Детальная информация

Название Artificial intelligence models for determining the strength of centrally compressed pipe-concrete columns with square cross-section // Magazine of Civil Engineering. – 2024. – Т. 17, № 6. — С. 13008
Авторы Chepurnenko A. S. ; Yazyev B. M. ; Turina V. S. ; Akopyan V. F.
Выходные сведения 2024
Коллекция Общая коллекция
Тематика Строительство ; Строительная механика ; artificial intelligence ; Elman neural network ; neural network Elman ; steel tubular columns ; ultimate loads ; strength of pipe-concrete columns ; искусственный интеллект ; нейронная сеть Элмана ; Элмана нейронная сеть ; стальные трубчатые колонны ; предельные нагрузки ; прочность трубобетонных колонн
УДК 624.04
ББК 38.112
Тип документа Статья, доклад
Тип файла PDF
Язык Английский
DOI 10.34910/MCE.130.8
Права доступа Свободный доступ из сети Интернет (чтение, печать, копирование)
Дополнительно Новинка
Ключ записи RU\SPSTU\edoc\76865
Дата создания записи 19.09.2025

Разрешенные действия

Прочитать Загрузить (1,6 Мб)

Группа Анонимные пользователи
Сеть Интернет

The article is devoted to the development of machine learning models for predicting the ultimate load during central compression of concrete-filled steel tubular (CFST) columns with square cross-section. Artificial intelligence is currently widely used in data processing and analysis, including data on the loadbearing capacity of building structures. The use of machine learning models can become an alternative to the empirical formulas from current building design codes. The models built by artificial neural networks are based on four different architectures: cascade forward backpropagation network, Elman neural network, feedforward neural network and layer recurrent neural network. The models were trained on synthetic data obtained as a result of finite element analysis of CFST columns in a simplified formulation with varying input parameters. The input parameters of the models were the outer cross-sectional size, wall thickness, concrete compressive strength and steel yield strength. The difference from previous works is the large size of the dataset, which amounts to 22308 samples. This dataset size allows to cover the entire currently possible range of changes in input parameters. The trained models showed high performance in terms of mean squared error. The correlation coefficients between predicted and target values are close to one. The developed models were also tested on experimental data for 123 samples presented in 15 different works. The best agreement with experimental data was obtained using the layer recurrent neural network model.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Все
  • Artificial intelligence models for determining the strength of centrally compressed pipe-concrete columns with square cross-section
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results and Discussion
    • 4. Conclusion

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика