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Abstract. The paper considers the machine learning problem of simultaneous estimation of the
conditional survival distribution and dynamic characteristics of computational tasks. The problem
arises in cluster workload management and is extremely relevant for optimal scheduling. To solve
the problem, a new method is proposed, based on the combination of the attention mechanism
and the random survival forest. The key feature is the use of a tree structure derived from a random
survival forest. The forest construction algorithm uses only the survival dataset. Each leaf uses
the unconditional Kaplan-Meier estimate, which is a serious limitation of the forest, especially
for rare events in some parts of the feature space. Moreover, the random survival forest does not
allow estimating the dynamic parameters of the task. The proposed method solves these problems
by extending the already constructed random survival forest with the attention mechanism inside
each leaf of the tree. The Beran estimator is used to model survival distribution, and the Nadaraya-
Watson regression with the same parameters is used to predict the dynamic characteristics of
tasks. To do this, subsets of training data corresponding to the same leaf as the input vector are
used. As a result, the joint model is obtained that allows us to estimate the survival function more
accurately and at the same time to predict the dynamic characteristics of the task. The developed
model combines the advantages of smooth models based on the attention mechanism and stepwise
decision trees.
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Annoramusa. B crathe paccMmaTpuBaeTcs 3amadya MaIIMHHOTO OOYYeHMSI, 3aKJII0YaloIascs B
OIHOBPEMEHHOI OlLIEHKE YCIOBHOIO pacmlpenesieHUs] BBKMBAEMOCTU M AMHAMUYECKMX Xapak-
TePUCTUK BBIYUCIUTENbHBIX 3afa4. [IpobjiemMa BO3HUKAET MpU YIIpaBJIeHUU paboUeil Harpy3Koii
KJlacTepa, U KpaiiHe akTyajbHa JJisl ONITUMAaJIbHOIO MIaHupoBaHUs. [IJ1s pelieHus 3aaauu npes-
JIOXKEH HOBBI METOJ, OCHOBAaHHbI/f Ha KOMOMHALMK MeXaHW3Ma BHUMaHUS U CJydyaiiHOM Jiece
BbDKMBaeMOCTH. KiTtoueBoii 0COOCHHOCTHIO SIBISIETCSI MCIIOIb30BaHME IPEBOBUIHOM CTPYKTYPHI,
MOJIyYeHHOH CIIy4aiiHBIM JIECOM BBIKMBAaHUS. AJITOPUTM IMTOCTPOCHMS JieCa OIMUPaeTCs TOJIbKO Ha
laHHbIE 33aJa4l BbKMBAaeMOCTU. B KaXIoM JiMCTe UCMoJib3yeTcsl Oe3ycyioBHas oleHka Karma-
Ha-Meiiepa, 4TO SIBJISIETCSI CEPbE3HBIM OTPaHUYEHUEM Jieca, OCOOEHHO B Cllydyae peakux coObl-
TUI1 B HEKOTOPBIX YaCTIX MPOCTpaHCTBA MpU3HaAKOB. boJjiee TOro, ciaydyailHbIi jiec BIKMBAEMO-
CTU HE MO3BOJISIET OLIEHUTh TMHAMUYECKUEe MmapaMeTpsl 3aaauu. [IpeniaraeMblit MeTO peliaer
IaHHBIC TPOOJIEMBI, TOIIOJHSIS Y3Ke TTOCTPOSCHHBIN CTyYaHBIN JieC BBLKMBAEMOCTH MEXaHN3MOM
BHMMAaHUS BHYTPU KaXKIOro JUCTa aAepeBa. s MogeIMpoBaHUs BEIKMBAEMOCTU IIPUMEHSIETCS
olieHka bepaHa, a i mpeackasaHus IMHAMUYECKUX XapaKTepUCTUK 3aaay — perpeccust Hama-
pasi-BarcoHa ¢ TeMu xe mapamerpamu. it 3TOro MCIOJb3YIOTCS MOAMHOXECTBAa 00yJalolnx
JIAaHHBIX, COOTBETCTBYIOII[IE TOMY Xe JIMCTY, YTO U BXOAHOI BeKTOp. B pedyabrare mojyyeHa co-
BMECTHasl MOJIeJIb, MO3BOJISIOIIAs 060Jiee TOYHO OLIEHUTh (DYHKIIMIO BBIXKMBAEMOCTU U OJTHOBpE-
MEHHO TpecKa3aTh JMHAMUUYECKHUE XapaKTepUCTUKHU 3aaaur. PazpaboTaHHass Mo/ieib COUETAET
B ce0e MperMylecTBa IIaaKuxX MOJesieil, OCHOBAaHHBIX Ha MEXaHM3Me BHUMAaHMUS, U CTyIIeHYA-
ThIX IEPEBbEB PELLICHUN.

KioueBsle ciioBa: MalmmHHOE OOyYeHUE, aHATIN3 BBDKMBACMOCTH, MEXaHW3M BHUMAaHMSI, CITydaii-
HBIH JIec BEIKMBAEMOCTH, OlicHKa bepaHa

®uuaHcupoBanue: VcciaemoBaHre BBITTOTHEHO MPY YaCTWMYHON (PUHAHCOBOM mommepkke MUHU-
CTepCcTBa HayKW M BBICIIETo oOpa3oBaHus Poccmiickoit Demepaliiii B paMKax ToCyIapcTBEHHOTO
3amaHusI «Pa3paboTka 1 MccIeqoBaHUe MOICICH MAITMHHOTO O0YIeHUS TSI pellieHHsT (hyHIaMeH-
TaJbHBIX 32a4 MCKYCCTBEHHOIO MHTEIICKTa B TOTUIMBHO-3HepreTnyeckoM komiuiekce» (FSEG-
2024-0027).

Jlna nmutuposanusa: Konstantinov A.V. Predictive models and dynamics of estimates of applied
tasks characteristics using machine learning methods // Computing, Telecommunications and
Control. 2024. T. 17, Ne 3. C. 54—60. DOI: 10.18721/JCSTCS.17305

Introduction

Computational clusters are widely used to solve problems that require significant computing power,
allowing many computational tasks to be performed simultaneously. One of the key aspects of effective
cluster resource allocation planning is estimating the parameters of computing tasks, such as execution
time, and individual characteristics that are unknown at the time the task is launched. Each computa-
tional task is characterized by a feature vector that is a set of input parameters, including user-specified
characteristics and parameters determined by the state of the system at the time the task is queued, in-
cluding its execution time. After starting a task, two outcomes are possible: the task is completed within
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the allotted time, or the task is terminated by the control system after the specified time has elapsed, in
other words, censoring occurs. Thus, the task of estimating execution time is to determine the expected
time to an event (completion of a task) under censoring conditions and is the task of survival analysis.

The i-th training observation consists of input feature vector x, time to event 7, censoring indica-
tor 6i and target vector of computational task parameters y. The event in the current problem is task
completion or interruption. The time to event 7, corresponds to the time between the task launch and
completion or interruption, depending on 8[. The censoring indicator 8[. = 1, if the task has finished
normally. Otherwise, the task execution has interrupted. The interruption can be caused by time limit
violation or some program error. In this case, the observation is called censored in terms of survival anal-
ysis. Finally, the training data set D is composed of NV labeled training observations:

D:{(x,'ati’si’ yi)}ilil'

Since the execution time does not depend on the input feature vector deterministically, we introduce
T, arandom variable corresponding to the execution time. The main goal is to estimate the parameters of
an applied task y (x) , including, but not limited to, the expected execution time of the task, conditioned
on the input feature vector x:[E [T |X = x:l . More generally, the survival distribution S (t |x) is of
interest.

Survival Models

In this paper, we consider two base models for survival function estimation. The first is the Random
Survival Forest (RSF) [1]. It is a machine learning algorithm that does not impose any assumptions on
the data distribution, which makes it different from classical survival analysis methods for conditional
distribution estimation, for example Cox Proportional Hazards [2]. Instead, it partitions the data using
feature vector x, and then estimates distribution shape based on unconditional non-parametric statis-
tics. The second model is the Beran estimator [3]. It can be considered as the kernel-based extension
of Kaplan-Meier unconditional estimator to the conditional case. Given the weight function W, the
method estimates conditional survival function as:

Z;=1W(x’xj)

where W is normalized over dataset points, and training observations are ordered such that time ¢, in-
creases by the index i. Specifically, in the original Beran the weights are obtained by normalization of
kernels:

W_(lx, X, )

b

§<t|x):Hzisz 1- 1—

K(x,x,) '
Zj;K(x’ xj)

Let us describe the RSF construction and prediction algorithms. Like in classical Random Forest,
the trees of the forest are built independently of each other, using different random dataset subsamples
and feature subsets (random subspace method). Each tree is built by a recursive algorithm. At each step
the algorithm considers a tree node and tries to make a split, resulting in two child nodes, connected to
the node. The data point falls to the left child node if some selected feature value is less than the specific
threshold, and otherwise it falls to the opposite, right node. When splitting a node, at the training stage,
the feature and threshold values are determined by optimizing goodness of split criterion. The main goal
of splitting is to divide the sample received into it in such a way that the survival distributions for the left

W(x,xl.)z
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and right subtrees are as different as possible. For this purpose, the logrank test is used as a criterion. The
training algorithm stops splitting a node, when the number of training data points falling to the node is
less than some predefined number. The resulting decision trees can be used to estimate the conditional
survival function for a new observed input feature vector: at each leaf of each tree, a nonparametric
Kaplan-Meier estimator is constructed based on the data falling to the leaf. Note that even though such
an estimation is unconditional, each leaf of the tree corresponds to a strictly defined region of space for
which this estimation is valid.

Attention mechanism

The attention mechanism is the main element of the most successful method for processing sequenc-
es, including natural language, the Transformer [4]. It is implemented as a convex combination of vec-
tors called value vectors, where the weights are obtained by kernel applied to the query and key vector
pairs. This mechanism allows the model to focus on the most important parts of the input data when
making predictions. In recent years, attention mechanisms have been successfully applied to problems
from other domains, such as computer vision, speech recognition, and regression and classification [5].
Despite successful application of attention mechanism to many machine learning problems, attention
mechanisms and their combinations with decision trees have not previously been used to estimate sur-
vival distributions, and simultaneously solve survival analysis and regression problems.

Attention mechanism can be formalized as follows. Let g be a “query” vector, {(ki,v[ )}il be a set of
“key-value” pairs, and “score” be a function mapping pair (q,kl.) to relative score or relevance of the
query to the key. Attention of “q” to the given set of pairs is the convex combination of values v.:

Ala k)l )= D a,

where coefficients o, are defined as:

o, = (Softmax [(score(q,kj ))K Dl _ Zexp(score(q,kl.))

Jj=l j‘(=1 exp<score(q,kj)) |

Therefore, attention is a function of vector and a set of pairs of arbitrary size, which maps them the
one vector, characterizing the set for the query linearly. By using this property, attention was successful-
ly applied for improving Random Forest performance [6]. It should be noted that attention resembles
well-known kernel regression algorithm, called the Nadaraya-Watson regression [7]. Indeed, if score is
defined as:

2
s

1
score(q,k) = —E”q - k|

and as pairs (xi, yl.) are considered, then attention is equivalent to the Nadaraya-Watson regression
with the Gaussian kernel. However, the “score” function can be more complex, reflecting complex
structure of the dataset, for example, it can be implemented as a neural network and trained in an end-
to-end manner [8].

Attention-based Random Survival Forest

We propose a new approach based on incorporation of the attention mechanism into RSF for esti-
mating the parameters of applied tasks, called Attention-based Random Survival Forest (ABRSF). The
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key idea of ABRSF is to leverage the same attention weights to improve quality of survival estimation and
to approximate the task parameter vector.

The algorithm consists of two steps. At the first step, a classical RSF is constructed using the surviv-
al dataset. Its leaf nodes estimate unconditional survival distribution by the Kaplan-Meier estimator.
These estimators can be replaced by the Beran models, based on attention weights, instead of classical
kernels. At the same time, the same attention model can also be considered as kernel regression and
applied with the same kernel to solve the task parameter vector estimation problem [8]. Formally, in
each tree leaf attention weights are calculated based on the train data points which fall into the same
leaf as “keys”, and an input vector as “query”. Then, for survival function estimation Beran estimator is
applied, where attention weights are as used instead of kernels. For the task parameter vector estimation
simply the attention mechanism is used, where “values” are training dataset task parameter vectors. It is
important, that the attention in the proposed model is applied only locally, where neighboring points are
determined by the RSF structure, which was optimized for the survival problem. The obtained model is
smooth inside each region defined by leaf, and has discontinuities at separating hyperplanes, defined by
internal nodes of the forest trees.

The described one-step approach allows us to solve the formulated problem but has the following
drawback: different random forest trees, depending on the training subsample and feature subspace,
have different accuracy. In addition, some trees may be accurate in the context of a survival problem
and less accurate in the context of a regression task of estimating target parameters. To eliminate this
drawback, we modify the proposed approach by adding tree weights. In addition to estimating the target
parameters, each leaf of each tree also estimates the input feature vector using the same mechanism,
where feature vectors are used as “values”, as well as “keys”:

f= A(x,{(xz,. X, )}2),

where [ represents indices of train dataset points, falling into the same leaf as x, and Kl is the number of
such points. The negative distance or “score” between x and its reconstruction X can be used as a meas-
ure of attention weights quality. By how close the input feature vector is to its estimate, one can judge
about closeness of the target parameter vector estimate to the true value. So, next, the feature vector
reconstructions obtained from different trees act as keys for the global attention.

Let the )E( J ) be a reconstruction of the input feature vector x by the j-th tree, and the f/( J ) be the
task parameter vector estimation by the same tree. Then the final estimation is defined by the attention:

y:A(x,{()?(j)af’(j))};l)’

where T is the number of trees. The “query” is the original feature vector, the “keys” are reconstructed
feature vectors, and the “values” are the estimates of the task parameter vector. The same technique is
applied to combine tree survival function estimations to the final one.

Finally, the ABRSF model consists of two layers: tree-level estimations and forest-level weighted
combination. The scheme of the ABRSF model is shown in Fig. 1. At the first layer, each tree estimates
three parameters: the survival function, encoded as a vector, the task parameter vector, and the input
vector reconstruction. At the second layer, tree-level estimates are combined by using attention weights,
obtained by collating the input vector reconstructions with the given input feature vector. After passing
these two layers, the final estimates are locally smooth and more precise than piecewise constant RSF
ones. Moreover, the task parameter vector is calculated by using the RSF structure, because only points
in the same leaf are considered in each tree, which lead to more accurate results when the survival data
is correlated with the estimated vector.
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Fig. 1. ABRSF model scheme

Conclusion

The problem of joint target parameter vector and survival distribution estimation has been consid-
ered. The novel method, based on combination of Random Survival Forest and Attention mechanism,
and called ABRSEF, is proposed. The developed method has advantages in comparison to classical forest:
it builds piecewise smooth prediction models and leverages the survival tree structure, when estimating
the task parameter vector. As a further direction, this approach can be expanded by using multilayer
neural networks in the attention mechanism and training the model on regression and survival analysis
problems simultaneously, using the backpropagation algorithm, as well as adapting the approach for
correctly processing missing features in the input data.
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