Металлургия. Материаловедение Metallurgy. Material Science

Научная статья УДК 669.2:538.945:543.123

DOI: https://doi.org/10.18721/JEST.30205

В.В. Рогожкин¹, В.И. Горынин² □, М.А. Житомирский³

¹ АО «Атомпроект», Санкт-Петербург, Россия;

² Центральный научно-исследовательский институт конструкционных материалов «Прометей», Санкт-Петербург, Россия; ³ Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия

z1dehy97@mail.wplus.net

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ УРАВНЕНИЙ ТЕОРИИ ГИНЗБУРГА-ЛАНДАУ ДЛЯ ВИХРЯ АБРИКОСОВА В СВЕРХПРОВОДНИКАХ С ПРОИЗВОЛЬНЫМ ЗНАЧЕНИЕМ æ > 0,707

Аннотация. До настоящего времени отсутствует точное аналитическое решение уравнений теории сверхпроводимости Гинзбурга—Ландау—Абрикосова—Горькова (ГЛАГ-теории, теории Гинзбурга—Ландау) для любого значения параметра $\approx > 0,707$, удовлетворяющее граничным условиям для вихря Абрикосова и условию квантованию магнитного потока, а также классическим асимптотикам (при значении $\approx >> 1$) формул Лондонов и Абрикосова. В связи с этим целью расчетно-аналитической исследовательской работы являлось нахождение удовлетворительно точного аналитического решения уравнения теории ГЛАГ-теории для вихря Абрикосова в сверхпроводниках с произвольным значением $\approx > 0,707$. Аналитическим решением уравнений феноменологической теории сверхпроводимости Гинзбурга—Ландау для одиночного вихря Абрикосова в массивном сверхпроводнике второго рода с произвольным значением параметра \approx найдены: напряженность магнитного поля $h(\rho)$, плотность тока $j(\rho)$ и параметр порядка $f(\rho)$, удовлетворяющие граничным условиям, условию квантования и классическим асимптотикам Лондонов и Абрикосова. Определены первое критическое магнитное поле H_{c1} и отношение абсолютных значений H_{c1}/H_{c2} в сверхпроводниках с $\approx > 0,707$.

Ключевые слова: сверхпроводимость, сверхпроводимые материалы, электромагнитные свойства, теория Гинзбурга—Ландау, теория вихрей.

Для цитирования:

Рогожкин В.В., Горынин В.И., Житомирский М.А. Аналитическое решение уравнений теории Гинзбурга—Ландау для вихря Абрикосова в сверхпроводниках с произвольным значением $\approx > 0.707$ // Глобальная энергия. 2024. Т. 30, № 2. С. 88—95. DOI: https://doi.org/10.18721/ JEST.30205

DOI: https://doi.org/10.18721/JEST.30205

V.V. Rogozhkin¹, V.I. Gorynin² □ , M.A. Zhitomirskiy³

 ¹ JSC "Atomproekt", St. Petersburg, Russia;
² Central Research Institute of Structural Materials "Prometey", St. Petersburg, Russia;
³ Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

□ z1dehy97@mail.wplus.net

ANALYTICAL SOLUTION OF THE GINZBURG-LANDAU EQUATIONS FOR THE ABRIKOSOV VORTEX IN SUPERCONDUCTORS WITH AN ARBITRARY VALUE OF THE PARAMETER $ext{@} > 0.707$

Abstract. Until now, there is no exact analytical solution to the equations of the Ginzburg–Landau theory of superconductivity for any value of the parameter $\alpha > 0.707$, satisfying the boundary conditions for the Abrikosov vortex and the magnetic flux quantization condition, as well as the classical asymptotics (for the value $\alpha > 1$) of the London and Abrikosov formulas. In this regard, the goal of this computational and analytical research was to find a satisfactorily accurate analytical solution to the equation of the Ginzburg–Landau theory for the Abrikosov vortex in superconductors with an arbitrary value $\alpha > 0.707$. By analytically solving the equations of the phenomenological theory of Ginzburg–Landau superconductivity for a single Abrikosov vortex in a massive type II superconductor with an arbitrary value of the parameter α , we found: magnetic field strength α , current density α and order parameter α , we found: magnetic field strength α and the classical asymptotics of London and Abrikosov. The first critical magnetic field α and the ratio of absolute values α in superconductors with $\alpha > 0.707$ are determined.

Keywords: superconductivity, superconducting materials, electromagnetic properties, Ginzburg—Landau theory, vortex theory.

Citation:

V.V. Rogozhkin, V.I. Gorynin, M.A. Zhitomirskiy, Analytical solution of the Ginzburg-Landau equations for the Abrikosov vortex in superconductors with an arbitrary value of the parameter $\approx > 0.707$, Global Energy, 30 (02) (2024) 88–95, DOI: https://doi.org/10.18721/JEST.30205

Введение. Сверхпроводимость металлических материалов получила свое теоретическое развитие на феноменологическом уровне согласно теории Гинзбурга—Ландау—Абрикосова—Горькова (ГЛАГ-теории, теории Гинзбурга—Ландау). Феноменологическая ГЛАГ-теория основывалась на общей теории Л.Д. Ландау фазовых переходов II рода и гипотезе о комплексности сверхпроводящего параметра порядка [1—6]. Открытие сверхтекучести жидкого гелия и объяснение этого явления Ландау на основе сформулированного им критерия для систем Бозе-частиц позволило трактовать сверхпроводимость металлических материалов как сверхтекучесть электронной жидкости. Оно также позволило сформулировать феноменологические ГЛАГ-уравнения, описывающие термодинамику и электромагнитные свойства сверхпроводников [3, 7—13]. Вместе с тем до настоящего времени отсутствует точное аналитическое решение уравнений ГЛАГ-теории для любого значения параметра $\approx > 0,707$, удовлетворяющее граничным условиям для вихря Абрикосова и условию квантованию магнитного потока, а также классическим асимптотикам (при значении $\approx >> 1$) формул Лондонов и Абрикосова.

В связи с этим целью расчетно-аналитической исследовательской работы являлось нахождение удовлетворительно точного аналитического решения уравнения ГЛАГ-теории для вихря Абрикосова в сверхпроводниках с произвольным значением $\approx > 0,707$.

Методологический подход к решению уравнения

Уравнения феноменологической теории сверхпроводимости Гинзбурга—Ландау—Абрикосова—Горькова (ГЛАГ-теории, теории Гинзбурга—Ландау) для одиночного вихря Абрикосова*) с одним квантом магнитного потока в массивном сверхпроводнике с параметром $\mathfrak{a} > 0,707$ для безразмерных значений аргумента ρ , напряженности магнитного поля $h = h(\rho)$ и параметра порядка $f = f(\rho)$ [1, с. 63, 64] известны:

$$(h')^2/f^3 = (\rho * f')'/(\varpi^2 * \rho) + f * (1 - f^2);$$
 (1)

$$\left(\rho * h'/f^2\right)'/\rho = h. \tag{2}$$

Граничные условия для функций h и f следующие:

$$\rho \to 0: h'/f^2 \to -1/(x*\rho); f \to 0, h(0)$$
 – ограничено, (3)

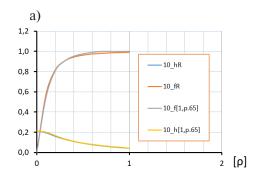
$$\rho \to \infty : f \to 1; \quad h \to 0; \quad h' \to 0.$$
 (4)

Принципиальной трудностью для аналитических решений дифференциальных уравнений (1), (2) является их сугубо нелинейный характер. Решение уравнения (2) при f=1 известно как «решение Лондонов» [1]: $h=h_L(\rho)=K_0(\rho)/\mathfrak{E}$, где K_0 — функция Макдональда [2]. Очевидные аномалии функции $K_0(\rho)\to\infty$ при $\rho\to0$ затрудняют ее применение в феноменологической теории Гинзбурга—Ландау.

Для решения уравнения (2) расширим использование функций Макдональда для описания вихря Абрикосова путем поиска напряженности магнитного поля h в виде $h \sim K_0(\varphi)$, где при $\rho >> 1$ функция $\varphi(\rho) \to \rho$, $h \to h_L(\rho)$, а при $\rho \to 0$ функция $\varphi(\rho) \to \beta$, где постоянная $\varphi(\varpi) > 0$.

Анализ аналитических решений

Нами получены аналитические решения системы уравнений феноменологической теории сверхпроводимости Гинзбурга—Ландау (1÷4) с произвольным значением $æ > 2^{-1/2}$, удовлетворяющие граничным условиям, условию квантования и классическим асимптотикам Лондонов и Абрикосова:


$$f = f_R = \rho / (\rho^2 + \beta^2)^{1/2} = \rho / \varphi;$$
 (5)

$$h = h_R = K_0(\varphi) / \lceil K_1(\beta) * \kappa \rceil; \tag{6}$$

$$j = \left| h_R' \right| = j_R = \rho * K_1(\varphi) / \left[K_1(\beta) * \kappa * \varphi \right], \tag{7}$$

здесь K_0 и K_1 — функция Макдональда [2]; $\varphi = \left(\rho^2 + \beta^2\right)^{1/2}$ [3]; величина $\beta = \kappa/\mathfrak{E}$, где κ — постоянная величина (\approx 1). Решения (5), (6), (7) аналитически точно удовлетворяют дифференциальному уравнению (2) и граничным условиям (3), (4) для любых значений параметров $\mathfrak{E} > 0,707$ и $\kappa > 1$.

Величина $\underline{\kappa}=2^{1/2}$ может быть определена из условия очевидного соответствия найденных решений f_R (5) и h_R (6) при $\rho \to 0$, также и дифференциальному уравнению (1) системы Гинзбурга—

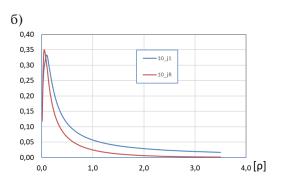


Рис. 1. Сравнение аналитических решений f_R и h_R при значении параметра $\underline{\kappa} = 2^{1/2}$ с известными численными решениями $f(\rho)$ и $h(\rho)$ [1] Fig. 1. Comparison of analytical solutions f_R and h_R at parameter $\underline{\kappa} = 2^{1/2}$ with known numerical solutions $f(\rho)$ and $h(\rho)$ [1]

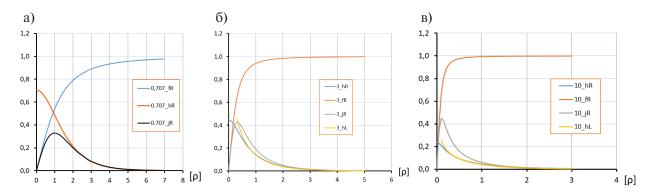


Рис. 2. Зависимости параметра порядка $f_R(\rho)$, напряженности магнитного поля $h_R(\rho)$ и $h_L(\rho) = K_0(\rho) / \infty$, а также плотности сверхпроводящего тока $j_R(\rho)$ для сверхпроводников с параметрами æ: 0,707 (a); 3 (6); 10 (в) Fig. 2. Dependences of the order parameter $f_R(\rho)$, magnetic field strength $h_R(\rho)$ and $h_L(\rho) = K_0(\rho) / \infty$, as well as the superconducting current density $j_R(\rho)$ for superconductors with parameters æ: 0.707 (a); 3 (b); 10 (v)

Ландау [1, с. 63]. На рис. 1а и 16 приведено сравнение аналитических решений f_R и h_R при значении параметра $\underline{\kappa} = 2^{1/2}$ с известными <u>численными</u> решениями $f(\rho)$ и $h(\rho)$ [1, с. 65] уравнений Гинзбурга—Ландау для вихря Абрикосова (при $\underline{\alpha} = 10$), а также показаны плотности тока $j_R(\rho) = |h'|$ (7) и $j_1(\rho) = |h'|$ из уравнения (1) для $f = f_R = \rho/(\rho^2 + \beta^2)^{1/2}$.

На рис. 2 представлены графики параметра порядка $f_R(\rho)$, напряженности магнитного поля $h_R(\rho)$ и $h_L(\rho) = K_0(\rho)/\mathfrak{E}$, а также плотности сверхпроводящего тока $j_R(\rho)$ для сверхпроводников с параметрами $\mathfrak{E} = 0.707$; 3 и 10.

Максимальное значение плотности тока $j_{Rm}\approx 0,32 \div 0,47,$ следующее из условия $\left(j_{Rm}\right)'=0,$ соответствует расстоянию от оси вихря $\rho_m\approx \beta=2^{1/2}/\varpi$.

Сопутствующие результаты:

$$h_{R}(0) = K_{0}(\beta) / \lceil K_{1}(\beta) * 2 \rceil; \tag{8}$$

$$h_{Rc1} = \left[\frac{a * h_R(0) + 3/4}{(2 * a)} \right].$$
 (9)

В свете современных сугубо дискретных моделей вихря Абрикосова (типа «керн», «th(æ * ρ)» и т.п.) требование обязательного соответствия найденных решений f_R (5) и h_R (6) еще и дифференциальному уравнению (1), связывающему величину плотности сверхпроводящего тока j_R (ρ) с

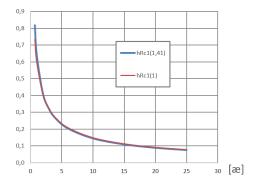


Рис. 3. Аналитические зависимости первого критического магнитного поля $h_{\rm Rc1}$ (æ) для значений $\underline{\kappa}=\underline{1}$ и $\underline{\kappa}=\underline{2}^{1/2}\underline{\approx}1,\!4\underline{1}$

Fig. 3. Analytical dependences of the first critical magnetic field $h_{\rm Rc1}(x)$ for values $\kappa = 1$ and $\kappa = 2^{1/2} \approx 1.41$

<u>производными первого и второго порядка</u> (!) от плавно меняющегося параметра порядка $f(\rho)$, представляется избыточным и допускает использование других критериев для определения величины κ .

Критерием для определения величин к и β может быть также выполнение точных <u>принципиальных равенств</u> в теории Гинзбурга—Ландау [1, р. 82] при значении æ = $1/2^{1/2}$:

$$h_{c1} = h(0) = 1/2^{1/2}$$
. (10)

Равенства (8) и (9) точно удовлетворяют критерию (10) при значении $\underline{\kappa} = 1, 1$. Для лаконичности формул примем значение именно $\underline{\kappa} = 1$, т.е. $\beta = \varpi^{-1}$.

На рис. З изображены визуально <u>совпадающие</u> аналитические зависимости первого критического магнитного поля $h_{Rc1}(\mathbf{æ})$ для значений $\underline{\kappa}=1$ и $\underline{\kappa}=2^{1/2} \approx 1,41$, что подтверждает приемлемость предложения «лаконичности» ($\kappa=1$ или $\beta=\mathbf{æ}^{-1}$) для описания свойств вихря Абрикосова в реальных сверхпроводниках второго рода.

Таким образом, для значений $\beta=lpha^{-1}$ величина первого критического магнитного поля h_{Rc1} равна:

$$h_{Rc1} = \left[\approx * h_R(0) + 0.5 \right] / (2 * \approx),$$
 (11)

где

$$h_R(0) = K_0(\omega^{-1}) / K_1(\omega^{-1}).$$
 (12)

На рис. 4. показана найденная нами зависимость (11) первого критического поля $h_{Rc1}(\mathfrak{E})$, которая соответствует зависимости $h_{c1}(\mathfrak{E})$ согласно численным расчетам Хардена и Арпа [1, с. 68, рис. 13], а также приведены значения первого критического поля при $\mathfrak{E} >> 01$ по формуле Абрикосова $h_{Ac1}(\mathfrak{E}) = [\ln \mathfrak{E} + 0,08]/(2*\mathfrak{E})$ [1, с. 68, 3.41].

При значении $\kappa = 1$ нами также аналитически подтверждено следующее из (9) классическое [1, с. 69] соотношение между величинами h(0) и «двукратным h_{cl} »:

$$h_R(0) = 2 * h_{Rc1} - 1/(2 * x),$$
 (13)

справедливое для <u>любых</u> значений параметра $\approx > 0.707$.

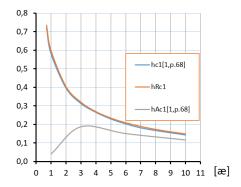


Рис. 4. Зависимость (11) первого критического поля $h_{\rm Rc1}(x)$

Fig. 4. Dependence (11) of the first critical field $h_{\rm Rc1}(x)$

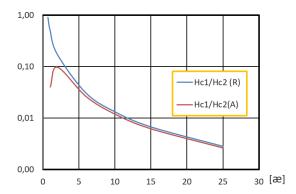


Рис. 5. Отношения абсолютных значений нижнего и верхнего критических магнитных полей $H_{c1} / H_{c2}(R) = h_{Rc1} /$ æ и $H_{c1} / H_{c2}(A) = h_{Rc1} /$ æ [1, с. 68]

Fig. 5. Ratios of the absolute values of the lower and upper critical magnetic fields $H_{c1}/H_{c2}(R) = h_{Rc1}/$ æ and $H_{c1}/H_{c2}(A) = h_{Rc1}/$ æ [1, p. 68]

Отношения абсолютных значений нижнего и верхнего критических магнитных полей

 $H_{c1}/H_{c2}\left(R\right)=h_{Rc1}/\mathfrak{E}$ и $H_{c1}/H_{c2}\left(A\right)=h_{Rc1}/\mathfrak{E}$ [1, с. 68] представлены на рис. 5. Очевидно преимущество нашего R-подхода к оценке $H_{c1}/H_{c2}\left(R\right)$ для сверхпроводников второго рода с любым значением параметра $\approx > 0.707$.

Для сверхпроводников с параметром $\approx >> 1$ отметим совпадение результатов теории Гинзбурга— Ландау для вихря Абрикосова и нашего подхода.

При значениях pprox >> 1, с учетом свойств функций Макдональда [2] $K_0(eta) \approx \ln pprox$ и $K_1(eta) \approx pprox$, полученные нами функции $f_R(\rho)$, $h_R(\rho)$ и $h_R(0)$ (формулы (5), (6), (8), (9)) переходят в классические асимптотики формул Лондонов и Абрикосова [1, с. 64, 69]:

$$h_R(\rho) \approx K_0(\rho)/\varpi = h_L(\rho);$$
 (14)

$$h_R(0) \approx \ln x / x = h_A(0); \tag{15}$$

$$f_R(\rho << 1) \approx \alpha * \rho = f_A(\rho << 1).$$
 (16)

Выводы

В настоящей работе найдена следующая R-структура (f_R , h_R , j_R) вихря Абрикосова:

$$f_R = \rho / (\rho^2 + \varpi^{-2})^{1/2};$$
 (17)

$$h_R = K_0 \left[\left(\rho^2 + e^{-2} \right)^{1/2} \right] / K_1 \left(e^{-1} \right);$$
 (18)

$$h_R(0) = K_0(\varpi^{-1}) / K_1(\varpi^{-1});$$
 (19)

$$j_{R} = \left| h_{R}' \right| = \rho * K_{1} \left[\left(\rho^{2} + \varpi^{-2} \right)^{1/2} \right] / \left[\left(\rho^{2} + \varpi^{-2} \right)^{1/2} * K_{1} \left(\varpi^{-1} \right) \right].$$
 (20)

Эта структура представляет собой аналитическое решение теории сверхпроводимости Гинзбурга—Ландау и является справедливой для любого значения параметра æ > 0,707, удовлетворяющее граничным условиям для вихря Абрикосова и условию квантованию магнитного потока.

Аналитическая зависимость первого критического магнитного поля h_{Rc1} от параметра \approx и абсолютных значений нижнего и верхнего критических магнитных полей имеет следующий вид:

$$h_{Rc1} = \left[\frac{\mathbf{x} * K_0(\mathbf{x}^{-1})}{K_1(\mathbf{x}^{-1}) + 1/2} \right] / (2 * \mathbf{x}) = \frac{\mathbf{x} * H_{c1}}{H_{c2}}.$$
 (21)

Следует отметить, что для определения структуры вихря Абрикосова нами не использованы «модельные» представления, рядные приближения и математические аппроксимации.

СПИСОК ИСТОЧНИКОВ

- [1] Сан-Жам Д., Сарма Г., Томас Е. Сверхпроводимость второго рода. М.: Мир, 1970. 286 с.
- [2] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 2. М.: Наука, 1974. 295 с.
- [3] **Рогожкин В.В., Васильев Л.И.** Критические магнитные поля в сверхпроводниках в широком диапазоне параметра $\approx //$ Физика твердого тела. 1982. Т. 24, № 6. С. 1908—1910.
 - [4] Де Жен П. Сверхпроводимость металлов и сплавов. М.: Мир. 1968, 279 с.
- [5] **Гинзбург В.Л., Киржница Д.А.** Проблема высокотемпературной сверхпроводимости. М: Наука, 1977. 400 с.
 - [6] Шмидт В.В. Введение в физику сверхпроводников. М.: Наука, 1982.145 с.
 - [7] Абрикосов А.А. Основы теории металлов. М.: Наука. 1987. 520 с.
 - [8] Винтайкин Б.Е. Физика твердого тела. М.: МГТУ им. Баумана, 2008. 360 с.
 - [9] Бардин Д. Новое в изучении сверхпроводимости. М.: Физматгиз, 1982. 729 с.
 - [10] Шмидт В.В. Введение в физику сверхпроводников. 2-е изд. М.: МЦНМО, 2000. 397с.
- [11] **Kopnin N.B.** Theory of Nonequilibrium Superconductivity. Oxford: Clarendon Press, 2001. 342 p. https://doi.org/10.1093/acprof:oso/9780198507888.001.0001
- [12] **Черноплеков Н.А.** Сверхпроводниковые технологии. Современное состояние и перспективы практического применения // Вестник РАН. 2001. Т. 71, № 4. С. 303—319.
 - [13] Лыков С.В. Сверхпроводимость полупроводников. СПб.: Наука, 2001. 104 с.

СВЕДЕНИЯ ОБ АВТОРАХ

РОГОЖКИН Владимир Владимирович — главный специалист, АО «Атомпроект», канд. физ.-мат. наук.

E-mail: vvrogozhkin@atomproekt.com

ГОРЫНИН Владимир Игоревич — начальник лаборатории, Центральный научно-исследовательский институт конструкционных материалов «Прометей», д-р техн. наук. E-mail: z1dehy97@mail.wplus.net

ЖИТОМИРСКИЙ Максим Алексеевич — студент, Санкт-Петербургский политехнический университет Петра Великого.

E-mail: maxzhitom@yandex.ru

REFERENCES

- [1] D. Saint-James, G. Sarma, E.J. Thomas, Type II superconductivity. Mir, Moscow, 1970.
- [2] H. Bateman, A. Erdelyi, Higher transcendental functions. Vol. 2. Nauka, Moscow, 1974.
- [3] **V.V. Rogozhkin, L.I. Vasiliev,** Kriticheskie magnitnye polia v sverkhprovodnikakh v shirokom diapazone parametra æ [Critical magnetic fields in superconductors in a wide range of the parameter æ], Fizika tverdogo tela [Solid state physics], 24 (6) (1982) 1908–1910.
 - [4] **P.-G. de Gennes,** Superconductivity of metals and alloys. Mir, Moscow, 1968.
- [5] **V.L. Ginzburg, D.A. Kirzhnitsa,** Problema vysokotemperaturnoi sverkhprovodimosti [The problem of high temperature superconductivity]. Nauka, Moscow, 1977.
- [6] **V.V. Shmidt,** Vvedenie v fiziku sverkhprovodnikov [Introduction to Superconductor Physics]. Nauka, Moscow, 1982.
 - [7] A.A. Abrikosov, Osnovy teorii metallov [Basics of metal theory]. Nauka, Moscow, 1987.
 - [8] **B.E. Vintaikin**, Fizika tverdogo tela [Solid state physics]. Bauman MSTU Publ., Moscow, 2008.
- [9] **D. Bardin,** Novoe v izuchenii sverkhprovodimosti [New in the study of superconductivity]. Fizmatgiz, Moscow, 1982.
- [10] **V.V. Shmidt,** Vvedenie v fiziku sverkhprovodnikov [Introduction to Superconductor Physics]. 2nd ed. MCCME, Moscow, 1982.
- [11] **N. Kopnin,** Theory of Nonequilibrium Superconductivity. Clarendon Press, Oxford, 2001. https://doi.org/10.1093/acprof:oso/9780198507888.001.0001
- [12] **N.A. Chernoplekov**, Sverkhprovodnikovye tekhnologii: sovremennoe sostoianie i perspektivy prakticheskogo primeneniia [Superconductor technologies: current state and prospects for practical application]. Herald of the Russian Academy of Sciences, 71 (4) (2001) 303–319.
 - [13] S.V. Lykov, Sverkhprovodimost' poluprovodnikov. Nauka, St. Petersburg, 2001.

INFORMATION ABOUT AUTHORS

Vladimir V. ROGOZHKIN – *JSC "Atomproekt"*.

E-mail: vvrogozhkin@atomproekt.com

Vladimir I. GORYNIN — Central Research Institute of Structural Materials "Prometey".

E-mail: z1dehy97@mail.wplus.net

Maxim A. ZHITOMIRSKIY – Peter the Great St. Petersburg Polytechnic University.

E-mail: maxzhitom@yandex.ru

Поступила: 21.05.2024; Одобрена: 20.06.2024; Принята: 22.06.2024. Submitted: 21.05.2024; Approved: 20.06.2024; Accepted: 22.06.2024.