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Abstract. The objective of the study is to evaluate the prior probability distribution (PPD) of undrained 
cohesion (Cu) parameter for soil in Nasiriyah, southern Iraq, based on prior knowledge and observations. 
Estimated PPD of Cu can be used in Bayesian approach to update the observed value in any project in this 
region using the posterior probability distribution, because it is considered as a measure of the initial belief 
about a random variable before considering any data. The research used five methods to express the PPD 
of Cu. Two of them are for non-informative data, i.e. uniform distribution and Jeffreys prior, and three of 
them – for informative data, which include maximum entropy, regression analysis and subjective probability. 
They were applied to data collected from different sources in Nasiriyah, based on site investigation reports. 
The ranges of mean, standard deviation and vertical scale of Cu fluctuation were found to be 12–62 kPa, 
0.5–27.6 kPa and 6–8 m, respectively. It was concluded that Jeffreys method is used well with individual 
models at the mean value of cohesion of 28.66 kPa and the standard deviation of 1.19 kPa. The maximum 
entropy can be used for the least informative data, while respecting the given constraints. The mean value 
of cohesion was 28.7 kPa, and the standard deviation was 1.2 kPa. Finally, for a finite number of 152 
cohesion values, the subjective probability assessment approach, which takes into account expert 
knowledge and judgment, is the most appropriate method with the mean value of cohesion of 37 kPa and 
the standard deviation of 8.8 kPa. 
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1. Introduction 
Undrained cohesion (Cu) is a significant and necessary property used to characterize the undrained 

shear strength of soil. It can be used to design and analyze different geotechnical problems, such as bearing 
capacity of shallow and deep (pile) foundation. Laboratory tests, such as triaxial shear or unconfined 
compression tests are commonly used to measure the Cu value performed on undisturbed samples from 
field investigation. These processes are relatively time-consuming and expensive, and there are many 
sources of error that make the Cu value uncertain, such as quality of consistency and degree of saturation. 

Prior distribution is an essential and first step in the Bayesian approach, which includes knowledge 
of the uncertain parameters combined with the probability distribution of recent data to get the posterior 
distribution [1]. It is used in the Bayesian approach to update the observed value of cohesion in a project 
in this area. Prior knowledge includes general information about the hypothesis that may be relevant or 
unclear. It may be previously gained knowledge of any type of distribution that correctly reflects the state 
of the model or parameter under study. When the posterior distributions belong to the same family of 
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probability distribution of prior distribution, they are known as conjugate distributions [2]. Previously gained 
information can be divided into two groups: informative prior knowledge and non-informative prior 
knowledge, according to its accuracy and quantity. 

Non-informative prior knowledge can be used to probabilistically characterize a homogeneous soil 
layer, which requires three model parameters, e.g. mean ,µ  standard deviation ,σ  vertical scale of 
fluctuation λ  [3]. It depends on the value of the rate, i.e. the limits of the parameter, with the most dependent 
uniform distribution in describing the uncertainty [2]. It led to the conclusion that prior knowledge is 
consistent with the rates cited in [4, 5]. Jeffreys [6] analyzed the optimal selection of non-informative prior 
distributions. He found that the prior probabilities should be assumed to be uniform over the parameter for 
variables with domains of ( ),−∞ ∞  and uniform over the logarithm for variables with domains of [ ]0, .∞  
The latter becomes inversely proportional to the soil parameter in arithmetic space [7]. 

Informative prior knowledge shows that certain prior estimates are preferable to others. It is used, 
when there is an abundance of collected information about soil properties, which is divided into three 
methods that help to obtain the probability distribution (e.g., subjective probability, maximum entropy, 
regression analysis). Subjective probability assessment framework (SPAF) is used to evaluate the 
plausibility of previously acquired uncertain statistical estimation [8, 9]. There are some circumstances, in 
which a different kind of distribution might be necessary to hold the available data without the risk of 
obstructing the conclusions of the analysis. The maximum entropy principle could be used to define the 
prior prior distribution [10, 11]. In this situation, entropy refers to randomness of the information and is 
relatively similar to the concept of entropy in physical systems [12]. The maximum entropy method was 
used to estimate the probability distribution and to develop the reliability of the slopes [13]. The probability 
distribution can also be obtained through regression analysis [14, 15] with the µ and σ of the data. This 
analysis provides a practical way to construct prior distributions from prior knowledge. It usually provides a 
weight similar to the prior information. In addition, it is challenging to include systematically subjective 
judgments in statistical analysis, which are sometimes a crucial component of prior knowledge [16]. 

The objective of geotechnical site description is to identify the soil layers and to evaluate the 
properties of the soil and rocks for the analysis of geological and geotechnical systems [9, 17]. The correct 
site characterization requires comprehensive measures at several places since soils are common 
geomaterials with spatial heterogeneity [18].The process of geotechnical site characterization involves 
several steps, including desk research, site surveys, laboratory tests [3], analysis or comprehension of site 
data, and inference of soil and rock properties [19]. Any method used in the site characterization that solely 
relies on measured data is called “data-driven site characterization”, and this includes both site-specific 
data collected for the current project and existing data of any kind collected from previous stages of the 
same project or previous projects at the same site, adjacent sites, or elsewhere [20, 21]. Geotechnical 
engineering frequently deals with uncertainty, and engineering design must take it into account [22]. There 
are three main categories of uncertainties: test errors, existing model uncertainty, and inherent variability 
[23, 24]. The evaluation of soil properties and their statistics based on past information are not clearly known 
results rather than clear-cut conclusions because of uncertainties in the currently studied information and 
engineers' qualification. As a result, such not clearly known evaluations are referred to as uncertain 
evaluation [3]. 

This article investigated approaches to enhance and estimate prior knowledge. It included data 
obtained from the geotechnical reports of projects implemented in Nasiriyah in southern Iraq. The purpose 
of collecting this data, which was considered as prior knowledge, is to quantify it and calculate its prior 
distributions to achieve the most appropriate geometric judgment sense and insert it into a Bayesian 
framework. The non-informative knowledge (e.g. uniform distribution) was based on the average maximum 
and minimum value of ,µ  ,σ  and λ  of Cu, in addition to the maximum entropy method and the regression 
analysis method, besides the SPAF, which in turn was based on many stages to achieve the prior 
distribution appropriate to the soil property. 

2. Methods 
2.1. Study Area 

Thi-Qar is a province in the south of Iraq that borders the provinces of Basra, Wassit, Muthanna, 
Missan, and Qadissiya (Fig. 1) [25, 26]. The province is located about 370 km southeast of Baghdad 
between latitude 31°14' N and longitude 46°19' E. It has a total area of 13552 km2 [27]. The province 
features a hot desert climate with very hot and dry summers and mild winters. The mean daily maximum in 
the summer exceeds 40 °C [28]. It is located in the Mesopotamian plain. There are deposits of alluvial silt 
from the Euphrates and Tigris rivers. The soil in this region is a floodplain formation consisting of clay, silt, 
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and sand, where the silt forms 60 % of the deposits. The silt soil and sand settle in the swamps, the mud 
runs below the Shatt al-Arab, and one million tons of sediments are dried up annually (12000 years) in 
these rivers that flow from the northwest to the southeast of Turkey through this basin [29, 30]. Since the 
area is free from surface erosion of ancient rocks, the city of Nasiriyah belongs to the floodplain zone and 
represents the last formation of surface of Iraqi geology [31, 32]. 

 
Figure 1. Location of Thi-Qar Province on the map of Iraq. 

2.2. Data Collection 
In this study, the data was gathered from a variety of places within Thi-Qar Province. The province 

is divided into many sections (for example, Nasiriyah, Al-Chibayish, Suq Al-Shuyukh, Al-Rifai, Al-Shatrah, 
Qalat Sukkar and Al-Nasr), as shown in Fig. 2. The available soil investigations for these areas were 
included in the data. To analyze the geotechnical properties, as well as to measure soil consistency at 
various depths, the standard penetration test of approximately 200 boreholes was used. 

 
Figure 2. Location of the study area. 
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2.3. Description of Thi-Qar Soil 
The data collected from multiple projects in Nasiriyah included zones 1–4 (Fig. 2). Zone 1 represents 

the description of soils of Qalat Sukkar and Al-Nasr. Zone 2 represents the soils of Al-Shatrah. Zone 3 and 
4 represent the soils of Nasiriyah, Al-Chibayish, and Suq Al-Shuyukh, respectively. 

The soil layers consist of silty clayey or silty clay soils of little to medium plasticity ML, that varies in 
color from light gray to light brown and have a fairly firm texture. It is also characterized by patches of salt 
and gypsum crystals that extend in Zone 1 at a depth of 14 m and 20–24 m, and in Zone 2 at a depth of 
12–14 m and in Zone 3 at a depth of 11–13 m. 

Zone 3 consists of a hard to very hard layer and medium plasticity. Layer of light green clay appears 
in the upper layer at a depth of 4 m, at 8–12 m, and also at 14–24 m. Zone 4 extends at a depth of 2–12 m 
and at 15–24 m. It classified by type CL. 

Soil layers of little plasticity or non-plasticity are located in Zone 1, as it consists of medium to dense 
gray soil to soft brown of soft sandy grains (SM), at a depth of 14–20 m. The same applies to Zone 2 at a 
depth of 15–18 m and at a depth of 4–8 m and at a depth of 12–14 m in Zones 3 and 4, respectively. Fig. 3 
shows the profile of each of these layers of Nasiriyah soils in the Thi-Qar Province. 

 
Figure 3. Soil profile of Nasiriyah based on borehole samples considered in the current study. 

2.4. Prior knowledge 
During geotechnical site characterization, both previously acquired knowledge and observation data 

that are site-specific are used to determine soil parameters, that can be expressed as iθ  (e.g., ,µ  ,σ   

λ ). From a Bayesian perspective, such a procedure may be viewed as an update of previously acquired 
knowledge using observational data from a project site [19]. The previously acquired distribution is an 
essential part of Bayesian inference because it resembles information about an uncertain parameter that 
is accompanied by the probability distribution of new data to produce the posterior distribution. The prior 
distribution can be obtained by applying the methods shown in Fig. 4. 
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Figure 4.  Methods of expressing the prior knowledge. 

2.4.1. Non-informative prior knowledge 
Since the early studies of Bayes and Laplace [33], there has been some consensus that assigning a 

uniform distribution to a scalar parameter iθ  is one of the easiest methods to depict a state of ignorance 

about its value. Each value of iθ  has the same prior probability with a uniform prior (or probability density). 
It expresses vague data regarding the specified variable. In the lack of specific prior knowledge, vague 
priors are frequently used as the default prior option, however, it is crucial to emphasize that ambiguous 
priors are not always non-informative to the analysis, which is a common mistake in the literature with vague 
priors being incorrectly referred to as non-informative priors. The use of a non-informative antecedent in 
parameter estimation issues yields findings that are not materially different from those of conventional 
statistical analysis. Based on prior distribution, there is no predisposition for any value that falls within the 
range of potential values iθ . The prior distribution of iθ  can be written as follows. 

( ) ( )1 ;mn
p iiP P=θ = θ∏                                                                  (1) 

( ) ( ) ,min ,max
,max ,min

1 for , , 1, 2,...,
.

0 otherwise

i i i m
i ii

i n  θ ∈ θ θ =  θ −θθ = 



                   (2) 

Consider a model parameter iθ  (e.g., ,µ  ,σ  λ ). 

( )
[ ]min max

max min

1 for ,
;

0 otherwise
P

 µ∈ µ µµ −µµ = 
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                                        (3) 
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( )

[ ] [ ] [ ]min max min max min max
max min max min max min

1 1 1 for , , , , and ,
.

0 others

PP θ =

 × × µ∈ µ µ σ∈ σ σ λ∈ λ λµ −µ σ −σ λ −λ= 


(5) 

( )PP θ  refers to the prior probability distribution, µ  is the mean, σ  is the standard deviation, λ  is 
the vertical scale of fluctuation. 

This form of prior knowledge of the soil property Cu in Nasiriyah city was investigated. During the site 
characterization, the maximum and minimum values of the mean, standard deviation and vertical fluctuation 
scale were determined and presented as shown in Tables 1 and 2. 

Table 1. Ranges of the mean and standard deviation of soil properties of Thi-Qar. 

Soil property Range of prior 
evaluation of mean 

Range of the prior 
evaluation of standard 

deviation 
Range of COV% 

Cohesion Cu (kPa) 12–62 0.5–27.58 1.6–84.85 
 

Table 2. Ranges of the vertical scale of fluctuation of soil properties of Thi-Qar. 

Soil property Range of the prior evaluation of vertical scale  
of fluctuation(m) 

Cu (kPa) 6–8 
 

Jeffreys proposed prior, non-informative method used to estimate parameters when an appropriate 
prior distribution is not obtainable. 

Jeffreys noticed that a non-informative prior proportionate to the square root of the information 
matrix's determinant is non-informative. Then, Jeffreys prior is: 

( ) ( )
1

.2P Iθ ∝ θ                                                                    (6) 

Regarding the non-invariance of prior distributions based on Fisher's information matrix, Jeffreys 
shows up a larger finding. Fisher [34] proposed that the data contained in a set of observations 

1,..., ,nx x x=  with regard to a parameter ,θ  are to be as follows: 

( ) ( )( )
2

ln .dI E p x
dθ

  θ = θ  θ   
                                                        (7) 

( )I θ  is the Fisher information. 

Please note that ( )p x θ  is the probability of .θ  

2.4.2. Informative prior knowledge 
Informative prior distributions are those based on knowledge other than the immediate measured 

data at hand (e.g., prior data or engineering opinion). Prior information about the value of a parameter 
exists, the prior distribution might be informative rather than non-informative. Any probability distribution 
may be used to depict prior information. Increase in prior knowledge or data is more beneficial. The right 
informative distribution of prior iθ  information must be estimated by appropriate evaluating of the 

plausibility of various prior iθ  evaluation in light of previous experience. 

2.4.2.1. Maximum entropy principle and statistical analysis method 

This method is the least biased method and by selecting a distribution with entropy, the most 
appropriate probability distribution of Cu can be determined, which increases the uncertainty measure. Prior 
knowledge regarding the model parameters may also be used to evaluate the informative prior distribution, 
which resembles the degree of belief (or certainty level) of prior information according to the model 
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parameters. When there is insufficient prior information on iθ , the maximum entropy method can also be 
used to infer the prior distribution from the established data [35, 11]. Using the maximum entropy principle, 
prior probability distributions for Bayesian inference are frequently generated. Jaynes [36] was an ardent 
supporter of this method, believing that the distribution with the maximum entropy was the least informative. 
Within the maximal entropy technique, the information entropy IH  is used as a measure of the uncertainty 

of the prior probability density function (PDF) ( )iP θ  of iθ  and is defined as [35]: 

( ) ( )ln ,I i iH P P d = − θ θ θ ∫                                                    (8) 

where iθ  is a random variable with a continuous distribution and ( )iP θ  is the PDF. A function is 

constructed to assess the entropy difference between ( )1 iP θ  and ( )2 iP θ  probability assignments [37]. 

( ) ( ) ( ) ( )
( )

1
1 2 1

2
, ln .i

i i i
i

P
H P P P d

P
 θ

 θ θ = θ θ   θ  
∫                                    (9) 

According to Jaynes, the minimum biased assignment of probabilities is one that reduces entropy 
while satisfying the restrictions given by the available information. 

( ) ( ) ( ) ( )
( )0

0
, ln .i

i i i
i

P
H P P P d

P
 θ

 θ θ = θ θ   θ  
∫                                   (10) 

The maximum entropy principle implies that, given specified restrictions on the prior, the prior should 
be the distribution with the maximum entropy that follows these requirements. The most fundamental 
condition is that P  must reside in the probability simplex, i.e. 

( ) ( )
( )

1 and 0.

, 1, 2,..., ,
i i

i i i m

P P

P d i n

θ = θ ≥

θ θ θ = µ =∫
                                               (11) 

where ( )0 iP θ  is the prior distribution function, ( )iP θ  is the actual distribution function of the random 

variable ,iθ  and mn  is the greatest level of moments examined for the random variable. 

The maximum entropy of the normal distribution gives the following equation: 

( ) ( )2 2, .E x E x= µ −µ = σ                                                      (12) 

The statistical analysis method can also be used to produce the prior distribution. The following 
equation represents the probability density function of normal distribution. 

( )
21 1exp for .

22
xf x x

 −µ = − −∞ < < ∞  σσ π    
                                 (13) 

The first step in this technique is to obtain the maximum likelihood equation applied to normal 
distribution equation. The following statistical quantities were obtained for average and variance, 
respectively. 

1
1 ;i

n
i x x

n =µ = =∑                                                                  (14) 

( )22
1

1 ;i
n
i x

n =σ −µ∑                                                             (15a) 

( )
22

1
1 .

1 i
n
is x

n == −µ
−
∑                                                          (15b) 

2.4.2.2. Subjective probability 

The SPAF method was established in response to cognitive biases. Each action taken by the 
engineer demonstrates the effective application of prior information and the reduction of unfavorable effects 
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and complications [3]. It is developed using the cognitive process, which is broken down into a number of 
cognitive models, including the following. 

Specification of assessment objectives 

Evaluation objectives are an essential and important step during information gathering because they 
can cause cognitive biases and the evaluation objective must be clearly understood. In the start of the 
SPAF, it helps engineers to know and understand the objective of the assessment clearly by providing 
many solutions: 

a) Record the soil property Cu of interest and establish an overall evaluation target (for example, 
"probabilistic characterization of the soil attribute Cu"). 

b) Break the overall objective into multiple sub-goals. Each sub-goal corresponds to the statistic 

[ ], 1, 2,...,i mi nθ =  of Cu. The relevant statistics 1 2, ,..., ,
m

i n
 θ = θ θ θ  

 which depends on the theory of 

probability, used to explain the underlying variability of Cu within a Bayesian framework. The important 
statistics are the model parameters of the random field, namely ,µ  ,σ  and λ  of Cu. Thus, θ  is composed 
of three random variables. 

c) Identify unfamiliar probability terminology (including Cu statistics) for engineers. 

Collecting relevant data and making a preliminary estimate 
The second stage is to compile the essential information on evaluation objectives from the prior 

knowledge (i.e. the acquired existing data and the engineers' ability). Using known correlations (e.g., real 
regressions or theoretical correlations) or intuitive reasoning, a key part of knowledge may resulted in 
several questionable estimates of the soil property Cu and/or its statistics in the past. It then provides several 
examples of assessment goals. Two sorts of evidence exist: disconfirming evidence and supporting 
evidence [8]. These evidences provide a set of information that is consistent with prior information and 
engineering experience, which includes soil property Cu or its statistics. The serious attempts to uncover 
information and evidence that are related to prior information, which was obtained from a number of projects 
of geotechnical exploration implemented in the province. The cohesion value were obtained for Al-Shatrah, 
Nasiriyah, Suq Al-Shuyukh and Al-Rifai, depending on the data collected from many projects for each region 
with the depth as shown in Fig. 5. 

(a) (b)

(c) (d)  
Figure 5. Mean value of cohesion with depth for (a) AL-Shatrah; (b) AL-Nasiriyah;  

(c) Suq AL-Shuyukh, Al-Chibayish; (d) AL-Rifai. 
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Synthesis of the evidence 
Engineers make use of the collected data to develop internal engineering judgments, for example 

property of soil Cu and its statistics. The evidence shows two crucial cognitive attributes: weight and 
strength [8]. Evidence synthesis is a research process that helps researchers to gather all relevant 
information about the research subject. This occasionally leads to engineers being overconfident in 
powerful but untrustworthy evidence while underemphasizing (or ignoring) fairly weak proof with relatively 
high weight (e.g., huge quantity and good quality), which leads to overconfidence bias, representativeness 
bias, and inadequate correction. There is a requirement to correctly balance the impacts of evidence 
strength and weight, as well as further synthesis the evidence for subjective probability evaluation. Table 3 
shows the strength and weight of the cohesive soil property Cu obtained from in-situ SPTs N  and the 
calculation of the correlation function, which were evaluated according to synthesis of the evidence. 
Strength in group (I) is represented as weak, (II) – moderate, (III) – weak, while in regions (IV) it is 
characterized as strong, (V) – moderate, (VI) – weak, (VII) – weak, (VIII) – moderate, and moderate weight. 

Table 3. Summary of the evidence's strength and weight. 
No. of 

evidence 
Source of the information Type of correlation Strength Weight 

1 A formal report on the location 
of the clay Empirical correlation Strong Strong 

2 A formal report on the location 
of the clay Intuitive inference Weak Intermediate 

3 A formal report on the location 
of the clay Intuitive inference Weak Intermediate 

4 A formal report on the location 
of the clay Empirical correlation Weak Intermediate 

5 A formal report on the location 
of the clay 

Empirical correlation and 
logical inference Intermediate Intermediate  

6 A formal report on the location 
of the clay Empirical correlation Strong Intermediate 

7 A formal report on the location 
of the clay 

Empirical correlation and 
logical inference Intermediate Intermediate 

8 A formal report on the location 
of the clay Empirical correlation Strong Intermediate 

9 A formal report on the location 
of the clay Intuitive inference Weak Intermediate 

10 A formal report on the location 
of the clay Empirical correlation Strong Intermediate 

11 A formal report on the location 
of the clay Intuitive inference Weak Intermediate 

12 A formal report on the location 
of the clay Intuitive inference Weak Intermediate 

13 A formal report on the location 
of the clay Empirical correlation Strong Intermediate 

14 A formal report on the location 
of the clay Intuitive inference Weak Intermediate 

15 A formal report on the location 
of the clay Intuitive inference weak Intermediate 

16 A formal report on the location 
of the clay Intuitive inference Weak Intermediate 

17 A formal report on the location 
of the clay Intuitive inference weak Intermediate 

 

Numerical assignment 
The numerical assignment is a method for selecting simple and compound random probabilities that 

consider how prior distributions of non-random parameters are determined and derived. It involves applying 
many probabilities with repeated significance to randomness, and Bayesian analysis avoids it. The median 
value of iθ  for a given range from 0.5 to 1, 2, …, mn  is 0.5. The similar “equivalent” lottery technique 
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requires a range of ,iθ  namely ,min ,max,i iθ θ  to estimate the average value of the statistics. Using various 
ranges in a similar lottery approach results in different median values. 

Final confirmation 

The SPAF methods mentioned above are repeated to produce the relevant PDFs of the model 
parameters ,iθ  1,2,..., ,mi n=  based on prior information. The prior information about iθ  is represented 
in the probability distributions (e.g., CDF) and PDF, which provides means of assessing the impact of 
uncertainty on characterizing conditions, in which uncertainty is high or low. This theory requires a large 
amount of data, and the latter requires a sufficient time and effort,  which provides means of assessing the 
impact of uncertainty on characterizing conditions, in which uncertainty is high or low. 

3. Results and Discussion 
3.1. Uniform distribution 

This method relied on the results shown in Tables  1, 2 for the characteristic of undrained cohesion 
and based on (5). The details of uniform distribution of the Cu soil parameters for the three statistical 
quantities are as follows: 

( ) [ ]1 1 for 12, 62
;62 12 50

0 otherwise
P

 = µ∈µ = −


 

( ) [ ]1 10 for 0.5, 27.6
;27.6 0.5 271

0 otherwise
P

 = σ∈σ = −


 

( ) [ ]1 1 for 6, 8
;8 6 2

0 otherwise
P

 = λ∈λ = −


 

( ) [ ] [ ] [ ]1 10 1 1 for 12, 62 , 0.5, 27.6 , and 6, 8
.50 271 2 2710

0 others
P p

 × × = µ∈ σ∈ λ∈θ = 


 

It implies that all combinations of ,µ  ,σ  ,λ  and within their respective potential ranges have the 
same probability 1/2710. Only the ranges of soil parameters are given, they can be used in the Bayesian 
framework to describe Cu at the clay location according to the probability distribution. Fig. 6 shows the 
uniform probability distributions for Cu based on the data set depended on in the current study. 

Fig. 6a shows the CDF of µ  of Cu as a solid line. It was calculated using the simpler procedure. The 
relation between CDF and the mean value of Cu shows a linear relationship. The CDF increases linearly 
from 0.01 to 0.99 at mean values of 12 to 62. The PDF can be presented using a histogram with a single 
bin (i.e. a uniform distribution with a range of 12–62), and the PDF value of µ  is around 0.019. The uniform 
PDF of µ  (Fig. 6b) may serve as the prior distribution of µ  in the Bayesian framework. 

Fig. 6c displays the CDF of σ  as a solid line calculated using the simpler procedure. The CDF 
increases linearly from 0.01 to 0.99 as σ  rises from 0.5 to 27.6. The PDF of σ  determined using the 
simpler approach was represented a histogram with a single bin (i.e. a uniform distribution with a range of 
0.5–27.6), and the PDF value of σ  is around 0.037 (Fig. 6d). The uniform PDF of σ  (Fig. 6d) may serve 
as the prior distribution of σ  in the Bayesian framework. 

The solid line shown in Fig. 6e represents the CDF of .λ  The value of λ  increases from 6 to 8; the 
CDF increases linearly from 0.01 to 0.99. Fig. 6e shows the PDF of λ  using a histogram with a single bin 
(i.e. a uniform distribution with a range of 6–8), and the PDF value of λ  is around 0.5. The uniform PDF of 
λ  (Fig. 6f) may serve as the prior distribution of λ  in the Bayesian framework. 
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(a)    (b)   (c) 

 
(d)    (e)   (f) 
Figure 6. Non-informative prior distribution of µ, σ, λ. 

3.2. Jeffreys method 
Jeffreys prior has a limited effect on the posterior distribution. Application of this method shows that 

the mean was 28.7 kPa, with a standard deviation of 1.19 kPa, based on the data included in the MATLAB 
code developed in this paper. Fig. 7 shows the probability and cumulative distributions. It is noteworthy that 
the maximum probability distribution reaches 0.33. 

 
Figure 7. Non-informative prior distribution (Jeffreys prior) of Cu. 

3.3. Regression analysis 
In this method, the probability distribution of prior knowledge can be found based on the data of 

undrained cohesion. Producing the probability distribution implies computing the average and standard 
deviation of the data and the maximum likelihood function. The data can be fitted with a suitable probability 
distribution using regression analysis. In this research, two types of probability distribution were introduced 
for the data: normal and lognormal distribution. The disadvantage of this method was that the data collected 
from different sources had similar weight and no strength or weakness for the evidence was taken into 
account. Fig. 8 shows the normal and lognormal probability distribution fitted to the cohesion data. The 
results of this statistical analysis do not reflect the reality of data because some data may be very significant 
and some of them are not significant based on the source of data that has not been taken into account in 
the analysis. Engineering judgment in this analysis will be difficult to make since the data is not recognized 
according to its quality. 
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Figure 8. Informative prior distribution. 

3.4. Maximum entropy 
The prior probability distribution was obtained based on the maximum entropy method. With this 

method, the uncertainty of the prior probability distribution can be measured using information entropy .IH  
The prior distribution can then be found by maximizing the information entropy subject to constraints or 
prior knowledge. This method can be used when the data is small but can offer a probability constraints. 

The maximum entropy approach was also applied on the mean value of Cu. Fig. 9 shows the PDF 
and CDF distribution of the maximum entropy. In addition to the maximum entropy approach and regression 
analysis, the prior probability distribution was determined using the mean and standard deviation of the 
undrained cohesion data, respectively 28.7 and 1.2 kPa, as shown in Fig. 9. 

  
(a)       (b) 

Figure 9. Informative prior distribution. 

3.5. Subjective probability 

Table 4 summarizes the evidence related to the parameters Cu, which include mean value ( ) ,µ  

standard deviation ( ) ,σ  and correlation length ( ).λ  The evidences were obtained from eight sets of items, 
each of which was categorized by strength and weight. 

For Cu, the evidence is based on three item groups: (I), (II), and (III). Item Group (I) includes four 
guides with strong strength and moderate weight (evidence 1, 6, 8, 13). Item Group (II) includes a single 
guide with moderate strength and weight (evidence 7). Item Group (III) includes evidence 2, 9, and 14, 
which are characterized by weak strength and moderate weight. The equations (16) and (17) are used. 

max min ;
2

X XX +
=                                                                (16) 
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max min .
6x

X Xw −
=                                                              (17) 

X  is the mean of ;x  xw  is the standard deviation of ;x  x  is the cohesion. 

The Cu rates were calculated for Item Group (I), resulting in the following ranges: 

µ  = 32, σ  = 4, range: 20–44; 

µ  = 37, σ  = 1.6, range: 32.4–42.2; 

µ  = 21.3, σ  = 0.25, range: 20.5–22; 

µ  = 30, σ  = 1.6, range: 25.5–35. 

Similar calculations were performed for the rest of the Table contents. 

Table 4. Summary of the evidence undrained cohesion for soil in Nasiriyah. 

Variable No. of 
evidence Item Previous uncertain 

evaluation Strength Weight 

Cohesion (kPa) 

(1) 

(I) 

20.5–44 Strong Intermediate 
(6) 32.36–42.16 Strong Intermediate 
(8) 20.5–22 Strong Intermediate 
(13) 25.5–35 Strong Intermediate 
(7) (II) 14.55–62 Intermediate Intermediate 
(2) 

(III) 
13.75–28.15 Weak Intermediate 

(9) 19–24 Weak Intermediate 
(14) 12–62 Weak Intermediate 

µ 

(10) (IV) 31.55 Strong Intermediate 
(5) (V) 49 Intermediate Intermediate 
(11) 

(VI) 

22.05 Weak Intermediate 
(12) 20 Weak Intermediate 
(15) 37.2 Weak Intermediate 
(16) 26.67 Weak Intermediate 
(17) 18.29 Weak Intermediate 

σ (19) (VII) 5.02–20.3 Weak Intermediate 
λ (18) (VIII) 6–8 Intermediate Intermediate 

 

Depending on the self-assessment solution stages and the data shown in Table 4, µ  and σ  were 
obtained as shown in Table 5. 

The average cohesion and standard deviation were 37 and 8.8 kPa, respectively (Table 5). 
Figure 10a shows the probability distribution based on the SPAF. The value of the probability distribution 
reaches 0.043. It follows from the obtained results that there is a significant difference in the mean and 
standard deviation value in this method compared with other methods. Other probability distribution of Cu 
is presented in Fig. 10: a, b for ;µ  c, d for ;σ  e, f for .λ  

Table 5. The prior percentiles of the mean, ,µ  ,σ  λ . 

Cumulative of probability 0.01 0.25 0.5 0.75 0.99 

Mean µ 12 24.5 37 49.5 62 
Standard deviation 𝜎𝜎 0.25 5.3 10.3 NA 20.3 

Length of the correlation λ 6 NA NA NA 8 
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(a)       (b) 

 
(c)   (d)   (e)   (f) 

Figure 10. Informative prior distribution of µ, σ, λ. 

4. Conclusion 
This research examines the indicating of the prior probability distribution of undrained cohesion 

parameter based on a collected database of prior knowledge about this parameter in Nasiriyah, southern 
Iraq. About 152 Cu values from different boreholes presented in various geotechnical investigation reports 
were used in this research. A wide range of conditions for selecting the suitable probability distribution was 
considered. The following points can be outlined based on the results of this study. 

1. The range of cohesion values based on database of 152 value was between 28 kPa and 46 kPa. 
The uniform distribution is simple and easy to use when there is little prior knowledge or when all 
outcomes are considered equally likely. It can be used as a non-informative prior in Bayesian 
analysis when no other information is available. Since it implies all cohesion values within the given 
range are equally likely, it may not be the case in reality. 

2. The Jeffreys prior provided a prior probability distribution based on the given mean and standard 
deviation. The effectiveness of Jeffreys prior might be limited to 152 data points, and the prior could 
dominate the posterior distribution, leading to biased results. The Jeffreys prior is particularly useful 
when dealing with transformation-based parameters.  

3. The maximum entropy can be used for the least informative while satisfying given constraints. In 
this case, the mean of cohesion was given as 28.7 kPa, and the standard deviation was 1.2 kPa. 
By applying the principle of maximum entropy, we can find a probability distribution that is consistent 
with these constraints. The maximum entropy distribution fits the available information (mean and 
standard deviation) while being as unbiased as possible. The resulting distribution is expected to 
be relatively smooth and not make strong assumptions about the underlying data. 

4. Regression analysis can be effective when dealing with larger data sets because it allows 
relationships between variables to be modeled and predictions to be made based on those 
relationships. With 152 data points, it may be necessary to increase the data, especially when there 
are significant analysis challenges, to provide useful and reliable results. 

5. When working with a limited number of data points, the subjective probability assessment approach, 
which considers expert knowledge and judgment, might be the most suitable method. However, it 
is essential to be transparent about the assumptions and uncertainties introduced by the subjective 
assessment and to carefully interpret and validate the results against any available data. 
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Additionally, if further data becomes available, it could be useful to reassess the analysis using 
methods that are better suited for larger datasets, such as regression analysis. The subjective 
probability assessment heavily relies on the knowledge and judgment of the expert providing the 
assessment. It can be subjective and may lead to varying results depending on different expert 
opinions. 
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