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Abstract. A planar model of a symmetric statically determinate arch truss is considered. The mass of the
truss is evenly distributed over its nodes. The Maxwell-Mohr formula, assuming that the truss rods have
the same cross-section, allows one to determine the stiffness matrix of a given structure. The Dunkerley
method and a variant of the Rayleigh method are proposed to be used to estimate the first natural frequency
of the truss. The mass of the structure is conditionally concentrated in its nodes. Only small vertical
oscillations are considered. The generalization of a number of solutions for trusses with different number
of panels to the general case is carried out by induction. A simplified method for calculating the first
frequency based on the Rayleigh method is proposed. To simplify the sums of partial frequencies and
squared frequencies included in the Rayleigh solution, the area of the curve limiting the frequency values
is replaced by its approximate value, which is calculated by the triangle area formula. The solution includes
the value of the maximum deflection of the truss from the action of a distributed load. The results obtained
by different analytical methods are compared with the results obtained by the numerical method. All
transformations were carried out analytically using the Maple computer mathematical system. The results
showed that with an increase in the number of panels, the accuracy of the Dunkerley analytical estimate
increases, and the proposed method changes insignificantly. Spectral constants and frequency safety
regions were found in the spectra of a family of trusses of different orders.
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1. Introduction

The characteristic properties of truss racks are low material consumption, ease of installation, ease
of maintenance and convenient transportation. Therefore, this type of structure is widely applied in
construction, mechanical engineering, aviation technology, shipbuilding, etc. One of the main tasks, when
considering a structure in dynamics, is the calculation of the natural frequency of oscillation. The first, the
lowest frequency is of particular importance to practice. To calculate the natural frequency of the truss
oscillation in the general case, numerical methods are used based on the finite element method [1-3].
Usually only the upper or lower estimates of the first frequency are of interest, the Dunkerley (for the lower
limit) or Rayleigh (for the upper limit) methods are used [4, 5]. A two-sided analytical estimate of the
fundamental natural frequency of the spatial contour coverage was obtained in [6]. The formulas obtained
based on the Dunkerley method are relatively simple, but in some cases, the accuracy of this method is
not satisfactory. Usually the accuracy of the Dunkerley method ranges from 10 % to 45 %. General
problems with conventional statically determinate trusses have been presented in [7, 8]. The formula for
the lower estimate of natural oscillations of a planar regular externally statically indeterminate beam truss
with a rectilinear upper chord was obtained in [9]. The existence of conventional statically determinate truss
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systems was first announced in [10, 11]. Algorithms for calculating normal truss deflection based on
inductive method using the ability of Maple notation have been used in [12, 13]. The lower limit of the first
frequency by the Dunkerley method for a regular planar beam truss was obtained in [14]. In [15], a formula
was derived for the dependence of the first frequency of natural vibrations of two span trusses on the
number of panels. The dependence of the truss spatial deflection on the number of slabs in the Maple
system is found in [16, 17]. Analytical calculations of elements of building structures using the method of
superposition of analysis and expansions into series in the Maple computer mathematics system were used
in [18, 19]. The spectrum of natural frequencies of the spatial model of a hexagonal rod prism and an
analytical estimate of the first frequency were obtained in [20]. The Galerkin method for the analysis of non-
linear parametric oscillations of plates was used in [21]. Vibrations and stability of a reinforced rectangular
plate were studied in [22].

The Rayleigh method usually gives results with high accuracy. However, this method introduces
overly complex formulas and in many cases may not provide a solution. In this paper, a variant of the
Dunkerley method with relatively simple coefficients with good accuracy is proposed. The essence of this
method is that if the potential energy is calculated from the sum of the potential energies of all the masses,
then the sum of the kinetic energies of the masses is replaced by an approximate expression calculated
from the maximum kinetic energy of one of the nodes. Refined versions of the Dunkerley method are
considered in [23, 24].

2. Methods
2.1. The Truss Scheme

The truss under consideration is a symmetrical planar truss consisting of interconnected trusses with
different number of slabs and different slopes (Fig. 1). The truss has a movable articulated support and a
fixed articulation post. All truss posts have the same height /. The slope of the side (lower) parts of the

truss with m panels is determined by the ratio b/a, the slope of the middle parts (7 panels in each part)

is ¢/a. Truss length L:a(m+n). In a truss of M =8(m+n)+4 rods, of which 4(m+n) are in the

upper and lower chords, 4(m+n+1) rods form a lattice, and three rods are support rods. Using two

balanced equations for each node, a closed system of equations for the forces in the rods and the reactions
of the supports can be obtained. It is necessary to solve the problem of oscillation frequency in an analytical
form.

It is assumed that the mass of the truss is concentrated in its nodes, oscillations occur along the
vertical axis .

Figure 1. Truss, n =3, m = 2.

The coordinates of the nodes and the connection order of the bars in the structure are entered into
the program like problems in discrete mathematics, the edges and vertices of the graph are specified. Fig. 2
shows the numbering order of the bars and the nods, nods and special feature bars are marked with
formulas. The program to input coordinates into the Maple system has the following form:

> forito 2*n+2*m+1 do
> x[il:=a*(i-1);

> x[i+2*n+2*m+1]:=x[i];
>end:

> forito m+1 do
> y[il:=b*(i-1);
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> yli+m+2*n]:=m*b-b*i+b:

> end:

> for i to n do y[i+m+1]:=m*b+c*i; end:

> for i to n-1 do y[i+m+1+n]:=m*b+n*c-c*i; end:
> x[m3-2]:=0: y[m3-2]:=-4:

> x[m3-1]:=x[2*n+2*m+1]: y[m3-1]:=-4:

> x[m3]:= x[2*n+2*m+1]+3: y[m3]:=0:

> for i to 2*n+2*m+1 do

> y[i+2*n+2*m+1]:=y[i]+h:

>end:
. U
3(ntm)=13 16
16 18
14 ntm)+1F26 17
15 - = ., 19
13 35 [253 p 37 27 5 18,
14 34 |24 ~ S5=n+m 6 > 28 39
23 4 T 2019
T4 3 40 21
9 20
3 30
12 9 41N
10
N s
1] 44
4 43
24

Figure 2. Numbering of bars and nodes, m = 3, n = 2. Supports are modeled by bars.
2.2. Dunkerley Method

The lowest estimate of the frequency of the first oscillations is obtained by the Dunkerley formula:
K
-2 -2
oy =20, (1)
i=1

where ®,, are partial frequencies calculated for each mass separately, K =4n+4m+2 is the number

of degrees of freedom of the cargo system in the truss nodes.

To calculate the partial frequencies, we compose the mass L motion equation:

pyp+Dpyp =0, p=12, ..., K. (2)

The stiffness coefficient Dp , inverse to the compliance coefficient, is calculated using the Maxwell—

Mohr formula:

n-3 2
8, =1/D, = OLZZI(S&p)) lo/(EF). )

From the Dunkerley formula for Yp = Ap sin(cot + (p), ©, = ‘/Dp /u follows. Hence, we have the

expression for the Dunkerley frequency:

K
-2
op =W Y 8, =pA,. (4)
p=l
To obtain the dependence of the solution on the number of panels 7 in the crossbar and the number
of panels m in the supporting parts, double induction is required. To do this, first, for m =1, according to
the solutions for a sequence of trusses with n=1,2,3..., a general formula is obtained, then the same
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procedure is repeated for m =2,3,4... . A number of solutions obtained for various m are generalized

to an arbitrary case. For m =1, we have the following solution for the amount corresponding to vertical
oscillations:

n=1:Ay = (344a3 +8421° +984d° +163g> ) / (36EFh2),
n=2:8) =(116a" + 3461 +340d° +153¢° ) /(8EFH?),
n=3:A = (3924 +14700° +11604° +1027¢) /(20EFH?),

n=4:84 = (4460 + 20931 +13264° +1995g°) /(18 EFN?),
n=>5: Als

(
(840a3 1+ 48621 +2504d° + 5861 g3) / (28EFh2),

Using the Maple system operators, the common terms of the resulting sequence of coefficients are
calculated for the degrees of truss sizes: a3, h3, d3, g3, where b=h, c=h/2, d= \/a2 +h2,

g=V4a" + h? . It follows from the formula that the dependence of the deflection on the number of panels
and the dimensions of the structure has the form:

8, =(Cid? + o +Cyd® +Cy°) / (A?EF). (5)

The coefficients have the following formula:

, (8n2 +10n+3)/3

4n* +32n +50n2+82n+45)/12,

2l
C 3 (8n +10n+3)/3
Ll

161° +80n +200n3+160n2+39n)/180.

Similarly, when m = 2, the coefficients have the following formula:
C, | = (16;12 +40n+30)/3,
- (2n4 +24n> +81n2 +176n+138)/6

16,2
C2’3 =16n" +40n + 26,

€y 4 (16n5 +160n% + 60015 +1040012 + 549n) /180.

Carry out the same process, when m =34, ..., unti m=12, the general formula for the
coefficients according to (5) is found and has the following form:
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C = (4m3 +10m2n+ (8n2 —l)m)/?a,
2

c, =(6m4 +8(3n+2)m> +(32n2 +32n+3)m +

+2(8n3 +8n2 +3n+10)m+4n4 +16n° + 202 +20n)/12,

4 2

C, = m(32m

\ +100mn +20(4n2 +l)m

+50mn +40n> —7)/45,

C,= (3Om4n +120m3n? +2O(8n2 +1)nm2 +40(2n2 +1)mn2 +16n° +40n° —11n)/180.

The final expression for the dependence of the lowest limit of the first frequency on the geometrical
parameters of the structure, including the number of plates in the crossbar and the load-bearing side truss,
has the following form:

op=h 3 3EF 3 3\ ©)
p(Cla +C2h +C3d +C4 )

The result can be checked by doing it in reverse order, that is first carry out induction on m, then
on n.

2.3. A Simplified Version of the Calculation of the First Frequency

When using the Rayleigh method to find the upper estimate of the fundamental frequency, the biggest
difficulty in deducing the dependence of the oscillator frequency on the number of plates is the denominator.
The essence of the Rayleigh method is based on the law of conservation of energy. During each period of
the harmonic oscillation, there is a conversion of potential energy to kinetic energy and vice versa. The
transformation can be expressed as the following equation:

2 S S 2
Wp = -zlui .lei , (7)
1= 1=

n-3 (i
where L?l. = ul./P = ZIS((xP)S((xl) Ia/(EF) — displacement amplitude of mass W at a node i under

the effect of load distributed on the nodes of the truss, is called the value of vertical nodal force P.

P
Notations are used: S((x ) is the force in therod a. =1, ..., n—3 from the action of the load P, uniformly

~(P
distributed over the nodes: S((x ) = S((x )/P Three support rods in this arrangement are assumed to be

rigid. The proposed method for the simplified calculation of the Rayleigh frequency consists in replacing
the sums in (7) by half the value of the product of the truss-averaged value of the partial frequency and the
number of degrees of freedom. This is illustrated in Figs. 3 and 4. The figure for a specific truss shows the
distribution of partial frequencies over the nodes of the truss. In Fig. 4, on the horizontal axis, not the number
N
of marked nodes but the number of the list of u* values ranked in ascending order. The sum Z ﬁl. can
i=1
be interpreted as the area bounded by the distribution curve. This area can be calculated more simply by
sorting the frequencies in ascending order and calculating the area using the triangle area formula
N

Z zZl. = Ku>|< /2 (Fig. 4). Here u, is the maximum deflection of the truss from the action of a single force
i=1
distributed over all nodes. From (7) a formula is obtained for an approximate expression of the frequency
based on the simplified Rayleigh method:
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2 = §ai § wii? =2f(uku, )

i=1 i=1

(8)

o
The value of the maximum deflection is obtained by the formula u, = ZS;P)S;)ZQ / (EF), where

50

a=1

is the force in the rod with number o from the action of a unit vertical force on the node, the deflection

of which is tentatively estimated as maximum. This value for an arbitrary number of panels has the form:

u, :(c crcnicdic g3)/(h2EF).
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Figure 3. The dependence of the coefficient up on the number
of the truss node for m=4, n=3.

i,

1600

1400+

1200

1000

800+

600

400+

200+

[

T T T T
5 10 15 20

23

30

k

Figure 4. Coefficients up in ascending order form=4,n=3.

9)

Calculations testing the value of up for different values of m and n show that the maximum value

of u, falls on a node of order m+n+1.

For m =1, the calculations give the following sequence:
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- (240a 1204443 +19380d° +633g° ) / (2EFh2),

560a° +50964° +44120d° +3139g3)/(4EFh2),

3204 +3128h3 +24740d° +2867g° ) / (2EFh2),

— (18043 +189543 +137104°> +2294¢> )/(Eth),

(200a +227043 +15050d°> +3400g° ) / (Eth),

Formulas for u, are obtained similarly for m = 2,3, ... . The generalization of the series of these

formulas to an arbitrary number of panels m gives the following final formulas:

C1 = m2 +2mn,

c, =(3m3 +ons +2(4n2 +1)m2 +4n? +2(3n2 +1)m+2n)/4,
(10)

C3 :m(Sm3 +8m2n+m+4n)/6,

C,= (12m3n+30m2 2 +2n(10n2 —1)m+4n4 +7n2j/48.

The sequence of coefficients with this approach were relatively complex, for problems like this, there
are many advantages to using the rsolve and rgf_findrecur operators or the Maple operator to generalize
to sequences.

Thus, the approximate value of the first frequency (8) is:

o =h EF (11)

i u(2n+2m+l)(Ca3+C W +Cd®+C g3)

1 2 3 4

with coefficients (10).

This solution is obtained under the assumption that the three rods modeling the left movable and
right fixed supports are rigid. This is why the summation in the Maxwell-Mohr formulas is carried out up to

N —3. However, this solution can be refined by conditionally accepting that all support rods have a length

h and a modulus of elasticity £. Only the coefficient C2 in (10) will have a small difference:

C, = (3m3 +on’ +2(4n2 +1)m2 +4n? +2(3n2 +5)m+10n+4j/4.
Considering that the new value of the coefficient C2 is greater than the initial one, and this coefficient

is in the denominator of formula (11), the solution for the natural frequency, taking into account the elasticity
of the supports, will be slightly smaller. This change has almost no effect on the magnitude of the natural
frequency.

When m = n, the proposed simplified solution (11) has the form:
W =
*

I 3EF . (12)
\/un ((67g3 +1o4d3)n3 1+ 2284312 +(72h3 + 1444 + 404> +5g3)n+48h3)

— 4k
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3. Results and Discussion

3.1. Numerical Example

To illustrate the dependence of the natural oscillator frequency on the number of panels found by the
Dunkerley method, the new method has been proposed, and to evaluate the accuracy of the analytical
solution, the first frequency from the frequency of the device natural motion of the structure will be found.
Using the special operator Eigenvalues from the LinearAlgebra package, the Maple system finds
eigenvalues and matrix vectors. The truss under consideration corresponds to the dimensions a = 5 m,

h = 4 m. The cross-sectional area of the grids and supports is assumed to be the same: F' = 4 cm2.
Elastic modulus of steel £ =2-10% MPa, mass at nodes L = 150 kg. Fig. 5 shows the dependence on the

number of panels of the frequency ® ., according to the standard Dunkerley formula (6), the frequency

D

o, according to the simplified formula (11), and the numerically found value of the first frequency wl of

the spectrum of a system with K degrees of freedom.

o, /s
14 o

Figure 5. Comparison of analytical solutions with numerical, m = 3.
The first oscillation frequency of the truss w1 and its lower estimate wp according
to Dunkerley, w- is the lower estimate according to the simplified formula.

The Dunkerley method, its simplified version, and the numerical method for values do not differ too
much. At the same time, over the entire range of values of the number of panels, as expected, the Dunkerley
estimates are less than the first frequency of the spectrum obtained numerically, taking into account all
degrees of freedom. From Fig. 5 it can be concluded that the more cells in the crossbar, the smaller the
error obtained. The lower the truss height, the smaller the error.

11+ o,

Op

Figure 6. Comparative error of methods, m = 3.

Fig. 6 shows how the error of approximate solutions’ changes as the number of tables changes.

1
Dunkerley method decreases and reaches a value of about 1 % with k£ >12. In contrast, with the proposed
method, with & <8, the accuracy is gradually reduced, when k > 8, this error does not change at 12 %.

In summary, for the selected design features, this value should not exceed 12 % for the proposed method
and 6.5 % at most for the Dunkerley method.

Values of relative error are introduced: € = (0) —coD) col. With increasing truss order, the error of the

3.2. The Level Lines of the Value of the First Frequency
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The level lines of the value of the first frequency in the m-n axes, with increasing frequency, thicken

(Fig. 7). The figure is constructed for the @ =5 m, 4 =10 m and previous values of the mass, modulus of
elasticity and stiffness of the rods. As the height of the truss decreases, the curves in this figure straighten.

m

T T T T T
1 2 3 4 5 6

Figure 7. First frequency level lines.
1:w=45s"2:w=6s"3: w=8s"4: w=10s";5: w=12s".

The curves thicken with increasing frequency of natural oscillations. Outwardly, this resembles the
Doppler effect for a moving source of oscillations, although, of course, it has a completely different nature.

3.3. Natural Frequency Spectra of Regular Trusses

Usually, high vibration frequencies are not used in engineering calculations, except in resonance
case studies. The natural frequency of vibration caused by the operation of different equipment may
coincide with the natural frequency of the structure's vibration. The natural frequency spectrum is used, for
example, to monitor the dynamics of railway bridges [25, 26]. The frequency spectrum is also required for
multi-scale modeling and design of sandwich metastructures with a lattice core to suppress broadband low-
frequency vibrations [27].

The analytical method cannot account for these oscillation frequencies, but the well-tuned
mathematical engine in numerical mode gives an interesting picture of the spectral set of conventional
systems. In Fig. 8, twelve curves connect the points corresponding to the oscillation frequency of the truss

of order n=1,2, ... 12. Each curve corresponds to a given truss, and the coordinates of the points on it
are the frequencies. The horizontal axis shows the number of natural frequencies in the ordered spectrum.
Some features of the frequency distribution are noted here. All spectra are characterized by

significant frequency jumps, and all higher frequencies of the spectrum are multiples. For the accepted

truss sizes a = 5m, h = 4m, FF = 4cm?, there appear to be frequencies of o = 250s_1,
®, = 520S_1, Wy = 600s_1 (spectral constant) constant for rigs of different orders. The presence of
this regularity allows one to predict several truss frequencies with large regularity as calculated by a truss
with a small number of plates, which greatly simplifies the solution. The first frequency has a fairly accurate
analytical estimate, which is found by the Dunkerley formula. A similar spectrum with multiple higher
frequencies was obtained for a planar regular truss that allows kinematic changes for a certain number of
panels [28].

w Us n=l n=2 n=3 p=4 n=5 n=6 n=7 n=8 p=0 n=lon=11n=12
500
400
300

200

100+

T T T T T T T
10 20 30 40 50 60 70

Figure 8. Spectra of regular trusses, m = 6.
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It should also be noted the area of frequency safety, enclosed between frequencies ®, = 250s_1

1

and 0)2 = 520s_1 in the spectral picture. This means that placing on the truss some source of external

excitation with a natural frequency from this gap guarantees the safety of the system from the occurrence
of resonance. It is also characteristic that this area does not depend on the order of the truss (in this case,
the number of panels » ).

4. Conclusion

A new scheme for a statically determinate symmetric truss is proposed. The design under
consideration could be used in the design of a bridge or other transport structure. The Dunkerley method
and the proposed method allow one to obtain an analytical solution to estimate the first natural frequency
of oscillation of a conventional truss. One of the objectives of the study was to obtain an analytical solution
in the form of a relatively compact formula for the frequency of natural oscillations. Therefore, fairly strong
assumptions were introduced into the model of the object: the oscillations of the nodes were assumed to
be vertical, and neither physical nor geometric nonlinearities were taken into account. In favor of the latter,
it should be noted that the oscillations were assumed to be small, where various nonlinearities are
irrelevant.

Any other conventional mechanical system with a large number of degrees of freedom can also use
this proposed method. The following main conclusions can be drawn from the analyzed results:

1. The coefficients obtained from the proposed method are much simpler than those obtained from
the Dunkerley method, and the accuracy of these two methods is almost the same.

2. With an increase in the number of panels in the truss structure and a sufficiently large number of
crossbars, the accuracy of the proposed method remains unchanged, while the accuracy of the
Dunkerley method increases.

3. Inthe frequency spectrum of a family of regular trusses, spectral constants and a frequency safety
region are found.
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