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Abstract. The article explores the problem of comparing and selecting radiomic and deep
convolutional features extracted from CT images to enhance the accuracy of texture classification
in CT diagnostics. By using the mRMR method, the study assesses the significance of these features
in predicting genetic mutations in patients with lung cancer, highlighting their importance for
refining diagnostic procedures. The developed predictive model demonstrates high classification
accuracy of 92%, which indicates its high efficiency. Analysis of the results reveals that deep
learning features effectively capture complex, high-level abstract textures that indicate the presence
of pathologies. At the same time, radiomic features provide key information about the phenotypic
characteristics of tumors, such as shape, texture, and intensity. This comprehensive approach
not only improves the accuracy of non-invasive diagnostics, but also contributes significantly to
personalized medicine by facilitating the development of more precise treatment strategies based
on genetic profiles.
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Annotamusa. B craTtbe moapoOHO paccMaTpuBaeTcs 3ajJaya CpaBHEHUsI M BEIOOpaA pagrioMuie-
CKMX Y TJIyOOKMX CBEPTOUYHBIX MPU3HAKOB, U3BAeKaeMbiXx U3 KT-u300paxeHuid, 1 MOBbILIE-
HUS TOYHOCTU KJlaccuuKauny TeKeTyp B pamkax KT-mmarnoctuku. Mcnonmb3oBaHe MeTOIA
mRMR mo3BomI0 OLIEHUTh 3HAYMMOCTD 3TUX ITPU3HAKOB B KOHTEKCTE IIPOTHO3MPOBAHMS Ha-
JINYUS TCHETUISCKUX MYTALIMU Y TTAIIMEHTOB C PAKOM JIETKOTO, TTOMUYEePKUBAsI MX BaXKHOCTD IS
YTOUHEHUSI TMAarHOCTUIECKUX Tpolieayp. PazpaboTanHast Moaesb ImoKa3aa BEICOKYIO TOUHOCTD
kiaccudukauu — 92%, 94To CBUAETEIbCTBYET O €€ BbICOKOM 3(h(EeKTUBHOCTU. AHAIU3 PE3Yib-
TaTOB BBISIBUJI, UTO TIpU3HAKU, OCHOBAHHbIE HA IITyOOKOM 00ydyeHUuU, 3(PPeKTUBHO (PUKCUPYIOT
CJTOKHBIE, BLICOKOYPOBHEBBIEC a0CTpaKTHBIC TEKCTYPHI, UTO YKa3bIBAaCT Ha HAJIMIME ITaToJIoTuii. B
TO XK€ BpeMs paIuoMHYeCKIe TIPU3HAKN 00eCTIeUYNBAIOT KITIOUEBYIO MH(POPMAIINIO O IeTATbHBIX
(GEHOTUIMMYECKNX XapaKTePUCTUKAX OMyXoJiei, BKiodas (GpopMy, TEKCTYPY M MHTEHCUBHOCTD.
Takoit KOMIUIEKCHBIN TTOAXOMI HE TOJIBKO MOBHIIIACT TOYHOCTh HEMHBA3UBHOM TMAarHOCTUKU, HO
Y BHOCUT 3HAYMMBbI BKJaJ B IePCOHAIN3UPOBAHHYIO MEIULIMHY, CIIOCOOCTBYs pa3paboTke 60-
Jiee TOYHBIX CTpaTeTUl JIeueHUsI Ha OCHOBE F'eHEeTUUYECKUX Mpoduieil.

KioueBble cioBa: pagromMuka, riiyookre CBEpTOUHbIE TTPU3HAKU, KOMITbIOTEpHAsi ToMorpadusi,
MalliHHOE 00y4YeHUe, OTOOp NPU3HAKOB
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Introduction

Image processing and analysis now occupy an important place in many areas of science and tech-
nology. The ability to accurately analyze and interpret images is particularly critical in medical imaging,
where it can directly impact diagnostic capabilities. The development of new feature extraction methods
not only contributes to the accuracy of analysis, but also opens new opportunities for early diagnosis and
personalized treatment approach [1].

Recent advances in radiomics and deep learning have opened new horizons in extracting and ana-
lyzing complex features from medical images. Radiomics involves extracting a large number of features
from medical images [2]. On the other hand, deep learning, especially convolutional neural networks
(CNN), has shown success in image classification tasks [3, 4].

Radiomic features, although informative, may not cover the full range of available information in
the images under study. Deep learning models often act as “black boxes”, providing little information
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about features that have a greater impact on decision making in image classification. In addition, the
performance of these models can depend significantly on the quality and quantity of training images.

This paper proposes the results of a comparative analysis of radiomic and deep convolutional features
on CT images to classify textures indicating the presence or absence of genetic mutations in patients
with lung cancer. The aim of this study is to improve the accuracy of CT image texture classification by
jointly using the most effective radiomic and deep convolutional features.

Materials and methods

Data collection and pre-processing

This study used dataset [5] which contains diagnostic and prognostic information such as: CT imag-
es, semantic annotations, gene mutation status information.

Deep learning features

Deep convolutional feature extraction was performed using the pre-trained ResNet18 [2], which was
chosen because of its relatively simple structure compared to deeper models, facilitating faster training
and image processing while still being able to extract complex features. The model was adapted for the
task by removing the last classification layer, allowing it to function as a feature generator that generates
a deep convolutional feature vector from the last convolutional layer immediately preceding the clas-
sification layer. The vector consists of 512 floating point numbers («Deep feature 1», ..., «<Deep feature
512») and encompasses high-level representations of CT images learned by the model from a large num-
ber of images. These representations are assumed to include textures related to tumor morphology and
possibly indirect markers of genetic mutations. The extracted features were used as part of an integrated
feature set, contributing model-derived knowledge to the classification process.

Radiomic features extraction

Radiomic features play a key role in describing pulmonary nodule texture features on CT images.
The first extraction step begins with segmentation of pulmonary nodules, using either manual anno-
tation by expert radiologists or automated segmentation algorithms. This segmentation is then used
for quantitative analysis, where radiomic features are systematically extracted and classified into three
main groups [6—8]:

* First-order statistics:

— Mean intensity. Mean intensity represents the average of the pixels within a nodule image and is a
basic measure of its overall brightness. Mathematically it is expressed as follows:

1 N
H=N§x

i

where X, is intensity value of the i-th pixel, a NV is the total number of pixels in the nodule. Mean intensity
indicates average nodule density.

— Standard deviation. Standard deviation quantifies the variation of intensity values around the mean
value, reflecting heterogeneity within the nodule. A larger standard deviation implies a wider range of
intensity values, indicating variability in nodule composition. The standard deviation is calculated by
the formula:

o= )

i=1

This index gives an indication of the texture of the nodule.
— Skewness. Skewness measures the asymmetry of the intensity distribution around the mean value.
Skewness is defined as:
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Skewness =

It can help determine whether a nodule contains predominantly high or low intensity pixels.
— Kurtosis. Kurtosis measures the sharpness of a peak in the intensity distribution. It is mathemati-
cally expressed as:

1
NZ;(XI' _lvl)4

Kurtosis = 3.
1 «~
\/ N =1 (xi —u ) J
» Shape-based features:

— Yolume. Volume of a pulmonary nodule is a direct indicator of its size. At the same time, large vol-
umes often require closer scrutiny for potential malignancy. It is calculated by counting the total number of
pixels (or voxels in 3D) that make up a segmented nodule and multiplying by the spatial pitch of the pixel
(or voxel) to convert to physical units (e.g., cubic millimeters). The volume V is defined as:

V:Nx(d)B,

where N is the number of pixels in a nodule, d is the pixel distance.

— Surface area. Surface area gives an indication of the complexity of the nodule's appearance. A
more irregular surface area may indicate a higher likelihood of malignancy. The surface area A can be
approximately calculated using the «marching cubes» algorithm or similar techniques that triangulate
the surface of a segmented nodule:

where M is the total number of triangles approximating the nodule surface, a, is the area of the i-th
triangle. This approximation provides a quantitative measure of the external complexity of a nodule.
— Sphericity. Sphericity assesses how much the shape of a nodule resembles a sphere, which is often
used to distinguish between regular and irregular nodules. Sphericity W is defined as:
1 2
n ( 6V)5
V=—
A
where V' is the volume, A is the nodule surface area. Sphericity values close to 1 indicate a more spheri-
cal shape, while values far from 1 suggest irregular shapes.
— Compactness. Compactness measures the density of the nodule shape, indicating how densely
packed the structure is. It is inversely proportional to sphericity and can be expressed as:

c:iz.
V§
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A higher compactness value implies a more irregular or complex nodule shape, which may indicate
malignancy.

+ Texture features:

— Entropy. Entropy measures randomness or disorder in the intensity distribution of nodule pixels,
serving as an indicator of texture irregularity. High entropy values suggest a complex texture with a high
degree of heterogeneity, which is often observed in malignant tumors. Entropy is calculated by the formula:

>

L-1 L-1

H = p(i,j)log, p(i, ),

i=0 j

N

Il
(=]

where p (i ] ) is normalized co-occurrence matrix, representing the probability of neighboring intensi-
ty of pixel 7 next to intensity of pixel j, L is the number of possible intensity levels.

— Contrast. The contrast quantifies local variations in pixel intensity, emphasizing the presence of
distinct edges or patterns in a nodule. It reflects the depth of the texture and the sharpness of image de-
tails. High contrast values are associated with textures containing significant differences between pixel
intensities. Contrast is calculated by the formula:

=z S (i)

i, jli—j=n

where N is the number of different intensity levels, # is the difference in intensity levels being consid-
ered. This calculation emphasizes the contribution of pixel pairs with significantly different intensities.

— Homogeneity. Homogeneity measures the degree of consistency or evenness of the texture. High
values of uniformity indicate a smooth, regular texture, while lower values indicate a variety of patterns
and irregularities. Homogeneity is defined as:

This equation weights the elements of the co-occurrence matrix by the inverse of their distance from
the diagonal, favoring homogeneous textures where pixel intensities are similar.

— Correlation. Correlation estimates the degree of linear dependence between pixel intensities in a
given direction within the region of interest. It helps to identify oriented textures and structured pat-
terns. A high correlation indicates a strong relationship between pixel intensity levels across the texture.
The correlation is calculated by the formula:

Z 22 i=u)(i=w,)p (i)

b

GiGj

where | and K, are mean values, 6, and o, are standard deviations of the sums of rows and columns of
the co-occurrence matrix, respectively. This indicator provides information about the predictability and
structure of texture patterns.

Fig. 1 shows a flowchart describing the process of generating, combining and selecting radiomic and
deep convolutional features. The radiomics and deep convolution features are combined into a vector,
which is fed to the algorithm to select the most important features. Based on the selected features, a new
vector is formed which is used to determine the classification of image textures.
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Fig. 1. Flowchart of the proposed method

Features integration

In this paper, a combined approach is applied to analyze radiomic and deep convolutional features
using support vector method (SVM) and mRMR (minimum Redundancy Maximum Relevance) feature
selection algorithm [9, 10]. These methods play a key role in improving the performance of predictive
models by identifying the most significant features that contribute to the determination of the presence
of mutations [11].

The mRMR algorithm is used for initial feature selection, minimizing redundancy and maximizing
relevance with respect to the target variable. Features that have both maximum correlation with the
target variable and minimum correlation with each other are selected for further analysis, thereby im-
proving the informativeness of the data:

max D(S,C) = ZI x;C),

where S is selected features set, C is target variable, [/ (xl.; C ) is mutual information between feature x;
and target variable.

Minimum redundancy is defined as minimizing the average mutual information between feature pairs
in the selected set:

x; €8

minR(S)=|SL I(x X, )

xxeS

where / (xi 3X; ) is mutual information between features x; and x..
Combining these two criteria, mRMR algorithm seeks to find the feature set S that optimizes the
function:

max ®(S) = D(S.C)-R(S),

which ensures the selection of features most useful for modeling while minimizing their redundancy.
This approach improves the quality of classification, making the model more interpretable and effective
in recognizing complex patterns.

The selected features are then analyzed using SVM to assess their ability to classify CT image textures
for mutations. This step evaluates how radiomic and deep convolutional features affect model accuracy
by providing quantitative performance measures such as Accuracy, Precision and Recall.
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Fig. 2. Assessing the importance of features

This approach not only allows us to compare the performance of radiomic and deep convolutional
features, but also to improve our understanding of their interactions and contributions to determining
the presence of mutations. This methodology emphasizes the unique contributions of each type of fea-
ture and their potential to improve the diagnostic accuracy of models.

Results and discussion

Fig. 2 shows the interaction between traditional radiomic features, such as “Entropy” (0.85), “Con-
trast” (0.75) and “Sphericity” (0.65) and features obtained by deep learning, including “Deep Feature
1”7 (0.95) and “Deep Feature 6” (0.93) (the number denotes the position of the selected features in the
original vector, with dimensionality 1x512), etc.

The feature importance analysis determined by the mRMR method provides insight into the predic-
tive power of the proposed integrated model for classifying CT image texture for mutations. It can be
concluded that deep learning features rank high in importance, emphasizing the depth of information
they include about the underlying pathology. However, the significant ranking of radiomic features sug-
gests that they also provide essential, unreliable information useful for the classification task.

Table
Comparison of the effectiveness of approaches for determining
the presence of mutations in the EGFR gene

Method Accuracy, %
Deep convolutional features + SVM 89
Radiomic features + SVM 87
Deep convolutional features + Radiomic features + SVM 92
“Mut-SeResNet” [14] 88

In this study, we compared the efficacy of different approaches to determine the presence of muta-
tions in the EGFR gene using SVM [1, 12, 13]. The results are presented in Table. As can be seen from
the table, the model developed and tested in our study showed the highest accuracy among the ap-
proaches considered, achieving an Accuracy of 92%. Compared to another study [14] using traditional
approaches and specialized models, our approach shows improved results, which may contribute to a
more accurate and efficient diagnosis.
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Conclusion

The paper considers the problem of comparing and selecting radiomic and deep convolutional fea-
tures extracted from CT images in order to improve the accuracy of CT image texture classification.
Using the mRMR algorithm, the effectiveness of radiomics features in classification tasks was demon-
strated. Then, a classifier was developed that showed high accuracy in classifying the presence of genetic
mutations among the considered approaches, achieving an Accuracy of 92%. Analysis of the results
showed that deep learning features reveal high-level abstract textures indicative of underlying pathol-
ogies, while radiomic features provide essential information about tumor phenotypic features such as
shape, texture, and intensity.
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