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Abstract. The problem of stability of a viscoelastic anisotropic fiber reinforced plate under the action of a 
rapidly increasing (dynamic) shear load in a geometrically nonlinear formulation is considered. The 
mathematical model of the problem is described by a system of nonlinear partial integro-differential 
equations with singular relaxation kernels. The Bubnov–Galerkin method is used to obtain systems of 
ordinary nonlinear integro-differential equations. The solution of the system of resolving equations is carried 
out by a numerical method based on quadrature formulas. To substantiate the accuracy and adequacy of 
the obtained results, a test problem is solved. A stability criterion for reinforced plates under the action of 
shear loads is introduced. Depending on various geometric, physical, and mechanical characteristics of the 
material, the behavior of the reinforced plate is investigated. In particular, it is shown that taking into account 
the viscoelastic properties of the material leads to a decrease in the critical time, and therefore in the critical 
force. Depending on various geometric and physical parameters, the difference in critical time values for 
elastic and viscoelastic plates in some cases is more than 15 %. It is also shown that an increase in the 
angle of fiber direction in the plates leads to a decrease in the critical time. Among the single-layer 
reinforced plates, the plate with a fiber direction of 0° is the most resistant to shear loads. An increase in 
the number of layers in a reinforced plate while maintaining its thickness does not always favorably affect 
the stability of the plate. In the case of three-layer viscoelastic plates made from KAST-V material with 
fibers oriented in the direction of 45°/–45°/45°, they are less stable than double-layer plates but more stable 
than single-layer ones while maintaining equal thicknesses of all three structures. 
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1. Introduction 
The use of composite materials, which exhibit a unique combination of mechanical and operational 

characteristics, has become indispensable in industry. By ingeniously combining different substances, 
compositions, and component ratios, these materials yield products with optimal characteristics of their raw 
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ingredients. Composite materials offer such essential qualities as elasticity, strength, heat resistance, 
electrical conductivity, etc. 

The effectiveness of using composite materials in various structures largely depends on the 
refinement of mathematical models and calculation methods. Developing calculation methods for structural 
elements composed of composite materials requires a mathematical problem formulation that reflects the 
distinctive deformation characteristics of the material, which can substantially impact their load-bearing 
capacity. 

Currently, the volume of scientific research dedicated to the study of structures from composite 
materials, encompassing various physical and geometric parameters, has a steady upward trend. 

A comprehensive review of existing literature on analyzing oscillatory phenomena in fiber reinforced 
composites is available in [1]. 

The laminated composite plate dynamic responds, when a mass hits it in the center, and energy 
transfers from the mass to the plate, were studied in [2]. The plate had initial stress before the impact load. 
The nonlinear integral equation was used. The key finding was that the higher the initial tension in the plate, 
the stronger the impact force would be. Additionally, a higher initial tension reduces the amount of energy 
transferred from the mass to the plate. 

The free oscillations and dynamic behavior of polymer composites reinforced with surface-modified 
basalt fiber were investigated in [3]. Natural frequencies and damping coefficients of layered composites 
were examined through impact testing and dynamic mechanical analysis. 

Meanwhile, [4] studied the effect of stacking and hybridization sequences on the damping properties 
of epoxy composites made of flax-carbon twill. The dynamic characteristics are examined using the pulse 
method. For modeling damping, the finite element method is implemented to evaluate the energy 
dissipation in each layer of carbon-linen laminates. 

The paper [5] deals with the free vibration modal analysis of hybrid laminates using a finite element 
model based on the third order shear deformation theory and the first-order shear deformation theory. A 
computer code has been developed using MATLAB, 2013. The experimental investigation of the free 
vibration of hybrid laminates made of carbon and glass fibers is conducted. Numerical results are compared 
with experimental outcomes, contributing to a holistic understanding. 

Further investigations explore the stability of structures made of composite materials. The work [6] 
investigates the potential for using the produced green composite in load-bearing structures and scrutinize 
bending properties under axial compression using numerical analysis and ANSYS software. 

Additionally, the work [7] examines the stability loss of layered composites when the influence of 
orthotropic materials is taken into account. This influence justifies the importance of considering orthotropic 
properties in analyzing the dynamic process. 

However, relatively less attention has been dedicated to studying dynamic stability in structures 
made of composite materials under the influence of shear loads. Most composite materials have 
pronounced viscoelastic properties. Practical experience in addressing various mechanical problems 
underscores the significance of incorporating the viscoelastic properties of structural materials. In this 
regard, the Boltzmann–Volterra integral models are good models that integrate both the relaxation and 
creep processes. 

The developed numerical method based on quadrature formulas was explained in detail in [8]. It 
facilitates the solution of systems of linear and nonlinear integro-differential equations with different kernels. 
This method, characterized by its simplicity, convenience, and efficiency in terms of computational time, 
delivers highly accurate results and accommodates various dynamic viscoelasticity problems. Notably,  
[9–11] present a series of practical problems solved using the developed method, with the numerical results 
closely aligned with experimental findings. 

The study [12] presents a non-linear dynamic analysis of a cross-ply laminated composite with fiber 
spacing plates under in-plane loading. The first order shear deformation theory and von Karman 
nonlinearity are used. Eight-node isoperimetric quadrilateral elements with five degrees of freedom per 
node are used to maintain geometric nonlinearity. The investigation explores a variety of fiber spacings and 
orientations to understand their influence on the behavior of samples under this loading condition. The 
dynamic equilibrium equations are solved using the Newmark integration technique. The nonlinear dynamic 
analysis examines the effects of changing fiber spacing with various changes in volume percentage and 
diverse fiber orientations. These variations were found to significantly influence the nonlinear dynamic 
behavior of the laminated composite plates. 
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The study [13] investigates the nonlinear bending behavior of laminated composite plates under 
static and dynamic loads. The plate was reinforced by single-walled carbon nanotubes’ fibers and nanoclay 
particles. The Halpin–Tsai mathematical model, which is based on the self-consistent field method, is 
applied. This model can be used to predict the modulus of composite materials. The computer program is 
created to solve this model. The program also considers different support conditions for the plate (clamped 
or simply supported). 

The research [14] investigates how adding fillers can improve the strength and vibration response of 
laminated composite plates. The laminated composite plates are fabricated by open layup process with 
epoxy resin, E-glass fiber reinforcement, and fly ash and graphene fillers (up to 5 % total volume). The total 
fiber and filler content is limited to 60 % by weight. The laminated composite plates are designed with 
various fly ash-to-graphene ratios. A custom-built vibration testing system is used to measure the free and 
forced vibrations of simply supported laminated composite plates. These experimental results are 
compared to mathematical models based on fifth order shear deformation theory and finite element 
analysis. Finally, the effect of circular holes on the laminated composite plates’ vibration characteristics is 
investigated using simulations. These simulations analyze how hole size and location impact the modal 
frequencies of the laminated composite plates. 

The research [15] investigates the vibration of a curved beam made from layers of composite material 
reinforced with graphene platelets. The amount of reinforcement varies between layers, creating a specific 
type of material. The study analyses both vibrations caused by the beam itself (free vibration) and vibrations 
caused by a moving load (forced vibration). The analysis is validated using existing data and then expanded 
to explore how different factors influence the vibration. The findings show that the shape of the beam, the 
amount of graphene reinforcement, and its distribution affect the vibration intensity of the beam in both 
scenarios. Simply put, a stiffer beam with more graphene reinforcement vibrates less. 

The research [16] studies how laminated beams made of composite materials vibrate when they 
have a separation layer running across their width. The study considers both in-plane and out-of-plane 
vibrations. The researchers use a computer simulation technique and a special method to account for 
contact between the separated layers. This research investigates the natural frequencies of a damaged 
beam and its response to various forces. The analysis includes both constant and moving force 
applications. The results of the present study are verified by comparing them with those available in the 
literature. This work provides a complete picture of how these damaged beams vibrate in all directions. 

The research [17] focuses on the vibration characteristics of rectangular composite panels used in 
structures like automobiles. These panels are designed to replace heavier metals for improved efficiency. 
The study examines how different fiber orientations within the composite panels affect their vibration under 
external forces. Two methods, analytical and numerical, are used to analyze the vibration behavior. The 
findings show that the way the fibers are oriented significantly impacts vibration, and this knowledge can 
be used to design composite structures with better vibration control. 

The research [18] focuses on fiber-reinforced polymer composites used in car parts like inlet/exhaust 
flange gaskets. These composites are desirable due to their strength-to-weight ratio and other properties. 
However, machining processes like drilling can cause delamination, which can grow and lead to sudden 
part failure. This study aims to identify such damage beforehand. The research method involves vibration 
analysis (modal and harmonic) using finite element analysis software. The analysis is performed on a model 
of a gasket, initially intact and then with deliberate delamination at the drilling location. Different 
delamination locations and materials are simulated. The results for intact and delaminated plates are 
compared, including vibration modes, resonance frequencies, and stress distribution. 

The study [19] investigates how delamination, a layering separation common in fiber reinforced 
polymer composites, impacts the vibration and stress behavior of plates with circular holes. It employs a 
combined approach: the layerwise theory for numerical analysis and the finite element method to simulate 
delamination effects. The research reveals a significant influence of delamination size on the plate’s natural 
frequency, stress concentration points, and overall impedance. 

The research [20] investigates the vibration of composite conical panels made with layers containing 
different amounts of graphene platelets. The effect of both uniform and non-uniform porosity is also 
considered. The material properties are estimated using established methods. The analysis uses a specific 
theory of shells and kinematics to define the energy components. A general method is applied to discretize 
the energy terms, allowing for various boundary conditions. Standard methods are used to find natural 
frequencies and track the deflection over time. The results are compared with the available data in the open 
literature, and new results are presented. The study concludes that both the type of porosity and the 
graphene platelets distribution significantly affect the frequencies and deflection of the panel. 

Despite the abundance of scientific results on structures made of composite materials encompassing 
diverse physical and geometric parameters, a number of questions remain unanswered. For the first time, 
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this paper aimed to study the stability of a viscoelastic anisotropic reinforced plate clamped on boundaries 
constructed from composite material under the influence of rapid, dynamic shear loads. 

2. Materials and Methods 
The rectangular rigidly pinched fiberglass plate subjected to the dynamic action of shear forces 

evenly distributed along its edges was considered (Fig. 1). It was assumed that the shear forces increased 
in proportion to time according to the law 

( ) 0 ,P t P t= ⋅                                                                         (1) 

where 0P  is the loading rate. 

 
Figure 1. Rectangular plate under shear load. 

The classical Kirchhoff–Love theory was employed to develop a mathematical model for a problem. 
The resulting stresses and moments were determined in the same manner as described in [21, 22]: 
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where  * * *, , , , 1, 2,6ij ij ijA B D i j =  are operators of the following form: 
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Here K  is the number of plate layers; 1,E  2E  are the elastic moduli; 12G  is the shear modulus; 

12,µ  21µ  are the Poisson ratios; θ  is the angle characterizing the direction of the reinforced fibers relative 

to the OX  axis; ∗Γ  is the integral operator with the relaxation kernel ( ).tΓ  

If the dynamic process is analyzed without considering the propagation of elastic waves, then it 
becomes possible to discard the inertial terms in the first two equations of the system (3). The relations 
between the strains in the median surface ,xε  ,yε  ,xyγ  ,xχ  ,yχ  xyχ  and displacements ,u  ,v  w  in 

the ,x  ,y  z  directions takes into account geometric nonlinearity. In this case, the solution of the resulting 
system was searched in the form described in the articles [21–23]: 
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Substituting (1) and (2) into the equations of motion gives the system of nonlinear partial integro-
differential equations: 

2 2

2 2

2 22

2 2

2

2

, ,

2

xy xy yx

y xyx
x xy

xy y

N N NN u v
x y x yt t

M MM w wN N
x y x x yx y

w w wN N q
y x y t

ρ ρ

ρ

∂ ∂ ∂∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂∂ ∂

∂ ∂  ∂ ∂ ∂ ∂
+ + + + + ∂ ∂ ∂ ∂ ∂∂ ∂  

 ∂ ∂ ∂ ∂
+ + + = ∂ ∂ ∂ ∂ 

                                      (4) 

If the dynamic process is considered without the propagation of elastic waves, then it becomes 
possible to discard the inertial terms in the first two equations of the system (3). In this case, the solution of 
the resulting system has the form described in the articles [22, 23]: 
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where ( ) ,mnw t  ,m  1,2,3,n =   are the unknown functions of time; mλ  and nλ  are the roots of the 
frequency equation: 

cos cosh 1m mλ λ =  

and 
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sin sinh

m m
m

m m

λ − λ
γ =

λ + λ
 

A system of nonlinear ordinary integro-differential equations is obtained by substituting the 
approximating function (4) into the resulting system of equations and performing the Bubnov–Galerkin 
method procedure. Further, this system is integrated using the numerical method [8] based on quadrature 
formulas. A feature of this numerical method in solving systems of nonlinear integro-differential equations 
is the preliminary transformation of a singular kernel into a regular one. 

3. Results and Discussion 
To evaluate the accuracy of the chosen method, we solve a system of nonlinear integro-differential 

equations of the following form: 
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The system of equations (6) has an exact solution: 1 ,tu e−β=  2 ,tv e−β=  3 ,tw e−β=  satisfying the 
initial conditions. Integrating the system of equations (6) twice and taking into account the initial conditions, 
the approximate values ( ) ,n nu u t=  ( ) ,n nv v t=  ( )n nw w t=  at the nodes ( )1 ,nt n t= − ∆  
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where 1 2 3 4, , , ,i k k k kB C C C C  are the coefficients of the quadrature formula; 
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Table 1 shows the calculation results performed according to (7) in the range from 0 to 0.1 with a 
step of t∆  = 0.0001. The following initial data were used: 
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Table 1 also shows that the error of the described method coincides with the error of the quadrature 
formulas used, and the error is in the same order of smallness relative to the interpolation step. 

Table 1. Comparison of approximate and exact solutions.  

t  
Solution ,%∆  

Exact Approximate 
0.0 1.000000000 1.000000000 - 

0.01 0.997303642 0.998929533 0.296 
0.02 0.994614554 0.997560123 0.397 
0.03 0.991932717 0.995866611 0.462 
0.04 0.989258111 0.993831608 0.491 
0.05 0.986590716 0.991439562 0.482 
0.06 0.983930514 0.988675329 0.433 
0.07 0.981277485 0.985522169 0.340 
0.08 0.978631609 0.981957961 0.200 
0.09 0.975992868 0.977947442 0.004 
0.10 0.973361242 0.973403577 0.004 

 

In calculations, KAST-V plastic with the following physical and geometric parameters was chosen as 
the plate material: 1E  = 25.5 GPa, 2E  = 14.91 GPa, 12G  = 4.41 GPa, 12µ  = 0.2, ρ  = 1900 kg/m3,  

a  = b  = 0.5 m, h  = 0.5 sm, θ  = 45°, 0P  = 5 MPa/s. The simplest and, at the same time, quite common 

weakly-singular Koltunov–Rzhanitsyn kernel [24] of the form ( ) ( )1 0 1tt Ae t−β α−Γ = < α <  is used as the 

relaxation kernel where ,A  ,α  β  are the rheological viscosity parameters determined from the 
experiments [25]. 

The graphs below correspond to the results obtained for the midpoint of a rigidly pinched plate under 
the action of a dynamic load that caused the shift. On the presented graphs, m  (meter) is taken as the 
dimension of the deflection, and s (second) is taken as the time. 

To ensure the necessary accuracy of the results obtained, the convergence of the Bubnov–Galerkin 
method was investigated (Fig. 2). The results given below were obtained based on monomial and 
polynomial approximations. It can be seen from the figure that when calculating the deflection, it is sufficient 
in (4) to hold the first four harmonics ( )2M N= = . The further increase in the number of members does 
not significantly impact the dynamic process. 
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Figure 2. Convergence of the Bubnov–Galerkin method  

(1 – M = N = 1; 2 – M = N = 2; 3 – M = N = 3). 

Fig. 3 illustrate the shape of a deformable rigidly pinched plate under the influence of shear forces. 
Note that areas with both positive and negative deflections appear on the plate under such loads. It should 
be noted here that the contact lines of these regions, otherwise called nodal lines or zero deviation lines, 
do not occur under uniform compressive loads of anisotropic plates. Similar results for elastic static 
problems were obtained in [22, 23]. 

a)  

b)  
Figure 3. The curved shape of the deformable plate. 

The influence of geometric parameters of a rectangular plate on the change of regions with positive 
and negative deflections is studied (Fig. 4). It is shown that as one of the sides of the plate lengthens, the 
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area of the region with negative deflections increases. Here λ is the ratio of the sides of the plate. Thus, if 
λ = 1, then the plate has a square shape. 

 
a 

 
 b 

 
c 

Figure 4. Changing the areas of the plate with positive and negative deflections depending  
on the change in the surface area of the plate: 1 – λ = 1; 2 – λ = 1.2; 3 – λ = 1.4. 

In solving problems about the stability of plates under the influence of compressive dynamic loads, 
as a criterion determining the critical time and critical load, it is conditionally assumed in [26] that the 
deflection boom should not exceed an amount equal to the thickness of the plate. With such plate 
deformations, there are no areas with negative deflections. 

In our study, we depart from this convention by considering the presence of areas with both positive 
and negative deflections in the deformable plate. In our calculations, we define the critical dynamic load as 
the moment when the difference between the deflection values at the highest and lowest points of the plate 
(referred to as critical points) equals the plate’s thickness. It is worth noting that, unlike the uppermost point 
of the plate (which remains fixed at the intersection of the diagonals, i.e., the midpoint), the location of the 
lowest point varies with changes in the physical and geometric parameters of the plate. 

Fig. 5 and 6 graphically depict the influence of the material’s viscoelastic properties on the behavior 
of the reinforced plate. In these figures, curves 1 and 2 represent results for the viscoelastic problem while 
curves 3 and 4 pertain to the elastic scenario ( )0 .A =  Notably, accounting for the viscoelastic properties 
of the construction material leads to a reduction in the critical time. The disparity in critical time values 
between elastic and viscoelastic plates, contingent on alterations in the plate’s geometric and physical 
parameters, can exceed 15 %. Furthermore, we observe that a reinforced plate made of EDF with  
A = 0.0067 is more resistant to shear forces compared to a reinforced plate made of KAST-V with A = 

0.0208. This distinction arises from the fact that the latter exhibits more pronounced viscous properties than 
the former. 
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Figure 5. Changing the deflections of the plate from KAST-V at critical points. 

 
Figure 6. Changing the deflections of the EDF plate at critical points. 

An increase in stiffness due to an increase in the thickness of the plate leads to a proportional 
increase in the critical time value (Fig. 7). 

 
Figure 7. The dependence of the deflection of the reinforced plate on time at different values  

of its thickness: 1 – h = 0.3 cm; 2 – h = 0.4 cm; 3 – h = 0.5 cm. 
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Fig. 8 shows similar results for the geometric parameter λ  = 1; 1.2; 1.4. As can be seen from the 
graph, an increase in one of the sides of the plate leads to a shift of the deflection curve to the left (i.e., to 
a decrease in the critical time). 

 
Figure 8. Dependence of the deflection of the reinforced plate on time  

at different parameter values ( ) :a bλ λ =  1 – 1;λ =  2 – 1.2;λ =  3 – 1.4λ = . 

In Fig. 9, various curves represent cases involving changes in the deflection of the median point of 
the reinforced rectangular plate at different loading speeds. As expected, higher loading speeds lead to an 
earlier increase in deflections. These results are similar to the results obtained in the study of the stability 
of a simply supported plate under the influence of external compressive loads, given in [10]. 

 
Figure 9. Dependence of the deflection of the reinforced plate on time at different values  

of loading speeds: 1 – P0 = 5 MPa/s; 2 – P0 = 6 MPa/s; 3 – P0 = 7 MPa/s. 

The presented numerical results in Table 2 offer critical time values for an anisotropic reinforced 
plate constructed from KAST-V material under the influence of rapidly increasing shear loads. These results 
have been obtained by considering a wide range of variations in the plate’s geometric and physical 
parameters. It is important to note that the values in the table represent the outcomes for both elastic and 
viscoelastic problems. 

As previously mentioned, accounting for the viscoelastic properties of the construction material 
significantly impacts the numerical results. This effect becomes especially prominent if an anisotropic plate 
is subjected to an external static load 𝑞𝑞 in addition to shear loads. It is worth highlighting that for large 
values of ,q  the stability of the plate is compromised even at relatively low loading speeds. 

Layered composites consisting of alternating reinforcing layers, each with different mechanical 
properties, have found successful applications in various industries. They have the potential to significantly 
reduce the weight of structures, increase engine efficiency, and facilitate the creation of innovative, highly 
efficient, and reliable structures. In light of these achievements, the influence of the number of layers and 
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the orientation of reinforced fibers inside these layers on the dynamic process under consideration has 
been studied. 

This investigation reveals that two-layer plates exhibit greater shear load resistance than single-layer 
counterparts. For instance, in a two-layer viscoelastic plate with fibers oriented in directions of 45° and  
–45°, the critical time is more than 1.2 times longer than that of a single-layer plate with fibers oriented in 
the direction of 45°. However, it is worth noting that further increasing the number of layers may not always 
be justifiable. In the case of three-layer viscoelastic plates constructed from CAST-V material with fibers 
oriented in the direction of 45°/–45°/45°, they are less stable than double-layer plates but more stable than 
single-layer ones while maintaining equal thicknesses across all three structures. 

Table 2. Critical time values at different values of geometric and physical parameters  
of an anisotropic reinforced plate made of KAST-V. 

№ 
Geometric parameters Physical 

parameters Number 
of layers 

Fiber 
orientations 

Critical time values 

a, m b, m h, 
sm 

q, 
Pa 

P0, 
MPa/s 

Elastic 
problem 

Viscoelastic 
problem 

Difference 
(in %) 

1 0.5 0.5 0.5 100 5 1 45° 3.7325 3.1629 15.3 
2 0.6 0.5 0.5 100 5 1 45° 3.2155 2.7211 15.4 
3 0.7 0.5 0.5 100 5 1 45° 2.9677 2.5129 15.3 
4 0.5 0.5 0.4 100 5 1 45° 2.3838 2.0194 15.3 
5 0.5 0.5 0.3 100 5 1 45° 1.3292 1.1240 15.4 
6 0.5 0.5 0.5 200 5 1 45° 3.7136 3.1246 15.9 
7 0.5 0.5 0.5 300 5 1 45° 3.7009 3.0946 16.4 
8 0.5 0.5 0.5 100 6 1 45° 3.1141 2.6452 15.1 
9 0.5 0.5 0.5 100 7 1 45° 2.6711 2.2743 14.9 

10 0.5 0.5 0.5 100 5 1 0° 4.2618 3.9568 7.2 
11 0.5 0.5 0.5 100 5 1 15° 3.9175 3.4630 11.6 
12 0.5 0.5 0.5 100 5 1 30° 3.7667 3.2287 14.3 
13 0.5 0.5 0.5 100 5 2 0°/90° 4.2861 3.9712 7.3 
14 0.5 0.5 0.5 100 5 2 15°/–15° 4.3527 3.8456 11.7 
15 0.5 0.5 0.5 100 5 2 30°/–30° 4.5252 3.8704 14.5 
16 0.5 0.5 0.5 100 5 2 45°/–45° 4.6053 3.8919 15.5 
17 0.5 0.5 0.5 100 5 3 45°/–45°/45° 3.7993 3.2184 15.3 

 

4. Conclusions 
The investigation of the dynamic stability of viscoelastic anisotropic reinforced plates exposed to 

uniformly distributed shear forces along their edges reveals several significant findings: 

1. The importance of accounting for the viscoelastic properties of the construction material is evident. 
Results highlight that the difference in the critical time between solving elastic and viscoelastic 
problems for plates constructed from KAST-V, contingent on physical and geometric parameters, 
can exceed 15 %. 

2. In layered structures, the critical time values notably depend on the fibers’ orientation in each layer. 
Among the examined cases, the two-layer plate with fibers oriented in directions 0° and 90° 
demonstrated the highest resistance to shear loads. 

3. Changes in the physical and geometric parameters of the plate substantially affect critical time 
values. Considering the viscoelastic properties of the structural material demonstrates the change 
in critical time clearly. The results and conclusions drawn from this study enable accurate 
predictions of the dynamic behavior of reinforced plates made from composite materials. 
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