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Abstract 
The nature of computer programs can be characterized from two different viewpoints: as executable 

artifacts that create signals on a computing device or as pure mathematical objects with a rigorous, 

unambiguous semantics. To distinguish both usages I use the word “code” for the first and “program” for 

the second. This distinction is relevant to avoid confusion when discussing notions such as validity or 

correctness of software. The point is illustrated by refuting a well-known claim on the impossibility of 

verification and misleading claims about commercial products. At the same time the distinction “program 

versus code” is insufficient: I show that a “program” is always accompanied by an implicit or explicit 

application context which is necessary to scope its semantics. Ultimately, the analysis performed in this 

paper helps to distinguish relative from mathematical truths when discussing qualities of software. 
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Аннотация 
Природа компьютерных программ может быть охарактеризована с двух разных точек зрения: как 

исполняемые артефакты, создающие сигналы на вычислительном устройстве, или как чисто 

математические объекты со строгой, однозначной семантикой. Чтобы различать оба употребления, 

я использую слово “код” для первого и “программа” для второго. Это различие уместно, чтобы 

избежать путаницы при обсуждении таких понятий, как достоверность или правильность 

программного обеспечения. Данный момент иллюстрируется опровержением известного 

утверждения о невозможности верификации и вводящих в заблуждение утверждений о 

коммерческих продуктах. В то же время разграничения “программа против кода ” недостаточно: я 

показываю, что “программа” всегда сопровождается неявным или явным контекстом приложения, 

который необходим для охвата ее семантики. В конечном счете, анализ, проведенный в этой 

статье, помогает отличить относительные от математических истин при обсуждении качеств 

программного обеспечения. 

Ключевые слова: Программа; Код; Формальная верификация; Семантика; 

Релятивизм 
 

Благодарности 

Рецензенты статьи подсказали мне, как улучшить ряд формулировок и указали на две фактические 

ошибки. 

 

Для цитирования: Hähnle R. Program and Code // Technology and Language. 2022. № 3(1). P. 70-80. 

https://doi.org/10.48417/technolang.2022.02.06 

 

 

 

 

 

 

 

 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License  

mailto:reiner.haehnle@tu-darmstadt.de
mailto:reiner.haehnle@tu-darmstadt.de
https://doi.org/10.48417/technolang.2022.02.06
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-8000-7613


Special Topic: Instructions   

Тема выпуска “Инструкции” 

 

72 
soctech.spbstu.ru    

THE TWOFOLD NATURE OF COMPUTER PROGRAMS 

Our starting point is an observation about the twofold nature of computer 

programs: On one hand, programs are designed to be executed on a machine, a 

“computer”.1 When connected to suitable hardware – microphones, displays, sensors, 

and actuators – programs become active, possibly even autonomous agents that are able 

to influence our reality, including human behavior.2 On the other hand, programs are 

formal mathematical objects with a rigorous, unambiguous3 semantics (Mitchell, 1996). 

But in contrast to other mathematical structures, for example, equations, functions, 

algebras, topologies, measures, a program’s executability posits it directly in the 

physical world. To be sure, mathematical models also have physical impact, but, unlike 

programs, they need a dedicated mediator, for example, the bridge or the car that is 

being modeled, or in fact, a computer program that is based on a mathematical theory.  

Before we continue, let us address an objection against singling out programs in 

this manner: one can argue that, similar to mathematical models of physical objects, 

instructions of a program need to be manifest in a physical medium to render them 

actually executable. In the old days, such media were punched cards or tape, nowadays 

electrons, soon quantum states. But this difference is inessential for two reasons: first, 

and most importantly, one can view either punched tape or electrons in a memory cell as 

a mere physical representation of a program, just as one can view a piece of text such as 

“f (x) = x
2
” as a representation of a mathematical function. Second, in modern 

computing the execution tool chain of a program via compilation, loading, and 

initialization is a fully automatic, transparent process. This is not the case for 

mathematical models of physical objects – I come back to this observation later. 

To sum up, one and the same representation, for example, a piece of program text, 

can be seen either as a mathematical object or as the execution of instructions on a 

machine. It is useful to distinguish these two views terminologically. Henceforth, I use 

the term program when I refer to a mathematical object and I use the expression code4 

when I refer to the entity that is actually being executed on a machine. Based on this 

terminology, in the present article I intend to substantiate two claims and discuss their 

consequences: 

                                                           
1
 With the understanding that computers can have many physical shapes: laptops, desktops, 

supercomputers, smart phones, and, most common these days, embedded into another device, such as a 

car, camera, household appliance, router, etc. 
2
 Considerably so, as any parent of a teenager owning a smart phone knows. 

3
 This does not at all preclude non-deterministic or probabilistic programs, whose meaning can be 

rigorously described as well. 
4
 This convention is consistent with other usages: a compiler encodes a program into instructions to be 

executed by a microprocessor, which in turn decodes each instruction before it effectuates the action 

associated with it. 
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(A) The distinction between program and code in the above sense is crucial when we 

talk about the intended meaning of programs and ensuing notions, such as 

correctness, validity, etc. 

(B) The distinction between program and code is insufficient, because it does not make 

sense to talk about a program in isolation. It is necessary to accompany programs 

with a semantic model that takes the application context into account. 

MATHEMATICAL PROOFS OF PROGRAM CORRECTNESS 

We need a concrete setting to meaningfully discuss the above claims, without 

getting lost in generalities. 

The mathematical nature of programs opens up an intriguing perspective, setting 

the theory of programs apart from other scientific theories. This is, because a 

mathematical conjecture can be proven by a chain of formal, unambiguous, gapless 

arguments, which are broken down into instances of elementary steps whose truth is 

universally accepted and that can be verified by anyone with sufficient training, time, 

and interest. For example: if an expression e1 is equal to an expression e2 and expression 

e2 in turn is equal to expression e3, then also expression e1 must be equal to expression 

e3, and so on. A proven conjecture becomes a theorem and can in turn be used in other 

proofs. So far, so well-known.  

Now, since programs are mathematical objects, it is possible to prove properties 

of programs in a rigorous, mathematical manner. This was recognized as early as 1949 

by Alan Turing (Morris & Jones, 1984). Let us look at a very concrete example. The 

following text declares a simple procedure named m in the programming language Java: 
 

int m( int i ) { 

System. out. println ( i ); 

return i  +  1; 

} 
 

This procedure (called a “method” in Java terminology) takes an integer argument 

i and returns the next largest number (we ignore the print statement for the moment). 

What might be its formal semantics? A plethora of programming language semantics 

have been suggested over the years, but perhaps the most straightforward approach is to 

associate each program with a mathematical relation between its input and output 

values. One advantage is that merely elementary mathematics is needed to present the 

essentials of relational semantics: 

Let in denote the value of i when m is called, and let out be the value that m 

returns. Then the semantics of m is denoted with the symbol [[m]] and simply given as 

the set of all pairs of integer numbers (in, out), where in is any integer, in other words, it 

is a relation over int × int. Specifically, the semantics of m is the set [[m]] = {. . . , (−1, 

0), (0, 1), (1, 2), . . .} of (in, out) pairs. 
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The obvious, and seemingly trivial, correctness claim one might be tempted to 

prove about m is that out = in+1 always holds, that is, all pairs in [[m]] are of the form 

(in, in + 1). The “...” in the above expression suggests this to be the case, but in fact it is 

misleading, because clearly the claim is wrong! Integers in programming languages are 

not the mathematical integers (commonly denoted with the symbol ℤ). To accommodate 

the finite memory of a computer, only a finite subrange of ℤ is represented. In the case 

of Java integers, four bytes or 32 bits are allocated to store one integer number and the 

encoding is such that numbers in the interval int=[−2
31

, . . . , 2
31

 − 1] can be 

represented. So what happens if in = 2
31

 −1? According to Java’s semantics5 the result is 

out = −2
31

: the part of the result that “overflows” (is greater than 2
31

−1) becomes 

“wrapped around” and is added to −2
31

 − 1. Already our tiny example illustrates that it 

might not be obvious to decide what constitutes a correct program.  

Since the late 1960s the demonstration of properties of programs with 

mathematical rigor has been established as a field of research within Computer Science 

called formal verification. Nowadays, proofs about programs are not carried out by 

hand, but with the help of other, specialized programs called verification tools (Hähnle 

& Huisman, 2019).6 Formal verification is a good scenario to discuss claims (A) and 

(B), because it relies on the mathematical nature of programs and their formal 

semantics. 

PROGRAM VERSUS CODE:THE CASE OF FORMAL VERIFICATION 

We illustrate claim (A) with two papers (DeMillo et al., 1977; Fetzer, 1988) that 

famously announced the futility of formal verification. They stirred a lot of discussion 

at the time and provoked angry responses (Dijkstra, 1977) from computer scientists 

working in formal verification. One of the mistakes (there are several) made in these 

papers, and this is why we discuss them, is the conflation of the concepts “program” and 

“code”. We focus on Fetzer (1988), where the argument is more explicit.7 
 

In the terminology established in the introductory section, paper (Fetzer, 1988) 

argues that formal verification of code is impossible. The central argument is that 

correct execution of code depends on boundless contingent aspects and assumptions that 

are impossible to even begin to formalize: the correct functioning of the microprocessor 

the code is running on, the integrity of memory, the periphery, the connections, etc. 

Ultimately, one needs to take physics of transistors and other elements into account, 

down to quantum effects, radiation, and so on. And yes, not only is it infeasible to 

                                                           
5
 Not only Java’s: it is the standard approach to integer semantics in most programming languages. 

6
 Thus programs become tools to analyze programs. This reflexive stance is typical for Computer Science 

research (and Literary Studies). 
7
 DeMillo et al. (1977) is mostly about validation of mathematical arguments, which they claim to be a 

purely social process. This is also highly disputable and can be disproven (Hales et al., 2015), but it is not 

the focus of the present paper. 
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formalize all of this context, but code as the physical manifestation of a program really 

is– and literally so–contingent: it cannot be separated from the environment it is 

executing in. 

Fetzer’s fallacy is this: because it is impossible to formally verify code, he infers 

that it is impossible to verify programs. In fact, he conflates code with programs. But 

based on our understanding that programs are precisely specified mathematical objects, 

it is plainly wrong to claim that programs cannot be verified. Yet it still might be true 

that program verification is a futile effort, if the gap between program and code turns 

out to be too substantial. In this case, it would not be useful if a program were verified, 

because the code derived from it might still be riddled with errors.  

I argue that this is not the case for several reasons: (i) The tool chain rendering 

programs as code is robust–very few, if any, errors are introduced during that process; 

(ii) error correction and error recovery mechanisms are implemented at any critical 

juncture: memory, communication, etc.; (iii) scientists working in formal verification 

are well aware of the gap and tailor their met odology accordingly (Livshits et al., 

2015); (iv) different aspects of programs can be isolated and modeled according to the 

requirements of an application context.  

The last two points are closely related and highly relevant for a more detailed 

understanding of the concept of a program. I am now going to discuss them in greater 

detail. As we will see, this leads to an extension of the concept of what constitutes a 

program, as stipulated in claim (B). 

THE APPLICATION CONTEXT 

We come back to the example discussed earlier, where we observed that (at least) two 

semantic models of procedure m are possible: 

1. For all integer values in, the result of executing m is out = in + 1. 

2. For all values in [−2
31

, . . . , 2
31

 −2] of in, the result of executing m is out = in + 

1 and for in = 2
31

 − 1 it is out = −2
31

. 

It is tempting to root for the second model: After all, it is fully precise. Moreover, 

as we saw, the first model is plainly wrong for input values outside the interval [−2 
31

, . . 

. , 2
31

 − 2]. But is the second model sufficiently precise?   

What is the semantics of the so far ignored print statement? It looks harmless 

enough, because it does not affect the final value of i. Yet, clearly it has an effect when 

executing the program, consisting in sending the value of i as a text string to the default 

system output. Can this be safely ignored, provided that we are only interested in the 

final value of i? What happens, for example, if no printing device is attached? As it 

happens, the print statement in Java is always executable: whether printing actually 

worked can be queried afterwards from status variables. But if we are after precise 

specifications, should we not be able to specify the print statement anyway? How to do 

so, without knowing which kind of printing device is attached (if any). The printer 



Special Topic: Instructions   

Тема выпуска “Инструкции” 

 

76 
soctech.spbstu.ru    

hardware is carefully hidden inside many nested layers of Java’s application 

programming interface. Clearly, it is going to be complicated business to specify the 

print statement precisely. And not only that: without knowing the application context of 

our program, it seems impossible.8 

But suppose we agree we should not worry about print statements–are we happy 

with semantic model (2.) above? Try the following exercise: specify precisely the 

outcome of procedure  
 

int mult(int x,y) 
 

which computes the multiplication of numbers x, y for values in int with “wraparound” 

semantics. It is surprisingly difficult. And it is not only difficult to specify, but even 

harder to formally verify.  

For this reason, most verification tools offer the option to work with ℤ instead of 

int even though this is generally incorrect. The justification is that procedures such as 

“mult” are intended to work for input values, where they behave exactly as 

multiplication ∗ on ℤ. Put differently, do we really want the correctness of programs to 

rely on unintuitive properties like mult(2, 2
30

)= −2
31

? Possibly not, but it certainly 

depends on the application context. 

Without such a context, which in the case of procedure m might specify the 

integer model as well as those aspects of printing (if any) that are relevant, we are 

doomed to enter an endless series of contingencies. The application context scopes the 

semantic model used in formal verification: it defines its boundaries (for example: 

ignore the print statement or not) and the level of precision (for example, int versus ℤ). 

Without an application context a given program segues into code and Fetzer’s criticism 

applies.  

RELATIVISM 

Perhaps it is no coincidence that paper (Fetzer , 1988) challenging the possibility 

of verifying code mentioned in Section 3 appeared at the zenith of Postmodernism, 

contemporary with proposals that cast doubt on the possibility of objective scientific 

truth (for example, Rorty, 1989). Indeed, contingency is inherent to the concept of code 

and the “application context” coming to the rescue of programs smacks of relativism. It 

is important to be precise about what is contingent and what is relative. 

First of all, much was made in postmodern philosophy about the impossibility to 

disentangle object and meta language and the consequent loss of an “Archimedean” 

                                                           
8
 Another phenomenon that is hard to specify precisely are side effects or, rather, there absence. Assume 

the program that procedure m is contained in declares a globally visible variable g. Obviously, m does not 

change the value of g, but the semantics [[m]] given above does not reflect this fact. To accommodate it, 

[[m]] would need to include g (as well as all any other variable visible from m) and state that its value is 

unchanged by m. 
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point for an objective author or observer. This is not the issue here. Program verification 

and other formal analyses are based on mathematical logic and set theory. Suitable 

consistent, formal systems of reasoning that are validated against model theoretic 

semantics are known since long. Programs and proofs about their properties are 

unambiguous, rigid, independently verifiable. 

Yet it is important not to overstate or to exaggerate what formally verified means: 

the context is crucial, because code in our sense is indeed contingent. We saw that code 

can be “lifted” to a program equipped with a specific semantic model determined by an 

application context. And that context in itself may be economically, socially, or 

politically motivated. Therefore, scientific truth in Computer Science is indeed relative, 

but not because of flaws in the mathematical arguments or of the language that proofs 

are expressed in. Rather, it is the choice of the semantic model that is relative to a given 

purpose. To the extent that this choice is motivated and explained, mechanical 

correctness proofs are as valid as (in fact more than) any piece of mathematics.  

Pragmatism has a stubborn tendency to prevail: happily or, at least, unthinkingly, 

we entrust our lives to programs running in pacemakers, ventilators, cars, planes and 

other appliances whose failure has fatal consequences for their users. Some of this 

software is formally verified, most of it is not. Empirically, the trust seems justified: 

There are surprisingly few reports about fatal incidences that can be directly traced to 

software failures. In many cases, a reported incident at closer look exhibits a 

misunderstanding of the expected application context among different stakeholders 

rather than a genuine programming error.9 

There is an important difference between the engineering discipline Computer 

Science and the Natural/Social Sciences: programs and the languages they are expressed 

in are designed. All of their aspects can be (and increasingly are) formalized and 

mechanically checked. Hence, we can place high trust in a formal proof and in at least 

those aspects of the code represented by a program scoped by an application context. In 

contrast, outside the Engineering Sciences there are theories about how biological, 

physical, or societal systems are constructed, but we do not possess the blueprint of 

those systems.10 In consequence, these theories are susceptible to relativist criticism (to 

differing degrees).  

Also between Computer Science and the “physical” Engineering Sciences there is 

a crucial difference: as outlined in Section 3 the gap between program and code is 

hardly noticeable in practice. In fact, many times the concepts of “program” and “code” 

are conflated (which compelled me to write this article). Once the program text is 

written and the application context has been decided, it takes only a mouse click to 

compile, deploy, and execute the resulting code. In reality this is a highly complex 

                                                           
9
 Typical examples are https://www.bbc.com/news/health-43973652  

 and https://www.heise.de/downloads/18/2/9/4/3/5/6/9/NTSB_Uber.pdf 
10

 Admittedly, at least non-quantum physics is widely considered to be indisputable in absence of 

relativity effects. 

https://www.bbc.com/news/health-43973652
https://www.heise.de/downloads/18/2/9/4/3/5/6/9/NTSB_Uber.pdf


Special Topic: Instructions   

Тема выпуска “Инструкции” 

 

78 
soctech.spbstu.ru    

process that not so long ago involved considerable manual steps,11 but it is lightning fast 

and fully automatic by now. 

Most importantly, the transition from program to code is invisible, a black box, 

but at the same time highly robust and reliable. In the world of physical engineering the 

step from a mathematical model to its physical realization is considerably bigger and 

much more explicit. CAD/CAM technology drastically shortens the path from model to 

product, but one still has to deal with the physical aspects of production. The salient 

point is the existence and usage12 of universal programming languages in the sense of 

the Church-Turing thesis that can compute any function that is computable at all, where 

only memory and speed impose practical limits. But there is no universal physical 

production material and no universal physical production machine that would permit to 

do the same.13 

CONCLUDING REMARKS 

I argued that it is beneficial to have two different points of view on software: what 

is situated in a computing device, interacting with its environment, pushing around 

electrons, I call code. In everyday conversation and popular texts about software, this is 

often what is meant. But when we attach qualities to software, such as correctness or 

validity, it is not meaningful or even possible to do so at the level of code. Instead, we 

look at a fixed number of aspects determined by the application context, represented in 

a specific semantic model (for example, idealizing int to ℤ).  

The distinction between program and code permits to be precise about where 

scientific truth can be expected in Computer Science and where one should be wary. For 

example, some vendors actively exploit the lack of distinction between program and 

code to advertise (or mislead) by insinuating the code running at a customer’s site is 

inherently secure while, of course, only partial security aspects of some of the programs 

were analyzed.14 

I used formal verification of programs as an illustration, however, the distinction 

“code versus program+application context” is useful in all areas of Computer Science, 

where software is analyzed with mathematical methods, in particular, in IT security.  

Truth in verification proofs and other rigorous mathematical arguments is neither 

subjective nor socially constructed. Formalization and mechanization in Computer 

Science constitute a very strong argument that formal proofs are indisputable. On the 

other hand, what is proven, the choice of the semantic model, as we called it, is very 

                                                           
11

 I recall punching cards on a typewriter-like contraption and carrying them to the operator room as late 

as 1982. 
12

 All programming languages in wider usage have this property. 
13

 In this light it is unsurprising to observe that functionality that used to be realized in hardware is 

constantly moved to software, whenever possible at all. Another interesting development in this context is 

3D printing, which goes some way towards universal physical production–helped by software, obviously. 
14

 A representative slogan: “Security. Built right in.” from https://www.apple.com/macos/security 

https://www.apple.com/macos/security
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much determined by an application context, which in turn is motivated by subjective, 

economical, societal, political factors. Therefore, the appropriate question to ask is not 

Verum estne?, but–as ever– Cui bono? 
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