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Abstract. Generalization and development of the projection operator method for solving
problems of stabilization of given program motions seems to be an actual direction of research
in the field of synthesis of optimal control systems for nonlinear dynamic stationary objects with
limited phase coordinates and controls. In this paper, we formulate generalized stabilization
problems for program motions given by a program-stabilizing vector C0 and a vector of admissible
program motions C. We show the derivation of a projection operator for solving the specified
class of problems. For a nonlinear locally controlled difference operator, admissible controls are
synthesized that stabilize program motions under restrictions on phase coordinates and controls.
An operator of a dynamical system is obtained for generalized problems of stabilization of program
motions with restrictions on the vectors of phase coordinates and controls. Numerical simulation
of the stabilization of the given program motions of a dynamic object is carried out. As an example
of a dynamic object, a mathematical model of a synchronous generator is chosen, consisting of a
system of bilinear differential equations with parameters corresponding to equations in the form of
V. A. Venikov. A computational experiment confirmed the theoretical results obtained in the work.
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Annoranusa. O600IIeHIE U pa3BUTHE ITPOCKIIMOHHO-0TIEPATOPHBIX METOIOB JJIST PEIIICHUS 3a-
Tad CTaOMIM3alUM 3aJaHHBIX TPOTPAMMHBIX IBMKCHUI TIPEACTABISICTCS aKTyalbHBIM HaIIpaB-
JICHHEM HMCCIIEIOBAHMS B 00JIACTH CUHTE3a CUCTEM ONTUMAILHOTO YIIPABICHUS HEIMHEIHBIMU
JTUHAMMYECKUMU CTALIMOHAPHBIMU OObEKTAMM C OTPAaHMYECHHBIMM (Da30BBIMM KOOPAMHATAMU U
ynpasiaeHusimu. B padote chopmynnpoBaHbl 000011IEHHBIE 3a4a41 CTAOUIM3ALUY TPOrPAMMHBIX
IBVXKEHWI, 3aJaHHBIX TPOIPaMMHBIM CTaOMIN3UpYIOMKM BeKTOopoM CO 1 BEKTOP JOITYCTUMBIX
nporpaMMHBIX nBrkeHU# C. [Toka3aH BBIBOI IIPOEKIIMOHHOTO OIlepaTopa pellleHUs YKa3aHHO-
ro Kyacca 3agad. /i HeTMHeMHOTO JIOKAJIbHO YIIPaBIsIeMOTro pa3HOCTHOTO oIlepaTopa 00beKTa
CHHTE3UPOBAHbI JOMYCTUMbIC YIIPABICHMS, CTAOMIM3UPYIOLIME IIPOrPAMMHBIC IBUXKCHUS IIPU
OrpaHMYCHMSIX Ha (a3oBble KOOpAMHATHL U ympasieHus. [lonydyeH omepaTtop TMHAMUYECKOM
CUCTEMBI 1J1s1 000OIIEHHBIX 3a0a4 CTAOMIM3ALMKU TPOTPAMMHBIX JIBUXKEHUN ¢ OrpaHUYECHUSIMU
Ha BEKTOPHI (Da30BBIX KOOPAMHAT U yIIpaBicHUiA. [IpoBeneHO YMCIIeHHOEe MOACTMPOBaHKE CTa-
OMJIM3allNK 3aJaHHBIX IIPOTPaMMHBIX IBUKECHU TMHaAMUUeCcKOoil 00beKTa. B KauecTBe Ipumepa
IMHAMHUYECKOTO 00BEeKTa BBIOpaHa MaTeMaTU4IeCcKast MOACIb CHHXPOHHOTO TeHepaTopa, COCTOS -
1ast U3 CUCTEMbI OMIMHEHBIX AuddepeHInalbHbIX YPaBHEHUI ¢ TapaMeTpaMu, COOTBETCTBY-
IOIIUMU ypaBHeHUSIM B opme B.A. BeHukoBa. BelumcIuTeIbHBII 3KCIEPUMEHT TTOATBEPIAMIT
TEOPETUYECKUE Pe3y/IbTaThl, ITOJTyYeHHbIE B paboTe.
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MHUYECKME CUCTEMBbI, ONTUMU3AIMs, HEIMHEHHBINA pa3HOCTHBIN OIepaTop, JOKAIbHO TOIMYCTH-
MbI€ yIIpaBJICHUS, OTpaHUYEHUs Ha (pa30Bble KOOPAMHATHI U yIIpaBACHUS

Jlnga murupoBanusa: Efremov A.A. Projection operator for solving generalized problems of program
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Introduction

Stabilization of program motions of dynamic objects is an urgent task of modern control theory [1-5].
Methods of inverse dynamics problems [6], Lyapunov barrier functions [7—9], mathematical program-
ming [10, 11], etc. [12—15] are used to solve the problems of stabilization of program motions.

The projection operator method of mathematical programming is used in the paper to solve the speci-
fied class of problems [16]. The projection operator method is a universal technique of synthesis of locally
admissible and quasi-optimal controlled nonlinear dynamic objects. The generalization and development
of the projection operator method for solving tasks of stabilization of given program motions is a relevant
research direction in the field of synthesis of optimal control systems for nonlinear dynamic objects with
limited phase coordinates and controls.

1. Formulation of generalized problems of stabilization of program motions with inequality constraints on
their vector

Generalized problems of stabilization of program motions, specified by the program-stabilizing vector
C , and the vector of permissible program motions C have the form: calculate vector

© Edpemos A.A., 2023. U3gaTensb: CaHKT-MeTepbyprckuii NONMTEXHUYECKUI YHUBEpPCUTET MeTpa Bennkoro
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x, =argmin{¢(x) = [x-C,|/|Ax =b, AcR™", CIC, €D,

Dx:{X|(X—C)T(X—C)Sr2}}eR”, (0

where C, € R" is the stabilizing program vector of state coordinates, C € R" is the vector of permissible
program motions for inequality constraints, C/ < C.

Problems (1) generalize the requirements for the problems of stabilization of given program motions
[16] by introducing a class of inequality class restrictions (X - C)T (X - C) <r , which makes it possible
to set more “flexible” requirements for these problems.

2. Synthesis of a projection operator for solving generalized problems of stabilization of program motions

Lemma 1 provides the derivation of the projection operator for solving generalized problems of pro-
gram motions stabilization (1).

Lemma 1. The projection operator for solving the generalized problem (1) has the form:

x=P'b+(1+1)" P°C,+A(1+2%)" P°C, (2)

where P’ = E, ~A" (AAT )_1 A s a projector onto a linear manifold Ax = b, P* = A" (AAT )_1 is
a projector onto the orthogonal complement of a linear manifold. The scalar parameter A is a Lagrange
multiplier to restrict the type of inequality in (1).

Proof. The Lagrange function for problem (1) has the form:

L=[x=C,[; +1; (Ax=b)+2((x~C)" (x-C)-r’}. 3)
The necessary conditions for Lagrange optimality are given in the form:
L =2(x=C,)+A"h, +21(x—C) =0, 4)
I, =Ax-b=0,, 5)
L =(x-C)" (x-C)-r* =0, (6)

The necessary optimality condition (4) multiplied by matrix A, considering equality (5) of the form
AX = b, determines the equation

2b+2ib—2AC, + AATA, —2LAC =0,. (7)

Then from (7) follows a set of transformations that determines the scalar parameter 7»0, which is the
Lagrange multiplier for restricting the type of equality in problem (1).

Ao =21(AAT) AC+2(AAT) AC, ~2(h+1)(AAT) D. )

Substituting the Lagrange multiplier XO into (4) and equivalent transformations determine an equa-
tion of the form:

—1 -1 -1
x+Ax—C, +1AT (AAT) AC+AT(AA") AC,—(L+1)A"(AA") b-1C=0,
Replacing the projectors P* and P° with subsequent transformations makes it possible to obtain an

expression that defines the projection operator for solving problem (1) as a function of the Lagrange mul-
tiplier A for conditions of the type inequality:
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x=P'b+(1+2%)" P°C, +A(1+1) P°C.

Lemma is proven.

Next, we consider the solution of generalized problems of stabilization of program motions (1) in the
case of equality of the stabilizing program vector of state coordinates and the vector of permissible program
motions for inequality constraints C, = C.

Consequence. In the case of equality of the stabilizing program vector of state coordinates and the vec-
tor of permissible program motions for inequality constraints C 0= C, the solution of generalized problems
of program motions stabilization (1) does not depend on the Lagrange multiplier for conditions of the
inequality type A and has the form

x=P"b+P°C. 9)

Proof. Let us repeat the reasoning of Lemma 1 with the condition of equality of the stabilizing program
vector of state coordinates and the admissible vector of program coordinates-controls CO = C. Problem
(1) will take the form:

X, :argmin{(p(x):”x—C”z‘AX:b, AeR™, CTCer,

D, ={x(x-C)' (x-C)<r*}} eR", (1o
Lagrange function for problem (10):
L=[x-C[;+2; (Ax=b)+2((x=C)" (x~C)-r*). (11)
The necessary conditions for function (11) have the form:
L =2(x—C)+ A", +21(x~C) =0,, (12)
L, =Ax-b=0,, (13)
L =(x-C) (x-C)-r* =0, (14)

The first equation (12) multiplied by matrix A, considering equality (13) of the form Ax = b, deter-
mines the equation

2b—2AC+AAT7»0 +2Ab-2AAC=0,. (15)
Then the scalar parameter is expressed from the resulting equation XO,
Ao =20.(AAT) AC+2(AAT) AC-21(AA") b-2(AA") b. (17)
Substituting 7‘0 into (12) followed by opening the parentheses determines the equation:
T 7! T 7\ T 7! T 7!
x+ix=A"(AA") b+2A"(AA") b-AT(AA") AC-2A"(AA") AC+LC+C.
Reducing similar ones and substituting the projection operators P* and P?, allows us to obtain an ex-

pression that determines the projection operator for solving problem (10), which does not depend on the
Lagrange multiplier A
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x=P'b+P°C.

Consequence is proven.

3. Synthesis of a dynamic system with restrictions on phase coordinates and controls

This is a method for synthesizing locally admissible controls for the generalized problem of stabilizing
a single stationary equilibrium position or program motions specified by the stabilizing program vector
C, = C,, and limited by the vector of admissible program motions C = C,, k € N, for an object in the
form of a difference operator with restrictions on phase coordinates and controls. In this case, it is as-
sumed that the nonlinear control object is locally controllable according to N.N. Petrov [17—20].

Let a nonlinear locally controlled object be defined by a difference operator:

X, =H(x,)+Fu,, y, =cx,, X, =X, €D, (15)

where D < R” is the neighborhood of attraction as a set of initial states from which the system returns
to the equilibrium position. Vectors and matrices of operator (15) have the form x,,, € R",x, e Dc R”",
y, €R’, u, eR", FeR"", c, € R, H(xk) € R" is the function vector.

Then the linear manifold for the operator optimization problem, considering the difference operator
(15), will be written in the form:

Az, :[E|—F]x[2‘”}:H(xk):bk, (16)

where the object operator, the vector “state-control” and the vector of the right side of the linear manifold
have the form:

A=[E-F]eR""") z =[x, |u,] eR"", b, =H(x,)eR".

Representing the difference operator of an object in the form of a linear manifold (16) allows one to
synthesize locally admissible controls by reducing the problem of calculating controls to a countable num-
ber of projection operator optimization problems. In this case, the problem of finite-dimensional mathe-
matical programming (1), considering the linear manifold (16), is transformed into a problem of the form:
calculate the “generalized” state-control vector (17)

k

Az, =[E1|—F][:‘“}:
k

(17)
=H(x,)=b,, C,, eD_, D, :{zk|(zk -C,) (2, —Ck)Srz}z}eR"””,

where C, € R" is the stabilizing program vector of state coordinates, C , € R" is the vector of permissi-
ble program motions for inequality constraints, C, <C .

The countable set of solutions to mathematical programming problems (17) determines the “state-con-
trol” vectors. The structure of the admissible control operator is determined by the generalized projection
operator of finite-dimensional optimization (2) and has the form:

z, (gi’ Gi) =P'b, +¢,P'Cy, +5,P°C,, i =1, 2,

where ¢, =(1+2, )_1 , G, =(1+4, )_l , 0, =X, (lJrkl)_l , 0, =4, (142, )_l , A, A, are a pair of La-
grange multipliers for a condition of the inequality type of the problem (1).
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The solution vector of the optimization problem under consideration is defined as the image of a con-
vex linear combination of two “boundary generalized operators” z, (gl , Gl) and z, (g2 , 0, ) ,

21( (Qn G250}, 0, e)=ezl*c (919(51)"‘(1_6)1; (gza 62), 96[0;1]9

z, (gi’ Gi) =P'b, +QiP0C0k +65P0Ck9 i=1, 2. (18)

Vector Z, (gl, Gy, 0y, 0,, 9) in (18) includes vectors of locally admissible controls u, =T Z, (gl, Gy»
0,,0,,0) and vectors of phase coordinate predictions x,,, =T.Z, (g, ¢,, 0, 0,,0) “filtered” using

E,,|andT =[E

As a result, it follows from relations (15)—(18) that the operator of a nonlinear dynamic system with
feedback for generalized problems of stabilization of program motions with restrictions on the vectors of
phase coordinates and controls specified by the program stabilizing vector C ok and the vector of permissi-
ble program motions C , Is written as:

0,., | respectively.

mxn nxn

matrices T, = [0

Xk+1 = H(Xk)+yFTuik (gla gza G1a 629 9),

(19)

7, (5,5 0,,0,,0) = [e(P*bk +¢,P°C,, +0,P°C, )] +(1-0)(P'b, +¢,P’C,, +0,P°C, ),
where G, =(1+}\,1)_l , Gy =(1+7»2)_l , O, =M, (1+}\,1)_1 , 0, =M, (1+?»2)_1 , Y € R — feedback pa-
rameter, O — "acceptability” parameter, 0 € [0;1].

4. Computational experiment

The section presents the results of a computational experiment of the dynamic system under study with
restrictions on phase coordinates and controls (19).

As an example of a dynamic object, we used a vector-matrix bilinear differential model of a synchro-
nous generator [21] with parameters of the Gorev-Park system of equations in the form of V.A. Venikov
[22]. To calculate the values of the vector-matrix model, the technical parameters of the TBB-320-2 syn-
chronous turbogenerator were used [23]:

AN —3.05i, +9.65mi, —0.22i, —2.8i,,—5.78i,, ]
i ~6.18wi, —1.95i, +3.70i, +3.70i,, -5.99i,,
i ~0.98i, +3.10i, —1.92i, +5.32i , —1.850i,
i, = -3.59i, +11.35wi, +1.55i, =10 , — 6.790i,, +
i, ~8.64wi, —2.73i, +5.18wi, +5.18wi,, —10i_
o' | |67.34ii,—67.34i,i, —40.32i i, —40.32i i, +40.32i,i, —4.030
o' ®
- ) (20)
578 0 022 00 0 O] [ u
0 =37 0 00 0 Of]|u
-18 0 192 00 0 Of|u,
+-68 0 -155 00 0 O0|x 0
0 -518 0 00 0 O 0
0 0 0 0 0 4032 0| |M,,
0 0 0 00 0 O0]] 0|

54



4 System Analysis and Control >

Discretization of the mathematical model of a synchronous generator (20) is carried out by difference
operators of the implicit Euler method [24], implemented in the environment for dynamic modeling of
technical systems SimInTech!.

When conducting a computational experiment, the limitation parameter in the condition of ine-
quality 7 is taken equal to 1. Feedback parameter Y = —0.001. The Lagrange multipliers for limiting
the type of inequality and the “admissibility” parameter were selected experimentally and are equal to
A, =—0.998, 1, = —1.0017 and 6 = 0.509. The generalized vector of stabilization of program motions
and controls has the form:

C,=[0 000010000000 0]cR

Vector COk sets the stabilizing value of the synchronous generator frequency ®. The generalized vec-
tor of permissible program motions and controls is defined by the equality:

C,=[0 0 0 001001 00 0000 0 003 0]eR,

and in accordance with (20) sets the permissible restrictions on the frequency ® and mechanical torque
me. To calculate the stresses u , and u,,an approximate load model was used [25].

Considering the structure of the linear manifold (16) and the vector-matrix Park—Gorev model for the
TBB-320-2 synchronous turbogenerator (20), the calculated projector onto the linear manifold will take
the form:

P’ =
[ 0.45 0 031 037 0 0 0 —007 0 009 00 0 O]
0 0.33 0 0 046 0 O O 009 0 00 0 0
0.31 0 066 -0.18 0 0 0 -004 0 03 00 0 O
0.37 0 -0.18 0.73 0 0 0 -007 0 016 00 0 0
0 0.46 0 0 065 0 0 O 012 0 00 0 0
0 0 0 0 0 099 0 0 0 0 0 0 002 0
1o 0 0 0 0 0 0 0 0 0 00 0 O
=007 0 -004 -007 0 0 0 0.01 0 -001 00 0 O
0 -009 0 0 -012 0 0 O 0.02 0O 00 0 0
0.09 0 03 -0.16 0 0 0 -001 O 015 0 0 0 0
0 0 0 0 0 0 0 0 0 0O 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 002 0 0 0 0 0 0 0.0006 0
0 0 0 0 0 0 0 0 0 0 00 0 1]

The projector onto the orthogonal complement of a linear manifold is defined by the equality:

! Dynamic Simulation Environment. Available at: https://simintech.ru

55



4CI/ICTeMHbIl7I aHanu3 u ynpasfeHue

36
34
32

28
25
24

18
14
12

08
06
04
02

0 10 20 30 40 50 60 70 20 S0 100
tec

Fig. 1. Power change graph

0.02

0.015

0.01

s 0.005

0
-0.005

-0.01
-0.015

0.0243

0.02485
g
E 0.0248

0.02475

0.0247

0.02465

0 10 20 30 40 50 60 70 80 %0 100
tLe

Fig. 2. Synthesized control actions of a synchronous generator
with restrictions specified by the vector of permissible program motions C,

[ 0.55 0 031 -037 0 0 0
0 067 0 0 046 0 O
-031 0 034 0.18 0 0 0
-037 0 0.18 027 0 0 0
0 -046 0 0 0.35 0 0
0 0 0 0 0 0006 0
P 0 0 0 0 0 0 1
0.07 0 004 0.07 0 0 0
0 009 0 0 0.12 0 0
-0.09 0 03 0.16 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 -012 0
0 0 0 0 0 0 0]

The graph of changes in the power of a synchronous generator, specified by a piecewise linear function
at constant intervals, is shown in Fig. 1.
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Fig. 3. Dynamics of synchronous generator currents
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Fig. 4. Dynamics of the permissible change in the “frequency” m of the synchronous generator,
specified by the stabilizing program vector C, and the vector of permissible program motions C,

Limited by the vector of admissible program motions C ,» the locally admissible controls U, and me,
defined by operator (19), considering the change in power, have the form shown in Fig. 2.

The dynamics of synchronous generator currents considering the “load graph” (Fig. 1) is shown in
Fig. 3.

The dynamics of the permissible change in the “frequency” ® of the synchronous generator, specified
by the program stabilizing vector CO and limited by the vector of permissible program motions C, consid-
ering the “load schedule” (Fig. 1), is shown in Fig. 4.

From Fig. 4 the value of frequency ®, considering the change in power, does not exceed the limitations
specified by the vector of permissible program motions C -

Conclusions

The paper presents the formulation of generalized problems of stabilization of given program motions
and provides the derivation of the projection operator for solving this class of problems.

A dynamic system operator was synthesized for generalized problems of stabilization of program mo-
tions with restrictions on the vectors of phase coordinates and controls.
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Using the example of a synchronous generator model consisting of a system of bilinear differential
equations with parameters corresponding to equations in the form of V.A. Venikov, the use of a synthesized
projection operator for calculating controls and stabilizing the phase coordinates of a dynamic system,
considering restrictions on coordinates and controls, is demonstrated.

Computational experiments were performed to confirm the correctness of the results obtained.

REFERENCES

1. Yorob’ev E.I., Mikheev A.V., Morgunenko K.O. Construction of program motions of relative manipu-
lation mechanisms with three degrees of freedom. Journal of Machinery Manufacture and Reliability, 2019,
no. 6, pp. 510—516. DOI: 10.3103/S1052618819060104

2. Meshchanov A.S., Bikmurzin A.M. Stabilizatsiya programmnoy posadki letatelnykh apparatov bez
shassi na podvizhnuyu platformu v atmosfere pri neopredelennykh vozmeshcheniya. Ch. 1 [Stabilization
of program landing of aircraft without landing gear on a moving platform in the atmosphere with uncertain
compensation. Part 1.]. Vestnik tekhnologicheskogo universiteta, 2020, vol. 23, Ne 12, pp. 109—117. (rus)

3. Alekseev A., Stukonog S. An algorithm for constructing an optimal ship’s path with elements of
the ship’s program motion systems on the course. Transp. Bus. Russ., 2022, Ne 2, pp. 217-221. DOI:
10.52375/20728689 2022 2 217/issn2072-8689

4. LiT., Ren H., Li C. Intelligent electric vehicle trajectory tracking control algorithm based on weight coeffi-
cient adaptive optimal control, Trans. Inst. Meas. Control, 2023, pp. 1-17. DOI: 10.1177/01423312221141591

5. Yu H., Liang X., H J., F Y. Adaptive Trajectory Tracking Control for the Quadrotor Aerial Transporta-
tion System Landing a Payload Onto the Mobile Platform, IEEE Trans. Ind. Informatics, 2023, pp. 1—12.

6. Golubev A.Ye. Stabilizatsiya programmnykh dvizheniy mekhanicheskikh sistem s uchetom ogranicheniy
[Stabilization of program motions of mechanical systems considering constraints]. Izvestiya Rossiyskoy akademii
nauk. Teoriya i sistemy upravleniya, 2023, Ne 4, pp. 153—167. (rus) DOI: 10.31857/S0002338823040054

7. Sachan K., Padhi R. Lyapunov function based output-constrained control of nonlinear Euler—Lagrange
systems. 15t" Intern. Conf. on Control, Automation, Robotics and Vision (ICARCYV), IEEE, Singapore, No-
vember 18—21, 2018, pp. 686—691. DOI: 10.1109/ICARCV.2018.8581068

8. Wang X., Xu J., Lv M., Zhang L., Zhao Z. Barrier Lyapunov function-based fixed-time FTC for high-
order nonlinear systems with predefined tracking accuracy. Nonlinear Dyn., 2022, vol. 110, no. 1, pp. 381—394.
DOI: 10.1007/s11071-022-07627-9/issn0924-090X

9. Golubev A.Ye. Postroyeniye programmnykh dvizheniy mekhanicheskikh sistem s uchetom ogranicheniy
pri pomoshchi mnogochlenov tretyego poryadka [Construction of program motions of mechanical systems
considering restrictions using third-order polynomials]. Izvestiya Rossiyskoy akademii nauk. Teoriya i siste-
my upravleniya, 2021, Ne 2, pp. 126—137. (rus) DOI: 10.31857/50002338820060049/issn0002-3388

10. Kozlov V.N., Efremov A.A. Operators of bounded locally optimal controls for dynamic systems. Lect.
Notes Networks Syst. Springer, 2020, vol. 95, pp. 140—145. DOI: 10.1007/978-3-030-34983-7 14

11. Kozlov V.N., Efremov A.A. Projection-operator optimization of controls of dynamic objects. J. Phys.
Conf., Ser. IOP Publishing L.td, 2021, vol. 1864, no. 1, pp. 140—145. DOI1:10.1088/1742-6596/1864/1/012076/
issn17426596

12. Kotina Ye.D., Ovsyannikov D.A. Matematicheskaya model sovmestnoy optimizatsii programmnogo i
vozmushchennykh dvizheniy v diskretnykh sistemakh [Mathematical model of joint optimization of program
and perturbed motions in discrete systems]. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matem-
atika. Informatika. Protsessy upravleniya, 2021, vol. 17, no. 2, pp. 213—224. (rus) DOI: 10.21638/11701/
spbul0.2021.210

13. Andreev A.S., Kolegova L.V. PID controllers with delay in a problem of stabilization of robotic manip-
ulators’ desired motions. Zhurnal Sredn. Mat. Obs., 2022, vol. 34, no. 3, pp. 267—279. DOI: 10.15507/2079-
6900.24.202203.267-279/issn20796900

58



4 System Analysis and Control >

14. Aleksandrov O.V., Kozik A.A. Minimaksnaya optimizatsiya parametrov stabilizatsii programmnogo
poleta [Minimax optimization of program flight stabilization parameters] // Vestnik Moskovskogo universi-
teta. Seriya 1. Matematika. Mekhanika, 2019, vol. 3, pp. 45—49. (rus)

15. Polyanina A.S. Synthesis of stabilizing control in the generation of multi-body systems program mo-
tions, Sovremennyye naukoyemkiye tekhnologii [Modern High Technology], 2020, no. 2, pp. 45—50.

16. Kozlov V.N. Proyektsionnyy metod sinteza ogranichennykh optimalnykh upravleniy dinamicheskikh
sistem energetiki [Projection method for the synthesis of limited optimal controls of dynamic energy sys-
tems]. SPb.: Izd-vo Politekhn. un-ta., 2019. 161 pp. (rus)

17. Petrov N.N. Ob upravlyayemosti avtonomnykh sistem [On the controllability of autonomous systems].
Differentsialnyye uravneniya, 1968, vol. 4, no. 4, pp. 606—617. (rus)

18. Kalman R.E. Discussion: “On the Existence of Optimal Controls” (Markus, L., and Lee, E.B., 1962,
ASME J. Basic Eng., 84, pp. 13—20). J. Fluids Eng., 1962, vol. 84. Available: https://asmedigitalcollection.
asme.org/fluidsengineering/article/84/1/21/424598/Discussion-On-the-Existence-of-Optimal-Controls
(accessed 30 May 2023).

19. Avakov Ye.R., Magaril-Ilyayev G.G. Lokalnaya upravlyayemost i optimalnost [Local controllability
and optimality]. Matematicheskiy sbornik, 2021, vol. 212, no. 7, pp. 3—38. (rus) DOI: 0.4213/sm9434

20. Avakov Ye.R., Magaril-Ilyayev G.G. Upravlyayemost i neobkhodimyye usloviya optimalnosti vtorogo
poryadka [Controllability and necessary conditions for second-order optimality]. Matematicheskiy sbornik,
2019, vol. 210, no. 1, pp. 3—26. (rus) DOI: 10.4213/sm9013

21. Kozlov V.N., Ryabov G.A., Yefremov A.A., Trosko I.U. Strukturno-invariantnyye uravneniya energoo-
byedineniy dlya sinteza sistem ogranicheniya peretokov i regulirovaniya napryazheniya [Structural-invariant
equations of power interconnections for the synthesis of flow limitation and voltage regulation systems]. XIX
International Scientific and Practical Conference. “System analysis in design and management”, St. Peters-
burg, July 1-3, 2015, pp. 207—217. (rus)

22. Veretennikov L.P. Klassifikatsiya uravneniy Goreva—Parka [Classification of Gorev-Park equations].
Elektrichestvo, 1959, no. 11, pp. 13—20. (rus)

23. Neklepayev B.N. Elektricheskaya chast elektrostantsiy i podstantsiy. 2-ye izd [Electrical part of power
plants and substations. 2nd ed]. M., Energoatomizdat, 1986. (rus)

24. Skvortsov L.M. Chislennoye resheniye obyknovennykh differentsialnykh i differentsialno-algebra-
icheskikh uravneniy [Numerical solution of ordinary differential and differential-algebraic equations]. M.:
DMK Press, 2023. (rus)

25. Leonov G.A., Kuznetsov N.V., Andriyevskiy B.R., Yuldashev M.V., Yuldashev R.V. Matematicheskoye
modelirovaniye perekhodnykh protsessov gidroagregata Sayano-Shushenskoy GES [Mathematical modeling
of transient processes of the hydraulic unit of the Sayano-Shushenskaya HPP]. Differentsialnyye uravneniya
i protsessy upravleniya, 2018, vol. 4, no. 4. Available: https://diffjournal.spbu.ru/RU/numbers/2018.4/arti-
cle.1.5.html (accessed: 25.05.2023). (rus)

INFORMATION ABOUT AUTHOR / CBEAEHUA Ob ABTOPE

Efremov Artem A.

EdpemoB Aprem Asekcanaposiny

E-mail: Artem.Efremov@spbstu.ru

ORCID: https://orcid.org/0000-0002-0224-2412

Submitted: 05.09.2023; Approved: 14.11.2023; Accepted: 15.12.2023.
Ilocmynuaa: 05.09.2023; Odobpena: 14.11.2023; Ilpunsma: 15.12.2023.

59



