
Special Topic: Instructions

Тема выпуска “Инструкции”

70
soctech.spbstu.ru

https://doi.org/10.48417/technolang.2022.02.06

Research article

Program and Code

Reiner Hähnle ()
Department of Computer Science, Technical University of Darmstadt, Karolinenplatz 5, 64289

Darmstadt, Germany

reiner.haehnle@tu-darmstadt.de

Abstract
The nature of computer programs can be characterized from two different viewpoints: as executable

artifacts that create signals on a computing device or as pure mathematical objects with a rigorous,

unambiguous semantics. To distinguish both usages I use the word “code” for the first and “program” for

the second. This distinction is relevant to avoid confusion when discussing notions such as validity or

correctness of software. The point is illustrated by refuting a well-known claim on the impossibility of

verification and misleading claims about commercial products. At the same time the distinction “program

versus code” is insufficient: I show that a “program” is always accompanied by an implicit or explicit

application context which is necessary to scope its semantics. Ultimately, the analysis performed in this

paper helps to distinguish relative from mathematical truths when discussing qualities of software.

Keywords: Program; Code; Formal Verification; Semantics; Relativism

Acknowledgment

The reviewers of this papers prompted me to improve a number of formulations and pointed out two

factual errors.

Citation: Hähnle, R. (2022). Program and Code. Technology and Language, 2022, 3(2), 70-80.

https://doi.org/10.48417/technolang.2022.02.06

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

mailto:reiner.haehnle@tu-darmstadt.de
mailto:reiner.haehnle@tu-darmstadt.de
https://doi.org/10.48417/technolang.2022.02.06
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-8000-7613

Technology and Language Технологии в инфосфере, 2022. 3(2). 70-80

71
soctech.spbstu.ru

УДК 004.42

https://doi.org/10.48417/technolang.2022.02.06

Научная статья

Программа и код

 Райнер Хенле ()

Дармштадский технический университет, Каролиненплац 5, Дармштадт, 64289, Германия

reiner.haehnle@tu-darmstadt.de

Аннотация
Природа компьютерных программ может быть охарактеризована с двух разных точек зрения: как

исполняемые артефакты, создающие сигналы на вычислительном устройстве, или как чисто

математические объекты со строгой, однозначной семантикой. Чтобы различать оба употребления,

я использую слово “код” для первого и “программа” для второго. Это различие уместно, чтобы

избежать путаницы при обсуждении таких понятий, как достоверность или правильность

программного обеспечения. Данный момент иллюстрируется опровержением известного

утверждения о невозможности верификации и вводящих в заблуждение утверждений о

коммерческих продуктах. В то же время разграничения “программа против кода ” недостаточно: я

показываю, что “программа” всегда сопровождается неявным или явным контекстом приложения,

который необходим для охвата ее семантики. В конечном счете, анализ, проведенный в этой

статье, помогает отличить относительные от математических истин при обсуждении качеств

программного обеспечения.

Ключевые слова: Программа; Код; Формальная верификация; Семантика;

Релятивизм

Благодарности

Рецензенты статьи подсказали мне, как улучшить ряд формулировок и указали на две фактические

ошибки.

Для цитирования: Hähnle R. Program and Code // Technology and Language. 2022. № 3(1). P. 70-80.

https://doi.org/10.48417/technolang.2022.02.06

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

mailto:reiner.haehnle@tu-darmstadt.de
mailto:reiner.haehnle@tu-darmstadt.de
https://doi.org/10.48417/technolang.2022.02.06
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-8000-7613

Special Topic: Instructions

Тема выпуска “Инструкции”

72
soctech.spbstu.ru

THE TWOFOLD NATURE OF COMPUTER PROGRAMS

Our starting point is an observation about the twofold nature of computer

programs: On one hand, programs are designed to be executed on a machine, a

“computer”.1 When connected to suitable hardware – microphones, displays, sensors,

and actuators – programs become active, possibly even autonomous agents that are able

to influence our reality, including human behavior.2 On the other hand, programs are

formal mathematical objects with a rigorous, unambiguous3 semantics (Mitchell, 1996).

But in contrast to other mathematical structures, for example, equations, functions,

algebras, topologies, measures, a program’s executability posits it directly in the

physical world. To be sure, mathematical models also have physical impact, but, unlike

programs, they need a dedicated mediator, for example, the bridge or the car that is

being modeled, or in fact, a computer program that is based on a mathematical theory.

Before we continue, let us address an objection against singling out programs in

this manner: one can argue that, similar to mathematical models of physical objects,

instructions of a program need to be manifest in a physical medium to render them

actually executable. In the old days, such media were punched cards or tape, nowadays

electrons, soon quantum states. But this difference is inessential for two reasons: first,

and most importantly, one can view either punched tape or electrons in a memory cell as

a mere physical representation of a program, just as one can view a piece of text such as

“f (x) = x
2
” as a representation of a mathematical function. Second, in modern

computing the execution tool chain of a program via compilation, loading, and

initialization is a fully automatic, transparent process. This is not the case for

mathematical models of physical objects – I come back to this observation later.

To sum up, one and the same representation, for example, a piece of program text,

can be seen either as a mathematical object or as the execution of instructions on a

machine. It is useful to distinguish these two views terminologically. Henceforth, I use

the term program when I refer to a mathematical object and I use the expression code4

when I refer to the entity that is actually being executed on a machine. Based on this

terminology, in the present article I intend to substantiate two claims and discuss their

consequences:

1
 With the understanding that computers can have many physical shapes: laptops, desktops,

supercomputers, smart phones, and, most common these days, embedded into another device, such as a

car, camera, household appliance, router, etc.
2
 Considerably so, as any parent of a teenager owning a smart phone knows.

3
 This does not at all preclude non-deterministic or probabilistic programs, whose meaning can be

rigorously described as well.
4
 This convention is consistent with other usages: a compiler encodes a program into instructions to be

executed by a microprocessor, which in turn decodes each instruction before it effectuates the action

associated with it.

Technology and Language Технологии в инфосфере, 2022. 3(2). 70-80

73
soctech.spbstu.ru

(A) The distinction between program and code in the above sense is crucial when we

talk about the intended meaning of programs and ensuing notions, such as

correctness, validity, etc.

(B) The distinction between program and code is insufficient, because it does not make

sense to talk about a program in isolation. It is necessary to accompany programs

with a semantic model that takes the application context into account.

MATHEMATICAL PROOFS OF PROGRAM CORRECTNESS

We need a concrete setting to meaningfully discuss the above claims, without

getting lost in generalities.

The mathematical nature of programs opens up an intriguing perspective, setting

the theory of programs apart from other scientific theories. This is, because a

mathematical conjecture can be proven by a chain of formal, unambiguous, gapless

arguments, which are broken down into instances of elementary steps whose truth is

universally accepted and that can be verified by anyone with sufficient training, time,

and interest. For example: if an expression e1 is equal to an expression e2 and expression

e2 in turn is equal to expression e3, then also expression e1 must be equal to expression

e3, and so on. A proven conjecture becomes a theorem and can in turn be used in other

proofs. So far, so well-known.

Now, since programs are mathematical objects, it is possible to prove properties

of programs in a rigorous, mathematical manner. This was recognized as early as 1949

by Alan Turing (Morris & Jones, 1984). Let us look at a very concrete example. The

following text declares a simple procedure named m in the programming language Java:

int m(int i) {

System. out. println (i);

return i + 1;

}

This procedure (called a “method” in Java terminology) takes an integer argument

i and returns the next largest number (we ignore the print statement for the moment).

What might be its formal semantics? A plethora of programming language semantics

have been suggested over the years, but perhaps the most straightforward approach is to

associate each program with a mathematical relation between its input and output

values. One advantage is that merely elementary mathematics is needed to present the

essentials of relational semantics:

Let in denote the value of i when m is called, and let out be the value that m

returns. Then the semantics of m is denoted with the symbol [[m]] and simply given as

the set of all pairs of integer numbers (in, out), where in is any integer, in other words, it

is a relation over int × int. Specifically, the semantics of m is the set [[m]] = {. . . , (−1,

0), (0, 1), (1, 2), . . .} of (in, out) pairs.

Special Topic: Instructions

Тема выпуска “Инструкции”

74
soctech.spbstu.ru

The obvious, and seemingly trivial, correctness claim one might be tempted to

prove about m is that out = in+1 always holds, that is, all pairs in [[m]] are of the form

(in, in + 1). The “...” in the above expression suggests this to be the case, but in fact it is

misleading, because clearly the claim is wrong! Integers in programming languages are

not the mathematical integers (commonly denoted with the symbol ℤ). To accommodate

the finite memory of a computer, only a finite subrange of ℤ is represented. In the case

of Java integers, four bytes or 32 bits are allocated to store one integer number and the

encoding is such that numbers in the interval int=[−2
31

, . . . , 2
31

 − 1] can be

represented. So what happens if in = 2
31

 −1? According to Java’s semantics5 the result is

out = −2
31

: the part of the result that “overflows” (is greater than 2
31

−1) becomes

“wrapped around” and is added to −2
31

 − 1. Already our tiny example illustrates that it

might not be obvious to decide what constitutes a correct program.

Since the late 1960s the demonstration of properties of programs with

mathematical rigor has been established as a field of research within Computer Science

called formal verification. Nowadays, proofs about programs are not carried out by

hand, but with the help of other, specialized programs called verification tools (Hähnle

& Huisman, 2019).6 Formal verification is a good scenario to discuss claims (A) and

(B), because it relies on the mathematical nature of programs and their formal

semantics.

PROGRAM VERSUS CODE:THE CASE OF FORMAL VERIFICATION

We illustrate claim (A) with two papers (DeMillo et al., 1977; Fetzer, 1988) that

famously announced the futility of formal verification. They stirred a lot of discussion

at the time and provoked angry responses (Dijkstra, 1977) from computer scientists

working in formal verification. One of the mistakes (there are several) made in these

papers, and this is why we discuss them, is the conflation of the concepts “program” and

“code”. We focus on Fetzer (1988), where the argument is more explicit.7

In the terminology established in the introductory section, paper (Fetzer, 1988)

argues that formal verification of code is impossible. The central argument is that

correct execution of code depends on boundless contingent aspects and assumptions that

are impossible to even begin to formalize: the correct functioning of the microprocessor

the code is running on, the integrity of memory, the periphery, the connections, etc.

Ultimately, one needs to take physics of transistors and other elements into account,

down to quantum effects, radiation, and so on. And yes, not only is it infeasible to

5
 Not only Java’s: it is the standard approach to integer semantics in most programming languages.

6
 Thus programs become tools to analyze programs. This reflexive stance is typical for Computer Science

research (and Literary Studies).
7
 DeMillo et al. (1977) is mostly about validation of mathematical arguments, which they claim to be a

purely social process. This is also highly disputable and can be disproven (Hales et al., 2015), but it is not

the focus of the present paper.

Technology and Language Технологии в инфосфере, 2022. 3(2). 70-80

75
soctech.spbstu.ru

formalize all of this context, but code as the physical manifestation of a program really

is– and literally so–contingent: it cannot be separated from the environment it is

executing in.

Fetzer’s fallacy is this: because it is impossible to formally verify code, he infers

that it is impossible to verify programs. In fact, he conflates code with programs. But

based on our understanding that programs are precisely specified mathematical objects,

it is plainly wrong to claim that programs cannot be verified. Yet it still might be true

that program verification is a futile effort, if the gap between program and code turns

out to be too substantial. In this case, it would not be useful if a program were verified,

because the code derived from it might still be riddled with errors.

I argue that this is not the case for several reasons: (i) The tool chain rendering

programs as code is robust–very few, if any, errors are introduced during that process;

(ii) error correction and error recovery mechanisms are implemented at any critical

juncture: memory, communication, etc.; (iii) scientists working in formal verification

are well aware of the gap and tailor their met odology accordingly (Livshits et al.,

2015); (iv) different aspects of programs can be isolated and modeled according to the

requirements of an application context.

The last two points are closely related and highly relevant for a more detailed

understanding of the concept of a program. I am now going to discuss them in greater

detail. As we will see, this leads to an extension of the concept of what constitutes a

program, as stipulated in claim (B).

THE APPLICATION CONTEXT

We come back to the example discussed earlier, where we observed that (at least) two

semantic models of procedure m are possible:

1. For all integer values in, the result of executing m is out = in + 1.

2. For all values in [−2
31

, . . . , 2
31

 −2] of in, the result of executing m is out = in +

1 and for in = 2
31

 − 1 it is out = −2
31

.

It is tempting to root for the second model: After all, it is fully precise. Moreover,

as we saw, the first model is plainly wrong for input values outside the interval [−2
31

, . .

. , 2
31

 − 2]. But is the second model sufficiently precise?

What is the semantics of the so far ignored print statement? It looks harmless

enough, because it does not affect the final value of i. Yet, clearly it has an effect when

executing the program, consisting in sending the value of i as a text string to the default

system output. Can this be safely ignored, provided that we are only interested in the

final value of i? What happens, for example, if no printing device is attached? As it

happens, the print statement in Java is always executable: whether printing actually

worked can be queried afterwards from status variables. But if we are after precise

specifications, should we not be able to specify the print statement anyway? How to do

so, without knowing which kind of printing device is attached (if any). The printer

Special Topic: Instructions

Тема выпуска “Инструкции”

76
soctech.spbstu.ru

hardware is carefully hidden inside many nested layers of Java’s application

programming interface. Clearly, it is going to be complicated business to specify the

print statement precisely. And not only that: without knowing the application context of

our program, it seems impossible.8

But suppose we agree we should not worry about print statements–are we happy

with semantic model (2.) above? Try the following exercise: specify precisely the

outcome of procedure

int mult(int x,y)

which computes the multiplication of numbers x, y for values in int with “wraparound”

semantics. It is surprisingly difficult. And it is not only difficult to specify, but even

harder to formally verify.

For this reason, most verification tools offer the option to work with ℤ instead of

int even though this is generally incorrect. The justification is that procedures such as

“mult” are intended to work for input values, where they behave exactly as

multiplication ∗ on ℤ. Put differently, do we really want the correctness of programs to

rely on unintuitive properties like mult(2, 2
30

)= −2
31

? Possibly not, but it certainly

depends on the application context.

Without such a context, which in the case of procedure m might specify the

integer model as well as those aspects of printing (if any) that are relevant, we are

doomed to enter an endless series of contingencies. The application context scopes the

semantic model used in formal verification: it defines its boundaries (for example:

ignore the print statement or not) and the level of precision (for example, int versus ℤ).

Without an application context a given program segues into code and Fetzer’s criticism

applies.

RELATIVISM

Perhaps it is no coincidence that paper (Fetzer , 1988) challenging the possibility

of verifying code mentioned in Section 3 appeared at the zenith of Postmodernism,

contemporary with proposals that cast doubt on the possibility of objective scientific

truth (for example, Rorty, 1989). Indeed, contingency is inherent to the concept of code

and the “application context” coming to the rescue of programs smacks of relativism. It

is important to be precise about what is contingent and what is relative.

First of all, much was made in postmodern philosophy about the impossibility to

disentangle object and meta language and the consequent loss of an “Archimedean”

8
 Another phenomenon that is hard to specify precisely are side effects or, rather, there absence. Assume

the program that procedure m is contained in declares a globally visible variable g. Obviously, m does not

change the value of g, but the semantics [[m]] given above does not reflect this fact. To accommodate it,

[[m]] would need to include g (as well as all any other variable visible from m) and state that its value is

unchanged by m.

Technology and Language Технологии в инфосфере, 2022. 3(2). 70-80

77
soctech.spbstu.ru

point for an objective author or observer. This is not the issue here. Program verification

and other formal analyses are based on mathematical logic and set theory. Suitable

consistent, formal systems of reasoning that are validated against model theoretic

semantics are known since long. Programs and proofs about their properties are

unambiguous, rigid, independently verifiable.

Yet it is important not to overstate or to exaggerate what formally verified means:

the context is crucial, because code in our sense is indeed contingent. We saw that code

can be “lifted” to a program equipped with a specific semantic model determined by an

application context. And that context in itself may be economically, socially, or

politically motivated. Therefore, scientific truth in Computer Science is indeed relative,

but not because of flaws in the mathematical arguments or of the language that proofs

are expressed in. Rather, it is the choice of the semantic model that is relative to a given

purpose. To the extent that this choice is motivated and explained, mechanical

correctness proofs are as valid as (in fact more than) any piece of mathematics.

Pragmatism has a stubborn tendency to prevail: happily or, at least, unthinkingly,

we entrust our lives to programs running in pacemakers, ventilators, cars, planes and

other appliances whose failure has fatal consequences for their users. Some of this

software is formally verified, most of it is not. Empirically, the trust seems justified:

There are surprisingly few reports about fatal incidences that can be directly traced to

software failures. In many cases, a reported incident at closer look exhibits a

misunderstanding of the expected application context among different stakeholders

rather than a genuine programming error.9

There is an important difference between the engineering discipline Computer

Science and the Natural/Social Sciences: programs and the languages they are expressed

in are designed. All of their aspects can be (and increasingly are) formalized and

mechanically checked. Hence, we can place high trust in a formal proof and in at least

those aspects of the code represented by a program scoped by an application context. In

contrast, outside the Engineering Sciences there are theories about how biological,

physical, or societal systems are constructed, but we do not possess the blueprint of

those systems.10 In consequence, these theories are susceptible to relativist criticism (to

differing degrees).

Also between Computer Science and the “physical” Engineering Sciences there is

a crucial difference: as outlined in Section 3 the gap between program and code is

hardly noticeable in practice. In fact, many times the concepts of “program” and “code”

are conflated (which compelled me to write this article). Once the program text is

written and the application context has been decided, it takes only a mouse click to

compile, deploy, and execute the resulting code. In reality this is a highly complex

9
 Typical examples are https://www.bbc.com/news/health-43973652

 and https://www.heise.de/downloads/18/2/9/4/3/5/6/9/NTSB_Uber.pdf
10

 Admittedly, at least non-quantum physics is widely considered to be indisputable in absence of

relativity effects.

https://www.bbc.com/news/health-43973652
https://www.heise.de/downloads/18/2/9/4/3/5/6/9/NTSB_Uber.pdf

Special Topic: Instructions

Тема выпуска “Инструкции”

78
soctech.spbstu.ru

process that not so long ago involved considerable manual steps,11 but it is lightning fast

and fully automatic by now.

Most importantly, the transition from program to code is invisible, a black box,

but at the same time highly robust and reliable. In the world of physical engineering the

step from a mathematical model to its physical realization is considerably bigger and

much more explicit. CAD/CAM technology drastically shortens the path from model to

product, but one still has to deal with the physical aspects of production. The salient

point is the existence and usage12 of universal programming languages in the sense of

the Church-Turing thesis that can compute any function that is computable at all, where

only memory and speed impose practical limits. But there is no universal physical

production material and no universal physical production machine that would permit to

do the same.13

CONCLUDING REMARKS

I argued that it is beneficial to have two different points of view on software: what

is situated in a computing device, interacting with its environment, pushing around

electrons, I call code. In everyday conversation and popular texts about software, this is

often what is meant. But when we attach qualities to software, such as correctness or

validity, it is not meaningful or even possible to do so at the level of code. Instead, we

look at a fixed number of aspects determined by the application context, represented in

a specific semantic model (for example, idealizing int to ℤ).

The distinction between program and code permits to be precise about where

scientific truth can be expected in Computer Science and where one should be wary. For

example, some vendors actively exploit the lack of distinction between program and

code to advertise (or mislead) by insinuating the code running at a customer’s site is

inherently secure while, of course, only partial security aspects of some of the programs

were analyzed.14

I used formal verification of programs as an illustration, however, the distinction

“code versus program+application context” is useful in all areas of Computer Science,

where software is analyzed with mathematical methods, in particular, in IT security.

Truth in verification proofs and other rigorous mathematical arguments is neither

subjective nor socially constructed. Formalization and mechanization in Computer

Science constitute a very strong argument that formal proofs are indisputable. On the

other hand, what is proven, the choice of the semantic model, as we called it, is very

11

 I recall punching cards on a typewriter-like contraption and carrying them to the operator room as late

as 1982.
12

 All programming languages in wider usage have this property.
13

 In this light it is unsurprising to observe that functionality that used to be realized in hardware is

constantly moved to software, whenever possible at all. Another interesting development in this context is

3D printing, which goes some way towards universal physical production–helped by software, obviously.
14

 A representative slogan: “Security. Built right in.” from https://www.apple.com/macos/security

https://www.apple.com/macos/security

Technology and Language Технологии в инфосфере, 2022. 3(2). 70-80

79
soctech.spbstu.ru

much determined by an application context, which in turn is motivated by subjective,

economical, societal, political factors. Therefore, the appropriate question to ask is not

Verum estne?, but–as ever– Cui bono?

REFERENCES

DeMillo, R., Lipton, R., & Perlis., A. (1977). Social Processes and Proofs of Theorems

and Programs. In R. M. Graham, M. A. Harrison, and R. Sethi (Eds.), Conference

Record of the Fourth ACM Symposium on Principles of Programming Languages

(pp. 206–214) ACM.

Dijkstra, E., (1977). A Political Pamphlet from the Middle Ages. ACM SIGSOFT,

Software Engineering Notes, 3, 14.

http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD638.PDF

Fetzer, J. (1988). Program Verification: The very idea. Communications of the ACM,

31(9), 1048–1063. https://doi.org/10.1145/48529.48530

Hähnle, R. & Huisman, M. (2019). Deductive verification: from pen-and-paper proofs

to industrial tools. In B. Steffen, & G. Woeginger (Eds.), Computing and Software

Science. Lecture Notes in Computer Science, vol. 10000 (pp. 345–373). Springer.

https://doi.org/10.1007/978-3-319-91908-9_18

Hales, T., Adams, M., Bauer, G., Dang, D., Harrison, J., Hoang, T., Kaliszyk, C.,

Magron, V., McLaughlin, S., Nguyen, T., Nguyen, T., Nipkow, T., Obua, S.,

Pleso, J., M. Rute, J., & Solovyev, A. (2015). A formal proof of the Kepler

conjecture. CoRR. Forum of Mathematics, Pi, 5, E2.

https://doi.org/10.1017/fmp.2017.1

Livshits B., Sridharan M., Smaragdakis Y., Lhoták O., Amaral J. N., Chang B. E.,

Guyer S. Z., Khedker U. P., Møller A., and Vardoulakis D. (2015). In defense of

soundiness: a manifesto. Communications of the ACM, 58(2), 44–46.

https://doi.org/10.1145/2644805

Mitchell, J. (1996). Foundations for programming languages. Foundation of computing

series. MIT Press.

Morris, F., & Jones, C. (1984). An early program proof by Alan Turing. IEEE Annals of

the History of Computing, 6(2), 139–143.

https://doi.org/10.1109/MAHC.1984.10017

Rorty, R. (1989). Contingency, Irony, and Solidarity. Cambridge University Press,

https://sites.pitt.edu/~rbrandom/Courses/Antirepresentationalism%20(2020)/Texts

/rorty-contingency-irony-and-solidarity-1989.pdf

http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD638.PDF
https://doi.org/10.1145/48529.48530
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1145/2644805
https://doi.org/10.1109/MAHC.1984.10017
https://sites.pitt.edu/~rbrandom/Courses/Antirepresentationalism%20(2020)/Texts/rorty-contingency-irony-and-solidarity-1989.pdf
https://sites.pitt.edu/~rbrandom/Courses/Antirepresentationalism%20(2020)/Texts/rorty-contingency-irony-and-solidarity-1989.pdf

Special Topic: Instructions

Тема выпуска “Инструкции”

80
soctech.spbstu.ru

СВЕДЕНИЯ ОБ АВТОРЕ / INFORMATION ABOUT THE AUTHOR

Райнер Ханле, reiner.haehnle@tu-darmstadt.de

ORCID 0000-0001-8000-7613

Reiner Hähnle, reiner.haehnle@tu-darmstadt.de

ORCID 0000-0001-8000-7613

Статья поступила 22 апреля 2022

одобрена после рецензирования 18 мая 2022

принята к публикации 27 мая 2022

Received: 22 April 2022 /

 Revised: 18 May 2022

Accepted: 27 May 2022

	Program and Code
	THE TWOFOLD NATURE OF COMPUTER PROGRAMS
	MATHEMATICAL PROOFS OF PROGRAM CORRECTNESS
	PROGRAM VERSUS CODE:THE CASE OF FORMAL VERIFICATION
	THE APPLICATION CONTEXT
	RELATIVISM
	CONCLUDING REMARKS
	REFERENCES

