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Abstract. The framework of the roof, considered in the research, is a two-chord truss-like structure. The 
chords are joined by vertical struts. They are made of high-strength steel cables. A flexible polymer 
membrane is attached to the restraining chord. The opposite supports of the roof are joined by a girder 
made of ordinary structural steel. The girder mitigates deformations of the truss under non-uniform external 
loads. It is loosely connected to the vertical struts. The loose connections (so-called design clearances) 
prevent overstressing the girder by uniform impacts. Computational technique for static analysis of the 
cable roof is proposed. The main structural parameters are estimated under the condition of the full use of 
the material properties. The bearer chord reaches the ultimate limit state under the uniformly distributed 
transverse load, which is taken by the cable truss in full. A non-uniform impact is split between the truss 
and the girder by the condition of compatibility of deformations. The expressions for the axial stiffnesses of 
the chords, the design clearance values, and the allowable deformations of the roof are given. The work 
contributes to the development of hybrid building constructions by providing the initial data for the 
conceptual design stage. It allows to validate structural models and to verify the results of numerical 
computer analysis. 
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1. Introduction 
The framework of the roof, considered in the research, is a two-chord cable truss with a girder 

arranged between the opposite supports. The chords are joined by vertical struts (Fig. 1). The struts are 
loosely connected to the girder: the truss moves freely by design clearances before the girder begins taking 
external transverse loads. 

The truss is pre-stressed by tensioning the bearer chord ‘b’, which is situated below the restraining 
chord ‘r’. The flexible shell is attached to the restraining chord. It is made of architectural fabrics or a polymer 
membrane [1]. 
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Figure 1. The framework of the roof structure considered in the research:  

a – general view, b – view along the line 1-1; 1 – bearer chord ‘b’; 2 – restraining chord ‘r’;  
3 – vertical strut; 4 – stiffening girder; 5 – loose connection of the strut and the girder  

(design clearance); 6 – retainer. 
The roof can be split into separate sections. An ordinary section is encompassed by catenary and 

backstay cables (Fig. 2). The section, considered in the research, is highlighted in blue in Fig. 2. 

 
Figure 2. The shell of the roof: 1 – the flexible membrane;  

2 – ridge, formed by the restraining chord of the roof’s framework; 3 – backstay cable;  
4 – catenary cable; 5 – fixed support; 6 – roof’s section, considered in the research. 

Pre-stressed cable structures with flexible shell belong to hybrid building constructions. They are an 
efficient solution for sheltering urban spaces, exhibition halls, airports, railway stations, and stadiums, as 
well as for temporary covering archeological areas, sites of architectural heritage and emergency facilities 
[2–6]. 

The key factor, which stimulates the growth of popularity of the hybrid constructions, is the 
emergence of high-quality steel cables and polymer membranes in the market. Development of 
multifunctional structural membranes offers great opportunities for self-sensing envelopes of buildings, as 
well as in the field of energy harvesting and storage [7]. Being far superior to the ordinary building materials, 
the cables and the membranes are a competitive solution in spite of relatively high cost. 

Cable and membrane structures, however, exhibit complex behavior under load. Kinematic 
displacements, brought about by non-uniform external impacts, can far exceed deflections by uniform loads 
of higher intensity [8]. Thus, the limit state of serviceability is violated. It prevents the full use of strength 
properties of structural materials and requires further enhancement of the design solutions. 

In order to reduce the deformations, cable structures are combined with rigid threads and stiffening 
girders. Load-carrying behavior of a suspended roof structure with lattice threads is analyzed in [9]. 
Arrangement of a stiffening girder between the opposite supports of cable structures is transferred from the 
bridge engineering [10]. The girder is suspended by the cables, which reduce its material capacity. The 
cable spacing is investigated by means of static and dynamic analysis of cable-stayed bridges [11]. 

Horizontal cantilever girders, supported by guy cables, form the bearer framework for the roofs of 
small capacity stadiums [12]. Such a solution, however, suffers from the uplift wind loads, which can cause 
slackening of the cables and overstress the cantilever. 

The stiffening girders, being embedded into the cable structures, form strutted systems [13]. In 
addition to the effective mitigation of the deflections, the girders bear the thrust brought about by the flexible 
chords of the construction thus preventing overstress of the supporting structures. 

The strutted systems have found use for radio transmitting towers, providing reduction of cost up to 
50 % [14]. The girder, being arranged in the vertical direction, serves as a lightweight mast or a pole for 
supporting temporary building constructions, such as awnings and tents [15, 16]. 

Deformability of the strutted systems is decreased by means of multilevel arrangement of the cable 
chords [13], as well as by transforming the top chord into a secondary cable truss with inclined web ties 
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[17, 18]. The secondary truss results in reduction of the vertical displacements by 32 % in comparison to a 
single cable [19]. 

A common disadvantage of the strutted systems is that the girder, being of high relative stiffness, 
becomes overstressed by external transverse loads, while high-strength chords of the cable truss remain 
underused. Mitigation of the stresses in the structural elements is achieved by means of passive adaptation 
strategy. The passive adaptation means, that the structural compliance is implemented into the structural 
behavior [20]. 

Design clearances, which allow the structural elements to move freely a certain distance, can be 
considered as the means for the passive adaptation. An emergency-proof girder structure is proposed and 
optimized in [21, 22]. The girder transforms into a truss-like structure in case of failure of the middle support. 
The transformation is performed using loosely connected structural elements. 

The solution [23] allows the girder to bear only its own weight in the transverse direction until the 
design clearances are exhausted. It contributes to more efficient stress redistribution in the construction, 
because the flexible chords, made of high-strength steel cables, take the major portion of the external 
impacts. 

Structural analysis of the hybrid building constructions, which include flexible cable and membrane 
elements, must take into account complex nonlinear behavior under load. Pseudo linear approach, based 
on replacing of the flexible catenaries with trussed elements, is not appropriate [24]. Numerical methods 
are commonly used for geometrically nonlinear structural analysis. They allow thorough consideration of 
the external loads and provide detailed information on the stress and force distribution in the structural 
members. 

A two-step numerical strategy for the static analysis of cable structures is proposed in [25]. The initial 
stresses in the cables and the reference configuration of the structure is determined by the catenary force 
density method. The convergence of the numerical analysis is achieved by the iterative Newton–Raphson 
method. 

The mixed algorithm for nonlinear analysis of hybrid structures made of cable and rigid (truss) 
elements is proposed in [26]. The equilibrium is achieved iteratively by the secant method. 

In [27] point based iterative approach is used for geometrically nonlinear analysis of cable trusses 
and nets. Such an approach, in comparison to similar methods of structural analysis, requires much less 
computational resources. 

The design process of the flexible membranes, which form the shell of the hybrid buildings, is 
considered in [28]. The equilibrium shape of the flexible membrane strongly depends on the stress 
distribution in the surface. The influence of the membrane geometry on the structural behavior of the whole 
construction is investigated in [29]. Form-finding theories and approaches are considered in [30]. Improved 
“force density” numerical technique for shape determination of hybrid structures is devised in [31]. The 
problem of multiple shapes and unstable equilibrium positions is considered in [32]. 

Coupled analysis of the flexible membrane and the supporting structure is considered in [33–35]. 
Numerical analysis of the arch structure restrained by the membrane is considered in [36]. Integrated 
approach, which includes optimization steps, is proposed in [28]. The approach allows finding the 
intermediate stress-free configuration of the membrane, from which it is stretched, into the desired shape 
with the appropriate stress distribution [37]. 

The procedure for the numerical simulation of flexible membrane structures is summarized in [38]. 
The analysis is based on the finite element method, which is implemented using specialized software 
packages for nonlinear structural simulation. 

Numerical methods, however, require the main structural parameters to be given in advance. Thus, 
analytical technique is needed to determine stiffness properties of the structural elements and the 
magnitude of the pre-stressing of the cables and the membranes [39]. Simplified approach is also required 
for validating structural models and for verifying the numerical results. 

The analysis of single cables, cable nets and trusses is considered in [8]. The analytical dependence 
for the length of the cables is proposed. The cubic equation for determination of the thrust is given. The 
compatibility of deformations of the chords of the cable trusses is used for the static analysis under load. 

The engineering approach for simulating suspension bridges with rigid cables and girders is devised 
in [40]. The analytical expressions for the thrust induced by the cables, as well as for the vertical deflections 
at the middle and at the quarter points of the span are derived. 

The equilibrium equations for a flexible cable, subjected to self-weight and temperature variations, 
are given in [41]. The equations are written in the differential form. Having been integrated, they are solved 
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given the boundary conditions for the cable. This approach is used for analyzing single cables and cable 
nets. 

Analysis of girders with reinforcing flexible ties is considered in [14]. The condition of compatibility of 
deformations is used for obtaining the deflections and the stress-strain state under load. 

According to the literature review, the following gaps in the field of the cable and membrane 
structures may be highlighted: 

− cable truss systems, stiffened with girders, and flexible membrane shells are considered 
separately. Multistructure integration should be investigated, because the united (hybrid) system 
is expected to be a competitive design solution; 

− structural compliance should be used for improving the structural behavior. Thus, the passive 
adaptation needs to be implemented into the hybrid roofs; 

− simplified solution techniques must be developed for the static analysis of the hybrid 
constructions, as well as for estimating their main structural parameters. 

The purpose of the present work is to devise the computational technique for structural analysis of 
the cable roofs, stiffened with girders and enveloped with flexible membranes. 

The tasks to be solved are the following: 

1. To include polymer membrane shell into the structural model of the plane cable truss. To propose 
the numerical technique for estimating the effective stiffness of the membrane in the model. 

2. To propose computational technique for static analysis of the cable truss with the girder and the 
passive adaptation means in the form of design clearances. To take into account both uniform and 
non-uniform external loads. 

3. To provide analytical expressions for calculation of design clearances, pre-tensioning of cable truss 
and stiffness properties of the chords under the satisfied limit states conditions. 

2. Methods 
The structural model of the section of the roof highlighted in Fig. 2 is shown in Fig. 3. 

 
Figure 3. Structural model of the section of the roof: a, b – restraining and bearer chords, 

respectively, c – the stiffening girder; 1, 2 – initial and deformed positions of the elements, 
respectively; 3 – fixed support; 4 – support fixed in vertical direction only; P is the link load 

between the chords; Qt and Qgrd are the external transverse loads on the cable truss  
and the girder; Ngrd is the longitudinal load on the girder. 

The following assumptions are considered in the present work. No material nonlinearity is present 
and Hook’s law is valid. Longitudinal shortening of the girder under load is negligible, and the roof’s span 
L  is stationary. Nodal displacements are allowed only in the vertical direction and the struts between the 
chords are incompressible. Thus, the rises of the chords f  are mutually dependent at the deformed state: 

0b ,bf f f= −∆                                                                 (1a) 
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fff rr ∆+= ,0                                                                  (1b) 

4/1,04/1, 75.0 fff bb ∆−⋅=                                                        (1c) 

4/1,04/1, 75.0 fff rr ∆+⋅=                                                         (1d) 

where f∆ , 1 4/f∆  are the displacements of the roof in the center and in the quarter point of the span, 

respectively; 0,bf  and 0,rf  are the initial rises of the parabolic chords. 

Only shallow cables are considered in the present work. Thus, the rises of the chords bf  and rf , 

as well as 0,bf  and 0,rf , must obey the following condition: 

,L
f
≥ ς                                                                          (2) 

where ς  is the limiting span-to-rise ratio for the chords, which is taken the following: 8.ς =  

The bearer chord of the roof structure is a steel cable or a cable bundle with the overall axial stiffness 
.bEA  The restraining chord is composed of a cable ‘cab’ with the stiffness ,r cabEA  and a membrane shell 

‘m’. In the present work, the shell is modeled by means of membrane-simulating element, which behaves 
under load like an ordinary cable with the stiffness , .r mEA  

Considering the equality of the relative deformations ( ), , ,r r cab r mε = ε = ε  the overall stiffness rEA  

of the restraining chord is the sum of the stiffness values of its components: 

,, .r mr r cabEA EA EA= +                                                        (3) 

The axial force N  in a chord or its components is obtained by Hook’s law: 

,N EA= ⋅ε                                                                        (4) 

where EA  is the axial stiffness; ε  is the chord’s relative elongation given the rise :f  

0
1,c

c

L
L

ε = −                                                                       (5) 

where cL  and 0cL  are the current and initial chord lengths, respectively: 

4 2
4 2 ;cL f f L= Ψ ⋅ +Ψ ⋅ +                                                         (6) 

0 ,c g pL L L= −∆                                                                  (7) 

where ( )2 8 3 LΨ = ⋅  and ( )3
4 32 5 LΨ = − ⋅  are the coefficients for a parabola-shaped curve; gL  is 

the geometric length of the chord, obtained from (6) given the initial rise 0;f  pL∆  is the tensioning of the 

chord, which is introduced for pre-stressing the roof structure. 

The effective stiffness of the membrane-simulating element ,r mEA  is proposed to be obtained 
numerically. The membrane is substituted by a mesh of elastic elements. The initial shape of the mesh is 
obtained by means of the force density method [30, 31]. The membrane is loaded along the ridge with 

uniformly distributed test load q  (Fig. 4). An auxiliary cable with the stiffness ,
aux
r cabEA  is used for 

redistributing the load and transmitting it to the membrane. Finite element method is used for the analysis. 
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Figure 4. Determination of the effective stiffness of the membrane-simulating element mrEA , :  
a – the model for the finite element analysis; b – structural model for the stiffness calculation;  

1 – the auxiliary cable with the stiffness aux
cabrEA , ; 2 – the membrane; 3 – the membrane-simulating 

element; 4 – the initial shape of the ridge of the membrane; σu and σv are the membrane stresses  
in the principal directions u and v. 

The membrane with the auxiliary cable deforms from the initial rise 0,rf  to the resultant one. The 

effective stiffness ,r mEA  is calculated by the following expression: 

( )
( )( ), , ,r aux

r m r cab
r

N q
EA EA

f q
= −
ε

                                                (8) 

where ( ) ( )
2

8r
q LN q

f q
⋅

=
⋅

 is the overall axial force in the restraining chord; ( )f q  is the rise of the chord 

under the load ;q  ( )( )r f qε  is the relative elongation of the chord (5) given the rise ( )f q  and the chord 

tensioning 0.pL∆ =  

The girder equilibrates the horizontal forces, which are induced by the cable truss. Considering, that 
the membrane effective force is distributed by the catenary cables between the girder and the neighboring 
fixed supports (Fig. 2), the axial force in the girder grdN  is estimated as follows: 

,
, , ,

2
r m

grd b cab r cab
N

N N N= + +                                                 (9) 

where ,b cabN  and ,r cabN  are the forces in the bearer chord and in the cable of the restraining chord, 

respectively; ,r mN  is the membrane effective force. 

The axial force in the girder, being compressible, is taken positive in the present work. The ultimate 
limit state condition for the girder may be written as follows: 

lim, ,grd grdΘ ≤ Θ                                                            (10) 

where lim,grdΘ  is the allowable stress-strength ratio for the girder; grdΘ  is the ratio given the axial force 

grdN  and the maximum absolute value of the bending moment :grdM  

, if 20;grd
grd ef

e grd grd

N
m

A R
Θ = <

ϕ ⋅ ⋅
                                      (11) 
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, otherwise,grd
grd

grd grd

M
W R

Θ =
⋅

                                           (12) 

where grdA  and grdW  are the area and the elastic section modulus of the girder’s cross section; grdR  is 

the material strength of the girder; eϕ  is the buckling coefficient which is obtained by the Design Code (SP 

16.13330.2017) given the effective slenderness λ  and the adjusted relative eccentricity .efm  

Bending moment in the girder grdM  is induced by transverse and longitudinal impacts: 

,grd Q grdM M N= + ⋅δ                                                      (13) 

where QM  is the bending moment brought about by the transverse load; δ  is the deflection of the girder 

under load: 

,
1

Q

grd elN N
δ

δ =
−

                                                             (14) 

where Qδ  is the deflection by the transverse load only; elN  is the Euler load, :grd elN N<  

22 .el grd grdN E I L= π ⋅ ⋅                                                     (15) 

Considering the chords of the cable structure, the limit state conditions may be written as follows: 

− the ultimate limit state: 

lim,2;сΘ ≤ Θ                                                                    (16) 

− the serviceability limit state: 

lim;ldω ≤ ω                                                                       (17) 

lim,1 ,cΘ ≤ Θ                                                                     (18) 

where ldω  is the deflection caused by the external load; limω  is the allowable deflection; cΘ  is the stress-

strength ratio for the chord, while lim,1,Θ  lim,2Θ  are the allowable boundary values: 

lim,1 lim,2 ,c
c

cR
σ  Θ = ∈ Θ Θ                                                        (19) 

where cσ  is the normal stress in the chord; cR  is the chord’s strength. 

Having considered Hook’s law, the ratio cΘ  can be converted as follows: 

,cΘ = ε ζ                                                                        (20) 

where ζ  is the maximum relative deformation given the material strength and the stiffness properties. 

Considering the cable elements of the chords, the cabζ -value is obtained as follows: 

,cab cab cabR Eζ =                                                            (21) 

where cabR  and cabE  are the strength and the modulus of elasticity of the steel cables. 

The allowable deformation of the bearer cable can be written as follows: 

,1 ,2 ,b cab cab ε ∈ ε ε                                                              (22) 



Magazine of Civil Engineering, 17(5), 2024 

where 

,1 lim,1 ;cab cabε = Θ ⋅ζ                                                        (23a) 

,2 lim,2 .cab cabε = Θ ⋅ζ                                                        (23b) 

Considering the membrane-simulating element of the restraining chord, the mζ -value is obtained 
numerically: 

( ),lim ,m r mfζ = ε                                                               (24) 

where rε  is the relative elongation (5) given the maximum rise of the restraining chord ,limmf  under the 
conditions: 

lim, ;u uσ ≤ σ                                                                 (25a) 

lim, ,v vσ ≤ σ                                                                  (25b) 

where uσ  and vσ  are the membrane stresses in the u  and v  directions (Fig. 4); lim,uσ  and lim,vσ  are 
the allowable membrane stresses in the orthotropic shell: 

lim ,break Kσ = σ                                                           (26) 

where breakσ  is the membrane breaking strength; K  is the stress factor [42]. 

The allowable range for the relative deformations of the restraining chord in a whole: 

,1 ,2 ,r r r ε ∈ ε ε                                                              (27) 

where ,1rε  and ,2rε  are the following boundary values: 

( ),1 ,1 ,1max , ;r cab mε = ε ε                                                    (28a) 

( ),2 ,2 ,2max , ,r cab mε = ε ε                                                  (28b) 

where ,cab iε  are the limiting deformations of the cable element of the restraining chord (23), while ,m iε  
are the limiting deformations of the membrane-simulating element: 

, lim, ,m i i mε = Θ ⋅ζ                                                            (29) 

where { }1, 2 ,i =  and mζ  is given by (24). 

Pre-stressing of the roof and the operational phase are considered separately. At the pre-stressing 
phase the roof structure cambers by the distance prf∆  thus transforming the chords’ rises from 0f  into 

prf  (1): 

;prf f∆ = ∆                                                                   (30a) 

1 4 0.75 .prf f∆ = ⋅∆                                                            (30b) 

The cambering of the roof is induced by tensioning of the bearer chord. The girder is subjected by 
its own weight grdρ  in the vertical direction, while the weight of the cable truss and the membrane is 

considered negligible. The longitudinal force in the girder pr
grdN  is brought about by the cables. 

At the operational phase, the roof deforms downwards under vertical external loads. The full uniform 
load ,totQ  as well as partial uniform load prtQ  and the load hlfQ  acting on a half of the span of the roof, 
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are taken into account (Fig. 5). It is assumed, that the full uniform load exceeds the overall sum of the non-
uniform impacts: 

.prt hlf totQ Q Q+ ≤                                                             (31) 

 
Figure 5. External loads considered: a – the full uniform load,  

b – non-uniform load, c – the girder’s own weight. 

Under a uniformly distributed load, the chord’s rises transform into ldf  (1) by the following overall 
displacements: 

;pr ldf f∆ = ∆ −ω                                                             (32a) 

( )1 4 0.75 ,pr ldf f∆ = ⋅ ∆ −ω                                                    (32b) 

where ldω  is the deflection of the roof at the center of the span. 

The deflection of the roof under the full uniform load totQ  is considered equal to the allowable 

deformation lim.ldω = ω  It is assumed, that the cable truss takes the full amount of the load ,totQ  and the 

bearer chord reaches the ultimate limit state: , ,2.ld b cabε = ε  The girder is only influenced by its own weight 

grdρ  and by the longitudinal forces .ld
grdN  

The non-uniform load considered in the research consists of a uniform part prtQ  and a half-span 

load hlfQ  (Fig. 5). The partial uniform load prtQ  is completely taken by the cable truss, while the half-

span load splits between the truss and the girder into ,hlf tQ  and , ,hlf grdQ  respectively: 

, ;hlf t Qh hlfQ Q= ξ ⋅                                                        (33a) 

( ), 1 ,hlf grd Qh hlfQ Q= −ξ ⋅                                                (33b) 

where ( ]0 1Qhξ ∈   is the parameter of splitting the load, which is to be determined. 

Thus, the left-hand side of the cable truss is influenced by the load ,LQ  while the load RQ  acts on 
the right part of the span (Fig. 6): 

, ;L prt hlf tQ Q Q= +                                                          (34a) 

.R prtQ Q=                                                                  (34b) 

The corresponding loads acting on the girder are the following: 

, , ;L grd grd hlf grdQ Q= ρ +                                                  (35a) 

, .R grd grdQ = ρ                                                             (35b) 
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Figure 6. Structural model under the non-uniform load. 

The parameter of splitting the load, ,Qhξ  is obtained by the condition of compatibility of deformations 

of the truss and the girder in the quarter of the span. The secant method is used. 

The girder deflection 1 4δ  is obtained by (14) given the loads ,L grdQ  and .,QR grd  The overall 

displacements of the cable truss ( f∆ and 1 4,f∆  Fig. 6) under the loads LQ  and RQ  are obtained by 

minimization of the following discrepancy using the coordinate descent method: 

1 2 0,Ξ = ϑ + ϑ →                                                             (36) 

where the functions ( )1 1 4,f fϑ ∆ ∆  and ( )2 1 4,f fϑ ∆ ∆  are derived from [43]: 

0, ,
1 1;b c b

Sym Eq b

f f L
q p

−∆ ∆
ϑ = ⋅ −

+ ρ
                                             (37a) 

2 2
1 1, if 0, and 1 otherwise,Inv r Eq

b
Sym Eq b

q p
q p

+η ⋅
ϑ = ⋅ − η ≠ ϑ =

+ η
               (37b) 

where Eqp  is the link load between the chords and ,bη  rη  are the coefficients of load non-uniformity, 

which depend on the displacements f∆  and ;1 4f∆  ,c bL∆  is the bearer chord elongation given the  

bη -value; bρ  and rρ  are the ratios, which depend on the chords stiffness properties; Symq  and Invq  are 

the symmetrical and inverse-symmetrical parts of the external load: 

;
2

L R
Sym

Q Qq +
=                                                           (38a) 

.
2

L R
Inv

Q Qq −
=                                                            (38b) 

The value 0bη =  means, that the load must be uniform. It contradicts the assumption, that there is 

non-zero impact ,hlfQ  thus raising the maximum discrepancy value in (37b). 

The coordinate descent method is used for minimizing the discrepancy (36). Having started from the 

initial guess values ( ) ( )1 4, 2,0prinit
f f f∆ ∆ = ∆  the result is achieved iteratively by variation of the 

displacements. 
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3. Results and Discussion 
The roof structure, considered in the research, consists of the framework and the flexible membrane 

shell. The framework is protected by the patent RF no. 2439256, 2010. 

3.1. The allowable rise of a parabola-shaped chord 

The rise of a parabola-shaped chord at the center of the span cf  is derived given the chord’s length 

:cL  

5 1 1 3.6 1 .
2 6

c
c

LLf
L

 = ⋅ ⋅ − − ⋅ − 
 

                                            (39) 

Considering that the radical expressions in (39) must be positive, the length of the chord is confined 
as follows: 

[ ]1.0 1.278 .cL L∈ ⋅                                                      (40a) 

On the other hand, substituting the boundary values for the chord rises ( 0f = and f L= ς  (2)) 
into (6) yields in the following range: 

lim
4 2

32 81.0 1.0 .
5 3cL L

  −
∈ + + ⋅  

⋅ς ⋅ς   
                                          (40b) 

Considering 8,ς =  one can see, that the range (40b), [ ]lim 1.0 1.04 ,cL L∈ ⋅  fully belongs to (40a), 
thus providing no singularity in (39). 

Assuming, that the chord reaches a limit state, the allowable length lim
cL  is the following: 

( )lim
0 lim 1 ,c cL L= ⋅ ε +                                                        (41) 

where limε  is a boundary value ,cab iε  or ,r iε  (22 or 27), { }1, 2 ;i =  0cL  is the initial chord’s length (7). 

Substituting the length lim
cL  into (39) gives the allowable rise of a parabola-shaped chord under the 

limit states condition specified. 

3.2. Deformation of the roof at the pre-stressing phase 

Considering the restraining chord, the deformation of the roof during the pre-stressing prf∆  is 

confined as follows: 

,lim1 ,lim2, ,pr pr prf f f ∆ ∈ ∆ ∆                                                   (42) 

where ,lim1prf∆  and ,lim2prf∆  are the following boundary values: 

1,lim1 lim , lim 0, ;pr r rf f f∆ = +ω −                                             (43a) 

2,lim2 lim , 0, ,pr r rf f f∆ = −                                                     (43b) 

where 
1lim , ,rf  

2lim ,rf  are the lower and upper bounds for the rise of the restraining chord, respectively. 

The 
1lim ,rf -value is calculated by (39) given the allowable length (41) ( )lim

, 0, ,1
1 1 ,c r c r rL L= ⋅ ε +  

while the 
2lim ,rf -value is obtained as follows: 

( )2lim , lim2, lim2,min , ,u s
r r rf f f=                                                  (44) 
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where lim2,
s

rf L= ς  is imposed by the condition of the shallow shape of the chord (2), while lim2,
u

rf  is 
obtained by (39) given the length, which is determined by the ultimate limit state condition 

( )lim
, 0, ,2

2 1 ;c r c r rL L= ⋅ ε +  0,c rL  is obtained by (7) for the restraining chord given 0.pL∆ =  

In order to keep the range (42) nonsingular the allowable deflection limω  must obey the following 

condition: 

2 1lim lim, lim lim .up r rf fω ≤ ω = −                                           (45a) 

The serviceability limit state also confines the limω -range: 

lim lim ,ω ≤ Ω                                                                 (45b) 

where limΩ  is the given value, which is defined for preventing large structural deformations. 

Considering the bearer chord, the serviceability limit state imposes the following condition on its rise: 

, lim1, ,pr b bf f≥                                                                   (46) 

where ,pr bf  is the chord’s rise (1a) given the roof deformation at the phase of the pre-stressing (30a); 

lim1,bf  is obtained by (39) given the allowable chord’s length ( )lim
0, ,1,

1 1 ;c b cabc bL L= ⋅ ε +  0,c bL  is the 

initial length of the bearer chord, derived from the ultimate limit state condition: 

0, ,
,2

1 ,
1

ld
c b c b

cab
L L= ⋅

+ ε
                                                          (47) 

where ,
ld
c bL  is the length (6) of the bearer cable given the rise ,ld bf  (1a), which corresponds to the 

displacement (32a). 

Both sides of (46) depend on the deformation of the roof at the phase of the pre-stressing, .prf∆  

Thus, it supplements the condition (42) imposed on the prf∆ -range. 

3.3. The stiffness of the chords 
Considering Hook’s law and the uniformity of the load distribution at the pre-stressing phase, the 

axial stiffness values of the chords bEA  and rEA  may be written as follows: 

2

, ,
;

8b pr
pr b pr b

LEA P
f

= ⋅
⋅ ⋅ ε

                                                   (48a) 

2

, ,
,

8r pr
pr r pr r

LEA P
f

= ⋅
⋅ ⋅ ε

                                                     (48b) 

where the chord rises , ,pr bf  ,pr rf  and the corresponding relative deformations , ,pr bε  ,pr rε  are 

determined by the roof’s cambering ;prf∆  prP  is the link load between the chords at the pre-stressing 

phase. 

The boundary value for the link load between the chords is obtained under the condition that the full 
uniform load totQ  is completely taken by the cable truss: 



Magazine of Civil Engineering, 17(5), 2024 

,
, ,2 , ,

, , , ,

,tot
pr bound

ld b cab ld r ld r

pr b pr b pr r pr r

QP f f
f f

=
⋅ε ⋅ε

−
⋅ε ⋅ε

                                              (49) 

where ,2cabε  is the limiting deformation (23b), which ensures the full use of the strength properties of the 

bearer chord under the condition of reaching the allowable rise ,ld bf  under load; , ,pr bε  ,ld rε  and ,pr rε  

are the relative deformations of the chords given the rises , ,pr bf  ,ld rf  and , ,pr rf  respectively. 

If the link load is less than its boundary value, , ,pr pr boundP P<  then the cable truss takes only a 

fraction of the uniform load .totQ  The remaining part of totQ  influences the girder and increases its material 

capacity. If the link load exceeds the boundary value , ,pr pr boundP P>  then the structure deforms less, 

than it is allowed by the serviceability limit state: lim.ldω < ω  Both cases are worse from the economic 

point of view, than the case of , ,pr pr boundP P>  when the deformation is equal to the allowable one and 

the cable truss, being subjected by uniform loads, induces only horizontal force in the girder. 

3.4. The design clearances 
The design clearances are used in emergency-proof girders in form of “curved gains” thus using the 

principle of passive adaptability [21, 22]. They allow transformation of the construction in order to enhance 
structural performance. The clearances ∆  (loose connections, Fig. 1) are introduced into the structural 
framework of the roof after the pre-stressing phase is completed. 

Assuming, that the uniform load totQ  is fully taken by the cable truss, the design clearance at the 
center of the span may be expressed as follows: 

1 2 lim ,pr ld∆ = ω + δ −δ                                                          (50) 

where prδ  and ldδ  are the deformations of the girder (14) at the center of the span under its own weight 

grdρ  and the horizontal loads pr
grdN  and ,ld

grdN  respectively. 

The expressions for the horizontal loads, which are brought about by the cable chords, may be written 
according to (4) and (9) as follows: 

,
, , ;

2

pr
r mpr pr pr

grd b cab r cab
N

N N N= + +                                                 (51a) 

,
, , ,

2

ld
r mld ld ld

grd b cab r cab
N

N N N= + +                                                   (51b) 

where 

,, , , , ,, ,, , ;pr pr pr
r mb pr b r cab pr r r m pr rb cab r cabN EA N EA N EA= ⋅ε = ⋅ε = ⋅ε            (51c) 

,, ,2 , , , , ,, , ,ld ld ld
r mb cab b cab r cab r cab ld r r m ld rN EA N EA N EA= ⋅ε = ⋅ε = ⋅ε           (51d) 

The design clearance at the quarter point of the span may be written in a similar way: 

1 4 lim ,1 4 ,1 40.75 ,pr ld∆ = ⋅ω + δ −δ                                         (52) 

where ,1 4prδ  and ,1 4ldδ  are the girder’s deformations at the quarter point of the span under the loads 

,grdρ  pr
grdN  and .ld

grdN  
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Considering the uniformity of the load ,totQ  the design clearance values throughout the span are 
taken by the parabola-shaped curve. 

3.5. Non-uniform load on the roof 
The non-uniform load considered in the research is shown in Figs. 5 and 6. In order to split the load 

hlfQ  between the truss and the girder by Qhξ -parameter (33) the condition of compatibility of deformations 

at the quarter point of the span may be written as follows: 

,1 4 1 4 ,1 4 ,1 4,h h prω = ∆ + δ −δ                                                    (53) 

where ,1 4hω  and ,1 4hδ  are the deformations of the truss and the girder under the loads ( ),L RQ Q  and 

( ), ,, ,L grd R grdQ Q  respectively; ,1 4prδ  is the deformation of the girder under its own weight at the pre-

stressing phase. 

Substituting (52) into (53) yields in the following equation in one unknown :Qhξ  

( ) 0,Qhh ξ =                                                                   (54a) 

where ( )Qhh ξ  is the following function: 

( ) ,1 4 1 4

lim ,1 4

0.75
1,

0.75
pr ld

Qh
h

f f
h

⋅∆ + δ − ∆
ξ = −

⋅ω + δ
                                        (54b) 

where 1 4f∆  is the overall displacement of the cable truss at the quarter point of the span, which includes 

the displacement at the pre-stressing phase and the displacement under the non-uniform load ( ), :L RQ Q  

1 4 ,1 40.75 .pr hf f∆ = ⋅∆ −ω                                                    (54c) 

Only 1 4f∆  and ,1 4hδ -values in (54b) depend on ,Qhξ  while all the remaining terms may be held 

constant. The value ,1 4hδ  is obtained from (14), while 1 4f∆ -value is obtained by the minimization of (36) 

given the Qhξ -ratio. 

The value of ,Qhξ  which closely satisfies (54a), is obtained by means of the iterative secant method. 

The middle point Mξ  between the left and right bounds ( Lξ  and Rξ ) is obtained as follows: 

( ) ( )
( ) ( )

,R L L R
M

R L

h h
h h

ξ ⋅ξ + ξ ⋅ξ
ξ =

ξ + ξ
                                                 (55a) 

under the condition: 

( ) 0.Rh ξ >                                                                    (55b) 

The bounds, used by Lξ  = 0.0 and Rξ  = 1.0, are modified during the iteration process as follows: if 

( ) ( ) 0,R Mh hξ ⋅ ξ >  then R Mξ = ξ  and ,L Mξ = ξ  otherwise. Having reached the acceptable value of 

the discrepancy ( )( ) ,Mhε εµ ξ < µ  the iteration process finishes: .Qh Mξ = ξ  

If, however, the condition (55b) is not met, the girder does not take transverse load ( )1.0Qhξ =  and 

the deformations of the cable truss are less than the design clearances. 
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3.6. Numerical example 
3.6.1. General specification 

A fragment of the roof structure is considered as an example. The fragment is highlighted in blue in 
Fig. 2. It consists of the cable truss with the girder and two pieces of the membrane. The membrane is 
situated symmetrically about the ridge of the truss. 

The span of the roof L  is 12 m. The initial chords’ rises are taken the following: 0,bf  = 1.5 m and 

0,rf  = 1.0 m. The rise-to-span ratio for the bearer chord ( )0, 1 8bf L =  belongs to the optimal range 

[ ]1 10 1 6  providing efficient force transfer to the supporting structures [44]. The rise-to-span ratio for 

the restraining chord ( )0, 1 12rf L =  belongs to the allowable range [ ]1 20 1 10  in order to reduce 

the overall height of the roof [33]. The width of the fragment B  is 6 m. The following loads are considered: 

totQ  = 18 kN/m, prtQ  = 9.0 kN/m and hlfQ  = 9.0 kN/m (Fig. 5). The allowable displacement of the roof 

under load is limΩ  = 0.1 m. 

The girder is made of two steel channel bars with the following strength property and the modulus of 
elasticity: grdR  = 2.1·105 kN/m2 and grdE  = 2.1·108 kN/m2. The allowable stress-strength ratio is adopted 

the following: lim,grdΘ  = 1.0. 

The chords of the truss are made of steel cables with the following material properties:  

cabR  = 7.0·105 kN/m2 and cabE  = 1.3·108 kN/m2. Thus, the maximum relative deformation of the cables is 

cabζ  = 5.385·10–3 (21). The boundary values for the stress-strength ratio of the chords are taken the 

following: lim,1Θ  = 0.01 and lim,2Θ  = 1.0. 

The membrane is made of architectural fabrics with the elastic moduli uE  = 600 kN/m and 

vE  = 400 kN/m in u  and v -directions, respectively. The membrane axes are shown in Fig. 4. They 
coincide with the direction of the main curvatures [44]. 

Considering the stress factor K  = 5.0 [42, 45], the allowable membrane stresses are the following: 

lim,uσ  = 15 kN/m and lim,vσ  = 12 kN/m. The membrane pre-tension is taken 1.5 kN/m in u  and v -
directions that complies with the requirements [42]. 

3.6.2. Obtaining the effective stiffness and the allowable relative deformation of the membrane-
simulating element 

The membrane is numerically simulated using the specialized software package for nonlinear 
structural analysis EASY [46]. The membrane is substituted by a mesh of the size 0.5 m, which belongs to 
the range ]6.0...1.0[  m considered in [47]. An auxiliary cable is used for redistributing the test load q  along 
the membrane ridge (Fig. 4). The membrane is able to slide along the auxiliary, catenary and backstay 
cables, which are arranged at the perimeter [35]. In order to obtain precise properties of the membrane-
simulating element the stiffness of the auxiliary cable must be in the range of the restraining chord stiffness 

.EAr  

The initial guess for the stiffness of the restraining chord ( ,r guessEA  = 6310 kN) is obtained by (48b) 

using the ,pr boundP -value (49), the upper bound for the roof cambering during the pre-stressing ,lim2prf∆  

(43b), and the allowable cable deformation ,2cabε  for the restraining chord. Thus, two variants of the 

auxiliary cable, which do not exceed the ,r guessEA -value, are taken into account: the cable with the 

diameter of 6.1 mm ( ,
,

aux I
r cabEA  = 2860 kN) and the cable with the diameter of 8.1 mm ( ,

,
aux II
r cabEA  = 4940 kN) 

[48]. 
In both cases the ridge load q  (Fig. 4) increases from zero up to the value lim ,q  which results in 
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failing one of the conditions (25). The increment of the load q  is 3.0 kN/m. The maximum loads are  

lim,Iq  = 24 kN/m and lim,IIq  = 30 kN/m for the cases considered. The peak stresses in the membrane in 

u  and v  directions, as well as the rise of the auxiliary cables in the middle of the span ( )f q  given the 
load q  are obtained by the EASY-software. The membrane stresses are shown in Fig. 7. 

 
Figure 7. The membrane stresses induced by the increase of the rise in the middle of the ridge:  

a – the membrane stress distribution, kN/m; b – the peak membrane stresses;  
1 – the membrane stress in the u-direction, σu; 2 – the membrane stress in the v-direction, σv. 

The figure shows, that the rise ,lim ,mf  which equals 1.741 m, corresponds to the membrane 

allowable stress lim, .uσ  The maximum relative deformation of the membrane-simulating element is 

obtained by (24) given ,lim :mf  mζ  = 0.034. Thus, the allowable range for the relative deformations of the 

restraining chord (27) is the following: 4 33.4 10 5.385 10 .r
− − ε ∈ ⋅ ⋅   

The graphs of the effective stiffness values ,r mEA  of the membrane-simulating element (8), 
obtained for the considered variants of the auxiliary cable, are shown in Fig. 8. In spite of substantial 
nonlinearity of the graphs in the full range of the allowable membrane rise ,limmf  (Fig. 8a), the graphs tend 
to straight lines and exhibit the variation less than 2 % in the allowable range of the roof structure in the 
whole (Fig. 8b). This range is determined by the upper bound of the roof cambering during the pre-stressing 
(43b): ,lim2prf∆  = 0.143 m. Thus, the averaged effective stiffness value may be applied: 

,r mEA  = 3560 kN. 
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Figure 8. The graphs of the effective stiffness values mrEA ,  of the membrane-simulating element: 

a – the full range of the allowable membrane rise, b – the allowable range for the rise  
of the restraining chord as a composite element; 1, 2 – curves, which correspond to the first  

and the second variants of the auxiliary cable, respectively. 

3.6.3. Estimating the structural parameters of the roof 

The range for the roof deformation at the phase of the pre-stressing prf∆  is determined by (42) and 

(46). The condition (46) is converted as follows: 

( )lim, 0,prfχ ∆ ω ≥                                                             (56a) 

where χ  is the following function: 

( ) ( )lim , lim1,, 1 100%.pr pr b bf f fχ ∆ ω = − ⋅                                   (56b) 

The function χ  is shown in Fig. 9 for the following cases of the allowable deflection:  

limω  = {0.08, 0.10, 0.12, 0.133} m. Only those graphs (or their parts), which are situated above the zero-
value, ensure the minimum allowed stress in the bearer chord. The green points in the graphs denote the 
boundary values for the deformation (43a) above which the restraining chord of the roof does not slack 
under load. The red points denote the upper bound for the deformation (43b) below which the ultimate limit 
state requirements are fulfilled for the restraining chord. 

 
Figure 9. Graphs of χ-function (56b) given the allowable deflections:  

1 – ωlim=0.08, 2 – ωlim=0.1, 3 – ωlim=0.12, 4 – ωlim=0.133 m. 
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The figure shows, that in accordance with growth of the deflection lim ,ω  the allowable range for 

prf∆  decreases. It completely vanishes, when the deflection reaches its upper bound value (45a):  

lim,upω  = 0.134 m. 

Considering that the given displacement of the roof meets the condition lim lim, ,upΩ < ω  it is taken 

as the allowable deflection: limω  = limΩ  = 0.1 m. The corresponding range for the roof cambering is 

[ ]0.1096, 0.143prf∆ ∈  m. The ratios of the relative deformations of the chords are shown in Fig. 10. 

 

Figure 10. Graphs of ε -ratios: 1 – 2,, / rrpr εε ; 2 – 2,, / cabbld εε ; 3 – rldr ,1, /εε ; 4 – bprcab ,1, /εε . 

The first two graphs illustrate the ultimate limit state conditions, while graphs 3 and 4 show the 
serviceability limit state. All the ratios in Fig. 10 are less than or equal to 1.0 meaning that the conditions 
(22, 27) are met entirely. 

Fig. 10 shows that the strength properties of the bearer chord are fully used for all the range of the 
pre-stressing cambering: , ,2.ld b cabε = ε  The right-hand side bound of the range also provides the full use 

of the strength properties of the restraining chord , ,2 ,pr r rε = ε  while at the left-hand side bound the 

restraining chord keeps the minimum specified tensioning thus remaining workable, , ,1.ld r rε = ε  

The stiffness properties of the chords of the roof are calculated by (48). The restraining chord is a 
composite element with the overall stiffness equal to the sum of its components [49]. Thus, the stiffness of 
the restraining cable ,r cabEA  is obtained from (3) given the stiffness of the membrane-simulating element 

,r mEA  and the stiffness of the chord in the whole .rEA  The cross section areas of the cable elements are 

calculated given the modulus of elasticity .cabE  

The graph of the total mass of the cable elements is shown in Fig. 11. The figure shows the trend of 
the mass increase. The mass growth, however, does not exceed 2.2 %. Cross section areas of the cable 
chords are shown for the boundary points. 

 
Figure 11. Graph of the total mass of the cable elements, kg  

(cross section areas of the chords are indicated in cm2). 
Considering the girder made of two channel bars, the stress-strength ratios (11, 12) are shown in 

Fig. 12 for the two load cases: uniform and non-uniform impacts on the roof (Fig. 5). The figure shows, that 
the half-span load results in higher stress level in the girder, than the full uniform load. 
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Figure 12. Girder’s stress-strength ratios, Θgrd: 1 – partial uniform load Qprt  
with the half-span load Qhlf; 2 – the full uniform load Qtot. 

The graph of structural deformation at the quarter of the span ,1 4hω  brought about by the non-

uniform load is shown in Fig. 13. The ,1 4hω -value is derived from the expression (54c). It is the difference 

between the roof cambering at the pre-stressing phase and the overall displacement of the cable truss 
under the load: ,1 4 1 40.75 .h prf fω = ⋅∆ −∆  Figs. 12 and 13 show, that the channel bars [27 meet all the 

conditions implied by the ultimate and serviceability limit states. 

 
Figure 13. Structural deformation at the quarter of the span induced  

by the non-uniform load (shown in Fig. 5). 

The parameter Qhξ  of splitting the non-uniform load between the cable truss and the girder (33) is 

shown in Fig. 14. The graph is a hyperbolic-shaped curve, which tends to the asymptote with the increasing 
of the girder’s stiffness. 

 
Figure 14. Dependence of the parameter of splitting the load ξQh (33)  

on the moment of inertia of the girder’s cross section Ix. 

The graph of ( )Qhh ξ -ratio (54b) for the girder’s cross section chosen (two channel bars [27) is 

shown in Fig. 15. 

 
Figure 15. The graph of h-ratio (54b). 
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The figure shows, that the dependence ( )Qhh ξ  is close to the linear one in the allowable range 

( ]0 1 .Qhξ ∈   Thus, the secant method provides the solution for the equation (54a) in a few iterations. 

The solution is denoted in the figure by the green point. 

3.7. Verification of the results 
3.7.1. Comparison with numerical results by the specialized software package 

The fragment of the roof, considered in clause 3.6, is numerically simulated using the specialized 
software package for nonlinear structural analysis EASY.2020 [46] (license no. 15129). The structural 
model of the roof’s fragment is shown in Fig. 16. 

 
Figure 16. Structural model of the roof’s fragment: 1 – cable truss; 2 – flexible membrane;  

3 – stiffening girder; 4 – ties for simulating the loose connection (design clearance). 
The bearer and restraining chords of the roof are adopted of 24.1 mm and 6.1 mm steel cables, 

respectively [48]. Corresponding cross section areas of the cables are the following: bA  = 3.38 cm2 and 

,r cabA  = 0.22 cm2. They are taken close to the right bound indicated in Fig. 11. Thus, the cambering of the 

roof is the following: prf∆  = 0.143 m. The tensioning of the bearer chord during the pre-stressing is 

obtained from (7) given the geometric length ,g bL  and the initial chord’s length 0,c bL  (47): pL∆  = 0.093 m. 

The stiffening girder is adopted of two steel channel bars [27. The geometrical properties of the overall 
cross section are the following: grdA  = 7.04·10–3 m2, grdW  = 6.16·10–4 m3 and grdI  = 8.32·10–5 m4. 

The girder and the roof’s framework are not directly connected, unless the supporting points. They 
are also linked together by vertical ties made of steel cables (elements 4 in Fig. 16). In order to simulate 
the loose connection, the ties are initially slackened by the design clearance values: 1 2∆  = 0.098 m and 

1 4∆  = 0.074 m (50, 52). 

Comparison of the main structural parameters, obtained by the proposed expressions, and the 
results of the numerical analysis by the specialized software package EASY.2020 is given in Table 1. 

Table 1. Comparison with the numerical results by the software package EASY.2020. 

Designation Unit 
Value 

Deviation, ξ, % Remark by the present 
work 

numerically simulated by the 
EASY-software 

prf∆  m 0.143 0.139 2.8 (43b) 

ldω  m 0.100 0.101 1.0 
must be equal to 

1.0lim =ω m 

4/1,hω  m 0.104 0.098 5.9 (53) 

prP  kN/m 2.16 2.07 4.2 (49) 

pr
grdN  kN 52.9 48.3 9.1 (51a) 

grd
ldN  kN 236.6 234.9 0.7 (51b) 
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The table shows good agreement of the results. The peak discrepancy (9.1 %) is at the stage of the 
pre-stressing, when the axial force in the girder is substantially smaller, than under the external load. 

3.7.2. Comparison with the results by the other authors 
In order to verify the proposed results the following comparison is implemented. All notations are 

adopted according to the present paper, except the axial forces in the chords and the horizontal 
components of the forces, which are denoted by the indexes ‘b’ and ‘t’ meaning bottom (restraining) and 
top (bearer) chords. 

Consider a symmetric cable truss with the bearer chord arranged above the restraining one [50]. 
The span of the truss, ,L  is 60 m. Eight span-to-sag ratios of the chords of the truss are considered: 

,pr bL f  = ,pr rL f  = {7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0}. The initial horizontal components of 

pretension of the chords are the following: 0,bH  = 0,tH  = 600 kN. The modulus of elasticity of the cables 

is cabE  = 1.5·108 kN/m2. Cross section areas of the chords are the following: bA  = 2.0·10–3 m2 and  

rA  = 1.3·10–3 m2. Uniformly distributed load is considered throughout the entire span totQ  = 10.0 kN/m. 

Considering the given rises of the chords prf  and the chords’ pretensions 0,H  the initial lengths of 

the chords ,0cL  are obtained by the Hook’s law given the chord’s stiffnesses. Then, the chord’s relative 

elongations prε  are calculated by (5) and the link load prP  is obtained by (48a, 48b). Both the expressions 

(48), written for different chords, give exactly same result (the discrepancy is less than  
10–11 %) meaning correctness of the link load calculation for the given cable truss. The link loads, ,prP  

must, however be compared with the ,pr boundP -values, which ensure that the full uniform load totQ  is 

completely taken by the cable truss. 

Finding ,pr boundP -values is performed by (49) given the mid-span vertical deflections of the truss 

.ldω  The deflections are obtained by nonlinear Finite Element Method. They are taken from the graph 

(Fig. 10 in [50]): ldω  = {0.110, 0.178, 0.260, 0.353, 0.453, 0.557, 0.655, 0.755} m. Because the deflections 

ldω  have been obtained regardless the strength properties of the chords, the limiting deformation ,2cabε  

in (49) is substituted by the actual deformation of the bearer cable ,ld bε  (5) given .ldω  

Comparison of prP -values and ,pr boundP -values, which are derived from different conditions 

implied on the cable truss, are shown in Figs. 17 and 18. The discrepancy between the link loads is obtained 
as follows: 

0

0
200 %,ref

ref

V V

V V

−
ρ = ⋅

+
                                                               (57) 

where 0V  and refV  are the values to be compared. 

 
Figure 17. Link loads between the chords, kN/m: 1 – Ppr-values (48) given the stiffnesses  

of the chords; 2 – Ppr,bound-values (49) given the deflections under the load [50]. 
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Figure 18. Percentage discrepancies ρ: 1 – discrepancies between the link loads Ppr,bound and Ppr;  

2 – discrepancies between the axial forces in the bottom chord; 3 – discrepancies  
between the axial forces in the top chord; red color is for the symmetric cable truss,  

while blue color is for non-symmetric one. 
Fig. 18 shows that the discrepancies between the link loads do not exceed 4 % meaning that the 

cable truss is in equilibrium given the chord’s stiffnesses, the external load and the corresponding 
deflections. 

Considering the shallow shape of the chords, the horizontal components of the cable forces, bH  

and ,tH  are compared with the axial forces in the chords: 

, ;b r ld rN EA= ⋅ε                                                              (58a) 

, ,t b ld bN EA= ⋅ε                                                               (58b) 

where bN  and tN  are the forces in the bottom and the top chords of the truss; ldε  are the relative 

elongations of the chords given the deflection of the truss under load limω  (5). 

The horizontal components of the cable force are taken from the graphs (Figs. 8 and 9 in [50]). The 
comparison of the forces is shown in Figs. 18 and 19. 

 
Figure 19. Axial forces and horizontal components of the forces, kN:  

a, b – symmetric and non-symmetric cable trusses, respectively;  
1, 2 – Nt and Ht in the top chord; 3, 4 – Nb and Hb in the bottom chord. 

Non-symmetric cable truss of the 60 meters span is also considered. Different span-to-sag ratios are 
adopted for the bearer chord ( ), ,pr b j

L f  [1...8],j =  while for the restraining chord the constant ratio is 

taken: ,pr rL f  = 25 [50]. The initial horizontal component of pretension of the restraining chord is  

0,bH  = 600 kN, while for the bearer chord it is calculated by the following expression: 

0, 0, , , .t b pr r pr bH H f f= ⋅  Mid-span vertical deflections of the truss are taken from the graph (Fig. 13 in 

[50]): limω  = {0.162, 0.255, 0.342, 0.444, 0.531, 0.612, 0.689, 0.751} m. 

Comparison of prP  and ,pr boundP -values (48, 49) given the deflection limω  is shown in Fig. 18. 

Comparison of the forces taken from the graphs (Figs. 11 and 12 in [50]) is shown in Figs. 18 and 19. 
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Figs. 18 and 19 show good agreement with the results [50] under uniformly distributed load acting on the 
entire span of the truss. 

Influence of the load acting on a half of the span is also considered in [50]: LQ  = 8.91 kN/m and  

RQ  = 0.0.The span of the truss, ,L  is 60 m. The rises of the chords are the following:  

,pr bf  = ,pr rf  = 4.02 m. The initial horizontal components of pretension of the chords are the following:  

0,bH  = 0,tH  = 588.603 kN. The modulus of elasticity of the cables is cabE  = 1.48135·108 kN/m2. Cross 

section areas of the chords are the following: bA  = 2.0·10–3 m2 and rA  = 1.3·10–3 m2. 

The initial rise of the bearer chord is obtained by (39) given the pretension and the stiffness 
properties: 0,bf  = 3.66 m. Thus, the deflection of the truss at the stage of the pre-stressing is the following 

(1a): 0, ,pr b pr bf f f∆ = − =  –36 m. 

The overall displacements of the truss under the loads LQ  and RQ  are obtained by minimizing (36): 

f∆  = –0.5 m and 1 4f∆  = –0.72 m. Thus, the displacements of the truss at the center and at the quarter 

points of the span are the following: prf fω = ∆ −∆ =  0.14 m and 1 4 1 40.75 prf fω = ⋅∆ −∆ =  

= 0.45 m. Considering the graph (Fig. 7 in [50]) the corresponding displacements are 0.146 m and 0.459 m. 
The discrepancies (57) are the following: 4.2 % and 2.0 %. 

The comparison implemented in the present clause shows good agreement with the results by the 
other authors obtained numerically and by using the Finite Element Method. 

4. Conclusions 
1. The cable roof stiffened with a girder and enveloped with a flexible membrane is considered. 

2. The polymer membrane is included into the structural model of the roof by using membrane-
simulating element. The numerical technique for estimating the effective stiffness and the allowable 
relative deformation of the element is proposed. 

3. The design clearances are proposed for the structural enhancement. The clearances, being the 
means of the passive structural adaptation, allow exempting the stiffening girder from uniformly 
distributed external loads, which are fully sustained by the cable truss. The girder, in turn, mitigates 
kinematic displacements brought about by non-uniform impacts. The calculating technique for splitting 
the non-uniform load between the cable truss and the girder is proposed. 

4. The computational approach for structural analysis of the roof is proposed. The approach is based on 
the limit states analysis, which is mandatory for the design practice in Russian Federation. 

5. Estimation of the allowable deformations of the roof at the pre-stressing and operational phases is 
proposed. The expressions for the axial stiffnesses of the cable chords, the design clearances and 
the link load between the chords at the pre-stressing stage are proposed under the conditions of 
reaching the allowable deformation and full use of the strength properties. 

6. The work contributes to the development of hybrid building constructions, which consist of high-
strength flexible cables, polymer membranes and rigid elements made of ordinary structural steel. It 
facilitates the practical realization of the hybrid roofs by providing the initial data for the conceptual 
design stage. The results of the present work allow to validate structural models and to verify the 
results obtained by numerical methods of structural analysis. 

References 
1. Bridgens, B.N., Gosling, P.D., Birchall, M.J.S. Tensile fabric structures: concepts, practice and developments. The Structural 

Engineer. 2004. 82 (14). Pp. 21–27. 
2. Barozzi, M., Viscuso, S., Zanelli, A. Design novel covering system for archaeological areas. Proceedings of VII International 

Conference on textile composites and inflatable structures. Structural membranes 2015. 2015. 105–114. 
3. Goppert, K. High tension tensile architecture. New stadium projects. Proceedings of VI International Conference on textile 

composites and inflatable structures. Structural membranes 2013. 2013. Pp. 21–26. 
4. Llorens, J.I. Structural membranes for urban spaces. Proceedings of VII International Conference on textile composites and 

inflatable structures. Structural membranes 2015. 2015. Pp. 133–144. 
5. Llorens, J., Zanelli, A. Structural membranes for refurbishment of the architectural heritage. Procedia Engineering. 2016. 155. Pp. 

18–27. DOI: 10.1016/j.proeng.2016.08.003 



Magazine of Civil Engineering, 17(5), 2024 

6. Viscuso, S., Dragoljevic, M., Monticelli, C., Zanelli, A. Finite-element analysis and design optioneering of an emergency tent 
structure. Proceedings of the TensiNet Symposium. Softening the Habitats. 2019. Pp. 208–219. 

7. Fangueiro, R., Rana, S. Towards high performance and multi-functional structural membranes using advanced fibrous and textile 
materials. Proceedings of VII International Conference on textile composites and inflatable structures. Structural membranes 
2015. 2015. Pp. 296–305. 

8. Wagner, R. Bauen mit Seilen und Membranen. Beuth Verlag GmbH. Berlin, Germany, 2016. 517 p. 
9. Mushchanov, V., Rudneva, I., Priadko, Yu. Intense-deformed condition of suspended system of bending-rigid fibers at the account 

of pliability of supports. Metal Constructions. 2012. 18 (1). Pp. 5–16. 
10. Arellano, H., Gomez, R., Tolentino, D. Parametric analysis of multi-span cable-stayed bridges under alternate loads. The Baltic 

Journal of Road and Bridge Engineering. 2019. 14 (4). Pp. 543–567. DOI: 10.7250/bjrbe.2019-14.457 
11. Al-Rousan, R. The impact of cable spacing on the behavior of cable-stayed bridges. Magazine of Civil Engineering. 2019. 91 (7). 

Pp. 49–59. DOI: 10.18720/MCE.91.5 
12. Mushchanov, V., Protopopov, I., Korsun, O., Garifullin, M. Definition of the rational geometry of the cable-beam cover over stadium 

tribunes. Procedia Engineering. 2015. 117. Pp. 1001–1012. DOI: 10.1016/j.proeng.2015.08.209 
13. Yegorov, V.V., Aleksashkin, Ye.N. Predvaritelno-napryazhennaya shprengelnaya ferma [Pre-stressed strutted truss]. Patent RF 

no. 2169243, 1999. 
14. Voyevodin, A.A. Predvaritelno-napryazhennyye sistemy elementov konstruktsiy [Pre-stressed systems of structural elements]. 

Moskva: Stroyizdat, 1989. 304 str. 
15. Liew, J.Y.R., Punniyakotty, N.M., Shanmugam, N.E. Limit-state analysis and design of cable-tensioned structures. International 

Journal of Space Structures. 2001. 16 (2). Pp. 95–110. DOI: 10.1260/0266351011495205 
16. Llorens, J. Detailing masts. Proceedings of the IASS Annual Symposium. Structural membranes 2019. 2019. Pp. 359–366. 
17. Goremikins, V., Rocens, K., Serdjuks, D. Cable truss analyses for prestressed suspension bridge. Proceedings of VIII International 

DAAAM Baltic Conference. Industrial Engineering. 2012. Pp. 45–50. 
18. Goremikins, V., Rocens, K., Serdjuks, D. Decreasing of displacements of prestressed cable truss. International Journal of Civil 

and Environmental Engineering. 2012. 6 (3). Pp. 228–236. 
19. Goremikins, V., Rocens, K., Serdjuks, D. Cable truss analyses for suspension bridge. Proceedings of 11 International Scientific 

Conference. Engineering for Rural Development. 2012. Pp. 228–233. 
20. Habraken, A.P.H.W., Sleddens, W., Teuffel, P. Adaptable lightweight structures to minimize material use. Proceedings of VI 

International Conference on textile composites and inflatable structures. Structural membranes 2013. 2013. Pp. 71–82. 
21. Alekseytsev, A.V., Gaile, L., Drukis, P. Optimization of steel beam structures for frame buildings subject to their safety 

requirements. Magazine of Civil Engineering. 2019. 91 (7). Pp. 3–15. DOI: 10.18720/MCE.91.1 
22. Serpik, I.N., Alekseytsev, A.V. Protivoavariynaya stalnaya balochnaya konstruktsiya [Emergency steel beam structure]. Patent 

RF no. 2556761, 2014. 
23. Mikhailov, V.V., Chesnokov A.V., Dolmatov I.V. Pre-stressed cable truss with stiffening girder and design clearance: development 

and analysis. Proceedings of the TensiNet Symposium. Softening the Habitats. 2019. Pp. 58–70. 
24. Freire, A.M.S., Negrao, J.H.O., Lopes, A.V. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed 

bridges. Computers and Structures. 2006. 84 (31–32). Pp. 2128–2140. DOI: 10.1016/j.compstruc.2006.08.047 
25. Greco, L., Impollonia, N., Cuomo, M. A procedure for the static analysis of cable structures following elastic catenary theory. 

International Journal of Solids and Structures. 2014. 51. Pp. 1521–1533. DOI: 10.1016/j.ijsolstr.2014.01.001 
26. Coarita, E., Flores, L. Nonlinear analysis of structures cable - truss. International Journal of Engineering and Technology. 2015. 

7 (3). Pp. 160–169. DOI: 10.7763/IJET.2015.V7.786 
27. Nuhoglu, A. Nonlinear analysis of cable systems with point based iterative procedure. Scientific Research and Essays. 2011. 6 

(6). Pp. 1186–1199. 
28. Xu, J., Zhang, Y., Yu, Q., Zhang, L. Analysis and design of fabric membrane structures: a systematic review on material and 

structural performance. Thin-Walled Structures. 2022. 170. Pp. 1–17. DOI: 10.1016/j.tws.2021.108619 
29. Nunes, E., Sousa, J.B.M, Baier, B., Freitas, A.M.S. Membrane roof for an amphitheater in Brazil: searching for the optimal design. 

International Journal of Space Structures. 2015. 30 (3-4). Pp. 261–271. DOI: 10.1260/0266-3511.30.3-4.261 
30. Strobel, D., Singer, P., Holl, J. Analytical formfinding. International Journal of Space Structures. 2016. 31 (1). Pp. 52–61. DOI: 

10.1177/0266351116642076 
31. Tran, H.C., Lee, J. Advanced form-finding for cable-strut structures. International Journal of Solids and Structures. 2010. 47 (14–

15). Pp. 1785–1794. DOI: 10.1016/j.ijsolstr.2010.03.008 
32. Lang, R., Nemec, I. Form-finding of shell and membrane structures. Proceedings of VIII International Conference on textile 

composites and inflatable structures. Structural membranes 2017. 2017. Pp. 303–310. 
33. Llorens, J.I. Appropriate design of structural membranes. Proceedings of X International Conference on textile composites and 

inflatable structures. Structural membranes 2021. 2021. DOI: 10.23967/membranes.2021.008 
34. Machacek, J, Jermoljev, D. Steel structures in interaction with non-metallic membranes. Journal of Civil Engineering and 

Management. 2017. 23 (3). Pp. 368–377. DOI: 10.3846/13923730.2015.1128482 
35. Stroebel, D., Holl, J. On the calculation of textile halls. Proceedings of X International Conference on textile composites and 

inflatable structures. Structural membranes 2021. 2021. DOI: 10.23967/membranes.2021.043 
36. Hegyi, D. Numerical stability analysis of arch-supported membrane roofs. Structures. 2021. 29. Pp. 785–795. DOI: 

10.1016/j.istruc.2020.11.025 
37. Dinh, T.D., Rezaei, A., Linthout, T., Mollaert, M., Van Hemelrijck, D., Van Paepegem, W. A computational compensation method 

for fabric panels of tensioned membrane structures using a shape optimization method based on gradientless algorithms. 
International Journal of Solids and Structures. 2017. 112. Pp. 16–24. DOI: 10.1016/j.ijsolstr.2017.02.026 

38. Haug, E., De Kermel, P., Gawenat, B., Michalski, A. Industrial design and analysis of structural membranes. International Journal 
of Space Structures. 2009. 24 (4). Pp. 191–204. DOI: 10.1260/026635109789968227 

39. Wagner, R. Simplified design tools for single/double curved membranes and inflated cushions. International Journal of Space 
Structures. 2008. 23 (4). Pp. 233–241. DOI: 10.1260/026635108786959843 



Magazine of Civil Engineering, 17(5), 2024 

40. Grigorjeva, T., Juozapaitis, A. Revised engineering method for analysis of behavior of suspension bridge with rigid cables and 
some aspects of numerical modeling. Procedia Engineering. 2013. 57. Pp. 364–371. DOI: 10.1016/j.proeng.2013.04.048 

41. Yan, H., Wei-ren, L. Static analysis of cable structure. Applied Mathematics and Mechanics (English Edition). 2006. 27 (10). Pp. 
1425–1430. DOI: 10.1007/s10483-006-1015-y 

42. Forster, B., Mollaert, M. European design guide for tensile surface structures. TensiNet. Brussel, Belgium, 2004. 354 p. 
43. Chesnokov, A.V., Mikhaylov, V.V. Analysis of cable structures by means of trigonometric series. Proceedings of VIII International 

Conference on textile composites and inflatable structures. Structural membranes 2017. 2017. Pp. 455–466. 
44. Bridgens, B., Birchall, M. Form and function: the significance of material properties in the design of tensile fabric structures. 

Engineering Structures. 2012. 44. Pp. 1–12. DOI: 10.1016/j.engstruct.2012.05.044 
45. Gosling, P.D., Bridgens, B.N., Albrecht, A., Alpermann, H., Angeleri, A., Barnes, M., Bartle, N., Canobbio, R., Dieringer, F., Gellin, 

S., Lewis, W.J., Mageau, N., Mahadevan, R., Marion, J.M., Marsden, P., Milligan, E., Phang, Y.P., Sahlin, K., Stimpfle, B., Suire, 
O., Uhlemann, J. Analysis and design of membrane structures: results of a round robin exercise. Engineering Structures. 2013. 
48. Pp. 313–328. DOI: 10.1016/j.engstruct.2012.10.008 

46. Lightweight structure design. Easy. [Online]. URL: https://www.technet-
gmbh.com/fileadmin/user_upload/technet/Produktinformationen/Easy/Easy_ProductBrochure.pdf. (date of application: 
08.11.2022). 

47. Chesnokov, A.V., Mikhailov, V.V., Dolmatov, I.V. The influence of material aging on the structural behavior of a flexible roof with 
a polymer membrane shell. Computer Methods in Materials Science. 2021. 21 (1). Pp. 13–24. DOI: 10.7494/cmms.2021.1.0748 

48. European technical assessment. PFEIFER wire ropes. ETA-11/0160. [Online]. URL: 
https://www.pfeifer.info/out/assets/PFEIFER_WIRE-ROPES_TECHNICAL-APPROVAL-ETA-11-0160_EN.PDF. (date of 
application: 08.11.2022). 

49. Harris, B. Engineering composite materials. The Institute of Materials. London, 1999. 194 p. 
50. Kmet, S., Kokorudova, Z. Nonlinear closed-form computational model of cable trusses. International Journal of Nonlinear 

Mechanics. 2009. 44 (7). Pp. 735–744. DOI: 10.1016/j.ijnonlinmec.2009.03.004 

Information about the authors: 

Andrei Chesnokov, PhD in Technical Sciences 
ORCID: https://orcid.org/0000-0003-3687-0510 
E-mail: andreychess742@gmail.com 
 

Vitalii Mikhailov, Doctor of Technical Sciences 
ORCID: https://orcid.org/0000-0001-8274-9346 
E-mail: mmvv46@rambler.ru 
 

Received: 28.09.2022. Approved after reviewing: 09.07.2024. Accepted: 12.07.2024. 

https://orcid.org/0000-0003-3687-0510
mailto:andreychess742@gmail.com
https://orcid.org/0000-0001-8274-9346
mailto:mmvv46@rambler.ru

	Cable roof with stiffening girder and flexible membrane shell
	1. Introduction
	2. Methods
	3. Results and Discussion
	3.1. The allowable rise of a parabola-shaped chord
	3.2. Deformation of the roof at the pre-stressing phase
	3.3. The stiffness of the chords
	3.4. The design clearances
	3.5. Non-uniform load on the roof
	3.6. Numerical example

	3.6.1. General specification
	3.6.2. Obtaining the effective stiffness and the allowable relative deformation of the membrane-simulating element
	3.6.3. Estimating the structural parameters of the roof
	3.7. Verification of the results

	3.7.1. Comparison with numerical results by the specialized software package
	3.7.2. Comparison with the results by the other authors
	4. Conclusions


