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Abstract. It is well known that the efficiency of task dispatching in any supercomputer system 
is determined, first of all, by the adequacy of the system model used, as well as the accuracy 
of the estimation of the parameters of the model itself. The article proposes a new version of 
the supercomputer cluster model, based on a standard model of the M/M/∞ class queueing 
system, which is supplemented with two fundamental clarifications that reflect the features of 
the supercomputer operation. First, the processing time of each task is limited by the dispatcher 
using a random variable distributed according to the exponential law. Second, it is considered that 
each new task requires the allocation of a random number of service channels (processors) for 
its execution. The parameters of the proposed queueing model are estimated based on statistical 
processing of data obtained during calculations previously performed on a supercomputer. A 
number of examples of using the developed model are given. To calculate the parameters of the 
queueing system, it is proposed to use the method of generating functions.
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Аннотация. Хорошо известно, что эффективность диспетчеризации задач в любой су-
перкомпьютерной системе определяется, прежде всего, адекватностью используемой 
модели системы, а также точностью оценки параметров самой этой модели. В статье 
предлагается новая версия модели суперкомпьютерного кластера, основанная на типо-
вой модели системы массового обслуживания класса M/M/∞, которая дополнена двумя 
принципиальными уточнениями, отражающими особенности функционирования супер-
компьютера. Во-первых, время обработки каждого задания ограничивается диспетчером 
с помощью некоторой случайной величины, распределенной по показательному закону. 
Во-вторых, считается, что каждая новая задача требует для своего выполнения выделения 
ей случайного числа каналов обслуживания (процессоров). Параметры предложенной мо-
дели массового обслуживания оцениваются на основе статистической обработки данных, 
полученных в ходе расчетов, ранее выполненных на суперкомпьютере. Приводятся ряд 
примеров использования разработанной модели. Для расчета параметров системы массо-
вого обслуживания предлагается использовать метод производящих функций.

Ключевые слова: система массового обслуживания, распределение задач, суперкомпью-
тер, случайное время выполнения, случайное число каналов обслуживания
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Introduction

Analytical research of supercomputer systems is of significant theoretical and practical interest. Cur-
rently, it is generally accepted that when modeling computer systems, the use of queueing theory is an 
adequate apparatus [1, 2]. Supercomputer systems (computer clusters) are extremely complex technical 
devices. If we try to model such a device as accurately as possible with all the smallest nuances of its be-
havior, the resulting mathematical model turns out to be very complex and, as a rule, makes its detailed 
analytical study very difficult. Therefore, it seems reasonable to start with a study of a simplified model,  
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which so far takes into account only the most important, fundamental factors that reflect the very essence 
of the phenomenon under study.

The queueing model proposed in this article, designed to describe the behavior of a supercomputer, 
takes into account two such factors that are fundamentally important for its functioning. First, it is 
necessary to take into account that each newly received service request may require a random number 
of service channels (processors) for its execution. Second, the execution time of each service request is 
limited in a certain way by the task manager. We will examine in more detail each of the two above-men-
tioned assumptions.

Queueing systems with a branching process for executing requests, in which each request is processed 
by several servers at once, form a special new class [3, 4]. In the English-language scientific literature 
such systems are called “the fork-join queueing systems”. There is no generally accepted terminological 
analogue in Russian-language literature yet. Some authors [3, 4] suggest using a term in Russian that is 
translated in English as “parallel serving systems”.

In this article we will consider a parallel processing system in which each service request is split into 
a random number of subrequests. Such queueing systems began to be studied quite a long time ago, back 
in the early 1980s [5, 6]. The general idea of the functioning of a fork-join system is as follows. Its input 
receives a random stream of calls (requests). At the time of receipt, any request is divided into a random 
number of smaller related requests (subrequests), each of which can be processed by one of the system 
servers.

Currently, a large number of works concerning various aspects of the study of fork-join queueing sys-
tems have already been published. They can be found, for example, using a detailed review by A. Thom-
asian [7] or the recently published monograph by S. Sethuraman [8]. Unfortunately, all these works do 
not take into account such a practically significant factor as the presence of a limitation on the time for 
executing requests by the service channel. Meanwhile, when using these models to describe the behavior 
of a supercomputer, the presence of such restrictions is fundamentally important. For example, accord-
ing to the “Polytechnic Supercomputer Center” of Peter the Great St. Petersburg Polytechnic Universi-
ty, up to 70% of tasks are removed from calculations ahead of schedule by the dispatcher program.

Restrictions on the execution time of applied tasks on a supercomputer cluster are formed in a rather 
complex way. The approximate task execution time specified by the user, the dispatch algorithms un-
derlying the work of the task scheduler, and the system of priorities and push-out mechanisms used play 
a role here. In practice, the limitation on the time it takes to complete tasks appears as some random 
variable.

Description of the mathematical model of the queueing system

In this section, we will describe in more detail the queueing system under study, the functional dia-
gram of which is presented in Fig. 1. This system works as follows. The system input receives the sim-
plest (that is, stationary Poisson) flow of requests with λ intensity. In such a flow, all intervals τk between 
request are independent and distributed according to the same exponential law with probability density

so that the average interval between requests     is inversely proportional to the intensity of the flow

A fundamentally important distinctive feature of our system is that it is multi-channel, and con-
tains an unlimited number of service channels (servers), and each request entering it requires servicing  

( ) ,a e−λττ = λ (1)

τ

1 .τ =
λ

(2)
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simultaneously by a random number of servers. The process of executing request can be represented as 
follows. First, any request can be divided into a number of smaller elementary requests (subrequests), each 
of which can be executed using only one separate server.

Let us denote the random number of subrequests into which one complete request is divided by the 
symbol θ. The variable θ is a discrete integer random variable, which is characterized by the following 
distribution series:

Without loss of generality, we assume α0 ≡ 0. Here it is assumed that the values θ related to different 
requests are statistically independent and that all of them do not depend on the intervals between the 
requests appearance τk.

All service channels (servers) are considered identical, and the execution time of any elementary task 
(subrequest) on each of them is distributed according to an exponential law with the parameter μ. This 
means that the probability density of service time X is expressed as

and average service time     is given by the formula

The parameter μ has the meaning of service intensity.
Our model introduces another important complication that distinguishes it from standard models 

of queueing systems. The task execution time is limited by the task manager. This dispatcher (special 
program) issues a constraint in the form of a random variable Z, distributed according to a given law 
with a known probability density       If the inequality Z > X is satisfied, then the service process is 
considered successfully completed. When the opposite inequality is satisfied, Z < X, the task is removed 
from execution and sent to the loss flow. In the favorable case, when all the elementary tasks that make 
up the complete request have been successfully completed, the request as a whole is also considered 
completed. Otherwise, the entire request is rejected and sent to the loss flow.

Fig. 1. Functional diagram of the queueing system under study

{ } ( )P , 1, .i i iα = θ = = ∞ (3)

( ) ,xb x e−µ= µ (4)

1 .x =
µ

(5)

x
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This article will examine in more detail the case when the upper bound on the service time is distrib-
uted according to the exponential law of the form

where ν is the intensity of tasks being removed from execution by the dispatcher. In this case, the average 
time that dispatcher provided to each task for execution is expressed as

The numeric parameter     is one of the most important parameters for the task manager and can be 
set accordingly.

As a result of the system operating in accordance with the service process discipline described above, 
the incoming flow of requests is divided into two new flows: the outgoing flow of fully serviced requests, 
as well as a loss flow, including requests removed from processing by the dispatcher of tasks. It should 
be mentioned that the calculation of the loss probability, that is, the probability getting into the second 
stream, represents an important practical problem.

Obtaining a system of Kolmogorov equations

We will characterize the state of the system described in the previous section using the number of 
servers (service channels)            occupied at time t. The indicated process is Markov process [9]. Let us 
introduce the probabilities of the states of the considered process

Process            is ergodic [9], therefore there are final probabilities

that do not depend on the initial state.
The labeled state graph for the process considered has the form shown in Fig. 2. In order not to 

clutter the figure, it shows in detail the picture of transitions only for three states: n = 0, n = 1 and an 
arbitrary n > 0. From the transition diagram it is clear that from the state n = 0 you can go to the state  
n > 0, located in the right part of the figure, with intensity λαn, and you can return to the state n = 0 only 
from the state n = 1, and with intensity µ.

A state with an arbitrary n > 0 can be reached from any state i located to the left of n, with intensity 
λαn–i, since a new service request is allowed, designed to use an arbitrary number of servers. Similarly, 
from the state n > 0 you can reach any state i > n, located to the right of n, with intensity λαi–n. In this 
case, the total intensity of the transition to all states lying to the right of n will obviously be equal to λ, 
since the distribution (3) the normalization conditions is always satisfied, which has the form

The only way to return to the state n on the right is to move back from state              with intensity  
                       

Using the labeled state graph in Fig. 2, we can write the Kolmogorov system of equilibrium equations 
according to the usual rules [9]:

( ) ,zc z e−ν= ν (6)

(7)1 .z =
ν

z

( )N t

( )N t

( ) ( ){ } ( ), 0, .nP t N t n n= = = ∞ (8)

( ) ( )lim , 0,n nt
P P t n

→∞
= = ∞ (9)

1
1.i

i

∞

=

α =∑ (10)

( )1n +
( )( )1 .v nµ + +
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Fig. 2. Labeled state graph for the queueing system under consideration

Equations (11) express the balance of random flows that occurs when the system occupies state num-
ber n. In this case, terms with a minus sign are equal to the intensity of flows leaving state n, and terms 
with a plus sign correspond to all possible flows entering this state. Then physical meaning of the equi-
librium equations (11) is that in a steady state, for all states of the system, the intensity of incoming flows 
must be equal to the intensity of outgoing flows.

Equations (11) can be rewritten in a universal form, if we introduce the concept of “empty sum”. A 
sum is called empty, if its lower summation limit is greater than its upper summation limit. This amount 
is considered to be zero by definition. Then equations (11) can be rewritten as one equation valid for all  
n ≥ 0:

Note, that when n = 0, the third term in (12) is an empty sum.
Writing equations in the form (12) is more convenient, when using the method of generating func-

tions, which will be discussed below.
At the end of this section, an important note should be made. In our system, the total intensity at 

which request processing on the server stops is equal to µ + ν. From the point of view of the final prob-
abilities of the state, it does not matter at all with what intensity this request will be fully serviced, and 
with what intensity it will remain unserved, since it will be removed from service by the dispatcher. If 
the total intensity of termination of processing requests µ + ν is given, then the form of the Kolmogorov 
equations and the values of the final state probabilities are also specified uniquely.

Therefore, for example, in a system without a dispatcher but with the same µ + ν service intensity 
as before, the final probabilities will be the same as in our system. Of course, the loss probabilities in 
the two above-mentioned systems will be completely different. A special section of this article will be 
devoted to calculating the probability of losses.

The generating functions method

The concept of generating functions is a powerful tool for solving problems involving the analysis of 
numerical sequences, such as the sequence                of state probabilities in our case. The idea of the 
method is to move from considering an infinite set of variables pn depending on an integer index n, to a 
single function depending on a continuously changing argument.

Let us introduce the generating function             for probabilities pn in the form of the following power 
series

( )

( ) ( )( )

0 1

1

1
0

0, 0,

1 0, 0.
n
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i

p p n

n p n p p n
−

+ −
=
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The function G is guaranteed to exist at least in region |z| ≤ 1, since the series

is undoubtedly convergent.
To calculate the function              multiply both sides of equality (12) by zn and sum over all n from 

zero to infinity. The resulting sums are converted as follows:

Double sum is calculated by changing the order of summation

Here by            we mean the generating function of the αi probabilities

After these transformations, equation (12) takes the form

Expressing the derivative            from here, we obtain the following differential equation for the func- 

tion            

It should be noted that the function            here is known, since all probabilities αi are specified ac-
cording to the conditions of the problem.

Equation (20) must be solved under the initial condition
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which is a universal general property of all generating functions, resulting from the normalization con-
dition (14) for the probabilities pn.

Solving equation (20) under initial condition (21) we finally obtain:

Now let us look at some examples of applying the solution we just obtain.
Example 1. Each request is processed by only one server.
In this case, the probabilities αi are given in the form

where δi,k denotes the Kronecker delta symbol, and the generating function (18) is reduced to the sim-
plest linear function

Then solution (22) is nothing more than an exponential of the form

expanding which in powers of z we get

Thus, if each request is processed by only one server, then the total number of busy servers will be  

distributed according to Poisson’s law with the parameter              This result is well known from the  

classical queueing theory as applied to the system of M/M/∞ class [9].
Example 2. Geometric law of distribution of the number of involving servers.
Let us assume that the number θ of servers used to process a single request is distributed according 

to a geometric law

where 0 < ӕ < 1 denotes the parameter of the geometric law. The geometric law is interesting because it 
is the only discrete law that has the property of no aftereffect [9].

It is easy to show that the generating function (18) of the following form corresponds to law (27):

wherein
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Substituting expression (29) into formula (22), we obtain

The integral in the exponent (30) is tabular. Omitting a number of simple intermediate calculations, 
we get

Example 3. Average number of busy servers.
Using the general formula (20) for the generating function, one can easily find the average number 

of busy servers in the entire system in steady state. It is well known, that

also it’s obvious that

where     denotes the average number of servers per processed request.
Passing to the limit as z → 1 in formula (20) leads us to the final expression

Thus, the average number of busy servers in the system is directly proportional to the arrival rate and 
the average number of servers per request and inversely proportional to the sum of the execution and 
reset by the dispatcher intensities.

Calculating the probability of losing a service request

In the classical M/M/∞ system, loss of requests is impossible, because such a system is an immediate 
queueing system with an infinite number of servers. For any newly received request for service, there is 
always a free server that begins to process it, and the service is always brought to its logical end [9].

In our system, processing also starts immediately after the arrival of request, but it may not be com-
pleted due to the intervention of the dispatcher (task scheduler), which dumps partially completed tasks 
into the loss flow. As a result, each request leaving the system can end up in one of two flows: either in 
the outcoming flow of fully serviced requests, or the loss flow formed by requests removed from service. 
In this section we will calculate the probability of being in the first of these flows.

Let us denote by A the random event that the request is eventually fully serviced. We denote the prob-
ability of event A by Pserv. Using the total probability formula, we can write
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Here θ is the random number of servers that will be required to process the request in question. The 
first factor in each term of the sum (35) has the meaning of the conditional probability of event A, pro-
vided that exactly k servers are required, and the second factor, according to (3), is equal to αk.

Let us calculate the conditional probabilities appearing in (35). To do this, we first find the partial 
probability p that one server will successfully complete the processing of the subrequest assigned to it. 
It’s not hard to understand that

where X is the execution time of the subrequest, and Z is the limitation on this time on the part of the 
dispatcher.

As a result, we obtain a simple expression for the probability (35)

in which p remains unknown for now.
To calculate the probability p, we introduce a joint law of distribution of random variables X and Z,  

which we denote by                    According to the assumptions made at the beginning of this article, we get

Probability (36) is represented as an integral

which, due to the fulfilment of (38), can be easily calculated

Substituting this expression into (37), we obtain

where            is the generating function (18) for the probabilities αk, describing the distribution of the 
number θ of servers involved in one complete request processing.

If we use the original formulas (5) and (7), then the expression (40) can be rewritten in the equivalent 
form
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Fig. 3. Dependence of probability P
serv

 on the average time of limitation     for Example 4 for     = 1z x

which gives an alternative expression for the desired probability

Now let us consider some examples that explain the application of the resulting formulas.
Example 4. Requests without subrequests.
In Example 1 the probabilities are given in the form (23), which leads to the generating function 

given (24), and then for the probability of successfully completing tasks we get the simplest expression

The dependence of probability (44) on the average time of limitation is shown in Fig. 3. The graph  
shows that when inequality             is satisfied, the probability of successful completion of tasks will be  
greater than the probability of their early reset. With the opposite sign of inequality              on the contrary,  
the reset will, on average, occur more often than the normal standard completion of calculations.

If some critical value for probability (44) is specified in the form Pcr and it is required that probability 
Pserv exceed it, then     must be higher than the critical value

Example 5. Requests that are divided into a fixed nonrandom number of subrequests.
Let us assume that the probabilities αi are expressed in the form

where k is some integer positive, so that the generating function (18) turns out to be equal to the speci-
fied integer power of z 

Then using formula (43) we get

(43).serv
zP Q

z x
 =  + 

.serv
zP

z x
=

+
(44)

z x>
,z x<

z

.
1

cr
cr

cr

Pz x
P

=
−

(45)

, ,i i kα = δ (46)

( ) .kQ z z= (47)
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Fig. 4. Dependence of probability P
serv

 on the average time of limitation      

for Example 5 for k = 1, 3, 5 and     = 1

z
x

A graph of dependence of Pserv on     for different k, relating to this case, is shown in Fig. 4.
The behavior of the curves in Fig. 4 shows that an increase in the number of servers involved leads to 

a decrease of the probability of successful completion of tasks.

Conclusion

In this article, we used an appropriately modified classical model of the M/M/∞ queueing system 
to mathematically describe the behavior of a supercomputer cluster. In this model, each service request 
needs to use a random number of servers (processors) simultaneously. Service occurs according to an 
exponential law, identical for all running servers. The incoming flow is assumed to be the simplest (sta-
tionary Poisson). The execution time of each service request is limited by the dispatcher (task scheduler) 
by a certain random variable distributed according to an exponential law. If during this time the task has 
not yet been completed, then the task is discarded from service and falls into the loss flow. The paper 
provides an analytical solution to the described problem using the method of generating functions. The 
main contribution of this article is that it explicitly obtained the law of distribution of the number of 
busy servers, as well as the probability of successful completion of tasks in the form of a certain function 
of the average time limitation. The probability that any task will be completed to its logical end is one of 
the main indicators of the quality of a computing cluster.

.
k

serv
zP

z x
 =  + 

(48)
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