and its scientific significance 
becomes unclear.

Elementary image of the Kolmogorov-Gabor polynomial
The fact that scientists have not been able to propose a method for constructing KGp that 

could overcome the “curse of dimensionality” (Ivakhnenko, 1963) has deprived science of such 
a powerful modeling tool as KGp for many years. However, instead of the full KGp, its simpli-
fied analog (Svetunkov, 2024) can be used, which excellently handles modeling nonlinearities. 
Let's consider this possibility in more detail. For any number of variables xi, i=1, 2, …, m, 
affecting the variable y, a simple linear multifactorial model can be easily constructed:

� � � � � �y a a x a x a xm m


0 1 1 2 2 ...                                      (8)
The coefficients of this model are estimated by any statistical method, for example, LSM.
Then, the calculated values of the modeled variable need to be used in a polynomial of de-

gree m:
y b b y b y b ym

m� � � �� � � � � � � �
0 1 2

2( ) ... ( )                                  (9)
The coefficients of such a polynomial can also be estimated using one of the statistical meth-

ods. As can be seen, it is necessary to estimate 2·(m+1) unknown coefficients, where (m+1) 
coefficients from model (8) are estimated first, and then, based on these estimates and the cal-
culated values of the variable y, the other (m+1) coefficients from the model (9) are estimated. 
Both models (8) and (9) are linear in parameters, and the coefficients of these models can be 
easily found for sufficiently large m.

If we now substitute model (8) into equation (9) and expand the brackets, we can group the 
terms to obtain a structure and several terms that fully correspond to the structure and number 
of terms in KGp, thus deriving the desired polynomial model.

The system (8) – (9) can be represented in a more compact mathematical form:
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Models (8) – (9) or (10) do not represent KGp, but rather an approximate model of it. 
Indeed, it can be observed that a significantly smaller number of coefficients is estimated 
than would be necessary if constructing a KGp. For example, for m=3, the proposed method 
estimates 4+4=8 unknown coefficients, whereas the complete KGp, as indicated in (7), con-
sists of 20 terms, requiring the estimation of 20 unknown coefficients. The smaller number of 
coefficients implies that model (10) provides approximate estimates of the KGp coefficients. 
Essentially, this means that a complete KGp is not constructed, but rather its simplified model, 
which has been proposed to be referred to as the “Elementary image of KGp” (Svetunkov, 
2024).

The advantages of the elementary image of KGp over the KGp itself rest on the fact that 
the elementary image can be constructed for any number of variables, while the original KGp 
can only be constructed for a small number of variables. However, this does mean that the 
simplified representation of KGp captures nonlinearities less effectively than the original KGp. 
Nevertheless, previous studies have shown that, even though the elementary image of KGp is a 
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simplified model, it possesses excellent approximation properties and describes various nonlin-
ear relationships very well (Svetunkov, 2024). 

Comparison of the Artificial Neuron Model and the Elementary image of KGp
If we compare the artificial neuron model (1) with the elementary KGp model (10), certain 

similarities can be observed. Firstly, both the neuron model and the polynomial model are un-
structured statistical models. In regression analysis within mathematical statistics, it is assumed 
that the form of the relationship between input and output factors is explicitly represented by 
some function. It is presumed that the identified regression relationship is the model of the ex-
pected value of the modelled process, which evolves according to the properties of this model. 
The diversity of modelled processes significantly exceeds the forms of regression relationships 
used in mathematical statistics (Izonin et. al., 2024). Therefore, in econometrics, when select-
ing an econometric model, the researcher aims not to choose the best model but to select an 
acceptable model based on the principle: “Since I do not have other forms of functions for the 
econometric model, I will use this one as the best of a bad lot.” Both the neuron model and the 
polynomial model do not require knowledge of the practical use since the form is automatically 
selected during the estimation of the neuron and polynomial coefficients, and the researcher is 
not familiar with this form. Therefore, both models are “blackbox” models, where the structure 
of the model is of no interest. The second similarity between the neuron and polynomial models 
will be even more apparent if we represent the artificial neuron model (1) as follows:
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and the model of the elementary image KGp can be represented as follows:
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It is evident that in both cases (11) and (12), the first equation in the system represents a 
multi-factor linear model of the same type, while the second equation in both (11) and (12) 
represents a transformation of the obtained result. Thus, the structural similarity between the 
artificial neuron model and the elementary KGp model is apparent.

However, in the artificial neuron model, the coefficients of the linear transformation and the 
transfer function are estimated simultaneously. Therefore, (11) is presented as a system of two 
equations. In contrast, in the elementary KGp model, the coefficients of the first equation are 
estimated first, and then the obtained results are substituted into the second equation. Thus, this 
is not a system of two equations but rather two sequential equations.

Aside from the obvious similarities between these two models, there are also several signifi-
cant differences. The first obvious difference lies in the methods of estimating the coefficients 
of the neuron and the elementary KGp model. In the artificial neuron model (11), all its co-
efficients (for both the first and second equations) are estimated simultaneously, and due to 
the nonlinearity of the transfer function parameters, one of the numerical methods is used for 
this purpose. In the elementary KGp model (12), the coefficients are estimated in two stages: 
first, the coefficients of the first linear equation are estimated, and then the second polynomial 
equation is evaluated. Both equations are linear in their parameters, and coefficient estimation 
can be performed using straightforward statistical methods (Chen et. al., 2021).

Considering the difference in estimation methods, it should be noted that the process of 
estimating the coefficients in the elementary KGp model is significantly simpler and faster than 
estimating the coefficients of the artificial neuron model.

The second difference between them is that the artificial neuron is consistently nonlinear 
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regardless of the number of input variables (signals), whereas the elementary KGp model in-
creases its level of nonlinearity and its approximation power with the number of input variables. 
As shown in (Liu, Lu, Luo, 2020), artificial neurons with a sigmoid transfer function are well 
described by third-degree polynomials. This means that the elementary KGp model may de-
scribe nonlinear processes somewhat worse than the artificial neuron if the number of inputs m 
< 3. However, if the number of input factors m > 3, the elementary KGp model may be more 
accurate than the artificial neuron model. For m = 3, both models are expected to provide 
approximately the same level of approximation accuracy.

Example. We will use data on the Gross Domestic Product (GDP) of the United Kingdom 
(yt), gross capital accumulation (x1), and the economically active population of the country 
(x2) from 1990 to 2016. We aim to find the dependence of GDP on these two other factors. 
Based on this data, we will construct both an artificial neuron model and an elementary KGp 
model, first normalizing all data. We will minimize the sum of the squared deviations between 
the actual and calculated values.

As expected, the artificial neuron model approximated the original data slightly better. The 
mean squared error of approximation for the neuron model was 0.0189, while for the elemen-
tary KGp model, it was 0.0228.

Now, we will add a third factor (x3) to this data, namely, the expenditure on research and 
development in the UK for the same period. For the artificial neuron model, the mean squared 
error of approximation is 0.01753, and for the elementary KGp model, it is 0.01734. Appar-
ently, the elementary KGp model provided a slightly more accurate description of the data 
compared to the artificial neuron model.

Of course, different results may be observed in various cases, but generally, it should be as-
sumed that as the number of input factors increases in these two models, the elementary KGp 
model has a greater capability to describe nonlinearity compared to the neuron model.

Neural networks and polynomial networks
In practice, no one uses a mathematical neuron model as a standalone model for describing 

some nonlinear dependency. The true power of this modelling tool becomes apparent when 
connecting elementary neurons together, where the outputs from preceding neurons serve as 
inputs to subsequent neurons. Such an interconnected network of artificial neurons can describe 
very complex nonlinearities between input and output variables. Therefore, well-constructed 
neural networks prove to be so accurate in approximation that other known modelling methods 
cannot compete with them, including regression-correlation analysis methods.

Since we have just seen that the elementary KGp model can successfully compete with the 
neuron model, it is natural to assume that a network connecting such polynomials with each 
other might also serve as an alternative to neural networks.

Let us compare two networks of the same structure: a neural network and a polynomial 
network. But first, let's revisit the methods of estimating the coefficients of these networks. In 
neural network theory, this process is called “training,” and we will use this term along with 
“estimation.”

If a multilayer neural network is subjected to one of the numerical training methods (most 
commonly, the gradient method), all coefficients of the network are estimated simultaneously. 
In this process, the coefficients of the output layer play a major role — they are estimated more 
extensively, while the coefficients of preceding layers are either not trained at all or are poorly 
estimated. This happens because the error at the output is completely addressed during the 
training of the output layer. To mitigate this issue, Rumelhart, Hinton, and Williams proposed 
the backpropagation algorithm in 1986. This procedure involves “distributing” the training error 
across all estimated coefficients of the neural network and adjusting the gradient method so 
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that the training of the coefficients in the last layer proceeds more slowly than the training of 
the coefficients in preceding layers. This is achieved using both the model's coefficient values 
and the gradient method parameters, which are adjusted depending on how far the coefficient 
is from the network output.

As the simple explanation of neural network construction shows, using them in applied 
research requires a good understanding of mathematics and programming skills, as training a 
neural network is an iterative process with many simultaneously estimated parameters. Often, in 
practice, researchers use standard template networks and software products with pre-embedded 
training procedures for neural networks of a given structure. In other words, researchers do not 
design the structure of the neural network for their specific tasks but use a ready-made template 
developed by someone else for different tasks. In such cases, the advantages of neural networks 
are not fully realized, and their application becomes less effective.

The complexity of training neural networks is the main drawback hindering their widespread 
practical application in modelling complex economic processes. In contrast, polynomial net-
works are straightforward to train. In polynomial networks, not all coefficients are estimated 
simultaneously but sequentially — from the coefficients of the input layer to those of the output 
layer. The results from one layer's estimation serve as the basis for estimating the subsequent 
layer. Once all the coefficients of the polynomial network have been estimated in stages, the 
training is complete. There is no need to re-estimate the model coefficients in search of a better 
solution — the best solution has already been found. This means that training a polynomial 
network does not require recurrent methods; in general, the well-known least squares method 
is quite sufficient for this task.

Thus, training neural networks requires significant time and the use of complex computa-
tional methods. In contrast, training polynomial networks takes negligible time and employs 
basic statistical methods. However, it should be clarified whether the simplicity of training pol-
ynomial networks leads to a loss of accuracy in modeling.

To address this question, let us build a two-layer neural network and an equivalent two-layer 
polynomial network using data on the UK's GDP (y) in relation to gross capital accumulation 
(x1), the size of the economically active population (x3), spending on research and develop-
ment (x3), and the size of social benefits in the UK (x4).

We will test how these two networks perform in three cases using the given data:
1. From 1990 to 2020,
2. From 1990 to 2021,
3. From 1990 to 2022.
Since the influence of the first three factors on the GDP is approximately the same — they 

are factors that generate GDP — and the influence of social benefits (x4) is somewhat different 
— they consume funds from the state budget and social funds — we will construct the neural 
network and the polynomial network in the following manner:

Fig. 1. Graphical model of a neural network and a polynomial network
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For the neural network, each circle represents an artificial neuron, while for the polynomial 
network, each circle represents an elementary Kolmogorov-Gabor polynomial. A total of three 
neurons and three polynomials are used.

Since, after normalizing the initial data, it becomes both negative and positive, the transfer 
functions of the first two neurons are represented as logistic functions, while the transfer func-
tion of the last neuron is represented as a hyperbolic tangent function.

Alongside these two networks, we will also assess the accuracy of modelling this dependency 
separately with an artificial neuron model (using a hyperbolic tangent transfer function) and a 
Kolmogorov-Gabor polynomial model. The comparison results are presented in Table 1.

Table 1. Results of approximation of UK data by different models for specific periods of time

Model type
Neural 
network

Polynomial 
network

Artificial neuron 
model

Elementary image 
of the Kolmogorov-
Gabor polynomial

1. 1990 – 2020

Average sum of squares of 
approximation error

0.0077 0.0062 0.0310 0.0057

Standard deviation in % 11.14 10.02 15.47 9.60

Number of passes when 
evaluating coefficients

85 864 5 3 729 2

2. 1990 – 2021

Average sum of squares of 
approximation error

0.0087 0.0075 0.0416 0.0068

Standard deviation in % 9.18 8.09 17.12 6.86

Number of passes when 
evaluating coefficients

34 252 5 15 011 2

3. 1990 – 2022

Average sum of squares of 
approximation error

0.0216 0.0237 0.0745 0.0275

Standard deviation in % 17.31 18.12 32.15 19.55

Number of passes when 
evaluating coefficients

36 111 5 19 136 2

It is crucial to compare two models: the neural network model and the polynomial network 
model. The results show that in two out of three cases, the polynomial network was more 
accurate in approximation than the neural network. This does not necessarily mean that this 
ratio will hold in all cases; it only indicates that the polynomial network used in this example 
performed as well as the neural network. Both networks work with similar accuracy — their 
approximation standard errors differ by about one percent. However, the advantages of the pol-
ynomial network over the neural network become evident when considering the time required 
for training each network.

It is also worth noting that the elementary Kolmogorov-Gabor polynomial (the last column 
in Table 1) was the best model in terms of approximation accuracy in the first two cases and 
only 2.24% worse than the leader in the third case. This further confirms that the elementary 
Kolmogorov-Gabor polynomial can serve as an alternative to neural networks in modelling 
economic dynamics (Svetunkov, 2024).

Bayesian approach
Neural networks have a significant drawback. During the training process, the computational 

algorithm adjusts the network parameters to achieve the best output. However, it is impossible 
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to understand how each neuron and each input factor influence the result based on the comput-
ed parameters. This limitation severely restricts the application of neural networks in modelling 
economic processes and, particularly, economic dynamics, as the meaning of the evaluated 
model parameters remains unclear.

Today, one of the actively developing approaches in economic modelling is the Bayesian ap-
proach. Generally, the Bayesian approach involves updating prior (a priori) conclusions based 
on new (posterior) data. In a narrower sense, Bayesian methods refer to statistical methods that 
use Bayes’ theorem to compute conditional prior and posterior probabilities based on probabil-
istic distributions.

The Bayesian approach, both in its broad and narrow senses, is used by researchers in 
solving various econometric problems and economic forecasting tasks. One would expect the 
emergence of Bayesian methods applied to neural networks, but “neuro-Bayesian methods” 
currently exist only in theory. Applying the Bayesian approach to neural networks has proven to 
be impossible due to the neural network being a “blackbox” with an unknown structure to the 
researcher. Attempts to mathematically describe this network using multi-stage superposition 
of functions have been unsuccessful due to the complexity of the final mathematical model. 
Of course, the researcher knows the number of neurons, the connections between them, the 
number of “synapses,” etc. But what is still impossible to trace is how the transformation of 
the input signal into the output signal occurs and how the factors and coefficients of the neural 
network influence the result.

Dynamic processes in economic systems can be classified into reversible and irreversible 
processes. Reversible processes are such that when returned to their initial condition, they will 
proceed in the same manner as before. In contrast, in economic systems where irreversible 
processes occur, there are not only quantitative but also qualitative changes. The latter means 
that the relationships between elements, the set of elements, and even the structure of the sys-
tems change — new elements emerge during evolution, and some old elements disappear. If a 
statistical model is constructed for such processes that adequately describes the past on average, 
then for it to be used as a forecasting model, its parameters need to be updated based on new 
posterior information for the model, i.e., the Bayesian approach must be employed.

Methods of model adaptation and adaptive models developed in forecasting serve as one of 
the tools for the Bayesian approach in its broad sense. Practice shows that their application 
significantly improves the accuracy of economic forecasts made using regression models. The 
widely known exponential smoothing method in short-term forecasting is one such method.

Unlike neural networks, in polynomial networks, the influence of each coefficient and factor 
on the result is known. This means that the Bayesian approach can be applied to polynomial 
networks, making them suitable for forecasting economic dynamics. To demonstrate this pos-
sibility, we will use one of the methods for adapting econometric models based on stochastic 
approximation.

We will use the same neural network and polynomial network models that were constructed 
using GDP data from the UK with four factors for the years 1990 to 2020. The subsequent 
years, 2021 and 2022, will be used as a validation period to test the suitability of the models for 
forecasting.

Polynomial network adaptation was performed on this data, while the neural network, as 
mentioned earlier, is not suitable for Bayesian evaluation and thus remained unchanged. In 
contrast, the adapted polynomial network, the original polynomial network, and the neural 
network were used. The results of forecasting the UK GDP using each of these three models 
for 2021 and 2022 are presented in Table 2.
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As expected, the Bayesian approach to adapting the polynomial network improved its fore-
casting capabilities — the adapted polynomial network predicted the UK GDP more accurately 
than both the non-adapted original polynomial network and the neural network.

Conclusion
When modelling many economic processes, scientists and practitioners often face situations 

where none of the statistical models provide the necessary accuracy. In such cases, there is a 
desire to use some unstructured model like neural networks, but they are complex to apply, and 
examples of their successful use in economic practice are few.

The Kolmogorov-Gabor polynomial is a powerful tool for modelling nonlinearities, but as 
the number of influencing factors increases, the polynomial's structure becomes significantly 
more complex, which limits its applicability. Results of using KGp are limited to polynomials 
with a small number of explanatory variables — between three and five. The multi-stage proce-
dure for constructing KGp proposed by A.G. Ivakhnenko in the 1970s turned out to be quite 
inefficient.

The method for constructing a simplified KGp model suggested in this research avoids these 
drawbacks — it is easy to construct, its parameters are easily estimated, and its size can be 
arbitrary. This method provides an approximate estimate of the actual KGp, which is why the 
model is referred to as the “elementary image of KGp.”

Research has shown that the elementary image of KGp describes nonlinear economic pro-
cesses well and can itself serve as an important tool for economic-mathematical modelling.

Structurally and functionally, the elementary image of KGp is very similar to an artificial 
neuron model. This means it can be used as a basis for developing another type of unstructured 
(sometimes referred to as non-parametric) models that describe complex nonlinear processes 
— polynomial networks.

Polynomial networks can have the same structure as neural networks. They can be sin-
gle-layered or multi-layered, feedforward or recurrent — essentially, they can be like neural 
networks, but instead of artificial neuron models, they use elementary images of KGp.

It should be noted that specialists in neural networks have already used power polynomials 
instead of sigmoids in the transfer function of neural network models. These networks are re-
ported to train faster and have very good approximate properties. However, it is not clear what 
degree these polynomials should be. Since there is no answer to this question, researchers use 
polynomials of small degrees or linear forms, referring to KGp. Moreover, unlike the polyno-
mial networks discussed in this article, all coefficients of such neural networks with polyno-
mial transfer functions are trained simultaneously, which implies a multi-iterative evaluation 
procedure. In the proposed polynomial networks, each elementary image of KGp is trained 
separately, which ensures quick and efficient estimation of all polynomial network coefficients.

As demonstrated with simple examples, training a simple two-layer feedforward neural net-
work required several tens of thousands of passes, while a polynomial network of the same 
structure needed only a few simple iterations. The accuracy of describing economic nonlinearity 

Table 2. Comparative accuracy results, the UK GDP forecast by three models

Year Factual data, yt

Adapted polynomial network
Original polynomial 

network
Neural network

forecast % error forecast % error forecast % error

2021 1.580226 1.39129 12.7 1.376194 13.80 1.375751 13.83

2022 2.001742 1.89455 5.5 1.559506 24.84 1.375753 37.07
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is approximately the same for both neural networks and polynomial networks.
A significant advantage of polynomial networks is the possibility of applying the Bayesian 

approach — reassessing the parameters of the polynomial network based on new posterior data. 
This possibility was demonstrated through the adaptation of a polynomial network using the 
stochastic approximation method. The Bayesian approach to neural networks is currently im-
possible, and neuro-Bayesian methods are still in the stage of unsuccessful development.

Of course, the proposed polynomial networks based on the elementary image of KGp require 
additional and extensive research. However, it is already clear that they can serve as an alter-
native to neural networks in modelling complex economic processes.
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