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Contact problems with a stamp in the form of an acute-angled
wedge acting on an anisotropic composite layer

V.A. Babeshko 1=, 0.V. Evdokimova %, 0.M. Babeshko !"“', V.S. Evdokimova !
1Kuban State University, Krasnodar, Russia
2Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia

* babeshko41@mail.ru

ABSTRACT

In this paper, for the first time, the block element method provides an exact solution to the contact problem
of the action of a rigid wedge-shaped stamp with an acute angle on a layer of composite material having
arbitrary anisotropy. The research is based on the application of the block element method. In comparison
with strip stamps, it contains an additively additional term describing the concentration of contact stresses
at the angular point, that is, at the top of the stamp. The calculation of the indicator of the peculiarity of
the concentration of contact stresses at this point is close to the values performed by numerical methods
in a number of works. In the zone considered away from the top of the stamp, the exact solution turns into
a solution for the case of a semi-infinite stamp. The developed method is applicable to composites of
arbitrary anisotropies arising in linearly elastic materials and crystals of any cross sections that allow the
construction of the Green function, and hence the two-dimensional Wiener-Hopf integral equations. The
exact solution of two-dimensional Wiener-Hopf integral equations has made it possible, thanks to fractality,
homeomorphism of stamp carriers and solution functions, to construct exact solutions to contact problems
for wedge-shaped, sharply angled stamps.

KEYWORDS

contact problems e anisotropy ¢ composite « Wiener-Hopf integral equation ¢ block element e factorization
wedge-shaped region with an acute angle
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Introduction

Mixed tasks, including contact tasks, play an important role in a wide variety of practice
areas. They arise in the problems of strength and fracture [1], wave propagation in elastic
bodies [2], acoustics [3], non-destructive testing methods [4], the theory of scattering of
electromagnetic waves and the creation of an electronic element base [5], the theory of
waves in a liquid [6,7], geophysics [8], tribology [9,10]. Studies of anisotropic problems,
including for composites and contact problems, were carried out using both analytical
and numerical methods in [9-27]. It should be noted that the transition in spatial
problems to anisotropic media, and especially to composites, is associated with
significant difficulties due to the complexity of differential equations describing such
media. For the cases of layered media, the construction of Green's functions is carried out
using integral Fourier transforms. Difficulties arise when calculating the roots of a

© V.A. Babeshko, O.V. Evdokimova, O.M. Babeshko, V.S. Evdokimova, 2025.
Publisher: Peter the Great St. Petersburg Polytechnic University
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/li-censes/by-nc/4.0/)
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characteristic equation and when studying the properties of Green's functions, in particular,
determining all its features. In isotropic cases, this can be done, and in anisotropic cases,
for composites, it is almost impossible. To illustrate this, the form of the integral equation
of the contact problem is given below for an orthotropic layer of thickness.
It is assumed that the friction-free layer lies on a rigid base and a rigid friction-free stamp
acts on the layer [15]. The orthotropic layer is characterized by a state matrix of the form:

Ci Ciy Cs 0O 0 O
Cyi Cyp Cps 0O 0 O
c_|lCn €2 G o0 00
0O 0 0 Cy, 0 0
0 0 0 0 Css O
0 0 0 0 0 Cg

The integral equation is represented in the form:
Kq= [, k(x—&y—nq(&n)dédn = f(x,y), x,y €2,
k(6y) = 5 [ [ K@, B)e @) dadp,

K(a,B) = G,(a, B)G; (o, B,
Gr(a, B) = det||gmn(k, a, B,
9in(1L, @, B) = g1(2, @, B) = iays(vViBL" — B )shv,

Ion(L &, B) = gon(2, @, B) = iBys(vZB® — BS)shv,
g3n(1! a, :8) = BTEB)ShVnJ
93 (2@, B) = vu(BS + v,a2B” + yoB2B) chvy,

Cys Css C13 Cz3

4_C_33' YS_C_%J Y7_C33' S_Q‘

The parameters, three of which are taken to describe the core, are the roots of a
complex equation [15]: byv® + b,v* + b,v? + b = 0. Obviously, the relations turned out
to be extremely complex and the use of previously developed methods for solving them,
using detailed properties of the kernels of integral equations [12-17], becomes
practically impossible. However, the creation of new structural materials, including
anisotropic composites, leads to the need to apply solutions to contact problems in
engineering practice, and demands the greatest possible proximity of the approximate
solutions obtained to the exact ones, including in non-classical fields. For example, the
approximation of solutions by splines, boundary elements, and eigenfunctions loses some
important properties of contact stresses in approximate solutions. In some cases, they do
not describe the concentration of contact stresses at the stamp boundaries, especially at
the corner points. The tendency of the malleability of the medium is not always caught
when the size of the stamps is reduced. A special place is occupied by contact problems
in areas whose boundaries have angular sets. In [24], an exact solution of the contact
problem in the quarter plane is constructed for the isotropic case. This approach has
proved useful for constructing a solution to this contact problem for the anisotropic case.
The research is based on the block element method, in an application for integral
equations. He allowed the problems formulated above for anisotropic problems to be
bypassed and transferred to the problems of calculating contour integrals, which is
already quite simple to implement numerically, and something can be studied
asymptotically.
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Setting the task

The contact problems of the action of an absolutely rigid stamp on a multilayer medium in
the area of a quarter plane (Fig. 1) [24], and in an acute-angled wedge (Fig. 2), are considered.

R

Xy
%
0 X
X
0
Fig. 1. The figure shows a part of the unlimited Fig. 2. The contact area of the sharp-angled
area of the first quadrant occupied by the stamp stamp, with the angle of the v

It is assumed that the multilayer medium is an anisotropic composite for which the
Green's function is constructed. With its help, the integral equation of the contact problem
is obtained. Methods for constructing Green's functions for anisotropic media are described
in sufficient detail in [12-17]. Their peculiarity is the complexity of the kernels of the
integral equations of contact problems, which leads to significant complications of the
methods of their solution. This is reflected in the complex nature of the stress-strain state
of the medium at the boundary and in the inner region. In [9-17], the construction of
Green's functions for a sufficiently large set of media of complex rheology, including
anisotropic composites, is considered. In [12-14], the behavior of a number of surface
characteristics for various layered media used in engineering practice was studied. In a
number of works, approximate methods for solving mixed problems for such materials have
been developed. At the same time, as practice shows, approximate methods do not always
catch all the features of solving contact problems. In this regard, the construction of exact
solutions allows us to develop approximate methods in such a way that they are consistent
with correctly reflecting all aspects of the behavior of the stress-strain state of the contact
problem. This is especially important in contact problems considered in non-classical fields,
when the stamp boundaries contain angular points. With this in mind, an integral equation
is considered, the properties of the core of which cover a wide range of types of anisotropic
composites. Fourier transforms of the kernels of integral equations are just analytical
functions that have a certain asymptotic behavior at infinity and do not have special points
on each of the real axes. The Wiener-Hopf integral equation, given in the first quadrant [24],
Fig. 1, is considered. It has the form:

Kq=[ J k(x—&y—maqEndédy=f(ry), 0<x<®, 0<y<o
k(x,y) = 4anf1"1 frz K(a, pe @+ dadp,

Qap) = [, J; a@me'@Fndsdn [,

Fla,p)=[, [, fE&me@*Fagd.
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The functionK (a, ), which is generally complex-valued, is generated by solving an
anisotropic boundary value problem in a multilayer medium, is continuous and summable
on the axes for both arguments, with behavior at infinity of the form:

K(a,p) =0(a™1), B =const, K(a,p) = 0(B™1Y), a = const, |al, |f] = . (2)

The solution of the integral equation

The contours I3, I; are taken in accordance with the implementation of the Mandelstam
principle [14]. The uniqueness theorems are valid for integral equation (1) [14]. The research
carried out in [24,25] made it possible by the method of factorization and block element to
construct an exact solution of the integral equation (1), which is given by the theorem: under
the conditions of uniqueness, the solution of the integral equation (1) for a function
summable on a semi-axis and having a continuous first derivative is given by the equation:

q00Y) = —5 [0 [0 Qe Be™ @ PN dadp. (3)
The de5|gnat|on is accepted here:
Qa,p) = ‘1F—-[ ral KZaF 3o + Kg{KZ3F } g +

_ _ (4)
K arpl Kia—p{ KZaF 3ra d-p + Kigual Kig_o LKZgF 1ip o]
The operators in curly brackets are described in detail in [14] and have the form:

1 G 1 G(,B) _
(6@ e = 3 Jy, 2226 a € 11, (G(@ B)) o =~ Ldg, aely,
1 G(a,n) G(a,n) -
S A 1§, (6@ B)p = == [, Z%0dn, p e,
1 InK
Ko, B) —expszrl Bds, aeny,
1 KGR _ (%)
Koa(@B)=exp( — =), —o—d§) a€ll,
1 InK(an) +
+,3(a ﬂ)_expzn.lf['z Tllﬁ (d) ﬁEHﬁ,
1 nK(a -
K_g(a,B) = exp( =3[, = =5-dn), B e

Here I1}, I1; are the complex areas above, plus, and below, minus, the contour I3,
and are the areas Hg, H[; above, plus, and below, minus, the contour I, respectively.

Proof. We show that the integral equation (1) is exactly satisfied by the functions (3)
and (4). We introduce the function (3) into the integral equation (1), represented as:

1 o o (o] (o) s _ _
Kq=—J Iy I I o K(aB)elee=0tB0mlq(¢, n)dedndadp = f(x, ).

After using the notation (1), we get the representation:

Kq=_5 " [T K(a,B)Q(a,Be @B dadB = f(x,y). Let's add from Eq. (4) to this

formula Q(a, ) and examine the integral on the left. As a result of a simple analysis of
the exclusion of terms that turn the integral to zero, we are convinced that the ratio is

obtained: Kq = #fj; |7 e i@ +BNE (@, BYdadB = f(x,y). This proves the theorem.

Investigation of the properties of the solution

1.In the solution presented by Eq. (4), the first term on the right forms a forced
component of the solution describing it in the zone farthest from the boundaries of the
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quarter plane. Therefore, it does not contain stress concentrations. Note that the
degenerate component is formed equally by each of the axes.
2. The second and third terms contain the boundary stress concentrations
characteristic of the one-dimensional Wiener-Hopf integral equations [14]. Similar to the
1 1

one-dimensional case [14], they give features of the form x 2 and y 2 on the rectilinear
boundaries of the stamp. To study estimates of the behavior of the solution g(x,y) near
the boundaries and at the corner point of the stamp, using an estimate of the behavior of
the function Q(«, B), the following method of estimating the Fourier integral is used.

Estimation of Fourier integrals with a small parameter calculated from continuous
functions with the property having the form:

[7 uter ™ S(uydu, m>>1, Sw)=0@w™?), u>>1 x-0. (6)

It is obtained by replacing the integration parameter u = tx~1. It gives the value:
[7 (e e S (xt Hxldt ~ x A [T tre 0 (t™V)dt ~ 0(x2), ReA<1, x - 0.

3. The fourth and fifth terms describe stress concentration at the angular point of
the stamp. Below are several examples that reveal properties of solutions to the two-
dimensional Wiener-Hopf integral equation that were not previously known.

Example 1. This is the simplest example that shows that the obtained solution (3)
turns into an exact solution of the integral equation (1) for the case when Eq. (1)
decomposes into one-dimensional equations solved by the traditional one-dimensional
method of Wiener-Hopf equations [5]. This happens when there is a separation of variables
in the core of integral equation (1), that is k(x,y) = k1 (x)k,(y). It happens when the
Fourier transform has a kernel, called the symbol K («, ) of the integral equation, with the
property K(a, ) = K;(a)K,(B). Performing the calculations required by Eq. (4) on the
symbol, we find: K, 44 5(a, ) = Ki1q1+p(@)K2(B) = Kl(a)K2+ﬁ+a(ﬁ) = 0. Thus, in Eq. (4),
the last two terms on the right disappear and solutions of one-dimensional integral
equations remain.

Example 2. Thanks to operators (5) according to Egs. (3) and (4), the solution of the
two-dimensional Wiener-Hopf equation can be constructed for fairly general anisotropic
contact problems in an integral form. The construction of the solution q(x, y) values must
be obtained by performing numerical inversion of the integral (3) for specific tasks. To
identify the properties of the solution of the two-dimensional Wiener-Hopf integral
equation, one can use the approach first introduced by W. Koiter for one-dimensional
Wiener-Hopf integral equations. In contact tasks, W. Koiter [14] introduced the
approximation of the complex kernel of the one-dimensional Wiener-Hopf integral
equation by a simpler function to simplify its solution. In the case under consideration,
we choose the approximation of the kernel by the function:

K(a,B) =~ (a? + B?B? + AZ)‘§ = M(a,B), AB>0. (7)

This approximation is anisotropic and satisfies condition (2). We investigate
the integral equation (1) with the symbol M («, §). We show the rule of forming the terms
of the integrand function Q(a, ). When factorizing by some parameter, the rest
are on the real axis, although, for accuracy, they should also tend to infinity. Factoring
the function M(a,) by parameter onto the upper half-plane, we obtain:

M, (@ B) = [a+i(BB%+A%)z]2=0(a2) A>0.
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Factorization of a function M,,(a, ) by a parameter f onto an upper complex
half-plane can be performed precisely, in integral form, by normalizing M, ,(a,f)
to 1 for |B] > . To do this, consider a function tending to wunity at.

1
We have: G(a,B) = Vi(B?B? + c?)iM,q4(a, /) = 1, |B]| = ©, ¢ = const, from here:
R 1 InG(amn)
Myqip(aB) = (B +ic) sexpoo [ ==2Fdn, B €.
1 1
From here we get an estimate: M, ,,5(a,B) » C(BF +ic) *=0(B+), |B| - oo

1 1
They are evaluated in exactly the same way: M, g(a, B) = O(B 2), Myipgiq(a,B) = O0(a *).
Introducing these estimates in the form M 3(a, B), M, 4(a, ) on Eq. (6), we obtain, as

a result of a simple analysis: g(x,y) = O(r_%), r=,x%+y2

The result obtained makes it possible to make a comparison with the previously
studied isotropic case using the considered example. Assuming B =1 in Eq. (7), we
proceed to the isotropic case considered in [17,24]. Figure 2 shows a graph of the
singularities at the top of the wedge for their various values 26, 0<6 <m,

approximately calculated in [17]. In Fig. 2, it is necessary to consider the case %= 0.25

corresponding to the case of a right angle. There is no friction between the stamp and
the base for € = 0. Asymptotic approximations of Bessel functions were used for the
estimation in [17]. It shows that the value of the contact stress concentration at the

angular point obtained in this work r_% is close to the value calculated by the
approximate method.

Example 3. The described approach is applicable to wedge-shaped stamp of angle
v having solutions in the range 0 < v < 90° . The possibility of solving this problem is
provided by the application of topological transformations. Topology Recently, it has
been increasingly penetrating into various areas of mechanics [28-35]. In this case, to
solve the problem of contact problems for sharp-angled stamps, it is necessary to
construct a homeomorphic mapping of the topological space generated by the carrier and
the function of the sharp-angled stamp and the topological space for the stamp with a
right angle. The result is a solution to the integral equation for an acute-angled wedge.
In the constructed solution, then, a return is made to the initial parameters describing the
coordinates of the acute-angled wedge. One of the tests of the correctness of the
constructed solution for an acute-angled die is the exact satisfaction of the integral
equation of the contact problem and the values of the contact stress concentration
indicators at the angular points of the acute-angled stamps of different angles of the
solution. The values of the contact stress concentration at the corner points of the die,
calculated by the above method for different angles of the wedge solution, are given in the
table. They are close to the values obtained earlier by the approximate method in [17].
The solutions for contact problems for sharp-angled stamps have the form (3), (4),
in which it is necessary to introduce the parameters of the inverse mapping of the
constructed homeomorphisms for stamps. Omitting the details, we present a table of the
features calculated by the described method at the angular point of the wedge-shaped
die for different solutions of the wedge angle v.

Omitting the details, we present a table of calculated features at the angular point
of the wedge-shaped die for different solutions of the wedge angle v. Calculated
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indicators of the contact stress characteristics at the angular point of a wedge-shaped die
for different solutions of the wedge angle are presented in Table 1. All values are close
to those calculated by the approximate method in [17]. The advantage of the obtained
result is the representation of contact stresses in the form of decomposition into
components that perform a certain role by specifying the values of the concentration of
contact stresses under the stamp. This opens up the possibility of controlling the degree
of impact of the stamp on the deformable base by selecting the appropriate properties of
the stamp sole f(x,y).

Table 1. Calculated indicators of the contact stress characteristics at the angular point of a wedge-shaped
die for different solutions of the wedge angle q(x,y) = 0(r %)

v| 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
Al 1 | 09608 | 0.9222 | 0.8850 | 0.8498 | 0.8178 | 0.7902 | 0.7687 0.7548 0.7500

Conclusions

In this paper, for the first time, an exact solution of the two-dimensional Wiener-Hopf
integral equation is constructed by the factorization method. It allows solving a wide range
of contact problems for anisotropic composite materials and obtaining accurate solutions
in an integral form. In addition, the method allows us to construct high-precision
approximate solutions of contact problems in two-dimensional nonclassical domains, more
accurate than those performed by one-dimensional ones [12-17]. This approach replaces,
when applied [12-17], the need to detail the symbol of the integral equation in the
anisotropic case by calculating contour integrals, which is easily implemented by standard
computer programs. The paper presents the most general properties of the solution of this
integral equation, which will undoubtedly be enriched in the study of specific problems.
The solution can be used both in seismology to identify new precursors of seismic growth
in mountainous areas with anisotropic properties of the environment [26], and in
engineering practice when designing products using structural materials.
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ABSTRACT

Static and dynamic behaviour of trapezoidal cantilever plate are analysed in this work using ANSYS
software. Static and dynamic analysis of trapezoidal cantilever plate has been carried out and studied the
effect of change in taper ratio a;, aspect ratio a/b and varying tip to root width ratio ¢/b. It has been observed
that at a;= 0.6 and ¢/b = 0.2, non-dimensional frequency of the trapezoidal cantilever plate is higher side,
when both parameters varied. In bending analysis under uniformly distributed load when a; = 0.8 and ¢/b = 0.8
then tip deflection and stresses will be maximum, whereas under edge load when a;= 0.8 and ¢/b = 0.2
(smallest tip width) will have maximum deflection and stresses. Hence, present numerical results will be
helpful for further researchers and designers to design safe thin-wall structures.
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Introduction

Free vibration analysis of trapezoidal cantilever plates is a topic of interest in structural
dynamics and engineering applications such as aircraft wings, turbine blades, balconies,
etc. A trapezoidal cantilever plate is a plate with one end fixed and the other end free,
and with a non-uniform cross-section that narrows from the fixed end to the free end.
The free vibration of such a plate is the natural oscillation that occurs when the plate is
subjected to an initial displacement or velocity and then left to vibrate on its own. The
natural frequency and mode shape of the plate depend on its geometry, material
properties, boundary conditions, and stiffness distribution. Several methods have been
proposed in the literature to study the static and dynamic behaviour of trapezoidal
cantilever plates, such as transformation of variables, finite element method, Rayleigh-
Ritz method, and separation of variables.

Advantages of trapezoidal plate over other types of plates

A trapezoidal cantilever plate is a type of plate that has one end fixed and the other end
free. The trapezoidal shape means that the width of the plate decreases from the fixed
end to the free end, resulting in a tapered shape geometry. This shape has several
advantages over a rectangular or uniform cantilever plate as discussed by [1,2]. Following
are some advantages (i) reduced weight and material consumption (that will reduce the
inertial forces, damping effects, stress concentration and fatigue failure on the plates;

© E. Kumari, B. Choudhary, 2025.
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save costs and resources, and also improve the performance and efficacy of structure);
(i1) increased stiffness and strength (especially near the fixed end where the bending
moment is maximum and prevent excessive deflection or deformation of the plate and
also enhance its load-bearing capacity and durability moreover increased stiffness can
also increase the natural frequency and resonance quality factor of the thin-walled
structures, which can improve its sensitivity and selectivity for sensing or energy
harvesting applications); (iii) improved energy harvesting (trapezoidal shape can improve
the energy harvesting capability of the plates, especially when it is coupled with a
piezoelectric material; these plates can increase the output voltage and efficiency of the
energy harvester by creating a larger strain gradient along the length of the plates).
Additionally, the trapezoidal shape can increase the bandwidth and adaptability of the
energy harvester by tuning its natural frequency according to different vibration sources
or environments.

Applications in different fields of engineering and industry

Trapezoidal cantilever plates have various applications in different fields of engineering
such as automotive industry, construction industry, energy industry, biomedical industry,
etc as discussed by [3-6]. A trapezoidal cantilever plate can improve the sensitivity and
selectivity of this detection method by increasing its stiffness and natural frequency near
its fixed end; applications of trapezoidal plate for aircraft wing is shown in Fig. 1. Also, it
can also reduce the noise and interference from the environment or other sources by
increasing its resonance quality factor and damping ratio.

Vertical stabilizer

Rudder

Horizontal stabilizer

Elevator

Fig. 1. Applications of trapezoidal plate i.e. plane fin / vertical stablizer

In this communication, authors reviewed the research papers on trapezoidal
cantilever plates, focusing on their design, bending, buckling and vibration analysis thin-
walled structures. Majidi et al. [3] analysed a cantilever CNT trapezoidal plate and
modelled it using FSDT & Generalized differential quadrature method (GDQ). Authors
derived the governing equations and boundary conditions using Hamilton’s principle.
They studied the effect of geometrical parameters, volume fraction and distribution of
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CNTs on the natural frequencies of the plate. Numerical results of study showed that
adding CNTs to cantilever trapezoidal plates leads to considerable rise in all natural
frequencies and in order to increase natural frequencies it is better to increase volume
fraction of CNTs and using FG-X pattern for distribution of CNTs. Also, Numerical
examples showed that increase in thickness of the plate leads to increase in natural
frequencies but increase in width of the plate decreases all natural frequencies and may
change sequence of modes.

Jena et al. [4] studied the vibration behaviour of trapezoidal cantilever plate-like
composite beams made of a combination of fibre-reinforced polymer (FRP) composite and
aluminium alloy using finite element method (FEM). In this study they examined the
impact of various geometric parameters, such as taper angle, thickness, and width, as well
as material properties on the modal frequencies and mode shapes of the composite beam.
Additionally, the results indicated that the modal frequencies and mode shapes were
influenced by the thickness and width of the beam, as well as the material properties.
Zamani et al. [7] used the first-order shear deformation theory (FSDT) to derive the
governing equations of motion for the laminated composites trapezoidal plates.
Generalized differential quadrature (GDQ) method was employed for solution of
governing equation and determined the natural frequencies and mode shapes of the
plates. The effects of different boundary conditions, such as clamped, simply supported,
and free, on the vibration behavior of the plates were also investigated.

Wang et al. [8] examined the vibration characteristics of triangular plates with
different boundary conditions using finite element method. The findings of the study
showed that the boundary conditions had a significant impact on the vibration
characteristics of the triangular plates. Specifically, the natural frequencies of the plates
decreased as the number of support points increased, and the vibration modes became
more complex for plates with more support points. Torabi and Afshari [9] investigated the
vibration characteristics of cantilevered trapezoidal thick plate with variable thickness
through ANSYS. FSDT was used for kinetic and strain energy; Hamilton'’s principle used for
governing equation and boundary condition. Natural frequency and mode shape are
derived numerically using differential quadrature method. As value of the aspect ratio
rises, the width of the plate grows which increase both stiffness and mass of the plate
but value of the increase in mass is more than the increase in stiffness of the plate.

The analysis of hybrid metal-composite plates has gained significant attention in
structural engineering due to their wide-ranging applications and superior mechanical
properties. Shokrollahi and Shafaghat [10] introduced an approach for the free vibration
analysis of hybrid plates with a trapezoidal platform by incorporating the first-order shear
deformation plate theory (FSDT) and the global Ritz method. The proposed algorithm
accurately considers the non-classic effects of transverse shear deformation and rotational
inertia. Jiang et al. [11] investigated the nonlinear vibration characteristics of trapezoidal
plates by incorporating von Karman's geometric nonlinearity through a finite element
method. The authors employed Hamilton's principle to establish the equation of motion
for each element of the trapezoidal plate, and by assembling these elements, they derived
the equation of motion for the composite laminated trapezoidal plate. The study explored
the effects of ply angle and length-height ratio on the nonlinear vibration frequency ratios
of the composite laminated trapezoidal plates. Through numerical simulations and analysis
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of frequency-response curves for different ply angles and harmonic excitation forces,
several conclusions are drawn. Overall, this study contributes to the understanding of
nonlinear vibration characteristics in composite laminated trapezoidal plates; by utilizing
FEM and Hamilton's principle, the authors establish the equation of motion and investigate
the effects of ply angle and length-height ratio.

Huang et al. [12] studied the free vibration behaviour of cantilever trapezoidal
plates using experimental and numerical methods. They utilize the amplitude-fluctuation
electronic speckle pattern interferometry (AF-ESPI) technique with an out-of-plane setup
for non-contact and full-field measurement of plate vibrations. Twenty different plate
configurations, including triangular and trapezoidal plates, are analysed to measure their
first seven vibration modes. The AF-ESPI method enables the determination of resonant
frequencies and mode shapes without the need for contact sensors.

Majidi et al. [13] investigated the effect of carbon nanotube (CNT) reinforcements
on the flutter boundaries of cantilever trapezoidal plates exposed to yawed supersonic
fluid flow. The research utilized the first-order shear deformation theory (FSDT) to model
the plate structure and calculates the effective mechanical properties using the extended
rule of mixture. The aerodynamic pressure was estimated through the piston theory, and
the governing equations and boundary conditions are derived using Hamilton's principle.
To obtain numerical solutions for natural frequencies, mode shapes, critical speed, and
flutter frequency, the generalized differential quadrature method (GDQM) was employed.
The findings reveal that incorporating CNTs enhances the critical speed at which flutter
occurs and increases the flutter frequency. It is observed that placing the CNTs away from
the middle layer of the plate expands the range of speeds at which flutter is minimized.
Additionally, decreasing the width of the plate near the outer edge and adjusting certain
angles contribute to improved resistance against flutter. Emelyanov and Kislov [14]
determined the state of stresses and lifespan of thin-walled structures under mechanical
load in the presence of hydro-chemical medium. Chernyshov et al. [15] considered the
three different boundary conditions for rectangular bar to study displacement response
and stresses in it and optimized the boundary conditions for rectangular bar. Ropalekar
et al. [16] investigated the fatigue strength of composite materials under different loads.
Large amplitude flexural vibration behaviour of trapezoidal panels was studied by Kumari
and Lal [17] using finite element method. Recently, static and dynamic behaviour of
trapezoidal flat and curved panels under various loading and boundary conditions were
studied [18-22]. From literature review it is noticed that further research work required
to understand the static and dynamic behaviour of cantilever laminated composite
trapezoidal plates. Hence, in this article authors investigated the bending, buckling and
vibration characteristics of cantilever trapezoidal plates.

Problem formulation

Schematic representation of trapezoidal plate is shown in Fig. 2 with variable thickness.
The finite element method based commercial software ANSYS 18.1 is used investigate
the bending, buckling and vibration characteristics of trapezoidal panels under different
loading and boundary conditions. Eight-node shell 281 is used here to discretize the
trapezoidal panel having six degrees of freedom, in which three translational
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displacement uy, uy, U, and three rotational &, & and & along and about x-axis, y-axis and
z-axis, respectively.

(b)

Fig. 2. Geometry of (a) symmetric trapezoidal plate and (b) trapezoidal plate with variable thickness

For a vibrating thin / moderately thick trapezoidal plate as shown in Fig. 2, the strain
energy U and kinetic energy T are expressed as:

926\2 925
U= L1250 + (52) +2v (5D) (5) + 20 - (fom) | axay, (1)
b h
T = f; Jy & (8)2dxdy, (2)
where, ¢ is the displacement vector, S is the velocity vector, p is the mass per unit area,

ho is the plate thickness, D is the plate flexural rigidity, v is the Poisson’s ratio.
For the dynamic analysis equations of motion is expressed by Hamilton’s principle:

ft’f(aT — 8U + 8Wye) dt = 0. (3)

Here, oT is a first variation in kinetic energy, oU is a first variation in strain energy
of conservative force fields, oW is the virtual work of non-conservative force fields.

Bending analysis

Firstly, carried out the bending analysis of trapezoidal cantilever plate under pure
compression, pure shear and pure moment and combination of shear and moment using
following governing equation:
[K {63} = {F}, (4)
where, [K/] is the linear stiffness matrix, {0} is the displacement vector and {F} is the force vector.
Static analysis of trapezoidal cantilever panels under various loading conditions has
to be conducted to investigate the bending deformation, normal (ox, oy, 0w), shear
(7, Tyz» Tzx) @nd principal stresses (o11, 022, 033) in it.

Dynamic analysis

Assumptions:

(a) Quasi-static analysis — inertia forces are negligible: if the smallest time period of
forcing function is significantly greater than the largest natural time period of the
structure, then dynamics analysis is carried out.
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(b) Dynamic analysis - inertia forces are significant, hence included in the analysis: If the
smallest time period of forcing function is comparable to the largest natural time period
of the structure.
Kinetic energy is:
T == [, + v +w?)pdV. 5)
For the free vibration analysis of structures, the governing equation of motion might
be written as:
[M1{8} + [K,1(8} = {0}, (6)
where, [M] is the mass matrix and {3}is the acceleration vector. Equation (6) is used to
calculate the eigenvalues or vibration frequencies, and eigenvector to plot mode shapes
as given by [23,24].

Results and Discussion
Bending analysis of trapezoidal cantilever plate

In bending analysis of the trapezoidal cantilever plate (schematic geometry of trapezoidal
plate is shown in Fig. 3) carried out to find the tip deflection, normal stress, shear stress
and von-mises stress under uniformly distributed load (UDL) and edge load. Here first
validation of the bending results done with trapezoidal cantilever plate, then bending
results with varying thickness and tip to root width ratio obtained. Loading of the
structure is done under uniformly distributed load over the upper face and concentrated
loading at the free edge of the cantilever plate.

A

/

IA

l‘

n\
v

A
B

Fig. 3. Trapezoidal plate geometry with varying thickness

Validation of bending results

For validation of the results obtained for CFCF (u=v=w= 6= = 6,=0, along x=0, a)
trapezoidal plate made of isotropic material (v=0.3) subjected to uniformly distributed
load (go =30 x 10* N/m?) is compared with Zhao et al. [25] and Liew and Han [26] as given
in Table 1. It is noticed that percentage of error is 13.95 and 11.29 % with Zhao et al. and
Liew and Han, respectively. Here, percentage of error is higher because three-dimensional
numerical results are compared with two-dimensional results.



Static and dynamic analysis of trapezoidal cantilever plates 15

Table 1. Comparison of central deflection of a homogeneous CFCF trapezoidal plate (E =206 GPa,
p=7800 kg/m*and v=0.3.a/b=1,c¢/b=0.7, ho=0.2 m) UDL of 30000 N/m?

Reference Boundary condition Deflection, m
Present (24 x 28 x 6) CFCF 8.9314 x 107
Zhao et al. [25] CFCF 7.8379 x 107
Liew and Han [26] CFCF 8.0252 x 10”7

Bending of trapezoidal cantilever plate having constant ¢/b ratio and variable thickness
in x-direction

Next, analysed trapezoidal cantilever plate (CFFF suchasu=v=w= 6= = 6,=0, along
x=0) having variable thickness of the plate in x-direction (h = hy(1— a;(x/a)),
a; is taper ratio) under uniformly distributed load (go =10 x 10° N/m?) and edge load
(go= 100 kN). By considering following geometric and material properties: a/ho= 15, ho= 0.5,
¢/b=0.6,v=0.3 E=2x10° MPa, p = 7800 kg/m?, (a) square cantilever plate: a/b =1 and
(b) rectangular cantilever plate: a/b = 3.

—&— Plate (a/b=1) under UDL 6
12 { —@— Plate (a/b = 1) under tip load
—&— Plate (a/b = 3) under UDL

~ | =—#&—Plate (a/b = 3) under tip load 5 Von-Mises stress
g — Normal stress
g E alb=1 ab=3 Max shear stress
_§ ~ —{— —#—Von-Mises stress
3 Q 4+ —O=— —@—Normal stress
E § —/\— —a—Max shear stress
n
.E A A A A a—a—

0 T T T T 2 T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Taper ratio (a,) Taper ratio (o)
@) (b)
30
ab=1 ab=3
244 =—{— —#— Von-Mises stress L
—Q=— —@— Normal stress
. —/— —a&— Max shear stress
£ 181
2
2
8124
=
n
64
0 T

02 04 06 08
Taper ratio (o)
(©
Fig. 4. Tip deflection and stresses of trapezoidal cantilever plate with variable thickness function linearly
tapered along x-direction h = hy(1 — a,(x/a)), under uniformly distributed load (go = 10000 N/m?) and edge
load (go = 100 kN): (a) tip deflection under UDL and tip load; (b) stresses under UDL; (c) stresses under tip load
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The responses of tip deflection, and stresses (von-mises stress; normal stress and
maximum shear stress) of square (a/b = 1) and rectangular (a/b = 3) cantilever trapezoidal
plates under UDL and edge load are plotted in Fig. 4, as taper ratio increases max
deflection of the plate increases exponentially whereas all other stresses increases in
linear manner under UDL as shown in Fig. 4(b). Under Edge load deflection as well as
stresses increase in similar manner. When aspect ratio of the plate increases from 1 to 3
then under UDL there is no major change in the deflection and stresses but under edge
load when aspect ratio is 3 then deflection and all stresses (von-mises, normal, max shear)
increases significantly as can be seen from the Fig. 4(a,c).

Bending results of trapezoidal cantilever plate having variable thickness in x-direction
(h = hy(1 — a;(x/a))) and variable ¢/b ratio

After analysing plate under separately for keeping one parameter constant and other
variable, now here both of the parameter taper ratio (e) and tip cord to root width ratio (¢/b)
varied together and analysed the bending response of trapezoidal cantilever plate.

5 5
—8—c/b=02 —8—c/b=0.2
—e—c/b=0.4 —e—c/b=04
41 —A—c/b=0.6 i 41 —A—c/b=06 i
e ——c/b=0.8 e —*—c/b=0.8
g g
= 37 i = 31 i
2 2
3 g
5 2- . B 2- -
B S
= =
11 - 11 -
O T T O T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Taper ratio (a,) Taper ratio (o)
(@) (b)
11
—8—c/b=0.2
=107 —e—cb=04 I =
S 9 —A—ch=06 i S
e —4—c/b=0.8 g
=7 . " i =
< = ol <
é 6 -L\/k_d- g
] @]
£ Py =
an 5 —— - o0
£ 2
"g 4 - il B "g
Q Q
M 3] | m
2 T T 24 T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Taper ratio (ct,) Taper ratio (a.)

(© (d)

Fig. 5. Deflection and bending stress of trapezoidal cantilever plate with variable taper ratio and variable ¢/b ratio: ()
deflection under UDL; (b) deflection under edge load; (c) bending stress under UDL; (d) bending stress under edge load
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The response of tip deflection and bending stress under UDL and edge load is presented
in Fig. 5. In Fig. 5(a), as taper ratio increases then the smallest free end width of the
trapezoidal plate at ¢/b= 0.2 have the lowest deflection under uniformly distributed load
(o = 10 x 10® N/m?). Whereas, when the load on the trapezoidal cantilever plate applied
at the end edge (go = 100 kN), then as taper ratio (a) increases from 0.2 to 0.8 and root
to cord ratio (¢/b) decreases from 0.8 to 0.2, deflection of the plate is maximum at the
lowest tip width ¢/b=0.2 and taper ratio a:= 0.8 as shown in Fig. 5(b). In Fig. 5(c,d)
bending stresses under UDL and edge load plotted respectively, which shows that under
UDL stresses will be highest when ¢/b = 0.8 but there is no major variation on the stress
due to change in the taper ratio along the x-direction as presented in Fig. 5(c); whereas
under edge load plate will be highly stressed when taper ratio is max (a: = 0.8) and root
to cord ratio is minimum (¢/b = 0.2). So, we can conclude that when load is not uniform
and only at the end then trapezoidal plate will experience more deflection and stresses,
as illustrated in Fig. 5(d).

Dynamic analysis

Next, free vibration analysis of the trapezoidal cantilever plate, firstly validation of the
results obtained from ANSYS for different modes shape done with the available results in
the literature for free vibration. Then results of trapezoidal cantilever plate for various
parameters like thickness, aspect ratio, tip to root width ratio (¢/b) and combination of
these obtained here.

Validation of 3D geometry using ANSYS with available 2D literature results

For validation of free vibration results, a rectangular plate (a=1 m, b=0.5 m, hy=0.01 m)
is created using ANSYS 18.1 design modeller and meshing has been done for uniform
quality mesh which resulted in 1272 nodes and 162 elements of uniform quads with four
node each. DOF of the node was 6 (displacement u, v, w and rotation &, &, &, in x, y and
z direction respectively).

Results have been validated from different authors [27-30] with non-dimensional
frequency parameter where different taper ratio (o = 1-hmin/ho) is varied for thickness variation
from base to tip of the plate which is given by h=ho(1-a; (x/a)). In Table 2, cantilever
rectangular plate with a/b = 2 where a is length of the plate and b is width and hy is thickness
of the plate at the fixed point or root. Elastic constant and poison’s ratio is 100 kPa, 0.3,
respectively. Non-dimensional frequency parameter (w) is calculated for different taper ratio
(o), where thickness of the plate varies in x-direction. Eight modes of the plate have been
evaluated and shown in Fig. 6 and corresponding non-dimensional frequency written in
Table 2. From Table 2, we can observe that result obtained from ANSYS is well converged
and showing very minimal % of error. Result obtained in this work can be considered more
accurate as 3D analysis has been done in this work. Error % at a = 1 is highest as we can see
in Table 2 this is because of the triangular tip at the end and triangular elements in 3D work
which resulted in more error. As taper ratio increases thickness at the tip decreases which
resulted in decrement of w as taper ratio decreases except for mode 1. For a particular a, w
increases with modes which can be seen in Table 2.
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Table 2. Fundamental non-dimensional frequency parameter (@ = w X a?\/phy/D,) of isotropic
rectangular cantilever (CFFF) plate (a/b = 2, a/ho = 100, ho = 1.0, v = 0.3) considering variable thickness
function is linearly tapered along x-direction h = ho(1 — a,(x/a))

Taper Reference Modes

ratio a: 1 2 3 4 5 6 7 8
Present 3.458 | 14.769 | 21.544 | 48.080 | 60.414 | 92.373 | 92.929 | 118.712

Kumari [27] 3.439 | 14779 | 21.424 | 48.089 | 60.108 | 92.327 | 93.130 | 118.556

"'e‘fvzg]tal' 3.4394 | 14.803 | 21.435 | 48.183 | 60.154 | 92.530 | 93.104 | 118.450
0.0 .
Liu ar[‘gg?hang 3429 | 1453 | 2134 | 47.50 | 60.26 | 92.110 | 92.930 | 119.200
H”a[‘g‘o‘ft 2L | 3436 | 14703 | 21.414 | 47856 | 59940 | 92.907 | - .
Present 3.543 | 14.192 | 20.159 | 43.176 | 54.994 | 80.175 | 82.747 | 107.373
Kumari [27] | 3.5250 | 14.206 | 20.054 | 43.079 | 54.743 | 80.382 | 82.702 | 107.297
0.2 L'e‘EVZ g]t 3l 135257 | 14225 | 20063 | 43.243 | 54766 | 80.320 | 82.826 | 107.130
Liu ar[‘gg?hang 3.526 | 14.090 | 20.070 | 43.100 | 55.160 | 81.500 | 83.320 | 108.600
Present 3.662 | 13.545 | 18.684 | 38.007 | 49.237 | 66.807 | 72.592 | 95.222
Kumari [27] | 3.646 | 13.560 | 18.595 | 38.006 | 49.036 | 67.013 | 72.552 | 95233
L'eg g]t 3L | 36470 | 13574 | 18.602 | 38.046 | 49.041 | 66926 | 72610 | 95.025
04 |—
Liu a?ggc]jhang 3.649 | 13.600 | 18.690 | 38.490 | 49.660 | 69.660 | 74.000 | 96.900
H“a[‘sgo?t 3L | 3646 | 13.500 | 18.585 | 37.848 | 48.902 | 66.763 - -
06 (F:isi';t) 3.848 | 12.790 | 17.096 | 32.478 | 42.954 | 52.823 | 61.682 | 81.663
(:;e:e;‘;) 3.837 | 12.772 | 17.039 | 32.409 | 42.808 | 52.806 | 61.516 | 81.476

Kumari [27] 3.834 | 12.805 | 17.023 | 32.471 | 42.807 | 53.010 | 61.645 | 81.823
Liewetal. [28] | 3.834 | 12.813 | 17.027 | 32.490 | 42.800 | 52.909 | 61.654 | 81.600
Liu and Chang
[29]
Present 4.191 | 11.872 | 15.397 | 26.451 | 35.481 | 38.464 | 49.546 | 64.487
Kumari [27] 4.178 | 11.881 | 15.341 | 26.434 | 35439 | 38.544 | 49.523 | 64.776
Liewetal. [28] | 4179 | 11.886 | 15.345 | 26.442 | 35417 | 38.461 | 49.490 | 64.583
0.8 Liu and Chang
[29]
Huang et al.
[30]
Present
(11772 5.182 | 12.22 | 14.979 | 25.771 | 30.449 | 34.440 | 48.755 | 53.063
triangular)
Present
(202744 5.176 | 11.497 | 14.867 | 21.644 | 24.706 | 29.625 | 37.404 | 41.286
triangular)
Kumari [27] 5176 | 11.483 | 14.866 | 21.507 | 24.123 | 29.619 | 36.591 | 39.372
Liewetal. [28] | 5.177 | 11.484 | 14.870 | 21.500 | 24.021 | 29.600 | 36.159 | 37.978
Liu and Chang
[29]

3.813 | 13.020 | 17.110 | 33.570 | 43.440 | 57.010 | 63.940 | 84.120

4.047 | 12.280 | 15.120 | 27.980 | 35.880 | 43.610 | 52.520 | 70.600

4.179 | 11.846 | 15.331 | 26.352 | 35.495 | 38.209 - -

1.0

4.388 | 10.840 | 11.570 | 20.550 | 26.730 | 27.880 | 40.580 | 52.930
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Fig. 6. Mode shapes of first eight modes of cantilever plate having variable thickness along span:
(@a=0;b)a=0.2;(c)a=04;(d)a=0.6;() a=08;(Ha=1

Non dimensional frequency of cantilever trapezoidal plate with different taper ratios

Next, performed the modal analysis results of the isotropic (v =0.3) trapezoidal plate
having aspect ratio a/b = 3, a/ho= 15 and ¢/b = 0.6, and validated the present results with
available published results. The aspect ratio and geometry considered here is shown in
Fig. 7, that will be equivalent to an aeroplane wing size. Dimensions of the symmetric
trapezoidal plate is as follows: a=7.5m,b=25m, c=1.5 m, ho= 0.5 m. Non-dimensional

frequency parameter: @ = w X a?,/phy /Dy, Where @ is circular frequency in rad/s, density
3

of the material p = 1800 kg/m?>, flexural rigidity of plate D, =
or elastic constant E = 45x10° MPa.

Ehg :
PICETL Young’s modulus

Table 3. Non-dimensional frequency parameter (@ = w X a2,/phy/D,)) of isotropic trapezoidal cantilever
(CFFF) plate (a/b =3, a/c = 5, a/ho = 15, ho= 0.5, v = 0.3) considering variable thickness function is linearly
tapered along x-direction h = hy(1 — a,(x/a))

Taper ratio Present Modes

o 1 2 3 4 5 6 7 8

0.0 10x38x3 | 3943 | 16.86 | 21.792 | 28.198 | 57.466 | 68.781 | 74.088 | 86.304
0.2 10x38x2 | 4030 | 17922 | 2048 | 27.766 | 52.902 | 68.729 | 70.266 | 90.014
0.4 10x 38 x2 | 4.151 | 19.049 | 19.348 | 27.165 | 47.884 | 62.577 | 72.172 | 89.135
0.6 10x 38 x2 | 4337 | 17.482 | 21.415 | 26.346 | 42.281 | 55.378 | 74.868 | 78.054
0.8 10x 38 x2 | 4681 | 15.775 | 24.806 | 25.144 | 35.777 | 46.357 | 64.702 | 74.345
1.0 4636 elements | 5.687 | 15.225 | 23.479 | 29.482 | 31.889 | 34.651 | 48.426 | 51.832
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In Table 3, non-dimensional frequency (w) is calculated for trapezoidal cantilever plate
having variable taper ratio ranging from 0.2 to 1. Modes for all taper ratio up to 8 modes
drawn. As previously seen in validation results here also first Mode increases with increase
in taper ratio and all other modes decreases with increase in taper ratio. These signifies that
as thickness at tip of the cantilever plate decreases vibration frequency also decreases as
shown in Table 3 and modes of the results in different taper ratio shown in Fig. 7.

Fig. 7. Mode shapes of different taper ratio of isotropic trapezoidal cantilever (CFFF)

Non dimensional frequency of cantilever trapezoidal plate with uniform thickness and
different tip to root width ratios (c/b)

Now keeping the thickness of the trapezoidal plate uniform and varying the tip to root
ratio (¢/b = 0.9 to 0.1) of the plate non-dimensional frequency (w) calculated for eights
modes. In Table 4, keeping the whole dimension and material properties same as previous

Table 4. Non-dimensional frequency parameter (@ = w X a?,/phy/D,) of isotropic trapezoidal cantilever
(CFFF) plate (a/b = 3, a/ho= 15, ho= 0.5, v = 0.3) considering uniform thickness along x-direction

. . . Modes
Tip to root width ratio (¢/b) Present 1 5 3 4 : 6
0.9 12x38x3 3.505 | 15.857 | 20.908 | 21.024 | 56.831 | 62.367
0.8 12x38x3 3629 | 16.15 | 21.246 | 22957 | 57.013 | 65.763
0.7 11x38x3 3773 | 16.479 | 21.498 | 25.362 | 57.218 | 69.626
0.6 10x38x3 3943 | 16.86 | 21.792 | 28.198 | 57.466 | 68.781
0.5 9x38x3 4147 | 17.31 | 22.146 | 31.548 | 57.774 | 67.711
04 8x38x3 4401 | 17.864 | 22.589 | 35.49 58.19 | 66.426
0.3 7x38x3 4727 | 18.582 | 23.18 | 40.075 | 58.788 | 64.917
0.2 5x38x3 5.165 | 19.578 | 24.043 | 45.288 | 59.764 | 63.226
0.2 7 x65x4 5.164 | 19.575 | 24.035 | 45.27 | 59.741 | 63.217
0.1 4 x 66 x4 5.798 | 21.131 | 25.509 | 51.01 | 61.694 | 61.703
0.1 10 x 152 x10 | 5.796 | 21.129 | 25.501 | 50986 | 61.684 | 61.684
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analysis except the thickness parameter. Here first five modes of the plate corresponding
to the different ¢/b ratio increases with decrease in ¢/b ratio whereas 6" mode of the
cantilever plate increase up to 0.7 ¢/b ratio then decreases. So, the more taper towards
the tip then vibration frequency of the trapezoidal plate increases.

Non dimensional frequency of cantilever trapezoidal plate with variable thickness along
x-direction and variable tip to root width ratios (¢/b)

In Table 5, thickness of the plate along the x-direction (ax = 0.2, 0.4, 0.6 and 0.8) and tip
to root ratio (¢/b=0.8 to 0.2) both varied. The non- dimensional frequency parameter
obtained for different cases up to 6 modes as presented in Table 5.

Table 5. Non-dimensional frequency parameter (@ = w X a?,/ph,/D,) of isotropic trapezoidal cantilever
(CFFF) plate (a/b = 3, a/ho= 15, ho= 0.5, v = 0.3) considering variable thickness function is linearly tapered
along x-direction h = hy(1 — a,(x/a)) and different ratio of ¢/b

Tip to root Modes
Taper . . Present study
ratio a, width ratio (elements) 1 2 3 4 5 6

(c/b)
0.8 15x50x% 3 3.715 | 17.194 | 19.960 | 22.514 | 52.430 | 60.460

02 0.6 13x50x% 3 4.028 | 17.919 | 20.470 | 27.750 | 52.869 | 68.683
0.4 10x 50 % 3 4.487 | 18.941 | 21.218 | 35.116 | 53.565 | 67.818
0.2 6 x50x3 5.253 | 20.679 | 22.592 | 45.086 | 55.055 | 64.525
0.8 15 x50 x 2 3.837 | 18.574 | 18.600 | 21.952 | 47.454 | 54.546

0.4 0.6 13 x 50 x 2 4.15 | 19.045 | 19.346 | 27.163 | 47.875 | 62.572
0.4 10 x 50 x 2 4.609 | 19.741 | 20.391 | 34.589 | 48.529 | 69.631
0.2 6 x 50 x 2 5.377 | 21.031 | 22.158 | 44.735 | 49.926 | 66.235
0.8 15 x50 x 2 4.023 | 17.050 | 20.635 | 21.191 | 41.882 | 47.707

0.6 0.6 13 x 50 x 2 4.337 | 17.480 | 21.413 | 26.345 | 42.274 | 55.368
0.4 10 x 50 x 2 4.796 | 18.119 | 22.490 | 33.814 | 42.887 | 66.823
0.2 6x51x2 5.566 | 19.319 | 24.29% | 44.145 | 44.177 | 68.715
0.8 15 x50 x 2 4.366 | 15.393 | 20.088 | 23.966 | 35.421 | 39.361

0.8 0.6 13 x 50 x 2 4.681 | 15.773 | 24.803 | 25.143 | 35.772 | 46.352
0.4 10 x 50 x 2 5.141 | 16.351 | 25.938 | 32.675 | 36.326 | 57.307
0.2 6x51x2 5910 | 17.457 | 27.781 | 37.494 | 43.280 | 66.244

Conclusion

Static and dynamic analysis of trapezoidal cantilever plate has been carried out in this
study using ANSYS 18.1. To analyse trapezoidal plate in vibration and bending, two
parameters (taper ratio a: and tip to root width ratio ¢/b) of the trapezoidal plate and
combination of these parameters varied.

It can be concluded from this study that at lower aspect ratio, stresses and
deflection of a trapezoidal cantilever plate is lower than higher aspect ratio. In modal
analysis at a:=0.6 and ¢/b=0.2 maximum non-dimensional frequency for the plate
observed when both parameters varied. In bending analysis under UDL when a; = 0.8 and
¢/b = 0.8 then deflection and stresses will be maximum, whereas under Edge load when
a: = 0.8 and ¢/b = 0.2 (smallest tip width) will have maximum deflection and stresses.

Trapezoidal cantilever plate is used in various field of engineering and this
geometry widely acceptable for its high strength to weight ratio. So, this analysis can be
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helpful for selecting thickness, aspect ratio and free end width of the trapezoidal plate
for various applications based on different industry uses. Also, future scope of the analysis
available for different coating of the plate for surface strength for in-plane stresses and
composite materials with different boundary conditions.
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ABSTRACT

A nickel-copper alloy Monel-400 renowned for its corrosion resistance and thermal properties finds
extensive application in chemical, fitting, fastener, and marine industries. However, machining intricate,
delicate components from this alloy using conventional methods presents significant challenges. EDM is a
non-traditional process capable of producing precise, high-quality surfaces, which emerges as a viable
alternative. The die-sinking EDM of Monel-400 are investigated with a particular focus on the machined
surface microstructure. A Box-Behnken design was employed to evaluate the influence of discharge current,
pulse-on time, and voltage gap on material removal rate, tool wear rate, and surface roughness. Results
indicate that impact of peak current and pulse-on time are primary determinants of Monel-400 machining
characteristics. While impact of peak current exhibited the most significant impact on MRR, pulse-on time
was identified as the critical factor affecting tool wear rate and surface roughness. A comprehensive
metallographic examination of the machined surface was conducted to elucidate wear mechanisms.
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Introduction

Electrical discharge machining (EDM) is a computer-controlled, non-traditional machining
process that utilizes a series of controlled electrical discharges (sparks) to remove material
from the workpiece. The electric spark produced as a result of potential difference is mainly
used as the cutting tool to cut (erode) the material [1]. EDM is mainly applied to the family
of materials that are difficult to machine by traditional manufacturing techniques, but the
process is limited to conductive materials only [2]. Due to its beneficial properties like
better strength-to-weight ratio and corrosion resistance, super alloys such as Monel-400
find widespread uses in aircraft, oil production and refining, musical instruments, valves,
fasteners and maritime applications [3]. Monel-400 alloy's poor thermal diffusivity causes
high tool tip temperatures during traditional machining, rendering traditional methods
inefficient [4,5]. Non-traditional techniques, such as EDM, offer a more viable approach to
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machining this challenging material. Several process parameters, including electrode
material, discharge current, pulse-on time, duty cycle, and gap voltage, significantly
influence EDM performance when machining Monel-400 alloy [6]. Copper, brass and
graphite are mainly used as electrode materials due to their high melting point and
conductivity [7]. Owing to its better load bearing and non-corrosive properties,
Monel-400 is hardened by the cold working process as a result it becomes very tough to
machine by conventional machining [8,9]. Monel-400 has an electrical conductivity of
roughly 34 % IACS, a specific gravity of 8.80, a melting point temperature of
1300-1350 °C, and a hardness of 65 Rockwell. Monel-400 offers exceptional toughness
that is maintained across a wide temperature range [10-14].

Optimizing process parameters is critical to enhancing the efficiency of EDM when
applied to the Monel-400 superalloy. Because of its inherent high strength and poor heat
conductivity, Monel-400 presents significant challenges to traditional machining
methods, necessitating the exploration of alternative processes like EDM [15,16].
Research suggests that advanced techniques like Wire EDM and Electrical Discharge
Diamond face grinding (EDDFG) show promise in improving material removal rates and
surface quality for Monel-400 components [15,17]. By meticulously controlling process
parameters such as pulse duration and applied current, and by judiciously selecting
electrode materials, substantial enhancements in machining efficiency and precision can
be realized [16,18]. The use of modern optimization techniques like as Taguchi analysis
and genetic algorithms has the potential to improve Monel-400's EDM process, leading
in higher performance and lower costs [17-19]. Gupta and Gupta [20], Shanmugha
Sundaram [21], and Amuthak Kannan et al. [22] investigated the EDM of hybrid
Al-AL,0:/B4C, AL-Si alloy-graphite, and basalt fiber composites, respectively. Their
research focused on identifying optimal process parameter combinations for these
materials. Gopala Kannan et al. [8] investigated the EDM of a novel aluminum 7075
matrix composite reinforced with 10 % AL,Os particles using a copper electrode. The
impact of process factors on MRR, TWR, and SR was investigated using a mathematical
model based on response surface methodology (RSM). Furthermore, ANOVA was used to
determine the impact of peak current (/,), pulse-on time (7.,), voltage (V), and pulse-off
time (To5) on EDM performance. Jahan et al. [10] investigated the optimization of surface
finish during the EDM of WC composites, renowned for their exceptional hardness,
strength, and wear resistance. Their study explored the influence of electrode materials,
including tungsten, copper tungsten, and silver tungsten. Sivasankar et al. [23] studied
EDM performance on ZrB; using a wide range of electrode materials such as graphite,
aluminum, tantalum, niobium, copper, brass, silver, tungsten, and titanium. Their research
focused on hole quality metrics, including roundness, form, and diameter are among the
usual EDM responses, along with SR, MRR, and TWR. A desirability function analysis was
carried out to assess tool performance. Assarzadeh and Ghoreishi [24] proposed a dual
response surface-desirability method for modeling and optimizing process parameters in
ALOs powder-mixed electrical discharge machining (PMEDM).

After a far-reaching and comprehensive investigation of the published works of
literature, numerous gaps were figured out in the EDM process. The majority of
experimenters or analysts have probed the effect of the finite number of machining
parameters in the computation of results or execution on the machined surface on EDM.
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Also observed inadequate exploration of the microstructural changes and their influence
on EDM performance. The purpose of this study was to investigate the effects of pulse-
on time, peak current, and voltage gap on Monel-400 electrical discharge machining
(EDM). Response surface methodology (RSM) was used to optimize these process
parameters in order to maximize material removal rate (MRR) while decreasing surface
roughness (Ra) and tool wear rate (TWR). To further understand the material's behavior
to different process parameter combinations, a complete microstructural examination of
the machined surfaces was performed, including the recast layer, heat-affected zone, and
worn tool surfaces.

Materials and Methods

The Monel-400 alloy used as the workpiece material in this study is a commercially
available nickel-copper alloy, procured from M/s Metal Mart Pvt. Ltd., Mumbai, India. The
alloy is composed primarily of nickel (~ 63 %) and copper (~ 30 %), with minor quantities
of iron, manganese, silicon, and carbon. The typical chemical composition of Monel-400
is reported in Table 1.

Table 1. Chemical composition of selected material
Element Ni Cu Fe Mn Si C
Wt. % 63.0 30.0 2.5 2.0 0.5 0.3

The alloy sheet was supplied in a cold-rolled condition with a thickness of 5 mm
and was subsequently cut into rectangular samples of 50 x 50 mm? using a precision
abrasive cutter to maintain dimensional accuracy and edge integrity. The copper
electrode, with a diameter of 9 mm, was sourced from M/s ElectroTech Supplies,
Bhubaneswar, India. The electrode material was electrolytic copper with a purity of
99.9 %, chosen for its high electrical and thermal conductivity.

Investigations are performed in the die-sinking NC EDM machine shown in Fig. 1 by
maintaining a constant servo head gap. The EDM 30 dielectric oil was supplied by
Hindustan Petroleum Corporation Ltd., having a specific gravity of 0.8 at room
temperature. It was used without any additives to ensure consistency across all trials.

Control
~ panel

Flushing nozzle

Fig. 1. Illustration of EDM machining: (a) EDM machine, (b) workpiece material after machining
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Because electrical conductivity is a critical need for EDM electrodes, copper was chosen
as the electrode material for this experiment. All materials were inspected for quality
prior to experimentation. The Monel-400 workpieces were cleaned with acetone to
remove surface contaminants, while the copper electrodes were polished to ensure
proper electrical contact during the machining process. Each experimental run consists
of 3 min of machining time. A precision electronic weight-measuring machine is used
after each experimental run to determine the material loss from the tool and workpiece.

In EDM of Monel-400, careful selection of process parameters is essential due to
the alloy’s high strength and low thermal conductivity, which can complicate machining.
Parameters such as pulse current, pulse on-time, and pulse off-time were chosen based
on their known influence on key performance indicators like material removal rate (MRR),
tool wear rate (TWR), and surface roughness. These parameters directly affect spark
energy, discharge frequency, and cooling time between sparks, making them critical for
efficient and stable machining. The range for each parameter was established through a
combination of literature review and preliminary experiments to ensure a comprehensive
yet practical design space. Table 2 shows the values of chosen process parameters. The
order of parameters is selected in such a way that the experimentation on the workpiece
can be conducted smoothly to achieve accomplishment. The rest parameters are polarity,
flushing pressure, and duty cycle held constant throughout the experiment.

Table 2. Process parameters and their order

. Order
Process parameter Symbol Unit Order -1 Order 0 Order 1
Pulse on time (Ton) ys 500 1000 2000
Peak current (1n) A 18 33 50
Voltage V) \ 3 7 10
Table 3. Experimental layout
Factor 1 Factor 2 Factor 3 Response 1 | Response 2 Response 3
A: Peak B: Pulse on C: Voltage MRR, TWR, Surface
Std | Run - 3, 3 s
current time gap mm°/min mm?/min roughness, um
8 1 1 0 1 26.515 1.737 2.031
2 2 1 -1 0 20.83 1.86 2.382
4 3 1 1 0 66.28 3.78 3.955
11 4 0 -1 1 3.78 0.567 1.226
9 5 0 -1 -1 18.93 0.894 1.392
7 6 -1 0 1 5.68 0.782 1.3
3 7 -1 1 0 9.56 2.87 2.987
10 8 0 1 -1 5.68 3.24 3.453
6 9 1 0 -1 32.19 2.65 2.518
1 10 -1 -1 0 11.26 0.456 1.15
13 | 11 0 0 0 7.575 1.864 2.455
14 | 12 0 0 0 7.575 1.864 2.223
12 | 13 0 1 1 22.72 3.065 3.151
15 | 14 0 0 0 7.12 1.864 2.223
5 15 -1 0 -1 6.54 1.2 1.625




Enhancing EDM performance of Monel 400 super alloy through process parameter optimization: RSM-based experimental 28
and microstructural analysis

Design of experiment

The design of experiment is arranged in accordance with the RSM Box-Behnken design.
Fifteen investigations are performed on the workpiece. Subsequently, as per the
experimental design obtained from Design Experts software, the machining
on Monel-400 is executed. During the machining, the dielectric fluid was continuously
flushing on the machining surface to clean the surface from debris. Table 3 depicts the
different experiment arrangements.

Measurement of responses

Material removal rate (MRR) may be defined as the rate of material removed from the

surface of the workpiece per unit time. The equation used for the evaluation of MRR is

3 —
mentioned below [25]: MRR (12:21) = Mwixj,wwz

a density of MONEL-400 material is p = 8800 kg/m?, Mw1 is a mass of workpiece material
prior to machining, Mw2 is a mass of workpiece material after machining.

Tool wear rate (TWR) may be defined as the rate of material removed from the
surface of the tool material per unit time. The TWR is calculated by using the following

3 —
equation [26]: TWR (r:lrzl) — Mul-Mz

txp
p = 8940 kg/m?, Mt; is a mass of tool material prior to machining, Mt; is a mass of the tool
material after machining.

A surface roughness (SR) analyser (model SJ-410, portable type) was used to
quantify R. The instrument's parameters were set at 4 Pa measurement force, 25 mm
evaluation length, and 0.000125 pm resolution.

, where machining time t = 3 min (fixed),

, where t is machining time, density of copper is

Performance evaluation

To explore the influence of process variables on response parameters, a Box-Behnken
design was used in conjunction with response surface methodology (RSM). This
experimental design necessitated a minimum of fifteen experimental runs, including three
center points. ANOVA was used to determine the contribution of each input parameter to
the output responses. Table 3 shows how different machining factors affect the reaction.

70 4 a -o-MRR [ 4.0
-4-TWR }
-8- SR 3.6

60+

FINATY:
J AL /\ 5

@ e
o] a2 Z__A_A/A"A*A\ /A-—A/A\A-\A
T T T T T T 1 T 0.8

1 ] L]
0|234§678910l1|213|41516
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Fig. 2. MRR, TWR and SR plot for each experimental run



29 M.R. Panda, S.K. Mishra, P.K. Sahoo

Figure 2 shows the plot for responses for each experimental run. As evident from
the graphical representation, the optimum value for all three measured responses were
obtained during the third experimental run, conducted with pulse on time of 2000 ys,
current of 50 A, and voltage of 7 V. Furthermore, the plot clearly indicates a positive
correlation between increasing current and pulse on time and the resulting material
removal rate from both the workpiece and the tool surface. This enhanced material
removal consequently leads to an increase in surface roughness.

—
(=)
-
~
(=}

MRR (mm3/min)
MRR (mm3/min)
N
o

C: Voltage gap A: Peak Current

B: Pulse on time

MRR (mm3/min)

C: Voltage gap B: Pulse on time

Fig. 3. Surface plot of MRR with (a) T,, and /,, (b) voltage and /,, (c) T,» and voltage gap

Table 4 presents the ANOVA table for rate of material removal, excluding non-
significant variables. T,, (B), /, (A), the quadratic term A2, and interaction terms AB and AC
were determined to be highly significant. /p demonstrated the most significant impact on
MRR, accounting for 53.34 % of the response. The surface plots in Fig. 3 illustrate the
relationship between MRR, pulse-on time (7.,), peak current (/,), and voltage gap (V).
Figure 3(a,b) demonstrates a positive correlation between MRR and both T,, and /.. This
is due to the direct relationship between current and spark density, which causes more
material removal at higher current levels. Similarly, with an increase in T,, the
discharging of the spark occurs for a longer duration hence resulting in greater material
removal. Extended pulse-on time (7,,) facilitates deeper heat flux penetration into the
workpiece, promoting the formation of a larger plasma area and consequently enhancing
material removal rate (MRR) significantly [27,28]. As depicted in Fig. 3(b,c), a marginal
increase in MRR is observed with escalating voltage.
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Table 4. ANOVA for response 1: for MRR

Source Sum of DF Mean F-value p-value % contribution
squares square
Model 358568 | 9 | 39841 16.77 0.0032 | significant
Apeak | o587 | 1 | 197587 83.19 0.0003 53.34
current
B-pulseon | ye068 | 1 | 28068 11.82 0.0185 7.57
time
C-voltagegap | 479 | 1 479 0.2015 0.6723 0.13
AB 629 | 1 629 265 0.0036 17.0
AC 494 | 1 494 0.208 0.6675 0.133
BC 3048 | 1 304.8 12.83 0.0158 8.22
A2 460 | 1 460 19.4 0.0070 1241
B? 967 | 1 96.7 407 0.0996 2.61
c 1327 | 1 13.27 0.5585 0.4885 0.36
Residual | 11876 | 5 23.75 3.20
Lack of fit | 11862 | 3 39.54 573.0 0.0017 _ ot 3.20
significant
Pure error 0.140 2 0.07 0.00372
Cor total 370443 | 14

Table 5. ANOVA for response 2: for TWR

Source Sum of DF | Mean quare | F-value p-value % contribution
squares
Model 1471 | 9 1.63 68.44 0.0001 | significant
A-peak 278 |1 2.78 116.52 0.0001 18.74
current
Bpulseon | 4555 | 4 10.53 44074 | <0.0001 71
time
C-voltage gap | 0.4200 | 1 | 04200 17.58 0.0085 2.83
AB 00610 | 1 | 00610 2.55 0.1709 0.41
AC 00613 | 1 | 00613 2.56 0.1702 0.41
BC 00058 | 1 | 0.0058 0.2418 0.6438 0.039
A2 00007 | 1 | 0.0007 0.0308 0.8675 0.004
B? 04875 | 1 | 04875 2041 0.0063 3.28
c 03018 | 1 | 0.3018 12,63 0.0163 2.035
Residual 01195 | 5 | 0.0239 0.805
Lack of fit | 0.1195 | 3 | 0.0398 _ ot 0.805
significant
Pure error 0.0000 2 0.0000 0.0000
Cor total 14.83 14

Table 5 shows the ANOVA table for TWR subsequent rejection of all unimportant
variables. The Model F-value of 68.44 implies the model is significant. With a 71 %
contribution, pulse on time proves to be the most influencing factor for TWR followed by
peak current. In this case, A, B, C, B%, and C? are significant model terms.

Figure 4 indicates the surface plots for TWR against pulse on time (7,,), peak current
(), and voltage gap (V). It clearly shows that, with an increase in current that to for a
longer duration of time, a large amount of heat accumulates at the tool surface which
subsequently results in higher tool wear. With an increase in current and time of
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discharging the TWR increases while the increase in voltage gap results in a decrease of
wear rate on the tool.
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Fig. 4. Surface plot of TWR with (a) pulse on time and peak current, (b) voltage and peak current,
(c) pulse on time and voltage gap

Table 6. ANOVA for response 3: for SR

Source Sum of DF Mean F-value | P-value % .
squares square contribution
Model 10.04 9 112 4173 | 00004 | significant
A-peak 1.83 1 1.83 68.40 | 0.0004 17.994
current
B-pulse on <
" 6.84 1 6.84 25586 | 4 0001 67.25
C-voltage gap | 0.2048 1 0.2048 766 | 0.0394 201
AB 0.0174 1 00174 | 06520 | 0.4561 0.17
AC 0.0066 1 0.0066 | 0.2455 | 0.6413 0.06
BC 0.0046 1 0.0046 | 01730 | 0.6947 0.04
A? 0.0130 1 00130 | 04878 | 05161 0.12
B? 0.5264 1 05264 | 19.70 | 0.0068 5.17
c 05121 1 05121 | 19.16 | 0.0072 0.0503
Residual 0.1336 5 0.0267 131
Lack of fit 0.0977 3 0.0326 182 | 03744 | " 0.953
significant
Pure error 0.0359 2 0.0179 0.3529
Cor total 10.17 14
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Table 6 shows the ANOVA table. The model shows that pulse on time has the
highest contribution (67 %) in the formation of SR. In this case, A, B, C, B, and C? are
significant model terms. In the EDM process, the surface mainly produced dues presence
of different surface irregularities such as craters, cracks, globules and debris, etc. It is
evident from the surface plot (Fig. 5) of surface roughness with /, and T,,that, both the
parameters are directly proportional to SR. With an increase in current (/,) the intensity of
the spark increases and when this highly intense spark strikes the work surface, it results
in the formation of large craters. Similarly, with an increase in T,, the spark strikes the
surface for a longer duration and with improper flushing the debris may accumulate over
the machined surface resulting in an increase the roughness.

SURFACE ROUGHNESS (microns)
SURFACE ROUGHNESS (microns)

-~
(a)
—

SURFACE ROUGHNESS (microns)

Fig. 5. Surface plot of Ra with (a) pulse on time and peak current, (b) voltage and peak current,
(c) voltage and pulse on time

The coefficient of determination (R?) and adjusted R? of the developed model were
found to be more than 95 % for all the responses, hence it is concluded that the lack of
fit is not significant for all the responses.

Microstructural analysis

A microstructural analysis is carried out to the extent of evaluation of microstructure at
the machined surface on the workpiece at different magnification Llevels. The
microstructure of a material can strongly influences physical properties such as strength,
toughness, ductility, hardness, corrosion resistance, etc. For this experiment,
the Monel-400 superalloy has been taken for microstructural analysis after machining on
EDM. The machined surfaces have been examined by SEM (scanning electron
microscopy).
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The spark in EDM is produced due to the movement of electrons and ions at very
high kinetic energy between the two polarities in the dielectric medium. When these
electrons and ions strike the surface of a workpiece or tool, it results in the conversion of
kinetic energy into thermal energy or heat flux [29,30]. This intense localized heat flux
at a high concentration of electrons and ions forms the plasma. Now upon withdrawal of
the potential difference, the plasma channel bursts resulting in the formation of cracks
and craters as shown in Fig. 6. Part of the molten material from the machined surface
comes out as microchips may accumulate on the machined surface itself due to improper
flushing is termed as debris or globules as depicted in Fig. 7(a).

’

: ‘
LN

raters@nd cavities

SEI 3
Sample

Fig. 6. Depiction of craters and cavities (a) 500x SEM image for Ip = 33, T,, = 2000 and V = 10,
(b) 350x SEM image for /, = 50, T,, = 1000, V=7

Carbon deposition
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Fig. 7. (a) Formation of Debris, pores at the machined surface for /, = 50, T,, = 1000, V=13
and (b) carbon deposition at 1100x for /, = 50, T,, = 2000, V=7

Figure 7(b) shows the carbon particles getting deposited on the machined surface;
this may be due to the burning of dielectric molecules in the plasma channel. At the time
of the EDM machining process, a tremendous amount of heat is produced which melts
the metal’s surface. After machining, the metal experiences ultra-rapid cooling termed
"quenching” due to flushing by dielectric fluid. A layer formation occurs on the workpiece
surface explicated as a recast layer after solidification, as shown in Fig. 8. From
micrographs, the thickness of the recast layer was calculated and found to be 81 pm.
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Recast layer: Metals get
deposited due to sudden cooling

b
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Fig. 8. Depiction of Recast layer at the edge of the machined surface
(@) 250x SEM image for I, = 50, To, = 2000, V=7, (b) 200x SEM image for /, = 18, T,, = 500, V=7

Conclusions

The empirical study on the impact of various EDM parameters on Monel-400 superalloy
using cylindrical copper electrodes focused on key performance metrics such as material
removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). Subsequently, the
correlation between process parameters and performance outputs was assessed utilizing
response surface methodology (RSM), yielding the following conclusions:

1. From the findings of the result for MRR, peak current (/,) played the most significant
influencing factor with a 53.3 % contribution followed by pulse-on-time (7on).
Consequently, elevated /, and T,, levels are correlated with enhanced MRR.

2. From the findings of the result for tool wear rate, the T,, played the most important
influencing factor with a 71 % contribution followed by /.. An increase in T, and I/,
correlates with an elevated tool wear rate, whereas an increment in inter-electrode-gap
results in a marginal reduction of tool wear rate.

3. Analysis of surface roughness (SR) revealed that pulse-on-time (7., exerted the most
significant influence, contributing 67 % to the response, followed by peak current (/,). A
better-machined surface can be obtained by limiting the values of Ton and Ip. It was also
mentioned in some works of literature that, with effecting flushing the SR can be reduced.
4. Inter-electrode gap (IEG) was determined to have a negligible impact on all evaluated
performance metrics.

5. Microstructure images revealed that most of the surface irregularities on the machined
surface are obtained at higher levels of Ip and Ton. It can be reduced by proper flushing
at the tool-workpiece interface.
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ABSTRACT

The FSW was developed to obtain a good joint in terms of surface quality, mechanical property and
microhardness in aluminum and other alloy systems. This study investigates the effect of traverse speed
on the three-point bending behavior and surface quality of friction stir welds in AA5083-H111 aluminum
alloy by using with different parameters such as weld speeds (16, 20, 25, 30, 40, 50 and 63 mm/min) while
maintaining constant rotational speed (1400 rpm) and tool geometry. The resulting welds were subjected
to three-point bending tests to evaluate their mechanical performance, specifically focusing on yield
strength, ultimate tensile strength, and ductility. Additionally, the investigation includes macrostructure,
microhardness, and fracture toughness evaluations. The findings indicated that an augmentation in traverse
speed led to elevated tensile strength and hardness levels due to enhanced material flow and bonding,
while higher speeds led to increased surface roughness and reduced weld integrity. The study suggests
that superior joints with favorable mechanical properties can be achieved by utilizing an intermediate
rotational speed of 1400 rpm and a traverse speed of 20 mm/min.
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Introduction

Friction stir welding (FSW) is a recently invented solid state welding process, especially
for aerospace or aeronautics applications and for welding of large tank for launch vehicles
involving aluminum alloys [1,2]. In many industrial programs steels are conveniently
replaced by non-ferrous alloys, in most cases using aluminum alloys, the joining of those
materials can occasionally cause serious problems [3]. Various joint configurations can
also be assembled by FSW process like lap, but T joint which gave wide use for
technology [4,5]. Tool geometry, rotating speed and welding speed among the factors
influenced on quality joint welded by FSW [6]. In one study, increasing the rotational
speed results in an increase in the peak temperature, leading to the expansion of the
nugget zone (NZ) and the softened region within the joint [7]. Raj Kumar et al. [8] studied
the influence of post-weld heat treatments (PWHT) on friction stir welded joints of
AA2014 and AA7075 dissimilar alloys, such as PWHT conditions, namely artificial
aging (AA), solution treatment and artificial aging, solution treatment (ST), and natural
aging (NA). The study revealed that natural aging showed the best strength of
347.5 £ 7.78 MPa among all the PWHT conditions and that in other PWHT welds,
fractures occurred outside the weld region. Saravanakumar et al. [9] recommends that the
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nugget zone (NZ) exhibits recrystallized fine grains with an equiaxed structure as a result
of dynamic recrystallization (DRX), resulting in improved mechanical properties of the joint.

AA5083-H111 is a high-strength magnesium alloy primarily composed of aluminum.
This alloy is commonly used in various applications (marine, shipbuilding, aerospace and
automotive industry due to its favorable combination of properties, including excellent
corrosion resistance, good weldability, and high strength.

Bending in friction stir welding (FSW) refers to the effect of bending on the strength
and microstructure of the welded materials. Several studies have investigated the impact of
bending on FSW joints, and the result varied depending on the welding conditions [10-12].
Saravanakumar et al. [13] studied that the mechanical properties of the AA5083 UWFSW
joint, such as its average ultimate tensile strength and hardness, have been greatly
improved using a straight hexagonal tool profile, tool rotational speed of 1200 rpm and
welding speed of 20 and 40 mm/min.

For better understand the phenomenon of FSW and the impact of process parameter
on welded joint, depth research was investigated on microhardness and surface
roughness of joint. Sumit et al. [14] used three passes on the FSW of AA5083 and 6082
dissimilar joints and the observed that FSWeld reinforced joint exhibited the highest tensile
strength, strain (%), and microhardness due to higher grain refinement. Xu et al. [15]
conducted a study on the microhardness of friction stir welded (FSW) joints in different
plate thicknesses of AA2219-O aluminum alloy. Oluwaseun et al. [16] suggests that
understanding the effect of microstructure and defects on FSW joint failure will facilitate
optimization of process variables, weld quality assurance and decision making. They
found that the maximum hardness was on the advanced side of the nugget, and the upper
part of the weld joint was harder than the bottom in the nugget due to the high
temperature and intense mechanical agitation [15,16]. Miloudi et al. [17] found that
decrease in rotation speed leads to better hardness quality of AA3003 aluminum alloy
welded joint. In [18], it was mentioned that the surface roughness (R.) of the welded area
is influenced by the rotational speed of the tool, with higher tool rotary speeds resulting
in decreased surface roughness. Optimizing the welding parameters can lead to improved
surface roughness of FSW joints, enhancing their functional properties and durability. In
a study [19], the effect of welding parameters on mechanical properties and fracture
behavior of FSW for aluminum alloy 5083 H111, a joint coefficient (; is evaluated for the
qualification of the good mechanical strength of welded joints.

This study contributes to the growing research focused on optimizing friction stir
welding parameters for superior joint quality and mechanical properties (tensile,
hardness). The impact of the shoulder's side surface on heat generation is also taken into
account.The research investigates the effect of various processing parameters(rotating
speed, welding speed, dwell time) on the quality and mechanical properties of joints
made by FSW using AA5083 aluminum alloy. In addition to optimize the FSW parameters
which will led to significant improvements in the mechanical properties of aluminum
alloy welds, making it a promising technique for various industrial applications.
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Materials and Methods

AA 5083H111 alloy of 5 mm thickness was used. Samples were cut according to the shape
shown in Fig. 1. The samples of the three-point bending test were chosen (as GB/T
232-999 standard). The external sheets were welded parallel to the rolling direction
while the central sheet was put in the long transverse direction for FSW process in order
to limit potential effect of rolling texture. The chemical composition of the aluminum
5083H111 sheet is presented in Table 1 and the mechanical properties of the sheets are
presented in Table 2. The chemical composition was obtained by SEM-EDX (scanning
electron microscopy-energy dispersive X-ray analysis) method [19].

200

Fig. 1. Geometry of three-point bending specimen

Table 1. Chemical composition of 5083 H111 aluminum alloy (BM)

Al Si Fe Cu Mn Mg Cr Zn Ti
0.50 0.40 0.40 0.10 0.10 4.90 0.25 0.25 0.15

Table 2. Mechanical properties of 5083 H111 aluminum alloy
E, MPa YS, MPa UTS, MPa A, % K, J/cm? HV
71008 155 236 16.5 45 88

20 mm

Fig. 2. Profil of tool used for FSW Fig. 3. Vertical milling machine

The welding tool used for the joint is made of steel type 42CrMo4 (Fig. 2), it has the
mechanical properties (R=750/1300 MPa, A=10-14 %, R.=500/900MPa and
E = 210000 MPa), a threaded cylindrical pin (5 mm in diameter and 4.7 mm in length) and
shoulder (20 mm diameter). This selection of material was also motivated by cost and
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availability. The geometry of the tool, including the pin and shoulder design, significantly
affects the material flow and heat distribution and, consequently, the distribution of
hardness in the weld zones.

A vertical milling machine was used for the production of the joints. It is
characterized by: a power of 5 KW,a rotation speed range of 45 to 2000 rpm and a range
of feed speeds from 16 to 800 mm/min. The fixture was first fixed on the machine bed
with help of clamps . The plates were held in the fixture properly for friction stir welding
as shown in Fig. 3.

Welds by FSW was conducted at selected a constatnt rotation speeds of 1400 rpm
and selected travel speeds of 16, 20, 25, 30, 40, 50 and 63 mm/min. An example photo
of the joints produced with the different used welding speed is presented in Fig. 4. After
the FSW welding process, the tensile test were carried out on an CONTROLAB bending
machine, as shown in Fig. 5. The hardness on the weld cross-section was measured point
wise for each specimen with a load 1000 g and a dwell time of 10 s.The surface quality
of the FSW sample was obtained by the arithmetic average roughness value (R,) using a
Mututiyo surf test sv-400 roughness meter.

Fig. 4. Example of welded joints obtained with Fig. 5. Testing machine CONTROLAB and
different welding speed specimen for three-point bending test

Results and Discussions
Effect of welding speed on surface roughness

Figure 6 shows the effect of welding speed on the quality of the joint measuring by
arithmetic average roughness value (R,). An increase in welding speed effect directly the
increase of surface roughness of the joint. Reducing surface roughness can lead to
improved corrosion resistance, better mechanical properties, and enhanced aesthetics.
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Fig. 6. Surface roughness of different welding parameter

The result of each specimen show that the highest value of surface roughness
obtained at 1400 rpm of rotational speed and when we increase welding speed at
63 mm/min which is 41 um, however, lowest surface roughness of 18 um was obtained
at 1400 rpm and feed rate of 16 mm/min. R. Kumar et al. [20] observed that value of
surface roughness increase when they increase welding speed. However, in [21,22],
another study surface roughness decreases when we decrease welding speed.

Microhardness measurements

In the majority of welds made, it was found that there was significant hardness variation
in the weld zones in AA5083-H111 FSWeld joints, as shown in Fig. 7. The cylindrical pin
achieved symmetrical hardness distribution with regard to the center line of the FSW
keyhole for all the applied tool welding speeds and constant rotational speed. The
hardness in the HAZ is generally the lowest compared to the SZ and TMAZ. The grain
coarsening, combined with the loss of strengthening precipitates (due to over-aging
effects), causes a significant reduction in hardness. The hardness in this zone is 20-30 %
lower than in the base material and can be the weakest point in the weld, making the
HAZ more susceptible to failure under stress.
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Fig. 7. Variation of the hardness for the rotational speed 1400 rpm
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The outcome of hardness higher values 82 HV in TMAZ region on retreating
side (RS) for welding speed 20 mm/min and decreases at 75 HV in the advancing
side (AS). It is due to the much-refined grain size and higher dislocation densities in the
stir zone [23]. It should be emphasized that the size of the ZS area is governed by the pin
diameter while the TMAZ area is generated by the size of the tool shoulder of the tool.
This degradation in hardness is mostly characterized in the TMAZ. This is attributed to a
combination of high stresses and large strains resulting in the deformation of the grain
structure, where re-crystallization did not take place, caused a coarse grain
structure [24,25]. This dynamic recrystallization observed in the weld region results in a
decrease in grain size and an increase in hardness in the joints [26-29].

Bending test

The bending test is a crucial evaluation method in assessing the mechanical properties
and performance of friction stir welded (FSW) joints, particularly for AA 5083-H111
aluminum alloy. Three-point bending tests were conducted using a CONTROLAB machine
for all specimen (A to G) the results are presented in Fig. 8 and 9. The bending tests were
performed on the face and the root of the joint as an important tool to understand the
ductility and toughness of friction stir welds (bond strength). Most of the welds presented
good ductility, especially in case the joint made at 1400 rpm and 20 mm/min

A

Fig. 8. Three-point bending test
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Fig. 9. Three-point bending test-displacement
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Table 3. Fracture position on the specimens
V, mm/min /
Angle of Bend, °

Weld photos Observations

16 /80

B 4

No fracture

No fracture

25/ 83 No fracture
30/ 86 Crack on bend
surface
Crack on bend
40/80 surface

Crack on bend
surface

= [
|

o ‘

Crack on bend
surface
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(configuration A) where the maximum deflection reached to 43 mm with efficiency of about
90 % compared to the base metal, this is due to higher temperatures involved during FSW,
so the Base Metal adequately soften to go higher bending strength [30].The immediate
growth in force that appear in configuration G (63 mm/min) at about 15 mm deflection came
from some slipping occurred between bending specimens and device jaw so that slipping
didn’t affected on the total results because that shifting occurred in all specimens and the
comparison between base metal and welded specimens stilled in the same values [31].
Finally, these results of bending tests can be correlated with microstructural characteristics
of the welds, such as grain size and distribution, heat-affected zone (HAZ) properties, and the
presence of defects. This correlation helps in understanding how microstructural changes
due to FSW affect the mechanical performance of the joints. The results of the bending tests
conducted on all the FSW weld joints produced at rotation speed of 1400 rpm and
welding speeds of 16, 20, 25, 30, 40, 50, 60 mm/min are hereby presented in Table 3.

The defects found are mainly lack of penetrations, wormholes or voids, as well as
root flaws [32]. Other defects observed include inclusions which were rich in iron and
from analysis these inclusions can be classified as iron oxide particles in the weld. For
the first three samples for welding speeds 16, 20 and 25 mm/min, the post-bending
results showed the tested specimens without failure. This means that the welded
materials have bonded well during welding. For all the FSW experimental work and
because rotational speed and welding speed significantly the bowing quality the bending
strength by influencing the heat generated in the weld zones [32].

Weld microstructures and properties of FSW joint

Friction stir welding (FSW) of AA 5083-H111 commonly used aluminum alloy in marine
and automotive applications, results in distinct microstructural changes in the weld
metal. The microstructures of weld region of weldments were perceived using an optical
microscope, and the relevant micrographs are presented in Fig. 10. While all the fracture
surfaces display dimples, the size and shape of the dimples show differences. However,
there are dimple-free flat regions, as can be seen in Fig. 10(a,c,e), and a ductile fractured
surface can be identified. Figure 10(b,d,f) shows many defects such as voids, cracks and
porosities. Conversely, the rise of the heat input decreases the hardness of the heat-
affected zone, where recrystallization does not occur. The river marks diverging
downwards on the surface of the tool marks (Fig. 10(b)) and upwards at the ending of the
unconsolidated onion rings (Fig. 10(d)), indicated that they were the primary regions of
crack initiation in the weld tunnel.

What's more, the HAZ had the highest grain size in contrast with the stir zone in
which the finest grain size could be seen [33]. In the stir zone, the temperature is the
highest, and the material experiences intense plastic deformation due to the rotating
tool. This causes significant grain refinement, leading to a fine-grained microstructure.
The grain size in this region is typically much smaller than in the base material. As the SZ
presents the smaller and more significant quantity of second-phase particles, therefore a
greater number of cracking sites is available, the SZ is a favorable crack initiation site [34,35].
Consequently, this synergistic effect promotes a more rapid and thorough process of
dynamic recrystallization which refines the grains in the stir zone and forces the fracture
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Fig. 10. SEM-images of the welded specimen

outside the stir zone [36]. The stir zone may also exhibit "onion-ring” patterns, which are
a result of the material flow around the rotating tool. These patterns are typically visible
in the microstructure and can influence local variations in the mechanical properties.

Conclusions

In friction stir welding (FSW) of AA5083-H111 aluminum alloy, traverse speed
significantly influences both the three-point bending behavior and surface quality of the
welds. An optimal traverse speed ensures adequate heat input and material flow, leading
to improved mechanical properties and surface finish. Conversely, excessively high
traverse speeds can result in inadequate bonding and surface defects, adversely affecting
the weld's mechanical performance.
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The main findings of this investigation are:
1. Highest bending strength by using rotation speed 1400 rpm and travel speed
20 mm/min because of no necking or cracking were noticed in the weld zone.
2. Most of the defects produced in the root surface because of the effect of unwelded
zone. while the defects in the face of welded region because of the tunnel hole or internal
crack defect.
3. The highest hardness at 1400 rpm and 20 mm/min due to the very fine grain size
created by FSW.
4. The weld nugget/TMAZ interface was not a weak region in FSW AA5083-H111.
5. Increased welding speeds resulted in a reduction in vertical pressure that caused
increased size, number, and severity of weld defects.

The fracture almost always took place in the heat affected zone in particular on the
retreating side.
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ABSTRACT

Welding defect detection in a radiographic image is vital in industrial non-destructive testing. It is
significant in evaluating weld anomalies and surface and subsurface imperfections in welded joints. Digital
image processing techniques can make automation feasible in the weld microscopic image interpretation,
thus reducing the instances of observational human errors in weld inspection. This technique will give more
reliability, speed and reproducibility to the inspection system. This paper uses MATLAB image processing
tools for weld defect detection using scanning electron microscope images of ultrasonically welded
polymer samples. Image processing features of gray scaling, image resizing, histogram equalization, edge
detection, thresholding, filtering, texture analysis, and image segmentation have been implemented for the
detection and characterization of defects in weld scanning electron microscope images. Thorough insights
into the structure of these defects are an essential step in appreciating the weld's quality. The approach is
well-suited for defect detection of any welding technique.
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Introduction

Basic structure and mechanical or physical properties of weld gets affected due to the
varying imperfections and irreqularities that may appear in a weld. The weld defects can
be categorized into superficial and internal defects, depending on the location of the
defect. Control of welding quality and reliability is significant for industrial activities like
component manufacturing and structure assembly. Significant functional abnormalities
may result as a consequence of the welding anomalies. Defect detection is considered
particularly challenging owing to the factors like insufficient contrast, the noised nature
of the radiographic film, or the reduced geometric dimensionality of irregularities.
Radiography provides detailed internal visualization of the welds and enables
manufacturers to verify compliance with safety standards, specifications, and
manufacturing codes.

Image processing refers to the manipulation and analysis of digital images using a
variety of algorithms and methods. Digital image processing techniques are employed to
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automate defect detection and identification, enhance visual representation of data, and
standardize radiographic analysis methods, thereby increasing their reliability and
consistency. Digital image processing covers improving and extracting intrinsic details from
digital images and results in the generation of new images or specific assessments from
the images. To consider the elaborations in micro-imaging and for accurate indication of
the discrepancy, appropriate preprocessing and segmentation methods need to be selected.
Reproducibility and reliability of results are the essential requirements in the automation
of non-destructive testing, mainly in image characterization, to be at par with human
judgment. This work aims to identify anomalies and defects like porosity, cracks, lack of
penetration, etc., using image processing of welded joint microscopic images.

The proposed MATLAB-based image processing system is well-suited for real-time
deployment in manufacturing environments. It can interface with industrial cameras and
data acquisition systems using the Image Acquisition Toolbox for continuous monitoring.
MATLAB code can be compiled into standalone applications or converted to C/C++ for
integration with embedded systems and industrial control platforms like PLCs and
SCADA. The system supports edge computing through lightweight, optimized pipelines
deployable on devices like Raspberry Pi or NVIDIA Jetson. Real-time performance is
achieved using techniques such as ROI detection, frame skipping, and GPU acceleration.
Additionally, the system can be integrated into production lines to automate actions such
as triggering alarms, rejecting defective parts, and logging inspection data.

MATLAB trains a supervised learning model using extracted features and labels,
common classifiers are as follows: fitcsvym - support vector machine (good for small
datasets); fitcknn - k-nearest neighbors; fitctree — decision tree; trainNetwork - for CNN-
based classification (deep learning toolbox).

State of the art in image processing for welding defect detection

Intensive research contributions are made to resolve the discrepancies in the image
processing techniques utilized for weld image characterization. Xu Y. et al. [1] proposed
an enhanced Canny edge detection algorithm based on their analysis of the gray gradient
in the weld image. Results showed that real-time seam tracking objectives can be met by
precisely controlled image processing. Nacereddine N. et al. [2] proposed a few variations
in the image processing sequence significant for effective defect detection in images. The
process is initiated by concentrating on the region of interest (ROIl) to ensure a targeted
analysis. A median filter is applied to minimize noise and enhance image quality, vital for
accurate assessments. Dynamic stretching and local contrast enhancement improve
clarity across various backgrounds, facilitating effective feature extraction. Finally, the
Otsu method is utilized to optimize segmentation, allowing for precise identification of
defects. In 2009, Liao G. and Xi J. [3] proposed a pipeline welding machine image
detection method using the largest variance threshold method to establish adaptive
segmentation. The process converts images to black and white, removes small noise, and
utilizes level projection for efficient real-time defect detection and quality inspections.
In 2007, Yang S.M. et al. [4] employed automation in Metal Inert Gas welding using a CCD
camera with a laser stripe for seam tracking and adaptive Hough transformation for weld
point extraction. A generalized delta rule algorithm-based neural network optimizes
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welding parameters, with joint width and depth as inputs from the images and is observed
to influence overall weld quality significantly. Roca Barcelo F. et al. [5] introduced an
automated system using TOFD, image processing, and neural networks for accurate weld
defect detection and classification. The TOFD method has a drawback associated with the
appearance of speckle noise.

In 2020, Li Y., Hu M. and Wang T. [6] presented a deep learning-based weld seam
image recognition algorithm using the Adam adaptive moment estimation for efficient
convolutional neural network training. The adaptive threshold method for weld seam
extraction was tested on 4500 tube images, and the results show effective identification
and classification of weld defects in terms of parameters like false detection rate, recall
rate, and overall accuracy. Pan H. et al. [7] developed a novel approach using MobileNet
feature extractor and leveraged a pre-trained deep learning architecture, originally
optimized for diverse image recognition tasks, to extract key features for identifying
welding defects. By integrating an additional classification layer, this hybrid model
significantly outperformed other comparable methods, achieving an impressive accuracy
rate of nearly 98 %. In 2019, Sun J. et al. [8] presented a machine vision algorithm for
detecting and classifying weld defects in thin-walled canisters. Using a modified
background subtraction method, the algorithm achieves over 99 % accuracy in real-world
applications, proving effective for real-time and continuous weld defect detection.
In 2002, Wang G. and Liao T.W. [9] developed an automatic computer-aided system for
identifying welding defects using background subtraction and histogram thresholding
techniques. In 2016, Ranjan R. et al. [10] used specific defect features like vertical
intensity plot and defect spread region for weld defect identification, with respect to its
location and severity, and classification into different kinds of imperfections or
irregularities. In 2020, Kumar R.K. and Omkumar M. [11] explored the ultrasonic plastic
welding of high-performance polyamides (HPPA) matrix composite. It is a glass-filled
semi-crystalline and partially aromatic polyamide composite for automotive applications.
A weld strength of 3.1 kN was achieved, with minimal voids and negligible weight loss.
Key findings include decreased glass transition temperature and suitable degradation
temperature for high-temperature applications. In 2019, Mohammad EJ. et al. [12]
utilized the K-means method for optimal thresholding, showing sensitivity to small
datasets but improved performance with larger datasets, especially when the number of
clusters is minimal.

In 2023, Shaikh K. et al. [13] presented a hybrid architecture that uses a multilayer
perceptron (MLP) for feature extraction and combines it with classical classifiers like
random forest (RF) and support vector machines (SVM). Applied to wheel conicity defect
detection, the MLP-RF combination yielded the best performance with up to 99 %
accuracy. The hybridization allows for efficient learning from both structured sensor data
and statistical features, making it suitable for mechanical fault diagnosis. In 2024,
Tata R.K. et al. [14] proposed a hybrid convolutional neural network (CNN) and long short-
term memory (LSTM) model. CNN extracts spatial features from surface images, while the
LSTM captures temporal relationships (e.g., variations across sequences or production
cycles). The hybrid model improves defect detection accuracy by ~ 20 % and reduces false
positive rates by ~ 30 %, making it suitable for time-series-based industrial inspection
tasks such as continuous casting or rolling. In 2024, Wang X. et al. [15] addressed the
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challenge of detecting defects on dense IC surfaces, where information imbalance and
micro-defects make detection difficult. A hybrid model combining ResNet50 and Vision
Transformer (ViT) is developed. ResNet handles low-level feature extraction, while ViT
captures long-range dependencies. The model achieves 98.6 % accuracy, outperforming
standalone CNN or ViT architectures, and is particularly effective for microelectronic
manufacturing.

The accuracy of defect detection using MATLAB-based image processing depends
on several factors, including the type of defect, image quality, features used, classifier,
and preprocessing methods. However, based on published studies and typical results from
academic and industrial projects, Table 1 lists a few of the reference points [13-15].

Table 1. Accuracy in % for various techniques used for image defects detection

N . Accuracy
Application area Defect type Technique (approx.), %
Weld inspection Cr‘acks, Y0|ds, LBP + SVM / Edge detection + 85-95

inclusions Morphology
Compqsne Delamination, air voids GLCM + CNN / Ultrgsound image 90-97
materials processing
Metallic surfaces Scratches,.dents, Texture + Int(?n.srty histograms + 80-90
porosity Decision tree
PCBf /.Solder Missing pads, solder Template matching + Thresholding 88-93
joints bridges

Table 2. Comparison of MATLAB based image processing with baseline methods
Baseline methods (e.g., manual

Aspect inspection / traditional Proposed MATLAB-based approach
thresholding)
. . Fully automated using algorithms such as
. Manual or semi-automatic, . . .
Automation . . . edge detection, morphological operations, or
subjective, time-consuming . .
machine learning
Accuracy Typically lower due to human Higher accuracy by using optimized filters and

error and inconsistent criteria algorithm tuning

Robust pre-processing steps (Gaussian

Poor tolerance to lighting,

Noise handling

contrast, or texture noise

filtering, histogram equalization, etc.) remove
noise effectively

Feature extraction

Manual or limited to basic
statistics

Advanced techniques: texture analysis (e.g.,
LBP, GLCM), shape descriptors, color
segmentation

Defect Usually not implemented or Incorporates ML models (SVM, KNN, decision
classification rule-based trees) trained on defect features
Consistency & Varies with operator and Highly consistent, script-based processing
repeatability condition ensures reproducibility

Faster with batch processing using MATLAB

Processing time . .
g scripts/functions

Slower and subjective

In MATLAB-specific workflows, using local binary pattern (LBP) or GLCM (gray-level co-
occurrence matrix) for feature extraction and SVM or KNN for classification, the accuracy
typically ranges from 85 to 95 %. When combined with image augmentation and proper
labeling (using Image Labeler), detection rates can improve by 5-10 %. MATLAB’s deep
learning toolbox (e.g., using pre-trained CNNs like AlexNet or ResNet with transfer learning),
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gives 95 %+ accuracy when sufficient labeled data is available. Performance comparison of
MATLAB-based Image processing with other baseline methods is described in Table 2.

The proposed MATLAB-based image processing approach demonstrates superior
performance compared to traditional thresholding and edge-based methods, as evident
in higher classification accuracy (91.4 vs. 72.3 %), and improved robustness to noise and
lighting variations. The integration of texture-based feature extraction (e.g., LBP) and
machine learning classifiers significantly enhances the defect detection capability across
multiple defect types.

Experimental work and image processing analysis
Preprocessing stage

The basic initiation in image processing is the initial set of operations performed on raw
image data to prepare it for further analysis or processing. The goal of preprocessing is
to enhance the quality of the image and to remove any distortions or irrelevant
information that may hinder subsequent tasks.

This stage involves the following operations to be performed to prepare the image
for further extraction of defect information:
1. Histogram equalization is a technique for improving an image’s contrast by adjusting the
histogram's intensity distribution. This method enhances the image's visibility and detail by
spreading the most frequent intensity values. Histogram equalization is a powerful and
widely used technique for enhancing image contrast, making it a fundamental tool in various
image processing applications. The image's histogram is computed, a plot of the number of
pixels for each intensity level (from O to 255 for an 8-bit image).
2. Resizing of Images: By resizing images appropriately, you can balance maintaining
sufficient detail for analysis while optimizing computational and storage resources. This
balance enhances the efficiency, effectiveness, and applicability of image-processing
techniques across various domains.
3. Gray scaling transforms a color image into shades of gray. This involves reducing the
image's depth from full color (usually 24-bit RGB) to 8-bit grayscale. In a grayscale image,
each pixel represents a shade of gray, varying from black (O intensity) to white (255
intensity). For each pixel, the intensity of the gray shade is calculated using the formula:
Gray=0.299xR+0.587xG+0.114xB [2].

The following are the Inferences that can be drawn from the grey scaling
mechanism:
1. Consistent gray levels across the weld bead indicate a consistent welding process.
2. Inconsistent gray levels may suggest issues such as varying penetration, inconsistent
heat input, or changes in welding speed.
3. Dark spots can indicate porosity or voids within the weld. Darker areas usually
represent areas of lower density.
4. Light spots or Brighter areas may indicate inclusions or areas of higher density. They
could also point to overheating or burning through the material.
5. The gradient of gray Levels indicates the HAZ, which has a gradual transition from the base
metal to the weld metal. Sharp changes in gray levels can indicate improper heat control.
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6. Proper penetration is indicated by a consistent gray level throughout the weld depth.
7. Insufficient Penetration appears as a lighter gray area in the center of the weld cross-
section, indicating the weld did not fully penetrate.

8. Cracks appear as distinct lines or streaks within the grayscale image, often darker than
the surrounding material.

The study reviewed methods like image enhancement, segmentation, and machine
learning techniques. The research highlighted the effectiveness of these approaches in
identifying defects and imperfections. The research observation underscores the role of
image processing in improving weld inspection quality. The work carried out in this
research reflects on the advancement in the image processing technique for weld defect
detection of polymer samples joined using ultrasonic welding. The stages of the image
processing technique are illustrated in the flowchart, Fig. 1.

Weld Image
Processing

Pre-processing Processing of image from
stage different algarithms

Gray scaling

Z Image stretching and
of image

Histogram

Resizing of

Image Edge
image
detection (Roberts

Cross Operator)

Histogram
Equalization Image Thresholding:
Global (Oysu’s) and
Adaptive

Image Filtering
Gausslan Blur,
Interpretation Median Filter and
of the processed Bilateral Filter
image

Image Texture
analysis: GLCM and
LBP

Conclusion

Image Segmentation
K-means, Watershed

Image Entropy
and Graph - Based

and FFT X
Segmentation

Fig. 1. Flowchart showing the stages of image processing adopted

Image processing was carried out with the scanning electron microscopy (SEM)
images of the polymer weld samples. The polymer material is ABS, and the two parts of
ABS are joined using ultrasonic welding. The ultrasonic welding involves providing ac
supply at 240 V and 50 kHz to the piezoelectric crystal. This results in the generation of
high-frequency mechanical vibrations, which are then transmitted to the weld material
through the sonotrode and a horn, Fig. 2.
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Ultrasonic
transducer

Booster

Horn
(sonotrode)

Fig. 2. Images of Ultrasonic weld machine, transducer, sonotrode (booster), horn assembly

The sonotrode horn also transmits and exerts static pressure on the weldment, apart
from the vibrations generated in the piezoelectric converter. The horn is customized to suit
the weld geometry, and the welding machine has parameter settings for the weld
requirements. The parameters of importance are weld time, hold time, amperage
corresponding to the energy requirement, and static pressure. The experimental work
involved trials with different settings of the process parameters based on trial and error,
and also based on the expertise of the technicians at UltraTech Sonic Solutions, Basavangudi.

Table 3. Operating values of parameters and weld status for ABS Material (N.W - no weld, P.W - partial
weld, G.W - good weld with high strength, DT - destructive testing)

SL Test Weld Holding | Current, | Pressure, Power, Weld status
. . . DT, s . . based on

No identification time, s time, s mA Bar Watts DT*

1 1A 2 1 N.W

2 1B 0.55 0.15 0 0.1 2 1 N.W

3 1C 2 1 N.W

4 2A 2 1 N.W

5 2B 0.55 0.3 0 0.2 2 1 N.W

6 2C 2 1 N.W

7 2D N.W

8 2E 0.55 0.3 0 0.2 3 2 N.W

9 2F N. W
10 3A P.W
11 3B 0.55 0.4 0 0.3 4 3 P.W
12 3C PW
13 3D GW
14 3E 0.55 0.5 0 0.3 4 3 GW
15 3F GW
16 3G 0 0.6 5 4 GWH
17 3H 0.55 1 0 0.6 5 4 GW.H
18 3l 1 0.8 5 5 Overburn
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The process parameter variation considered for this work has been listed in Table 3.
The weld status has been provided based on the destructive testing on the weld samples.

Scanning electron microscopy (SEM) imaging of various samples provides insights
into the effects of thermal gradients caused on the weld surface due to generated friction
and viscous heating of the acrylonitrile butadiene styrene (ABS) material at various points
of the joint formation. As the first step, a microscopic image of the base ABS material,
without welding, was captured, serving as the basis of comparison with the SEM of the
welded material sample.

Image processing was carried out in MATLAB ver.23a. The flowcharting (Fig. 3)
highlights the methodology used in segmentation and feature extraction algorithms
adopted to extract the morphological and image intensity features of the SEM images.

[ Start J

[ Image Acquisition ]
[ Preprocesssing }
——[ Grayscale Conversion]
Noise Reduction
(Median Filterring)
[ Segmentation ]

Thresholding
(Adaptive)
Morphological

Operations

-
[ Feature Extraction J

Shape & Intensity

Features (regionprops)
L Analysis & Classification J

Fig. 3. Methodology of the segmentation and feature extraction

Similar processes have been adopted for algorithms such as texture analysis,
entropy, FFT, and filters to extract the various properties of the images. For labeling,
MATLAB’s image labeler toolbox is used to manually annotate cracks and voids on the
input images. Each defect was marked using bounding boxes or pixel-level masks,
depending on its complexity and size. The annotated data was saved in ROl and label
data formats compatible with supervised machine learning workflows in MATLAB. This
labeled dataset served as the basis for training and evaluating defect classification
models. The following analyses were performed on the SEM images of the polymer weld
samples [16-23].

1. The histogram is utilized to reveal quality issues for the welded images. The
overall position of the histogram along the x-axis indicates the image's brightness. If the
histogram is skewed towards the left, the image is predominantly dark. If it is skewed
towards the right, the image is predominantly bright. The contrasting features of the
image are captured by the histogram span. A wide histogram that covers a broad range
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of intensity values suggests high contrast, while a narrow histogram suggests low
contrast. Uniform and expected distributions may indicate good-quality welds, while
unexpected spikes or gaps could indicate defects or inconsistencies.

2. Edge detection: it enables the identification and location of critical
discontinuities in the weld by variations in intensity or color introduced into the image.
These discontinuities often represent the boundaries of objects within the image.

Weld seam identification. Continuous seam: A well-defined, continuous edge
indicates a consistent and smooth weld seam, which indicates good quality. Gaps or
discontinuities: breaks or gaps in the edge detection output may indicate defects such as
cracks, incomplete fusion, or lack of penetration.

Weld geometry. Uniformity: consistent edge thickness and shape suggest uniform
weld geometry, which is important for structural integrity. Irregularities: variations in
edge thickness or shape may point to issues like excess weld material, undercutting, or
burn-through.

Surface defect, porosity: small, irregular edges could indicate surface porosity or
tiny holes in the weld. Spatter: additionally, unintended edges away from the main weld
seam might be due to welding spatter.

Alignment and Fit-Up. Proper alignment: edges that follow a predictable, aligned
path suggest that the welded components were properly aligned. Misalignment:
deviations or offsets in the edge pattern can indicate misalignment or poor fit-up of the
welded parts. Transition area: the edge detection can reveal the boundary between the
weld region and the HAZ region, which is crucial for understanding the thermal impact
on the material.

3. Thresholding is an effective process used to segment the image by converting it
into a binary image. In this process, pixels are divided into two groups based on a chosen
threshold value, and the pixels are then categorized into white and black. The method
adopted is Global thresholding (Otsu’'s method), as it extracts more edges compared to
direct edge detection algorithms

Global thresholding uses a common threshold value for the image under test. This
value is applied uniformly to all pixels in the image. A threshold value is chosen, either
manually or automatically. Adaptive thresholding involves estimation of the threshold
value for segments of the image, thus resulting in variations of lighting and intensity
where the image is divided into smaller regions or blocks. Global thresholding is best
suited for simple images with uniform lighting, while adaptive thresholding is more
versatile and effective for images with complex lighting conditions.

4. Image filtering: several methods are available for image filtering in the process
of extracting the required image properties. The following methods are most commonly
used in usual practice [24-33].

Gaussian blur: a linear filter that smoothens an image by averaging the pixels within
a Gaussian window. It reduces noise and detail by weighting the pixels in the
neighborhood based on a Gaussian function, which gives higher weights to the central
pixels. It is suitable for blurring edges, reducing image sharpness. Not effective for non-
Gaussian noise like salt-and-pepper noise. Best for overall noise reduction and obtaining
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a smooth image, but at the cost of blurring details. The Gaussian function is defined as:
G(x,y) = — * (— "2”2), where o is standard deviation of the Gaussian distribution.

2no 202

Median filter: causes replacement of each pixel value with its neighborhood median
value. Salt-and-pepper noise is effectively reduced by this filtering method, with no
impact on the identified edges. For each pixel, the filter considers the values of all pixels
in a neighborhood around it, sorts these values, and selects the median value. This filter
removes salt-and-pepper noise and preserves edges better than linear filters like
Gaussian blur. It is ideal for removing specific types of noise (e.g., salt-and-pepper) while
preserving edges, useful for inspecting fine details and small defects in welded images.

Bilateral filter: the bilateral filter is an edge-preserving and noise-reducing filter
that combines Gaussian smoothing in the spatial domain with Gaussian smoothing in the
intensity domain. This ensures that only similar pixel values are averaged, preserving
edges. The bilateral filter considers both the spatial distance and the intensity difference
between the central pixel and its neighbors. Balances noise reduction with edge

preservation, making it suitable for images where retaining the edge details is crucial.
=02 +yi=»)? ey =1(xy)?
Yo I(x, ;) - e 203 e 205 where gy is the
Xi,Yi y

1
w(x,y)
spatial standard deviation, o: is the intensity standard deviation, and W(xy) is a

normalization factor.

Compared to the Gaussian and median filtering methods, the bilateral filter gives
better results by preserving edges while reducing noise, which represents the quality of
the edges formed duringthe welding process and is effective for a wide range of noise
types. This makes the weld image analysis more accurate.

5. Texture analysis: texture analysis involves examining the texture characteristics
of an image to extract meaningful information, which can be used for classification,
segmentation, and other image processing tasks. Two commonly used methods are used
in this work.

GLCM (gray-level co-occurrence matrix): this method is used to analyze an image
texture by examining the spatial relationships between pixel intensities. GLCM analyzes
texture by quantifying how frequently specific intensity value combinations appear in
predetermined directional arrangements throughout the digital image matrix. Using this
technique, several statistical measures can be calculated to describe the texture.

Contrast: quantifies tonal variation by calculating brightness differentials between
adjacent data points throughout the entire visual matrix, enabling measurement of
textural roughness across the image: contrast = %; ;(i — j)* - P(i, j).

Correlation: measures the correlation of adjacent pixels, correlation =
NG-p) (—wy)-PGJ)
J oi*0j

Energy (angular second moment): assesses uniformity of the texture by adding up
the squared elements in the GLCM, energy = %; ;P(i, j)*.

Homogeneity (inverse difference moment): reflects the uniformity of pixel value
relationships and distribution of elements in the GLCM cluster around the diagonal,

. P(i.j)
homogenity =%, ; T

The filter function is: I(x,y) =

=3,
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Local binary patterns (LBP) is a texture operator that identifies patterns by
evaluating adjacent pixel values against predetermined limits, enabling classification
based on local spatial relationships within defined proximity boundaries. The LBP image
is often represented as a histogram of the LBP codes, which serves as a texture descriptor.

6. Image segmentation: partitions the complete image into regions, making it easier
to analyze and extract meaningful information. This process modifies the representation
of an image into a form that is straight forward for analysis. Often by identifying objects
or boundaries (lines, curves, etc.) within the image. The following methods are discussed
in image segmentation.

K-means clustering: an unsupervised learning algorithm that is implemented to
categorize data points into K clusters. In the context of image segmentation, it groups
pixels based on their intensity or color similarity. The K-means clustering segments an
image by grouping pixels into K clusters based on similarity in intensity or color. Simple
and effective for basic segmentation tasks.

Watershed algorithm: a technique of segmentation in which the grayscale image is
considered like a topographic surface. The algorithm finds the lines that separate
different catchment basins, corresponding to the image regions. The Watershed
Algorithm uses the topographic interpretation of the image to separate regions. Effective
for segmenting touching or overlapping objects.

Graph-based segmentation: this technique treats the image as a graph, considering
each pixel as a node, and the similarity between neighboring pixels is indicated by the
edges. Segmentation is performed by finding minimum cuts in the graph based on pixel
similarity. Offers flexible and powerful segmentation capabilities but may require more
computational resources.

7. The entropy indicates the randomness to assess the degree of uncertainty in the
image. Within the domain of image processing, entropy describes the texture and
complexity of an image. An image with high entropy is characterized by intricate Higher
entropy values indicate a more complex and detailed image, while lower entropy values
suggest a more uniform or simple image. The entropy H of an image can be calculated
using the following equation: H = —ZX;_; o, »P; log, (p;), where n is the count of variations
in intensity in the image and ‘pi’ is the probability at which intensity of level | occurs.

Entropy is used to analyze and classify textures in an image. Entropy-based methods
can be used to determine optimal thresholds for image segmentation. High entropy
characterized by intricate details and complexity, while low entropy indicates a uniform or
simple image. Entropy can be used as a feature for image recognition and classification tasks.

8. Fourier transform: in image processing, the Fourier Transform is a fundamental
tool used to analyze the frequency components present in an image. Here's a concise
explanation of what the Fourier transform entails. The Fourier transform converts a signal
(in this case, an image) from its spatial domain into the frequency domain. It decomposes
the image into its constituent frequencies. For a 2D image f(x,y), the Fourier transform
F(uyv) is given by: F(u,v) = fffooof(x, y) e~ 2mwx+vy) gy . dy where u and v are
wavenumber components.

The magnitude variation of an image refers to the representation of the magnitude
(absolute value) of the Fourier transform coefficients of the image. The phase spectrum
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of an image refers to the spatial distribution of phase information in the frequency
domain of the image.

Results and Discussion

The analysis was carried out on four SEM images, and the interpretations for the various
techniques of preprocessing are described in this section.

Histogram of weld images

Peaks indicate common intensity values. A narrow histogram suggests low contrast, while
a wide histogram suggests high contrast. Expanding the range of intensity values makes
images clearer, more detailed, and more suitable for visual inspection and automated
analysis. The image in its stretched form and the corresponding histogram (Figs. 4 and 5)
for samples 2H and 1C, indicate clear contrasting features of the image where the lack of
fusion, slag formation, cracks, and unfilled gaps can be identified. These characteristics
indicate the defects in the weld piece, which creates a non-uniform surface on the weld
piece. While the histogram in Fig. 6 (for sample 3H) indicates no defect in the weld,
corresponding to the sample performance, as listed in Table 1 [17].

original Streched image

. Histogram of original image .Histogram of streched image
°l (c) i (d)
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4
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Fig. 4. SEM image of sample 2H (a,b) and its histogram stretched image (d) and its histogram (c)
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Fig. 5. SEM images of sample 1C (a,b) and its histogram stretched image (d) and its histogram (c)
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Fig. 6. SEM images of sample 3H (a,b) and its histogram stretched image (d) and its histogram (c)



61 G.C. Ganesha, C. Mukti, S. Arungalai Vendan, R. Sharanabasavaraj

Interpretation from edge detection

Figures 7 and 8 show the edge detection of samples 2F and 3H using their SEM images
by the Roberts Cross Operator algorithm, which uses 2 x 2 convolution kernels to
approximate the gradient. The edges seen in the images represent discontinuities in the
weld formation that may be attributed to anomalies like slag, unfused, and uncut surfaces
in the image, the whiter dots, the more the edge formation during welding. The clear
image without white heads may indicate fewer discontinuities in the weld formation.
These results indicate a contradiction to the actual weld performance and may indicate
the need for further detailed analysis of the image processing results and inferences.

detected Edges

original

Fig. 7. SEM image surface of sample 3H (a) and edge detection image (b) for sample 3H

original detected Edges

BT 00K ¢ nn XWESE

Fig. 8. SEM image surface of sample 2F (a) and edge detection image (b) for sample 2F

Interpretation from thresholding

Thresholding helps to isolate the weld bead from the rest of the image. This is vital for
the assessment of the weld characteristics of quality, size, and shape.

Detection of anomalies like porosity, cracks, or incomplete fusion can be done with
thresholding. Defects usually have different intensity values than the rest of the weld,
making them stand out after thresholding.
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Contrast enhancement makes it easier to inspect and analyze the weld visually. This
is particularly useful in cases where the weld and the surrounding material have similar
intensity values in the original image.

The thresholding image for Sample 3l, in Fig. 9, indicates the slag formed after
welding, and the bulged surfaces can be seen more clearly, which represents the over-
welding with improper finishing surfaces showing the white edges of excessive material
spread. The welding status of sample 3| shows the weld to have caused overheating of
the material, which is due to the higher parametric range than other samples.

Image Threshold

original

----------------

Fig. 9. Original SEM image (a) and its processed threshold (b)

Filtering output

The filtering output for the SEM image of sample 2B, Fig. 10, has been analyzed in this
section for the changes in texture properties with spatial factors. The common image
filtering techniques were utilized, namely Gaussian blur, median filtering, and bilateral
filtering, for noise removal and smoothing of the images. The smoothing effect differs in
the form of uniform, non-linear, or adaptive smoothing [24]. The following features are
obtained from the above image.

Original Image Gaussian Filtered Median Filtered

Bilateral Filtered

Sobel Filtered

Fig. 10. SEM Images of Sample 2B filtered with different standard filtering methods (a-e)
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GLCM features: GLCM is computed at specific spatial relationships defined by:
1. Directions: horizontal (0°), vertical (90°), diagonal (45°), anti-diagonal (135°), etc.
2. Distances: the number of pixels apart being analyzed. The matrix values thus represent
how the texture property (e.g., contrast, correlation, etc.) changes with the analyzed
direction/distance.
3. Contrast: [0.1255 0.1865 0.1336 0.1778].
4. Correlation: [0.8992 0.8502 0.8927 0.8571].
5. Energy: [0.4564 0.4319 0.4439 0.4358].
6. Homogeneity: [0.9613 0.9397 0.9510 0.9444]

Contrast in an image represents the difference in luminance or color that makes an
object distinguishable. The correlation value shows the linear dependency of pixel
intensities for a specific direction/distance. The high values indicate that pixel intensities
are strongly related, regardless of direction or distance. Energy value reflects the
uniformity of texture for a specific direction/distance. The moderate values suggest a
somewhat uniform texture, but not perfectly repetitive. Homogeneity value measures
how close pixel intensities are to one another for a given direction/distance. The high
values indicate high similarity of neighboring pixel intensities in all directions, showing
a smooth texture. Together, these values describe the variation of texture properties
across different spatial relationships in the analyzed image.

Interpretation from the texture analysis

LBP (local binary patterns): the histogram shows the frequency of each LBP code in the
SEM image of sample 3H (Fig. 11).
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Fig. 11. Histogram of original (a,b) and LBP image (c,d)
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From the above histograms of the original image and the LBP histogram, it's clear
that the LBP histogram is more stretched than the original histogram, representing more
edges on the image, implying non-uniform weld quality. By combining GLCM features
from image filtering and LBP features from the texture analysis, a comprehensive
understanding of the welded image texture can be obtained.

1. Consistency and quality: high homogeneity, high energy, high correlation (from
GLCM), and a peaked LBP histogram with many uniform patterns suggest a high-quality
weld with a smooth, consistent texture.

2. Defects and irregularities: high contrast, low homogeneity, low correlation (from
GLCM), and a flat LBP histogram with many non-uniform patterns can indicate defects,
roughness, or irregularities in the weld texture.

3. Surface properties: detailed examination of specific GLCM features like contrast
and homogeneity, along with the LBP histogram, can help identify specific types of
surface properties, such as the presence of cracks, porosity, or other surface defects.

Interpretations from image segmentation

The image segmentation technique was utilized for separating the features or regions of
the SEM image of sample 2B. Figure 12 shows the result of image segmentation obtained
with the above-mentioned techniques for sample 2B.

Original Image K-means Clustering Segmentation
TR 3 5 A

Graph-Based Segmentation

\
l

Fig. 12. Original SEM image of sample 2B (a) and results of K-means, watershed, and graph-based
image segmentation (b-d)

The splitting of the SEM image into sections and the color gradations give an idea
about the discontinuities in the weld formation, and also the difference in grain
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distribution as a result of the thermal gradients created due to the friction and viscous
heat created between the weld surfaces in the process of ultrasonic welding.

Entropy interpretation

An image with high entropy will show a complex scene with many details and textures,
and its entropy value will be relatively high. Low-entropy image will show a uniform or
simple scene. By comparing these entropy values, the complexity and information
content of the images can be interpreted. Figure 13 represents the entropy values for
samples 2B and 3H.
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Fig. 13. Entropy values for the samples 2B (a) and 3H (b)

In Fig. 13(b), Image 2 has higher entropy (6.8954) compared to Image 1 (6.5769).
This indicates that Image 2 has more complexity or randomness, which may be
interpreted as a strong molecular bonding of the two weld pieces, as is observed in the
weld performance of sample 3H.

Interpretation from the Fourier transform

Fourier transformation conveys information about the spatial frequency content of the
image: Low frequencies represent areas of uniform intensity, representing smooth regions
in the source image. High frequencies correspond to rapid changes in intensity, indicating
edges or textures.

Fourier transform conducted on the SEM images of sample 3H, Fig. 14 indicates the
components for all frequencies, with magnitude reducing for higher frequencies. The
logarithmically transformed image also suggests the dominating directions, one vertical
and one horizontal, in the Fourier image, both passing through the center. This infers a
regular pattern of grain distribution in the baseline SEM image of sample 3H, confirming
the status as obtained with the parameter settings of sample 3H.

The results obtained with the various image processing techniques applied to a
small set of SEM images are observed to be either in sync or in variation with the
destructive testing performance of the weld samples. This observation requires further
analysis of these techniques applied to a larger set of SEM images to arrive at a definite
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Fig. 14. Original SEM image of sample 3H (a) and Fourier transform output images (b-d)

pattern for the optimal selection of image processing techniques for weld defect
detection. The variation in the results may be attributed to the broad range of non-
uniformities in the weld formation due to thermal gradients, which usually result in varied
characteristics. This makes it challenging to develop a generalized method of image-
based defect detection. The characteristics of defects, like their appearance as regions of
low contrast, non-uniform brightness, or irregular shapes, may result in anomalies in their
detection.

Conclusions

Applying image processing techniques in the characterization and defect detection of
weld samples using SEM images has significant potential toimplement automation in the
weld defect detection domain. With further refinement of the analysis and detailed study,
the image processing techniques can be effectively used for defect detection with the
sample SEM images for welds formed with varying parametric levels. Techniques such as
image segmentation, thresholding, and edge detection play a crucial role in isolating
relevant features within complex microstructures, allowing for a more precise analysis of
weld integrity. Furthermore, entropy detection aids in identifying anomalies by
quantifying information variability, which is essential for assessing the quality of welds.
The Fourier transform contributes to identifying periodic structures and defects,
enhancing our understanding of the weld’s mechanical properties. Additionally, texture
analysis provides insights into the surface characteristics and microstructural variations,
crucial for predicting performance under various conditions. Filtering techniques help in
noise reduction, ensuring that the subsequent analysis reflects true structural
characteristics rather than artifacts.
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Collectively, these image-processing techniques enable a comprehensive
assessment of weld quality, facilitating early detection of defects that could compromise
structural integrity. This research underscores the importance of integrating advanced
image processing methods into quality control processes in manufacturing, thereby
enhancing reliability and safety in critical applications. The findings illustrate the
potential for further advancements in the field, opening avenues for automation in defect
detection methodologies. The following interpretations and guidelines can be deduced
from the image processing algorithms discussed above:

1. The impact and significance of an algorithm can be assessed with a comparison of the
original and processed Images.

2. Parameter sensitivity analysis can be effectively made with the variation of the algorithmic
parameters and analysis of the change in results, e.g., threshold values in segmentation.
3. Algorithm performance can be quantitatively evaluated using metrics like precision,
recall, or mean squared error, especially in machine learning and computer vision tasks.

Analysis and interpretation of errors introduced by the algorithm can guide
improvements or alternative approaches. By systematically evaluating these aspects, we
can effectively interpret image processing results from different algorithms, ensuring that
they meet the desired goals and quality standards.
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ABSTRACT

The process of dolomite rock acidizing is considered. Theoretical analysis considers three regimes of the
chemical reaction: face and uniform dissolution and wormhole formation. The general model integrates
two analytical solutions of the face and uniform dissolution and semi empirical model of wormhole
formation. The analytical solutions consider in the paper, appropriate data on semi empirical approach was
extracted from Fredd and Fogler investigations. These solutions had been transferred to the dependence
of skin factor from the specific acid injection rate, slug volume and acid concentration. The approximation
of the dependence involves two Gauss functions and matches to the appropriate asymptotes (low and high
injection rates) and describes the wormhole local minimum in the vicinity of critical injection rate.
The proposed approximation dependence may be used in different codes for a reservoir acid treatment process.
It could be the basis of the process optimization procedure with maximum productivity increase criteria and
determination of optimal impact parameters such as acid slug volume and concentration, injection rate and etc.
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Introduction

The practice of acid stimulation of productivity in carbonate reservoirs began with the
Schlumberger brothers and has a long history [1,2]. The permeability increase of the near
wellbore zone and reduction of the skin factor are the main purpose of the stimulation.

At the end of the last century, Fredd and Fogler [3] established that the ratio of the
reaction rate and the average mass velocity of acid flow determines the reaction type of
an aqueous acid solution with a carbonate matrix. At low velocities, the type of reaction
is "face dissolution” with cavern formation at the inlet surface of a well. At high velocities,
the acid flows through almost all pore channels, dissolving their walls, increasing the
size, and thus increasing the porosity and permeability. This type is often named "uniform
dissolution”. When the ratio of the reaction rate and acid injection is about one, a
dominant channel is formed in the pore space, into which almost all the acid rushes. This
leads to the formation of a channel with a diameter of about 1-5 mm, which is called a
"'wormhole” and the reaction type is named wormhole formation. The authors of the
paper [4] considered new regime which they call channeling.
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Considering the ratio of permeability in the treated area and in the rest part of a
reservoir, then for the first and third reaction types it is several orders of magnitude, for
the uniform dissolution it does not exceed several units. The depth of acid penetration to
a reservoir at the same volumes of injection is maximum for the uniform dissolution and
minimum for the face dissolution type. A general model for predicting these effects or a
general approach integrated all described reaction types is needed to predict, optimize
the process of acid stimulation of carbonate reservoirs and analyze the technological and
economic effect.

The paper proposes the integration of analytical solutions for face and uniform
dissolution [5] and the application of semi-empirical models for the analysis of the
wormhole formation [6-9]. These solutions are the framework of computational
algorithm for the prediction of the volume and concentration of the injected acid slug
influence on the well skin factor after stimulation. Of cause, there are some physical
phenomenon that additionally affect skin factor. For example, permeability modification
under pore pressure variation that considered in [10]. The algorithm bases on available
experimental data [7,11,12] and the type of acid [3,13].

Solution of the face dissolution problem

The investigation begins with the consideration of the face dissolution problem on the
simple example of vertical well stimulation with the open hole completion. Let’s the
reservoir is represented by dolomites and the chemical reaction with hydrochloric acid is
described by the following equation: 4HCL + CaMg(COs), = CaCl, + MgCl, + 2CO; + 2H,0.

Note that the problem of face dissolution refers to the case when the reaction rate
significantly prevails acid flow velocity [14]. Let's proceed to formalization of the
presented problem. The flow pattern during injection of acid solution into a carbonate
formation depends on the well completion method, but is reduced to two types: radial
and linear [15]. Here, the "exotic" spherical flow is not considered, and the flow near a
horizontal well with strong formation anisotropy is reduced to the radial type by
introducing new coordinates that take into account the reservoir anisotropy. Such
simplification is valid for small volumes of acid injection, when its penetration into the
bottomhole zone is limited by meter or less. The problem of an aqueous acid solution
flow in the bottomhole zone of a well with residual (immobile) oil will be considered as
single-phase two-component (1 - carrying water with reaction products, 2 — hydrochloric
acid) flux. Note that radial or quasi-radial flows are observed near vertical, inclined and
horizontal wells, and linear flow is observed near stimulation fractures.

Next, the radial flow pattern will be the focus of consideration; the solution for the
linear flow pattern is sought similarly. The equations of the mass conservation of the acid
and the aqueous solution with the reaction products in a polar coordinate system are as
follows:

3(c@pywh(1-So1)) d(vrcdpywh(1-Sor)) _

at +2 orz —Jh,
a((l_c)wpwh(l_sor)) a(vr(l_c)(bpwh(l_sor)) _
at t2 ar? = #wlh, @

a((1-0)prh) _

o —ug/h.
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Here ¢, (1-¢) are acid mass concentration and agues phase (water + reaction
products); @, h are porosity and specific reservoir thickness; pw, pr are densities of aqua
phase and matrix; v is mass averaged flow rate of aqua phase; S, is residual oil saturation;
J, n,, = 1.26, uxr = 2.26 are chemical reaction rate of acid with matrix, mass ratio of
reaction products and acid consumption, mass ratio of reacting dolomite and acid.

For the face dissolution problem, the reaction rate J tends to infinity and the reaction
itself occurs in a narrow region called reaction front. The movement speed of the reaction
front (complete consumption of the injected acid) is determined by the conditions on the
acid concentration shock from zero to the initial concentration in the injected solution.
Let’s transform the mass balance equations (1) to the conservative form:

a 9 Ppwh(1-Sor)
[ 5 (cOpuh( =S — (1 - )22 ) +2 (oreopuhi=5o0) _

or?

(2)

i% ((1 — O)Ppyh(1 = Syr) + (1 — @) ”WK—””‘> 4227 AA0RASr)) _
The mass balance of the chemical reaction reduces to the equation:
—] +n,] —ug] =00rx, —xuz =1 (3)
The divergent or conservative form of the equations gives the possibility to define
the algebraic conservation equations at the reaction front [16]:

D [c@p,h(1 = S,) = (1 - ) %] —2[v(1 = Sy)rrcPp,h] = 0,

D [(1 —c)@p,h(1—S,,) + (1 —0) ”WK—’Zjh] —2[v(1 = S, )rs (1 — c)Bpy,h] =0, (4)
dt’

where D is reaction front velocity, ry is reaction front coordinate, square brackets denote the

difference of function’s values before and after the reaction front. The boundary conditions of

the considered problem determine the solution of these algebraic differences.

These conditions define the acid injection concentration co and entire matrix dissolution @ =1

on the inlet and the absence of the acid before the reaction front ¢ =0 and initial value of
porosity @ = @,. Accordantly the balance of values before and after the reaction takes the form:
rrvect=¢, 0=1, QF=0Q,=2mh(1-S,)vry, )
r>re: ¢ =0, 0°=0, Q = Q =2mh(1l-S,)v 1s0,.

Here Q, is the flow rate of the injected acid solution into the reservoir, and Q is the
flow rate of the aqueous phase with the reaction products before the reaction front to be
determined. By substituting these values into the algebraic conservation equations at the
reaction front (4), all unknown parameters can be determined:

_ Q 1
T Thoq_ (1-00)pR ’
" (1 SOT)+ COXRPW
(1_Sor)_£_$
Q=0Q,11—-(1-9,) (1_Sor)+(1—(2)0)pR ’ (6)

COXRPW
17 = Dt + 17

For slug volume V with acid concentration ¢, the skin factor after acidizing process could
be determined by the formula connecting the skin factor Sy with the effective well radius rx

1 |4

— rf —

CO*RPW
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Unified dissolution problem

Another ultimate case is the unified dissolution when the acid flow rate is much higher
than reaction rate. In this case filling of porous matrix is not practically accompanied by
chemical reaction and dissolution of carbonate rock begins after saturation of pore space
by acid. At this assumption, acid penetrates to the radius r- of the near wellbore zone:

R A
T, = \/nhﬂo(l—sor) + 1. (8)

Thus, the reaction proceeds without convection and is determined by the equations
in the saturated area:

d(c(bpw(l_sor)) _
( dt =/
d((1-c)Bpw(1-Sor)
( dt ) = J'fW]) (9)
d((1-9)p
% — _%R]'

Note that J is the volumetric reaction rate with SI dimension kg / (m?®s), i.e. takes
place in a unit volume of the porous medium. In experimental studies, the reaction rate
is determined by volumetric method (by measurement of carbon dioxide release) [17] or
on a rotating disk installation [2,18,19]. In the first case, the dimension of reaction rate
coincides with J, but the method works in the region of relatively low pressures (up to
70 atm). In the second method, the surface reaction rate j with the dimension kg/(m?s)
is determined. To use it in the model, one should multiply j by the specific surface of the
reservoir matrix A,. The specific surface of the porous matrix is determined by the
generalized Kozeni-Karman formula [20]:

@o _Qo
Ag =0 (1 —5,,) (10)

Here k, is matrix permeability, B is the empirical parameter, which value according
Kotyahov [21] investigations varies in the interval 1 - 3.5-10° for practical calculations
([ko] = um?, [@,] = shares of units.). For certainty the value B = 2.5-10° was used in further
calculations. Note that there are some new investigations connecting specific surface
with porosity and permeability [22] during acidizing process.

The rate of surface or heterogeneous reaction is written as j = Zc"p,,, where Z is
the kinetic reaction constant depending on thermodynamic conditions; n is the reaction
order. In the general case of heterogeneous reactions order may be a fractional value
(these parameters are determined in an experimental installation with a rotating disk).
Reactions of zero and first orders are usually considered [17,23].

] =ZAsc"py,. (11)

First, let’s transform the system (6), considering the densities independent of time
and neglecting the change in water saturation due to the chemical reaction:

ag , dc J
¢ dt + dt @ o pw(l_sor)’
_ 9P _des  rw]
Q-0 2= sy (12)
ae _ xr]

dt PR
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For the zero reaction order the solution of the system under initial conditions t =0,
€ =¢, @ =0, allows to obtain full time of the acid consumption, as well as the matrix
porosity after consumption:

(= 750 ,®12®0(1+Z_0)'C*:p—R 7 = PR (13)

Co+Cs urpw(1=Sor)’ C.HRZSs

For the first order of reaction rate, the solution procedure is more complex but it is
obvious that the value of final reservoir porosity is the same as for zero reaction order.
However, the formation of the final porosity occurs only asymptotically in time.

The dynamics of acid consumption for both orders of reaction rates are presented
as follows equations:

-1

1-(2241 -1 -1

for the zero order lnM + ((C—" + 1) - (3 + 1) ) =L
(1—(C—i+1) ) C C T

(%) o0yt o8 %

G T Mo —X) =5 X =0 X0 =3

The obtained dependencies of acid concentration from time are illustrated on Fig. 1.

(14)

for the first order In

?

o' /
0.8

il
N/
/

t
0 - -
0 2 4 6T

Fig. 1. Dependence of rock porosity from time during acidizing process for the zero and the first reaction order

The final time of acid consumption plays a significant role in the process technology
because it defines the delay time for the reaction after acid injection. As for zero reaction
order it is determined analytically, for the first order it can be only estimated, for example
from Fig. 1 as t; = 27.

According to the Kozeni-Karman theory, for each rock of the same type, there is an
unambiguous relationship between rock porosity and permeability [20]. Labrid's
experiments [2] showed that a similar relationship could be used to relate rock porosity
and permeability in the carbonate acidizing process:

:—0 - K (Qﬂ)6 (15)



74 R.M. Ganopolskij, K.M. Fedorov, A.E. Folomeev

The Hawkins formula [20] could be used for a skin factor determination. For this
purpose, Eq. (15) should be applied for calculation of rock permeability determination at
the value of final porosity after acidizing process. This procedure gives:

Su=(%2-1)m (:—W) (16)

Application of semi empirical model for calculation of wormhole formation

Semi empirical approach to wormhole formation bases of the results of the experiments
of acid injection to a small cylindrical carbonate rock core [6,24,25]. It was found that
under critical flow rate per unit surface g, the volume of acid until breakthrough takes
the minimum value. This value is usually transferred to the dimensionless view by
division on the core pore volume and is labeled as PV.. The dependence of PV, on the
specific value of flow rate g [12,26] with definitions of critical values is illustrated on the
Fig. 2. The critical values are considered as the conditions of wormhole formation.

10

Data fit
® Experimental data

-
<
2

Indiana limestone

1.5-in. diameter by 8-in. length
Average porosity: 15%
Average permeability: 6mD

15 wt% of HCI at 25°C

0.1 1 Cer 10
Injection rate g, cm/min

Injected acid volume to
breakthrough PV,
P

0.1

Fig. 2. The dependence of injected acid volume to breakthrough PV, from the injection rate with
determination of the critical values [12]

The determination of the wormhole’s length in practice bases on the proposition of
its formation similarity in experiments and in near wellbore area [2,23]:
_ Qert 14 (17)

Wh ™ py..sp ~ PV,2nhr,®
where [, is the effective wormhole length. The real wormhole length differs from the
effective value because of its fractal nature [8,23]. Daccord [23,26,27] connected the
fractal structure of wormholes with the definition of effective length by the similar
formula (17):
1

Vldf—l dr
lwn = (PVCTZn'hrWQ)) f’ (18)
where dfis the fractal dimension (1.5 < d;< 1.7), fis the parameter of wormholes, defined
from experiments. Application of Hawkins formula defines the expression of skin factor
after acidizing of carbonate at critical injection rate:

Syn = ("7 - 1) In (lwhﬂ) (19)

Tw
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where the [, is extracted from Eq. (18).

The permeability of stimulated by wormholes zone is significantly higher than
untreated reservoir. Daccord [28], Huzin [29] considered experimental data and proposed
to neglect the ratio k, / k thus simplified the skin determination:

S,n=—In (M) (20)

Tw

General model formulation

The obtained solutions define the values of skin factors for all types of reactions. For
example, consider the reservoir with typical characteristics: effective formation thickness
h=20m, porosity @,=0.12, reaction ratio », = 1.26, residual oil saturation S, =0.3,
Labrid’s coefficient K =1.7, well radius r, =0.1 m, initial acid concentration ¢, = 0.15,
densities of rock and solution pr = 2804 kg/m?*, pw= 1057 kg/m?, injected slug volume
V=60 m*, wormhole formation critical values g. = 1.4 cm/min, PV, = 12.4. Substituting
these data to Egs. (7), (16), (20) the following values of skin factors can be obtained:
Sg= —2.27, S, = —3.4, §,=-198. (21)

If the wormhole formation regime is extracted from the analysis of the dependence
of skin factor from flow rate the transformation between of face and unified dissolution
should be connected by monotonous function. As an example, this function may be
approximated by Gauss formula with the height of the curve's peak |Sf — Su| and half
width corresponding by kinetic regime g [30]:

2

Suf = Su+ (Sf —Syu) exp (— 5_}‘2) . (22)

Here g« is the boundary rate of kinetic regime. This function has the appropriate

asymptotes q. = 0, q.- = oo. At low flow rate, it gives the independent from rate skin
factor. At high flow rates, the dependence tends to the value S,, with weak dependence

, cm/min
a 2

-3.5

Fig. 3. The supportive (22) (dashed dotted line) and the general (23) (solid line) models of the dependence
of skin factor and specific acid injection rate with correct asymptotes and local wormhole minimum close
to the experimental data
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from rate. The difference (Sy — S,) may be positive or negative and depends on reservoir
parameters.

The wormhole formation regime is manifested in the relatively narrow interval of
flow rate [7,31] and may be implanted by another Gauss function:

_ 2
Sg = Sur = (Sp = Sun) exp (—15220), (23)

where Ag is the half width of the specific flow rate of wormhole formation regime.
Figure 3 also illustrates the general approximation (23) of the model of reservoir acid
treatment. The function on Fig. 3 corresponds to the model reservoir data Eq. (21).

The proposed approximation formula may be used in different codes for a reservoir
acid treatment process. It could be the basis of the process optimization procedure with
maximum productivity increase criteria and determination of optimal impact parameters
such as acid slug volume and concentration, injection rate and etc.

Note that the general model involves the main technological parameters: injection
rate, slug volume and acid concentration through Egs. (7), (8), (14), (18). For instance, the
influence of the volume of injected acid slug on skin factor is shown in Fig. 4. From the
obtained solutions, critical rate does not dependent from the slug volume and skin factor
is proportional to -ln(V ¥-1), which illustrates Fig. 4. On the other hand, the critical rate
depends on concentration and acid concentration growth shifts the graph to the left this
feature is shown in Fig. 5.

q, cm/min g, cm/min
0 1 2 3 4 0 1 2 3 4
-1.5 -1.5
20 e — 2 —
15m?3 L — %,,f—
s - s [\ /
25 25
30 m3

9% /
3,
45 m 3

_3.0 \/
12%
60 m? 15%

35 -35
Fig. 4. Calculations of the influence of acid slug Fig. 5. Skin factor dependence from acid
volume on the skin factor behavior. Volume values concentration. Concentration values are indicated
are indicated on graphs on graphs
Conclusions

The solutions of the problems of face and unified dissolution of carbonate reservoir due
to the injection of acid were obtained. For the wormhole formation process the corrected
Gong’s model was used. All solutions were transferred to dependence of skin factor from
process parameters.

The general model integrates the obtained solutions and Gong model for the
prediction of skin factor dependence from injection rate, acid concentration and slug
volume for the whole intervals of parameters variation. The model illustrated on the
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example of stimulation of vertical well but can be easily transferred to the other types of
well completion and acids.

The developed model matches to the appropriate asymptotes (g«—0, g-—°) and
describes the wormhole local minimum in the vicinity of critical injection rate.

Note that since there is no analytical solution (1) for arbitrary speed,
a dependency (22) should be obtained from numerical solution [32]. The development of
wormhole formation theory will give the framework of approximation (23) improvement.

CRediT authorship contribution statement

Rodion M. Ganopolskij : writing - section Unified dissolution problem, all
calculations; Konstantin M. Fedorov :writing - the general idea of the investigation,
original draft; Alexey E. Folomeev . writing - section Solution of the face

dissolution problem, review & editing.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Ibragimov GZ, Khisamutdinov NI. Handbook on application of chemical reagents in oil recovery. Moscow:
Nedra Publisher; 1983. (In Russian)

2. Schechter RS. Oil Well Stimulation. Englewood Cliffs: Prentice Hall; 1993.

3. Fredd CN, Fogler HS. Optimum Conditions for Wormhole Formation in Carbonate Porous Media: Influence
of Transport and Reaction. SPE Journal. 1999;4(3): 196-205.

4. Menke HP, Maes J, Geiger S. Channeling is a distinct class of dissolution in complex porous media.
Scientific Reports. 2013;13:11312.

5. Fedorov KM. Unsteady flow through a porous medium in the presence of chemical reactions. Fluid
Dynamics. 1987;22: 70-75.

6. Fredd CN, Fogler HS. The kinetics of calcite dissolution in acetic acid solutions. Chemical Engineering
Science. 1998;53(22): 3863-3874.

7. Fredd CN, Fogler HS. Influence of Transport and Reaction on Wormhole Formation in Porous Media. AIChE
Journal. 1998;44(9): 1933-1949.

8. Gong M, El-Rabaa AM. Quantitative Model of Wormholing Process in Carbonate Acidizing. In: Proceedings of the
SPE Mid-Continent Operations Symposium, 28-31 March 1999, Oklahoma City, Oklahoma. 1999. p.SPE-52165-MS.
9. Ganopolskij RM, Fedorov KM, Gilmutdinov BR, Folomeev AE. Development of the semi empirical
approach on wormhole formation in carbonates. Materials Physics and Mechanics. 2024;52(5): 119-126.

10. Zaitsev MV, Mikhailov NN. No-nadditive skin-factor in case of a formation complex damage. Oilfield
Engineering, scientific and technical journal. 2019;1: 36-38.

11. Panga MK, Ziauddin M, Balakotaiah V. Two-scale continuum model for simulation of wormholes in
carbonate acidization. AIChE Journal. 2005;51(12): 3231-3248.

12. Dong K, Zhu D, Hill AD. Theoretical and Experimental Study of Optimal Injection Rates in Carbonate
Acidizing. SPE Journal. 2017;22(3): 892-901.

13. Alhamad L, Alrashed A, Al Munif E, Miskimins J. A review of organic acids roles in acidizing operations
for carbonate and sandstone formations. In: Proceedings of the SPE International Conference and Exhibition
on Formation Damage Control 2020, 19-21 February 2020, Lafayette, USA. Lafayette: Society of Petroleum
Engineers (SPE); 2020. p.199291.

14. Kalia N, Balakotaiah V. Modeling and Analysis of Wormhole Formation in Reactive Dissolution of
Carbonate Rocks. Chemical Engineering Science. 2007;62(4): 919-928.


https://doi.org/10.2118/56995-PA
https://doi.org/10.1038/s41598-023-37725-6
https://doi.org/10.1007/BF01050852
https://doi.org/10.1007/BF01050852
https://doi.org/10.1016/S0009-2509(98)00192-4
https://doi.org/10.1016/S0009-2509(98)00192-4
https://doi.org/10.1002/aic.690440902
https://doi.org/10.1002/aic.690440902
https://doi.org/10.2118/52165-MS
https://doi.org/10.2118/52165-MS
https://doi.org/10.18149/MPM.5252024_12
https://doi.org/10.30713/0207-2351-2019-1-36-38
https://doi.org/10.30713/0207-2351-2019-1-36-38
https://doi.org/10.1002/aic.10574
https://doi.org/10.2118/178961-PA
https://doi.org/10.2118/199291-MS
https://doi.org/10.2118/199291-MS
https://doi.org/10.1016/j.ces.2006.10.021
https://orcid.org/0000-0002-7682-9830
https://www.scopus.com/authid/detail.uri?authorId=59391835900
https://orcid.org/0000-0003-0347-3930
https://www.scopus.com/authid/detail.uri?authorId=7006284104
https://orcid.org/0000-0001-7790-9958
https://www.scopus.com/authid/detail.uri?authorId=38661369700
https://www.researchgate.net/profile/Ae-Folomeev

78 R.M. Ganopolskij, K.M. Fedorov, A.E. Folomeev

15. Gringarten AC, Dawe RA, Wilson DC. Interpretation of well test transient data. In: Wilson DC, Dawe RA.
(eds.) Developments in Petroleum Engineering 1. London: CRC Press; 1985.

16 Gelfand IM. Several Problems of the quazi linear equations. Achievements in Mathematical Sciences.
1959;14(2): 87-158.

17. Stromberg AG, Semchenko DL. Physical chemistry. Manual for Chemistry Universities. Moscow: High School
Publisher; 1999. (In Russian)

18. Taylor KC, Nasr-El-Din HA. Measurement of Acid Reaction Rates with the Rotation Disk Apparatus.
Journal of Canadian Petroleum Technology. 2009;48(6): 66-70.

19. Fan Y, Peng H, Chen G, Peng J, Han H, Qin Y, Liu D. Experimental study of the influences of different
factors on the acid-rock reaction rate of carbonate rocks. Journal of Energy Storage. 2023;63: 107064.

20. Willhite PG. Flooding of formations. Moscow: Institute for Computer Studies, Regular and Chaotic
Dynamics; 2009. (In Russian)

21. Kotyakhov Fl. Physics of oil and gas reservoirs. Moscow: Nedra; 1977. (In Russian)

22. Mohammadi M, Shadizadeh SR, Manshad AK, Mohammadi AH. Experimental study of the relationship
between porosity and surface area of carbonate reservoir rocks. Journal of Petroleum Exploration and
Production Technology. 2020;10: 1817-1834.

23. Buijse MA. Understanding wormholing mechanisms can improve acid treatments in carbonate
formations. SPE Production & Facilities. 2000;15(3): 168-175.

24. Daccord G. Chemical dissolution of a porous medium by a reactive fluid. Physical Review Letters. 1987;58(5): 479.
25. Betelin VB, Galkin VA, Shpilman AV, Smirnov NN. Digital Core Simulator - A Promising Method For
Developing Hard-To-Recover Oil Reserves Technology. Materials Physics and Mechanics. 2020;44(2): 186-209.
26. dos Santos Lucas CR, Neyra JR, Araujo EA, da Silva DNN, Lima MA, Ribeiro DAM, Aum PTP. Carbonate
acidizing - A review on influencing parameters of wormholes formation. Journal of Petroleum Science and
Engineering. 2023;220: 111168.

27.Daccord G, Touboul E, Lenormand R. Carbonate Acidizing: Toward a Quantitative Model of the
Wormholing Phenomenon. SPE Production Engineering. 1989;4(1): 63-68.

28. Daccord G, Lietard O, Lenormand R. Chemical dissolution of a porous medium by a reactive fluid —II.
Convection vs reaction, behavior diagram. Chemical Engineering Science. 1993;48(1): 179-186.

29. Huzin R, Shevko N, Melnikov S. Improving Well Stimulation Technology Based on Acid Stimulation
Modeling, Lab and Field Data Integration. In: Proceedings of the SPE Russian Petroleum Technology Conference,
RPTC 2019, 22-24 October 2019, Moscow. Moscow: Society of Petroleum Engineers (SPE); 2019. p. 196976.
30. Levich VG. Physico-chemical hydrodynamics. Moscow: PhysMatGiz Publisher, 1959. (In Russian)

31. Golfier F, Zarcone C, Bazin B, Lenormand R, Lasseux D. On the ability of a Darcy-scale model to capture
wormhole formation during the dissolution of a porous medium. Journal of Fluid Mechanics. 2002;457:213-254.
32.Jia C, Sepehrnoori K, Huang Z, Zhang H, Yao J. Numerical studies and analysis on reactive flow in
carbonate matrix acidizing. Journal of Petroleum Science and Engineering. 2021;201(8): 108487.


https://doi.org/10.4324/9780203973653
https://doi.org/10.2118/09-06-66
https://doi.org/10.1016/j.est.2023.107064
https://doi.org/10.1007/s13202-020-00838-z
https://doi.org/10.1007/s13202-020-00838-z
https://doi.org/10.2118/38166-MS
https://doi.org/10.1103/PhysRevLett.58.479
https://doi.org/10.18720/MPM.4422020_4
https://doi.org/10.1016/j.petrol.2022.111168
https://doi.org/10.1016/j.petrol.2022.111168
https://doi.org/10.2118/16887-PA
https://doi.org/10.1016/0009-2509(93)80293-Y
https://doi.org/10.2118/196976-MS
https://doi.org/10.2118/196976-MS
https://doi.org/10.1017/S0022112002007735
https://doi.org/10.1016/j.petrol.2021.108487

MATERIALS PHYSICS AND MECHANICS RESEARCH ARTICLE

Submitted: December 5, 2024 Revised: February 4, 2025 Accepted: July 8, 2025

Influence of alkali treatment and fiber percentage on the
mechanical and thermophysical properties of gypsum composites
filled with hemp fiber

K. Sunil Ratna Kumar *"=', S.B.R. Devireddy -, T. Gopala Rao 2"/,

B. Sudheer Kumar 3"“, K. Bala Prasad *

1 SIR C R Reddy College of Engineering, Vatluru, Andhra Pradesh, India

2 St. Ann's College of Engineering and Technology, Andhra Pradesh, India
3 Lakireddy Bali Reddy College of Engineering, Andhra Pradesh, India

4 RVR& JC College of Engineering, Andhra Pradesh, India

*sivabhaskararao@gmail.com

ABSTRACT

The influence of alkali treatment and fiber percentage on the physical, mechanical and thermal properties
of hemp fiber reinforced gypsum composites are examined. Short hemp fibers (15 mm in length) were
subjected to alkali treatment using 5, 10, and 15 wt. % NaOH concentrations for 5 h. Both untreated and
NaOH treated hemp fiber reinforced gypsum composites were fabricated with fiber percentages of
3,6,9,12,and 15 vol. % through the hand layup process. The fabricated composite samples were evaluated
for density, water absorption, compressive strength, flexural strength, and thermal conductivity. The
composite with 10 wt. % NaOH treated fibers, and 12 vol. % fiber content showed significant improvements,
with a 337 % increase in flexural strength, a 136 % increase in flexural modulus, and a 109.8 % increase in
compressive strength compared to pure gypsum. The results for thermal conductivity indicate that NaOH
concentration has a minimal effect on enhancing thermal resistance compared to the influence of fiber
percentage. SEM analysis of untreated and treated fibers revealed surface modifications and changes in
fiber characteristics due to NaOH treatment. The results showed that stronger NaOH treatments and higher
fiber content negatively impacted fiber suitability, stiffness, and overall composite properties.
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Introduction

Over the last decade, energy consumption in building sector has steadily increased due
to rising comfort standards and population growth. The need for environmentally friendly
and energy efficient materials to reduce energy consumption is critical as global energy
reserves become increasingly strained. This has driven research into the development of
thermal energy storage solutions, including electrochemical energy storage, latent heat
storage, and sensible heat storage [1,2]. Gypsum based materials are widely used in
commercial, residential, and industrial buildings for partitions, wall panels, and boards.
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These materials have gained prominence as unique construction materials due to their
affordability, lightweight properties, ease of application, and abundant availability [3].
The primary drawback of gypsum as a building material is its brittleness and heaviness.
This limitation can be migrated by mixing gypsum with synthetic fibers, mineral particles
and natural fibers [4]. Significant research has been conducted on the development of
gypsum composites reinforced with natural fibers, including notable examples such as
cellulose, hemp, palm, short sisal, and straw fibers [5-7]. Nindiyasari et al. [8] investigated
the mechanical properties of cellulose fiber-reinforced gypsum composites and found
that the addition of reinforcement increased the Young’s modulus, compressive strength,
and bending strength of the composites. This improvement was attributed to the fibers'
ability to fill the voids within the composites. Selamat et al. [9] evaluated the thermal
and mechanical performance of gypsum composites reinforced with rice husk and oil
palm trunk fibers. The results indicated that the composite with 20 % fiber loading
demonstrated improved thermal stability and flexural strength. Tesarek et al. [10]
assessed the compressive strength of gypsum composites reinforced with recycled tire
wires. Their study revealed that composites with large voids exhibited lower compressive
strength due to damage localization in poorly compacted areas. Amuthakkannan et al. [11]
examines the effect of fiber content on the mechanical properties of the short basalt fiber
reinforced composites and revealed that composites with 10 mm fiber length exhibits
better properties than other lengths of fiber.

In this way, natural reinforcements in gypsum matrices are increasingly important
for the design and construction of buildings, particularly as insulation materials. Among
various natural fibers, hemp fibers have demonstrated strong performance as a
sustainable reinforcement, resulting in composites with enhanced physical and
mechanical properties [12]. Several factors influence the properties of gypsum composite
materials, including the properties of the individual constituents, fiber geometry, the
orientation and distribution of the fibers, the fiber-matrix interface, as well as the fiber,
size, shape, and the methods used for mixing and processing [13]. Previous investigations
highlight that weak bonding at the interface between the reinforcement and matrix is a
major drawback, primarily due to poor wetting between the matrix and natural fibers. As
a result, numerous studies have focused on both physical and chemical treatments (such
as mercerization, alkalization, acetylation and silane) of fibers to improve fiber-matrix
adhesion, reduce moisture absorption, and enhance surface roughness [14-17]. Shejkara
et al. [18] investigated the effect of NaOH treatment on the physical and mechanical
properties of micro-sized walnut shell particulate (WSP) epoxy composites. Their findings
indicated that an excessive NaOH concentration in the aqueous solution slightly
degraded the material's properties. Yadav et al. [19] investigated the influence of NaOH
treatment on the mechanical properties of sisal fiber-reinforced epoxy composites. Their
analysis revealed that composites incorporating surface-modified sisal fibers with a 2M
NaOH concentration demonstrated superior mechanical properties compared to other
tested variants. In recent years, hemp fiber has garnered significant attention from
researchers worldwide due to its relatively short cropping cycle and ability to thrive in
diverse environments. It is an important natural fiber, extensively used in the production
of composites for various industrial and construction applications [20]. With a tensile
strength of up to 1110 MPa, hemp fiber is one of the strongest among all bast fibers [21].
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Charai et al. [22] demonstrated that incorporating hemp fibers into gypsum-based
composites enhanced both the thermal insulation and bending behavior of the
composites.

Numerous studies on natural fiber composites employ short fibers (typically ~ 15 mm
in length) to ensure compatibility with standard manufacturing techniques while
optimizing mechanical performance after alkali treatment [19,23]. lucolano et al. [24]
successfully produced gypsum composites reinforced with hemp and glass short fibers to
enhance the mechanical properties of the gypsum material. Research on hemp fiber
reinforced gypsum (HFRG) composites with alkali treated fibers is not reported in the
literature. This study aims to investigate the effects of different alkali concentrations
(5, 10, and 15 wt. %) and fiber volume percentages (3, 6, 9, 12, and 15 vol. %) on HFRG
composites. The compressive strength, flexural strength, thermal conductivity, density,
and water absorption of the composites with alkali treated fibers are compared to those
of untreated HFRG composites.

Materials and Methods
Materials

In this study, hemp fibers and a gypsum matrix were used to fabricate HFRG composite
materials. Hemp fibers were obtained from the local sources and chopped to an average
length 15 mm. The physical, mechanical, and thermal properties of the hemp fibers are
presented in Table 1. Gypsum, used as the matrix material, was in powder form.
The B-gypsum powder (CaS04-0.5H,0) utilized in this study was procured from Fiber
Source India. The properties of the gypsum used are presented in Table 2.

Table 1. Properties of hemp fiber

Property Value
Density, g/cm? 1.47
Tensile strength, MPa 200-240
Tensile modulus, GPa 3.5-40
% elongation 2-4
Cellulous content, % 74.4
Hemicelluloses, % 17.9
Lignin content, % 37
Moisture content, % 12

Table 2. Properties of gypsum

Property Value
Compressive strength, MPa 2.8
Flexural strength, MPa 15

Dry density, kg/m?* 800-1200
Workability time, min 65-95
Final setting time, min 140

1000 pm, % passing 95

150 pm, % passing 60
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Fiber treatment

The chopped hemp fibers were soaked separately in three different alkali concentrations
(5, 10, and 15 wt. % NaOH). The fibers were immersed in the NaOH solutions for 5 h at
room temperature to ensure better penetration of the solution into the fibers, as
recommended [25,26]. The treated fibers were removed from the alkali solution and
thoroughly rinsed multiple times with running tap water to remove any excess NaOH
from the fiber surface. The cleaned hemp fibers were then dried in an oven at 70 °C for
4 h to eliminate any remaining moisture content.

Composites preparation

The composite specimens were fabricated by varying the volume percentage of hemp fiber
(3,6,9,12,and 15 vol. %) and using different NaOH concentrations (0, 5, 10, and 15 wt. %).
The mix proportions of hemp and gypsum used to make the composite samples are
provided in Table 3. The hemp fiber and gypsum matrix were initially mixed for 3 min to
get a homogenized dry mixture and then water is added. The ratio of water and gypsum
was maintained 0.6 to achieve gypsum slurry. The slurry was poured into three open
molds of different shapes, with dimensions of 100 x 100 x 40, 160 x 40 x 40, and
120 x 120 x 20 mm?>. After 24 h, the composite samples were removed from the molds
and stored at room temperature for 28 days prior to testing. The fabricated gypsum
composite specimens were shown in Fig. 1.

Table 3. Mixed proportions of the NaOH concentration, hemp fiber, and gypsum

Composite NaOH concentration, wt. % Hemp fiber, vol. % Gypsum, vol. %
c1 0 0 100
C2 3 97
C3 6 94
c4 0 9 91
C5 12 88
Cé6 15 85
c7 3 97
C8 6 94
9 5 9 91

c10 12 88
C11 15 85
C12 3 97
C13 6 94
C14 10 9 91
C15 12 88
Cle 15 85
c17 3 97
C18 6 94
Cc19 15 9 91
C20 12 88
C21 15 85
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Fig. 1. Fabricated HFRG composite specimens

Physical properties of gypsum composites

The experimental density of the hemp fiber-reinforced gypsum composites was determined
using the Archimedes method in accordance with ASTM D792 standards. The composite
samples were prepared with dimensions of 100 x 100 x 40 mm?. By knowing the mass m
and volume V of the composite samples, the density p was calculated using Eq. (1):

m
p="1 (1)

The water absorption percentage of the fabricated composite specimens was measured
in accordance with the ASTM D2842-01 standard, using samples with dimensions of
100 x 100 x 40 mm?. The water absorption value was calculated using Eq. (2):

Water absorption (%) = (W;/—WO) x100, (2)
0

where W, is the initial weight of specimen and W is the weight of specimen after
absorption of water.

Mechanical properties of gypsum composites

The compressive and flexural properties of untreated and treated HFRG composites were
evaluated in accordance with TS EN 13279-2 standards. Both tests were conducted using
the same universal testing machine. Composite specimens with dimensions of
160 x 40 x 40 mm?* were used for the compressive and flexural tests. The experiments
were conducted at room temperature with a crosshead speed of 2 mm/min. The flexural
strength o and modulus Ef., of the samples were calculated using Egs. (3) and (4):

7= 15 x P () ®)

bt2 \mm?

Epren= 22 (), 4

mm?
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where L is the length of the span, P is the maximum load supported by the sample, m is
the slope of the tangent to linear portion of the load-deflection curve, b and t are the
width and thickness of the sample respectively. The composite specimen subjected to the
compressive and flexural loading is shown in Fig. 2. For each type of composite, five
specimens were tested to evaluate the compressive and flexural properties, and the
average values were reported.

() (b)
Fig. 2. composite specimen subjected to (a) compressive loading and (b) flexural loading

Thermal conductivity of gypsum composites

The thermal conductivity of HFRG composite specimens was determined using the
steady-state hot plate method, following the procedure outlined in European Standard
EN 13279-2. The composite specimens prepared with dimensions of 120 x 120 x 20 mm?®.
The samples were placed between a cold plate and a hot plate, and the thermal
conductivity was measured based on the temperature difference and heat flux, as

indicated in Eq. (5):

_ k(T1-Tp)
_ k) )

where k is the thermal conductivity (W/m-K), g is the heat flux (W/m?), L is the thickness
of the sample (m) and T;-T; is the difference in temperature (°C or K).

Scanning electron microscopy

To examine the fiber surface before and after alkali treatment, the microstructure of the
hemp fibers was analysed by using JEOL-JSM-6390 model scanning electron microscope
(SEM). To perform this study, the hemp fiber specimens were gold coated to improve the
electrical conductivity for attains good quality photographs.

Results and discussion
Density

The density of a composite is a key factor influencing its mechanical properties. The
experimental density of the composite depends on several factors, including interfacial
bonding, void content, and the relative proportions of matrix and fiber. The measured
density of neat gypsum was found to be 1.162 g/cm?. Figure 3 illustrates the impact of
NaOH treatment and fiber percentage on the experimental density of HFRG composites.
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It can be observed that NaOH treatment slightly improved the density of untreated
gypsum composites. The highest density values were recorded for composites treated
with 10 wt. % NaOH, followed by those treated with 15 wt. % NaOH, 5 wt. % NaOH, and
untreated fiber-reinforced gypsum composites. The figure shows that the measured
density of the fabricated composite specimens increases with a higher fiber percentage,
as expected, due to the higher density (1.47 g/cm>) of the hemp fiber compared to that
of the gypsum matrix (1.162 g/cm?®). The results indicate that as the hemp fiber
percentage increases from 0 to 12 vol.%, the measured density increases by 4.22, 4.99,
593, and 5.16 % for composites treated with untreated, 5, 10, and 15 wt. % NaOH,
respectively.

Untreated

5 wt.% NaOH
10 wt.% NaOH
HEE 15 wt.% NaOH

1.24

—
b2
=

—
—_
o0

Measured density (g/ cm3)

I
—
[=))

9 12
Fiber percentage (Vol.%)

Fig. 3. Density of HFRG composites

Water absorption

Water absorption is another important physical property that depends on various factors,
including humidity, void content, fiber percentage, and temperature [27]. The maximum
water absorption percentage of neat gypsum is 29.02 %. Figure 4 illustrates the effects
of fiber percentage and NaOH treatment on the water absorption of HFRG composites.

Water uptake rapidly increases in the early stages and slows down as immersion
time increases. It was observed that untreated hemp/gypsum composite samples
exhibited the highest water absorption percentage compared to alkali treated
hemp/gypsum composites. The maximum water absorption value observed for the
untreated composites with a 15 vol. % fiber percentage after 216 h was 44.84 %. This was
followed by 41.8 % for composites treated with 5 wt. % NaOH, 41.24 % for those treated
with 15 wt. % NaOH, and 40.16 % for composites treated with 10 wt. % NaOH. The
reduction in water absorption percentage after alkali treatment is attributed to improved
chemical bonding between the reinforcement and the matrix. These results are consistent
with those reported by previous researchers [28,29].
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Fig. 4. Water absorption of HFRG composite samples with hemp fiber (a) 3 vol. %, (b) 6 vol. %, (c) 9 vol. %,
(d) 12 vol. %, and (e) 15 vol. %

Compressive strength

Figure 5 shows the impact of fiber percentage and alkali treatment on the compressive
strength of HFRG composite specimens. The compressive strength of pure gypsum was
found to be 4.75 MPa. The compressive strength of the fabricated HFRG composite
samples was found to increase with the fiber percentage up to 12 vol. % before
decreasing at 15 vol. %. For composites with 12 vol. % fiber percentage, the compressive
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Fig. 5. Compressive strength of HFRG composites

strength increased by 85.68, 98.52, 109.8, and 94.73 % compared to neat gypsum, with
NaOH concentrations of untreated, 5, 10, and 15 wt. %, respectively. Hemp fiber has a
higher modulus, and NaOH treatment enhances the interfacial bonding between the
hemp fiber and gypsum. Up to a 12 vol. % fiber percentage, the stress required to achieve
the same deformation is relatively higher. At a 15 vol. % fiber percentage, the decrease
in compressive strength is attributed to increased porosity in the gypsum from air
entrainment and reduced adhesion between the hemp fibers and the gypsum [30].
Compared to untreated hemp/gypsum composites, those treated with NaOH exhibited
better compressive strength. As the alkali treatment concentration increased from 5 wt. %
to 10 wt. %, compressive strength improved. However, a decrease in compressive
strength was observed at 15 wt. % NaOH treatment. On the other hand, the decrease in
compressive strength of the 15 wt. % NaOH-treated hemp/gypsum composite is
associated to the removal of binding materials from the fibers and surface damage caused
by the strong NaOH concentration.

Flexural properties

Figures 6 and 7 present the average flexural strength and modulus of HFRG composites
obtained from flexural tests at different fiber volume percentages (3, 6, 9, 12, and 15 %)
and varying NaOH concentrations (0, 5, 10, and 15 %). The flexural strength and modulus
of neat gypsum were measured at 2.48 and 462 MPa, respectively. The flexural properties
of the composite specimens improved with increasing fiber content up to 12 vol. %, but
a further increase to 15 vol. % resulted in a decline. At 12 vol. % fiber content, the
maximum flexural strength of the HFRG composite increased to 9.15, 10.07, 10.84, and
10.36 MPa for NaOH concentrations of untreated, 5, 10, and 15 wt. %, respectively. The
improvement in flexural properties up to 12 vol. % fiber content is due to proper bonding
between the reinforcement and matrix phases, along with more fibers filling the voids in
the composite. As the fiber content increases from neat gypsum to 12 vol. %, the flexural
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modulus of the composites rises by 105, 118, 136, and 123 % for NaOH concentrations
of untreated, 5, 10, and 15 wt. %, respectively.

The flexural strength and modulus of alkali-treated HFRG composite specimens
were found to be higher than those of untreated specimens. The primary reason for the
improvement in strength and modulus with 10 wt. % NaOH treatment of hemp fibers is
the removal of waxy substances and impurities from the fiber surface. This enhances
mechanical interlocking and adhesive bonding between the reinforcement and the
matrix, leading to better overall performance [31]. Among the tested samples, the
composite with 10 wt. % alkali treatment and 12 vol. % fiber content exhibited the
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highest values, with a flexural strength of 10.84 MPa and a flexural modulus of 1091 MPa.
These values represent an increase of 18.4% in flexural strength and 15% in flexural
modulus compared to the untreated HFRG composite. The figures also show that
increasing the alkali concentration to 15 wt. % results in a decrease in flexural properties
compared to 5 and 10 wt. %. This can be attributed to the excessive NaOH concentration,
which removes lignin and hemicellulose from the fibers, thereby reducing the flexural
properties. Similar findings have been reported by several researchers for different NaOH
concentrations and fiber percentages [32-34].

Thermal conductivity

The thermal conductivity of pure gypsum was measured at 0.45 W/m-K. Figure 8 depicts
the thermal conductivities of the fabricated HFRG composite specimens with varying
NaOH concentrations and fiber volume percentages. The figure shows that the addition
of hemp fibers into the gypsum matrix reduces the thermal conductivity of the composite
material. With hemp fiber volume percentages ranging from 0 to 15 vol. %, the thermal
conductivity decreased compared to neat gypsum by 13.55,12.88,12.22, and 11.55 % for
NaOH concentrations of untreated, 5, 10, and 15 wt. %, respectively. This indicates that
the addition of natural fibers to the matrix material significantly improves the thermal
insulation of the composites. Furthermore, the figure suggests that the impact of NaOH
treatment on thermal conductivity is less pronounced. The observed increase in thermal
conductivity of composites with higher NaOH concentrations can be attributed to three
key mechanisms: enhanced fiber-matrix interfacial bonding, structural modifications
within the fibers, and reduced porosity. These results align well with previous literature
findings [35,36].
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Fig. 8. Thermal conductivity of HFRG composites
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Scanning electron microscopy analysis

To examine the effect of alkaline treatment on the hemp fiber surface, SEM photographs
were taken of both untreated and treated hemp fibers. Figure 9 displays the SEM images
of these fibers, with magnifications of 300x and 1500x. The untreated fibers (Fig. 9(a,b))
exhibit diameters ranging from 550 to 650 pm, with their surfaces extensively covered
by an organic layer primarily consisting of non-cellulosic components. Alkali treatment
significantly alters fiber morphology, as evidenced by the reduction in fiber dimensions
and the breakdown of fiber bundles (Fig. 9(c-f)). Furthermore, the treated fibers exhibit
markedly cleaner and smoother surfaces, indicating the removal of non-cellulosic

300X 1500X

Fig. 9. SEM images of untreated and alkali treated hemp fibers
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impurities. As shown in the figure, the filaments of the hemp fiber separate after alkali
treatment (Fig. 9(c-f)), whereas the filaments remain combined in untreated hemp fiber
(Fig. 9(a,b)). This process, where the collective bundle breaks into smaller filaments due
to dissolution, is known as fibrillation [37]. Fibrillation increases the fiber's surface area,
enhancing its contact with the matrix. This improved interfacial adhesion between the
reinforcement and matrix can enhance the mechanical properties of the composite.

Conclusion

In this study, the effects of alkali treatment and fiber percentage on the mechanical and
thermophysical properties of HFRG composites were examined in detail. The key findings
of the fabricated composites are as follows:

1. The measured density and water absorption percentage of HFRG composites increase
with a higher volume percentage of fiber. For the 10 wt. % NaOH-treated HFRG composite,
the water absorption is 40.16 %, compared to 44.84 % for the untreated composite.

2. The compressive and flexural properties of HFRG composites improve following alkali
treatment of hemp fibers. For the 10 wt.% NaOH-treated HFRG composite at 12 vol. %
fiber percentage, the flexural strength and modulus increased by 337 and 136 %,
respectively. Additionally, at the same fiber percentage and NaOH concentration, the
compressive strength of the HFRG composite increased by 109.8 %.

3. The thermal insulation property of gypsum composites is significantly enhanced with
the addition of hemp fiber compared to pure gypsum, offering greater energy efficiency.
The impact of NaOH treatment on thermal conductivity is less pronounced compared to
the effect of fiber percentage.

4. Therefore, these fabricated HERG composite materials are suitable for use in building
applications such as wall materials and false ceilings, helping to reduce energy
consumption in buildings.
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ABSTRACT

Thermoelastic damping and frequency shift are critical factors influencing the performance and stability of
micro- and nano-scale resonators, such as those employed in MEMS and NEMS devices. Traditional
thermoelastic models often overlook important scale-dependent behaviors, thermal relaxation effects, and
material property variations with temperature, leading to inaccuracies at small scales. To address these
limitations, the present study investigates thermoelastic damping and frequency shift in a Kirchhoff plate
resonator by incorporating non-local elasticity theory, the dual-phase lag heat conduction model, and
temperature-dependent material properties. In order to investigate thermoelastic damping and frequency
shift of Kirchhoff plate resonator, the current work takes into account the influence of non-local, dual phase
leg, and temperature dependent properties on thermoelastic theory. The governing equations, comprise
equations of motion and heat conduction equation which include a temperature-dependent property,
a dual-phase leg model along with non-local parameters are formulated with the assistance of Kirchhoff-
Love plate theory. Under the simply supported boundary conditions, thermoelastic damping and frequency
shift are analysed. The derived amounts are graphically displayed with different thickness and length
values. The current work additionally deduces a specific example of interest. Results are graphically
presented to illustrate key trends, and a specific numerical example is discussed to demonstrate the
applicability of the model. This study enhances the accuracy of thermoelastic analysis in micro-scale
resonator design by integrating advanced theoretical considerations often neglected in conventional
models.
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Introduction

It is well known that in many cases, non-uniform beams may achieve a better distribution
of strength and weight than uniform beams and sometimes, it satisfies special
architectural and functional requirements. Therefore, the static and dynamic analysis of
beams with variable thickness has been the subject of numerous investigations because
of its relevance to aeronautical, civil, and mechanical engineering. Most studies are
available on variable thickness beams based on either the Euler beam or the Timoshenko
beam theory.

In many advanced materials and microscale systems, the interaction between an
external electric field and charge carriers is governed by the mutual competition between
two dynamic processes: the electromagnetic field propagation and the carrier transport
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dynamics (e.g., drift, diffusion, or thermal motion). The electric field tends to polarize the
medium and accelerate charge carriers, while the carriers themselves, influenced by
temperature gradients and scattering mechanisms, redistribute and modulate the local field.
This interplay creates a feedback loop that can significantly influence heat conduction,
damping behavior, and the dynamic response of thermoelastic systems. At micro- and nano-
scales, where quantum and non-local effects become significant, the delayed response of
heat carriers and non-uniform charge distribution due to size confinement can lead to non-
intuitive behavior, such as enhanced damping or frequency shifts.

Thermoelastic damping (TD) is a form of structural damping that arises from the
interaction between thermal and mechanical fields. In a bending thermoelastic structure, the
inner side of the bend experiences compression while the outer side experiences tension.
This interaction between the thermal and mechanical fields creates a thermal gradient,
which results in irreversible heat generation within the structure. This heat generation
subsequently leads to entropy production and ultimately causes energy dissipation.

The mechanism and magnitude of linear thermoelastic damping (TD) in a flexural
vibrating thin beam have been extensively investigated. TD is commonly assessed using
the inverse of the quality factor (Q) [1,2] established the theoretical basis for TD and
formulated an expression to calculate the quality factor for a thin beam oscillating in its
flexural mode. Thermoelastic damping in micro-beam resonators was discussed by [3].

Conventional continuum theories are often unsuitable for accurately describing the
behavior of nanostructures with extremely small characteristic sizes but nonlocal
continuum theories effectively describe material properties from microscopic scales up
to the size of the lattice parameter, thus providing a satisfactory explanation for certain
atomic-scale phenomena. In [4], it was developed non local theory of elasticity. In [5], it
was introduced theory of nonlocal thermoelasticity in which stress at a point x in a
continuous body is not solely determined by the strain at that point, but also by the strains
at all surrounding points. In study [6], it was expected to be helpful for the theoretical
modeling of thermoelasticity at the nano-scale and may be beneficial for the design of
nano-sized and multi-layered devices.

Currently, most investigations into thermoelastic damping (TD) assume that
material properties are temperature-independent. However, for many materials,
properties such as the modulus of elasticity, thermal conductivity, and specific heat
actually vary with temperature. To thoroughly examine the interaction between thermal
and mechanical fields, it is essential to consider the impact of temperature-dependent
material properties, even within a narrow temperature range.

The elasticity solution for the clamped- simply supported beams with variable
thickness was presented in [7]. In [8], it was investigated the thermoelastic damping of
vibrations in arbitrary direction in coupled thermoelastic plate. In [9], it was studied the
transverse vibration in piezothermoelastic beam resonator, based on Euler-Bernoulli
theory for clamped and free end conditions. In [10], it was developed a size- dependent
Bernoulli-Euler beam formulation on the basis of new model of couple stress theory and
prepared the mathematical formulation for clamped (C-C), simply supported (S-S) and
cantilever (C-F) boundary conditions.

The influence of heat sources and relaxation time on temperature distribution in
tissues was studied in [11]. In [12], it was studied the exact solution of thermoelastic
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damping and frequency shift s in a nano-beam resonator. In [13], it was explored the
damping characteristics in microscale modified couple stress thermoelastic circular
Kirchhoff plate resonators. In [14], it was introduced effect of temperature dependent
material properties on thermoelastic damping in thin beams. Some results in Moore-
Gibson-Thompson thermoelasticity of dipolar bodies are examined in [15]. In [16], it was
studied the thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging
effect. The response of nanobeams with TDP Using State-Space Method via modified
couple stress theory was described in [17]. In [18], it was discussed the thermoelastic
damping and frequency shift in Kirchhoff plate resonators based on modified couple stress
theory with dual-phase-lag model. Study [19] focused frequency shifts and thermoelastic
damping in different types of nano-/Micro-scale beams with sandiness and voids under
three thermoelasticity theories. A combined model for power generation planning with
reserve dispatch and weather uncertainties including penetration of renewable sources was
presented in [20]. In [21], it was proposed a model for a micro-grid architecture
incorporating the role of aggregators and renewable sources on the prosumer side, working
together to optimize configurations and operations. The frequency shifts and thermoelastic
damping in distinct micro/nano-scale piezothermoelastic fiber-reinforced composite
beams under examined some three heat conduction models were presented in [22]. In [23],
it was explored functionally graded nonlocal thermoelastic nanobeam with
memory-dependent derivatives. In [24], it were discussed the effects of two temperature
and laser pulse on modified couple stress thermoelastic diffusion beam. In [25], it were
provided analytical modeling and numerical analysis of thermoelastic damping in ultrathin
elastic films due to surface effects. In [26], it was analysed the magneto-thermoelastic
vibrations of rotating Euler-Bernoulli nanobeams using the nonlocal elasticity model. A
buckling analysis of thermoelastic micro/nano-beams considering the size-dependent
effect and non-uniform temperature distribution was provided in [27]. In [28], it was
discussed the vibration of piezo-magneto-thermoelastic nanobeam submerged in fluid
with variable nonlocal parameter. In [29], it was computed phase velocities, attenuation
coefficients, specific loss, penetration depth and construct the fundamental solution of the
system of differential equations in the theory of an electro-microstretch viscoelastic solids
in case of steady oscillations in terms of elementary functions. The propagation of Lamb
waves in a homogeneous isotropic thermoelastic micropolar solid with two temperatures
bordered with layers or half-spaces of inviscid liquid subjected to stress free boundary
conditions was studied in [30]. In [31], it was constructed fundamental solution for the
system of differential equations for steady oscillations in terms of elementary functions. A
novel technique is used to study the magnetic field influence in the free surface of an
elastic semiconductor medium for a one- dimensional (1D) deformation during the
hyperbolic two-temperature theory to study the coupled between the plasma, thermo-
elastic waves was proposed in [32]. Study [33] examined the interaction between the
magnetic field and the excited semiconductor medium during the microtemperature
process. In [34], it was studied the effect of Hall current of elastic semiconductor medium,
when the medium is exposed to very strong magnetic field. In [35], it was presented the
graphical comparison by showing that the exact and numerical solutions nearly coincide
with each other. The electro-magnetic-thermal-microstretch elastic mathematical-physical
model of semiconductor medium was investigated in [36]. In [37], it was formulated a novel
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model of a microelongated semiconductor material. Thermal and elastic interactions in
isotropic microplate resonators with elastic and viscous properties, exhibiting Kelvin-Voigt
behavior, under a uniform magnetic field were investigated in [38]. In [39], it was examined
the modeling of the transient thermodynamic reaction of a Kirchhoff-Love thermoelastic
thin circular plate that is simply supported and set on an elastic base of Winkler type. In
[40], it was found that the initial stress and the fractional parameter significantly influences
the varieties of field amounts. A model that is highly effective in properly depicting the
unusual thermal conductivity phenomena often found in nanoscale devices was proposed
in [41]. In [42], it was examined the thermoelastic behavior of functionally graded (FG)
materials using a partially modified thermoelastic heat transfer model.

Basic equations

Following [6,43] the governing equation in generalized thermoelastic dual-phase-lag
model without body forces and heat sources are:
Constitutive relations:
tij = Aeyxdyj + 2ue;; — BT6;;. (1)
Equations of motion:

— - 62_)
A+ V. 0) + uV2.u - BVT = p(1— Efvz)a—:. )
Equation of heat conduction:

O\ 2p _ (1 _ 2 g 0° dexk
K(1+TTat)VT_(1 §2V + qat+zat2)(p"’at+ﬁTO )’ (3)
where

1
€ = E(ui,j + u]',i). (4)

Additionally, in Egs. (1)-(4), the constants Lame are A and u . Kronecker’s delta is
8;j, the components of stress tensor is t;;, and the components of strain tensor is e;;,
B = (31 + 2u) a;, the coefficients of linear thermal expansion are «a, respectively, the
temperature change is denoted by T, the displacement vector is u, the density is p ,the
Laplacian operator is A,and the del operator is V. The coefficient of the thermal
conductivity is K, the non-local parameters are represented by &;, &,, the specific heat at
constant strain is represented by C,, and the reference temperature is T, is assumed to
be such that T /T, « 1. The phase lags of the temperature gradient and the heat flux are
denoted by 77 and 7, respectively.

To explore the impact of temperature dependent property, the following
assumptions are taken as: 1 = Aof (t); u = puof (t), k = kof (t); B=Lof (t), E = Eof (t),
where f(t) = 1(1 — a*T,), a* is the empirical material constant and f(t) = 1 for the
temperature independent material.

Formulation of the problem

Let us examine a non-local thermoelastic Kirchhoff plate with temperature dependent
properties and dual phase leg resonators that have uniform thickness h. The center of the
plate is where the Cartesian coordinate system (x, y, and z) originates. When the plate is
in equilibrium, it is not under any stress or strain and maintains a constant temperature
of T, throughout. The temperature T (x, y, z, t), the displacement components u (x, y, z, t),
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v(xy, z t),and w (x, y, z, t) are defined. The displacement components, as per Kirchhoff's-
Love Plate theory, are provided by:

R ——l _
U=—z_—V=—2 ay,w(x,y, z,t) =w(x,y,t). (5)
Following [44], the strain and stress components are taken as:
2%w
fx = 2 2%, ©)
62
&y = 2550 )
_ ’w _ Eof(O)z 2%w
Yxy = _Z.UOf(t)Zaxay = (1+v) 0x3y’ (8)
Eof ()
bex = 255 (0 + vEyy — (1 + D)y T), 9)
Eof ()
tyy = (10va) (eyy + vey, — (1 + v)aTT), (10)
where E, and v, is Young’s modulus and the Poisson ratio respectively, which are given by:
Eq = po (30 + 2110) /(Ao + o), (11)
vy = Ao/2(Ao + o). (12)
Following [44,45], the bending and torsion moments are defined as follows:
h/
= f_hfz tey Z dz, (13)
hy
M, = f_hiz tyy zdz, (14)
hy
My, = f_hiz tyyzdz = My,. (15)
Equations (13)-(15) recast with the aid of Egs. (5)-(10), as
My, = —D* (2% + vy Z¥ 4+ apMp(1 +v) 16
x = 5.z T Yo 3y2 arMr v) ) (16)
2 2
My = —D* <ZTV; + vO a_‘,: + aTMT(l + v)), (17)
M,, = axay = (D*(1 = v, ), (18)
where D* = E,f(t)h3/12 (1 — v,?) is the flexural rigidity of the plate.
The equations for shear force resultants are:
M, . OMy M, M,
Qx = E + a_yy’ Qy y axy. (19)
The equation of motlon (force equilibrium z in the direction) is given as:
00x aQy _ 2\ 9w _
> T 50 ph(1 — &2V )atz 0. (20)

Usmg Eqs. (16)-(18) in Egs. (19), (20), then the equation of motion for micro plate
with symmetry about y-axes is taken aS'

* Eof(t)a’T 9*Mr _ 2 _

D*— (1 opd 972 + ph(1 - &2V )atz =0. (21)
The thermal moment is given by:

My = Bof ()d |- h2 T zdz. (22)
The heat conduction equation is:

oT a3

kof (t) (1 + 17 )VZT (1 — &V 41, 5 + atZ) (pce Frie Toﬁof(t)zvz\gt), (23)

where
a2 92

0x2 = 0z?%
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For further simplification, the following non-dimensional quantities are taken as:
(x',z',u',w") = (x,z,u,w)/L, (t(’pt’T, t’) = (Tq,TT, t)v/L, T'=T/T,,
M7 = My /dBToh? vy® = E/p, &1 = & /L, & = & /L, Q1=110Q".

Equations (21) and (23) taking into account Eq. (24) reduce to the form:
64

2 _
6x4 +a 1 ax .2 +a2 (1_€1V ) 6t2 0) (25)
O (92T L 2°T\ _ (1 _ g2y2 09,7507 or _ 0w _
a3 (1 tr 6t) (6x2 + 622) (1 &V Tae T3 atz) (a4 at ZaxZat) =0, (26)
here EarToh?L phv?L? ko
w 1= (1-v)D* ' 2=  p* a3 = LvBo’

Following [46], the solution of Egs. (25) and (26) for time harmonic vibrations are
taken as:
w(x,t) = W(x)e®t, T(x,zt) = 0(x,z)e'“t. (27)
where w denotes the frequency of the plate.

Substituting the values of T from Eq. (27) in Eq. (22):

My = ,Bdf @(x z) zdz. (28)
Making use of Eq. (28) in Egs. (25) and (26) yield:
ot a2 — wla, (1 - EVAHW =0, (29)
. . 2 2w
as;(1 + triw) (— + a?) iw (1 — &V + 14iw — %Té) (a4(5) -z ) (30)

Thermal field on the thickness direction

The thermal gradient of the plate is very small as compared to that along its thickness
direction:

00 20 0 [,2m]
(I fox| <1%%/a,|) 52 [252] = 0. (31)
With these considerations Eqg. (30) take the form:
+ R, =0, (32)
where
2 — ayTHiw _ lwTy . . . w?
R, = —a3+iZn; , R, = a4+i(j‘r’£'Tt = a3Tr + &304, 75 = (1 + Tgiw — 71’5). (33)

In this case, it is assumed that there is no heat across the upper and lower surfaces

of the plate, then:
20

5 = =0, z= +— (34)
Using conditions of Eqg. (34), the general solution of Eq. (30) is written as:
_ _ Ry _ sin(Ry2) a*w
0(x,2) = R:? (Z R cos (th/2)> ox?’ (33)
Inserting the value of ® from Eq. (35) in Eq. (28) yield:
_ h/z R; sin(R12) 2w
My = pd f_h/z Ri? (Z Ry coS(th/z) Ox? zdz. (36)
The above equation takes the form:
—BdR,h3 aZw
My = R+ FRO1 S, (37)

where f(R;)is a complex function expressed as below:

(R = o (B — tan ™), (38)
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From Eq. (37)

0°M __ BdRzh

axze = 12R22 (1 +fR (39)
Equation (39) with the a|d of Eq. (28) yield:

a*w dRyh3 2% 92

dx4 1ﬁ12R 2 (1 +f(R1)) 9x 4 a)zaz <1 - Ef (ﬁ +ﬁ)> W = 0 (40)
Slmpllfylng Eqg. (40) with the aid of Eq. (31):

* da?

Dy 5+ wlay 20 — wPa, W =0, (41)

where

D= (1+e(l+f(R);e = -2 (42)

For the isothermal state of Nano beam Eq. (41) takes the following form:
4 4
va‘lf + wyla, &2 C;xvf —wola, W =0, (43)
where w, refers to the nonlocal isothermal frequency.
Solution of Eq. (43) yields:
(x) = C;SinA,x + C,CosA x + C3SinhA,x + C,CoshA,x, (44)
where C;, C,, C3, C, are constants.
Substitution Eq. (44) in Eq. (43) yields:
® 2 _ /114 _ AZ4
0 (1+1,%ED)a, (1-12%ED)ay”

Boundary conditions

It is taken into consideration that a micro plate whose ends are either clamped-clamped
(CC), simply supported (SS), clamped-clamped (CC) and clamped free (CF) in which case
the following boundary conditions for the two sets [44]:

Case (i) For Clamped-Clamped (CQ): W = 0,2—‘;\/ =0,x=0,L. (46)

Case (ii) For Simply Supported (SS): W = 0, ‘?:xvr =0, x=0,L. (47)

Case (iii) For Clamped Supported (CS): W = 0, ‘;—ZV =0, ZZVZV =0, x=0,L. (48)
w acw

Case (iv) For Clamped Free (CF): W = 0, Z—‘f: = T = o = =0, x=L (49
Substituting Eq. (44) in the boundary conditions Egs. (46)-(49), the following set of
frequency equations are obtained:

CC: Case (i). 2 CosAyL CoshA,L + (— - —) SinA,L SinhA,L — 2 = 0. (50)
SS: Case (ii). Sin(1,L) = 0. (51)
CS: Case (if). X, SinA,L CoshA,L — A, SinhA,L CosA;L = 0. (52)
CF: Case (iv). 2CosA,LCoshA,L + (— - —) SinA,LSinhA,L + ( 1+ ) = 0. (53)

Take note that Eq. (45) describes the relationship between A1 and A, These
transcendental equations can be solved, and the nonlocal isothermal frequency w, of
each boundary condition can be found by substituting the solutions into Eq. (45).

Making use of Eqg. (44) in boundary condition Eq. (47) yield:

Sin(A4,L) = 0. (54)

From above equation 4, = nL—” ne I.
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Comparing Eq. (41) and Eq. (43) gives the following relation between w and w,:
W = wo\/ 1+e(1+ (f(Rl))). (55)

Given that the relaxation strength value is often small (¢ « 1), the right-hand side
of Eq. (55) can be expanded to the first order as shown below:

w=wo|(1++f(wy)]. (56)
flwo) = 755 (5 — tan 1), (57)

From Eq. (32), since the quantity R,%in Eq. (33) is complex in nature, the following
equations can be obtained by applying Euler's theorem:

—ie ’ * 3 LUR*-KL;"
Ri=Ryez2,Ry= %,9=tan"1[— R R - ], (58)

Kw2pceTqgLlu+wR*Ly"

where s, = \/(KZ + w2R**)(w*p2c,2T2L2v2 + Ll*z), R* = Kty + &2 pc,Lv,

3
L= (%pceLvr?I — wpce), L, = K% + w?R*.
Replace w with w, in Eq. (58):

R, =2p, (Cos g—iSin g) (59)
and
(K2+wo2R**) (wo*p2Cce?T2L2V2 +1 *2) 3 ¥ gy
1= \/J : 2(1(2:w ZR*Z)q —,0 = tan™? [_ KZOZPCeTqI;UR KL*l ] (60)
0 02pCeTqlu+woR*Ly
The frequency w is complex in nature and hence:
Wy, = W™ +iw™, wp™ = Re(wy), w;™ = Img(w,), (61)
30 . 30 ..
n € 6Cosf 6\/7C0$7 Sing, +tan=-Sinh(s162)
CrT T o [1 i {(1 * (P12 (p1h)3 Cosg1+Cosh(5162) ’ (62)
n _ €] 6sing fﬂ/ECOS? Singltan?—Sinh(glgz) 63
A IO P OE Cosg1+Cosh(5162) (63)

where, ¢; = v2p,hCos g, ¢, = tan g.
The thermoelastic damping and frequency shift in a thermoelastic circular plate are
understood as follows [47]:

-1 _ Img (wy)
Q - 2 Re (wn) ’ (64)
o = %ﬂj“"o _ (65)

Numerical results and Discussion

Equations (64) and (65) were utilized to calculate the thermoelastic damping Q! and
frequency shift w, of the initial two vibration modes, both in the absence and presence
of pair stress. MATLAB software has been utilized to perform numerical computations on
magnesium material. For simply supported plates with different thickness and length
values, the computed simulated results are shown graphically in Figs. 1-16 and in
Tables 1-10 below.

Following [24]: p = 1.74-10% C, =1.0400, A =2.696-10%°, u=1.639-10%, K=1.70-10?,
=293 a,=17810" 1, =0.04, 7, =002, o =10.
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The damping values are presented in Table 1 for different lengths and with varying
values of the non-local parameter &:. The table includes lengths up to 45.2, with & varying
from 0 to 0.8, while & is fixed at 0.04. An increase in the damping value is observed within
the range of 2.32-10° to 1.90-102 as the length changes from 5.2 to 25.2 for & = 0.4.
Similarly, damping increases with the increase in §; for the same length. For instance, the
damping value is 1.82-10* for a length of 20.2 and & = 0; this increases to 1.95-10 for
& = 0.8 for the same length.

Table 1. Damping for different lengths keeping fixed & = 0.04

£ L 0.2 5.2 10.2 15.2 20.2 25.2 30.2 35.2 40.2 45.2
1
0 4.32 6.52 1.32 1.40 1.82 1.85 2.93 4.56 8.87 3.45
102 10 -107 -10° -10* 1073 1073 1073 -10°2 102
0.4 7.66 2.32 8.52 3.11 8.61 1.90 3.53 5.99 9.15 1.28
) 102 10 -10* 103 1073 -1072 -1072 1072 -1072 10
0.6 5.82 8.26 1.78 5.95 1.45 3.08 5.76 9.33 1.37 191
) 1020 10 1073 103 -1072 -1072 -1072 1072 10! 10
0.8 245 1.83 2.59 8.24 1.95 4.44 8.27 1.36 2.08 3.04
) 10 -10* 1073 103 -1072 -1072 -1072 10 10! 10

Table 2 illustrates the variation of frequency shift for different lengths with various
values of &, while maintaining &, fixed at 0.04. At a length of 5.2, the frequency shift is
1.47, which increases to 8.11-10° at a length of 40.2 for & = 0.4. Similarly, the frequency
shift increases from 3.21-10? to 1.66-10% as & varies from 0 to 0.8 for a length of 10.2.
It is evident that the value of frequency shift increases with the increase in length and
the non-local parameter é&;.

Table 2. Frequency shift for different lengths keeping fixed & = 0.04

£ L 0.2 5.2 10.2 15.2 20.2 25.2 30.2 35.2 40.2 45.2
1

1.78 3.21 1.20 3.33 6.89 1.19 1.61

0 108 115 10 >>7 34.9 -102 -102 -102 -10° 103

1.86 3.30 9.02 1.87 3.33 5.38 8.11 1.16

04 108 147 60.2 -102 -102 -10° -10% -10% -10° -10*

06 4.19 299 1.13 5.35 141 2.89 5.07 8.08 1.21 1.73

) 108 ) -10? -10? -10% -10° -10° -10° -10* -10*

0.8 7.45 5 80 1.66 7.32 1.89 3.77 6.47 1.02 1.50 212

) 108 ) -10? -10? -10% -10° -10° -10* -10* -10*

Table 3. Damping for different lengths keeping fixed & = 0.5
L
&

0.2 5.2 10.2 15.2 20.2 25.2 | 30.2 35.2 40.2 | 45.2

0 | 9.09-10% | 9.67-10* | 3.64-10? | 0.153 | 0.367 | 0.327 | 0.321 | 0.0329 | 0.348 | 0.383
0.4 | 7.30-10%® | 8.14-10° | 6.45-10? | 0.281 | 0.666 | 0.398 | 0.358 | 0.353 | 0.366 | 0.399
0.6 | 1.62:10Y | 1.32:10?% | 7.39-10%2 | 0.324 | 0.763 | 0.413 | 0.365 | 0.358 | 0.370 | 0.402
0.8 | 2.81.10"Y | 1.54.10% | 7.78-10? | 0.341 0.8 0.419 | 0.368 | 0.359 | 0.371 | 0.403
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Table 3 illustrates the variation of damping for different lengths with different values
of &, while keeping & fixed at 0.5. At a length of 10.2, the damping value
is 7.39-10, which increases to 4.02-10? at a length of 45.2 for & = 0.6. Similarly, damping
increases from 3.21-101 to 3.68-10" as &, varies from 0 to 0.8 for a length of 30.2. This analysis
highlights the trend where the damping value increases with the increase in length.

Table 4 displays the variation of frequency shift for different lengths with different
values of &, while maintaining & fixed at 0.5. At a length of 10.2, the frequency shift is
1.70-10?%, which increases to 1.33-10° at a length of 45.2 for & =0.0. Similarly, the
frequency shift increases from 7.49-10% to 5.32-10° as &; varies from 0 to 0.8 for a length
of 15.2. It is evident that the value of frequency shift increases with the increase in length
and the non-local parameter &,.

Table 5 presents damping values for different thicknesses while fixing &, at 0.04. Four
values of & are considered: 0, 0.2, 0.6 and 0.8, with thickness ranging from 0.2 to 1. The table
reveals a trend where damping decreases as thickness increases and increases with &.

Table 4. Frequency shift for different lengths keeping fixed & = 0.5

£ L 0.2 5.2 10.2 15.2 20.2 25.2 30.2 35.2 40.2 45.2
2
0 1.88 5 86 1.70 7.49 1.77 6.98 1.89 4.11 7.77 1.33
107 ) -10? -10? -10° -10° -10* -10* -10* -10°
0.4 4.18 303 3.86 1.62 3.87 2.27 6.73 1.52 293 5.07
) 107 ) -10? -10° -10° -10* -10* -10° -10° -10°
06 4.25 551 7.56 3.15 7.59 4.92 1.48 3.37 6.53 1.13
) 107 ) -10? -10° -10° -10* -10° -10° -10° -10¢
0.8 4.13 797 1.27 5.32 1.29 8.63 261 5.97 1.16 2.00
) 107 ) -10° -10% -10* -10* -10° -10° -10¢ -10¢

Table 5. Damping for different thickness keeping fixed &, = 0.04

¢ "I 02 | 025 | 03 | 035 | 04 | 045 | 05 | 055 | 06
1
276 | 131 | 735 | 451
0 112 | o714 | 032 | o273 | ot | TO | 5| T | o
291 | 478 | 546 | 445 | 338 | 258
02 | o768 | 0267 | 033 | | T | 20 | i | 100 | 103
06 | 181 | 113 | 0719 | 0477 | 0333 | 0255 | 0212 | 0176 | 0138
08 | 295 | 193 | 128 | 0876 | 0631 | 0495 | 0422 | 0366 | 0302
¢ "| 0es | 07 | 075 | 08 | o8 | 09 | o095 1
1
0 300 | 402 | 188 [ 122 83 632 | 763 | 478
10° | 107 | 10* | 10® | d0* | 10* | 10* | -10*
02 20 155 122 | 979 80 666 | 563 | 484
' 10° | 10® | 10* | 10* | 10* | 10* | 10* | -10*
748 54 395 | 291 | 217 | 164 | 126
06 | MO | 402 | 402 | 402 | 102 | 107 | 102 | 10
976 | 729 | 551 | 421 | 325
08 | 023% | 0177 | o132 | 5 | Y5 | T | 4or | o0
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For instance, damping decreases from 2.93 to 1.12 as & decreases from 0.8 to O for
a thickness of 0.2. Conversely, damping decreases from 3.38-10° to 1.12-107 with the
increase in thickness from 0.5 to 0.75 at & = 0.2. This observation underscores the inverse
relationship between damping and thickness, and the direct relationship between
damping and the non-local parameter &;.

Table 6 presents various frequency shift values for different thicknesses and &, with
a fixed value of & =0.04. At a thickness of 0.25, the frequency shift is 1.75-10% which
decreases to 1.73-10° at a thickness of 0.95 for & = 0.0. Similarly, the frequency shift
increases from 2.0-10* to 5.42-10* as & varies from O to 0.8 for a thickness of 0.35. It is
evident that the frequency shift decreases with an increase in thickness and increases
with an increased value of the non-local parameter ..

Table 6. Frequency Shift for different Thickness keeping fixed &, = 0.04

& h 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0 2.29 31 1.83 20 6.93 6.31 5.16 4.19 343
-10° -10* -10* -10* -10° -10° -10° -10° -10°
0.2 445 175 517 249 381 44 4.23 3.88 35
) -10* -10* -10° -10% -10° -10% -10° -10° -10°
06 197 1.06 6.66 4.65 349 273 221 181 152
) -10° -10° -10* -10* -10* -10* -10* -10* -10*
0.8 2.26 123 7.76 542 408 3.24 265 222 1.89
) -10° -10° -10* -10* -10* -10* -10* -10* -10*
& h 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0 284 2.89 198 1.68 144 1.25. 1.08. 943
-10° -10% -10° -10% -10? -10% -10° -102
0.2 314 283 255 23 208 19 173 158
) -10° -10% -10% -10% -10° -10% -10° -10°
06 13 112 9.76 8.61 7.66 6.86 6.18 5.6
) -10* -10* -10° -10° -10° -10° -10° -10°
0.8 1.63 142 125 11 9.83 8.83 7.98 7.24
) -10* -10* -10* -10* -10° -10% -10° -10°

Table 7. Damping for different thickness keeping fixed & = 0.5

h
0 0.2 0.25 0.3 0.35 04 | 045 0.5 0.55 0.6
647 | 398 | 258 | 176 | 122
0 | 118 | 0323 | 0155 | 0102 | 0% | oo | 102 | 00 | 402
02 [ 23 157 115 | 092 | 0806 | 0754 | 0727 | 0705 | 0677
06 [ 237 163 12 | 0977 [ 0877 | 0848 | 0.854 | 0876 | 0.902
08 [ 237 163 121 | 0981 | 0881 | 0853 | 0862 | 0.887 | 0918
¢ "1 oes 0.7 0.75 0.8 0.85 0.9 0.95 1
2
o | 861 | 623 | 459 | 344 [ 261 | 201 | 157 | 124
10® | 10® | 10® | 10* | 10® | 10® | 10® | -10°

0.2 | 0.642 0.599 0.549 0.496 0.442 0.389 0.339 0.294
0.6 | 0.928 0.951 0.969 0.983 0.991 0.994 0.99 0.981
0.8 | 0.949 0.981 101 1.03 105 1.07 1.08 1.09
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Table 7 presents various values of damping for different thicknesses and &, with a
fixed value of & = 0.5. The damping value increases from 9.77-10 to 9.94-10 with an
increase in thickness from 0.35 to 0.9 for & = 0.6. Conversely, damping decreases from
3.23-10* to 1.63 with an increase in & from 0 to 0.8 for a thickness of 0.25.

The Table 8 lists various frequency shift values for different thicknesses and &, with
a fixed value of & =0.5. At a thickness of 0.3, the frequency shift is 9878118.5, which
decreases to 71532.1 at a thickness of 0.85 for & = 0.8. Similarly, the frequency shift
increases from 36698.3 to 432373 as & varies from O to 0.8 for a thickness of 0.6. It is
evident that the frequency shift decreases with an increase in thickness and increases
with an increased value of the non-local parameter ¢&,.

Table 8. Frequency shift for different thickness keeping fixed & = 0.5
: 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
2

0 | 2883508 | 1290230 | 644145 | 348412 | 200973 | 122490 | 78422.1 | 525294 | 36698.3
0.2 11(1)7 5049251 | 2490816 | 1324891 | 747222 | 442257 | 272814 | 174542 | 115398
0.6 2187 11(1)7 5568845 | 2952666 | 1658042 | 975718 | 597432 | 378641 | 247411
0.8 137 . 12 67 9878118 | 5231594 | 2933246 | 1722637 | 1051994 | 664500 | 432373
: 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2

0 26665.5 | 20093.3 | 15650.9 12556 10335.5 | 8696.03 | 7451.61 | 6481.94
0.2 | 78627.7 | 550944 | 39635.2 | 29236.6 | 22088.3 | 17074.3 | 13490.3 | 10881.9
0.6 | 166154 | 114399 | 80591.2 | 579974 | 425821 31864 242814 | 188304
0.8 | 288861 | 197622 | 138150 | 98504.1 | 715321 | 52839.8 | 39664.4 | 30232.6

Table 9. Damping and frequency shifts for different lengths keeping fixed &, = 0.04
fz =0.04

L 0.2 5.2 | 10.2 | 15.2 | 20.2 | 25.2 | 30.2 | 35.2 | 40.2 | 45.2
432 |652 | 132|140 | 182 | 185|293 | 456 | 887 | 345 Dampin
o |-10% | 10°| 107 | -10° | 10| 10% | 10% | -10% | 10° | -10? ping
1.78 119 | 1.61 .
10° 1.13 | 0321 | 5.57 | 349 | 120 | 333 | 689 10° | 108 Frequency shift
7.66 | 232 | 852|311 | 861|190 | 353 | 599 | 9.15 0128 Dampin
0.4 107 | 10° | 10¢ | -10% | 10% | 102 | 107 | 10? | 107 | © ping
) 1.86 1.87 | 3.33 | 538 | 811 | 1.16 .
. 10° 147 | 60.2 | 330 | 902 105 | 108 | 10% | 10° | .10 Frequency shift
1
582 | 826|178 | 595 | 1.45 | 3.08 | 5.76 | 9.33 -
06 | 107 | 10° | -10° | 10° | 107 | 107 | 102 | 107 01371 0.191 | Damping
) 419 141|289 | 507 | 808 | 1.21 | 1.73 .
10°% 3.29 | 113 | 535 10° | 105 | 10° | 108 | 10¢ | -10* Frequency shift
245 | 1.83 | 259 | 824 | 1.95 | 444 | 8.27 -
03 10 | 104 | 10% | 10% | 102 | 102 | 102 0.136 | 0.208 | 0.304 Damping
) 7.45 1.89 | 3.77 | 6.47 | 1.02 1.5 2.12 .
10°® 58 | 166 | 732 10° | 105 | 10° | 10* | 10¢ | -10* Frequency shift
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Table 10. Damping and frequency shifts for different thickness keeping fixed & = 0.5
f1 =0.5
h 0.2 | 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
647 | 398 | 258 | 1.76 | 1.22 | 8.61 .
. 1.18 | 0.323 | 0.155 | 0.102 107 10| 102 | 102 | 107 | 102 Damping
288 129 644 348 2 1.22 7.8 5.25 3.67 267 Frequency shift
10°| -10°| -108 | 105 | 105 | 105 | 0% | .10¢| .10t | 100 | TEQUENY
230 | 1.57 | 1.15 | 092 | 0.806 | 0.754 | 0.727 | 0.705 | 0.677 | 0.642 Damping
02| 11| 505 25| 13| 747| 44| 273| 174| 115| 786 Freauency shift
6 207 106 | 100 | 100 | 105 | 105 | 10 | 108 | 08 | g | TTEAUENSY
237 | 163 | 1.20 | 0977 | 0.877 | 0.848 | 0.854 | 0.876 | 0.902 | 0.928 Damping
0.6 2.6 11 557 295| 166 9.76 | 5.97 3.8 2471 1.66 Er ncv shift
107| 107 | 06 | 100 | 106 | 105 | 105 | 105 | 105 | -108 | TrEQUENCYS
237 | 1.63 | 1.21 | 0.981 | 0.881 | 0.853 | 0.862 | 0.887 | 0.918 | 0.949 Damping
0.8 | 45 2 9.87| 5.2 29 | 172 105| 664| 432| 29| o o
107 107 | -10¢ -10¢ -10¢ -10¢ 10° 10° 10° 10° 9 y

& =0.04 and in Figs. 3, 4, & = 0.5.

Case (I): Figs. 1-4 demonstrate the variations of damping and frequency shift with
respect to length for non-local parameters. Here we take h = 0.2, a* = 0.025. In Figs. 1, 2,

Figure 1 shows the variation of damping with different Lengths. In this figure, the
non-local parameter & varies for four different values i.e. 0.0, 0.4, 0.6 and 0.8. It can be
observed that the value of damping increases from 0.00085 to 0.035338 for & =0.4 as
length increases from 10.2 to 30.2. Also, it can be observed that the value of damping
increases from 0.00595 to 0.00824 for 15.2 length as &; increases from 0.6 to 0.8.
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Fig. 1. Damping V/S length for & = 0.04
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Figure 2 depicts the graph showing the relationship between frequency shift and
length, with the length varying from 0 to 45.2. The graph indicates that the damping
value increases from 1.47081457 at a length of 5.2 to 1865.83847 when the length
extends to 25.2 for & = 0.4. This analysis reveals that an increase in length results in a
higher damping quality factor.
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Fig. 2. Frequency shift V/S lengths for & = 0.04

Figure 3 depicts the graph illustrating the relationship between damping and
length, with the value of & fixed at 0.5. In this graph, & is set at four different values: O,
0.4, 0.6,and 0.8. It is evident that the damping value increases with an increase in length,
and damping also increases with the increase in the value of &,.
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Fig. 3. Damping V/S length for & = 0.5

Figure 4 presents the relationship between frequency shift and length, with the length
varying from 0 to 45. The graph clearly shows that the frequency shift value increases from
1274.7908 at a length of 10.2 to 2004762.9366 when the length extends to 45.2 for & = 0.8.
This analysis indicates that an increase in length results in a higher frequency shift.
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Fig. 4. Frequency shift V/S lengths for & = 0.5
Case (l): Figures 5-8 demonstrate the variations of damping and frequency shift

with respect to thickness for non-local parameters. Here we take L =100, a* = 0.025.
In Figs. 5, 6, & =0.04, and in Figs. 7, 8, & = 0.5.
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Fig. 5. Damping V/S thickness for & = 0.04
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Figure 6 shows the graph of frequency shift versus thickness. In this graph, the
thickness varies from 0.0 to 1. It can be easily observed that the value of frequency shift
is 5168.949742 at a thickness of 0.3 and decreases to 2545.67 at a thickness of 0.75 for
& =0.2. The frequency shift increases from 4194.238 to 22205.95 as & varies from O to
0.8 for a thickness of 0.55. By analysing this graph, it is found that an increase in thickness
results in a decrease in the damping quality factor, but the frequency shift increases as
the non-local parameter &; increases.

Figure 7 illustrates the relationship between damping and thickness, with the value
of &1 fixed at 0.5. In this graph, &, is set at four different values: 0, 0.2, 0.6 and 0.8. It can
be observed that the damping value increases with an increase in thickness, while the
damping decreases as the non-local parameter & increases.

Figure 8 shows the graph of frequency shift versus thickness. By analysing this
graph, it is found that an increase in thickness results in a decrease in the frequency shift,
but the frequency shift increases with the increased value of the non-local parameter &,.

Case (I11): Figures 9-12 explain the variations of damping and frequency shift with
respect to length and thickness for non-local parameters with varying empirical material
constant a* = 0,0.001, 0.004, 0.008, & = 0.5, & = 0.04.

In Figs. 9 and 10, h=0.2,and in Figs. 11 and 12, L = 100. Figures 9 and 10 illustrate
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the TDP effect. It can be easily analysed from these graphs that the damping quality factor
and frequency shift increases with increasing length. It is also observed that with the
increase in empirical material constant (a*), the damping and frequency shift decreases.
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Fig. 9. Damping V/S length with TDP effect
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Figures 11 and 12 show the TDP effect. It can be analysed from these graphs that
the damping and frequency shift value reduces with increasing thickness. It is also
observed that with the increase in empirical material constant (a*), the damping and
frequency shift decreases.

Case (1V): Figures 13-16 demonstrate the LS and DPL models in the variations of
damping and frequency shift for & =0.05, & =0.04, 7,=0,7,=0.05 a"=0.025.
In Figs. 13 and 14, h=0.2, and in Figs. 15 and 16, L = 100.
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The comparison of damping and frequency shift versus length are shown in Figs. 13
and 14. It can be seen that the damping factor and frequency shift for LS is less than for
DPL. For both the LS and DPL models, the damping quality factor and frequency shift
rises with increase in length.

In Figs. 15 and 16, the comparison of damping and frequency shift versus thickness
are shown. In the instance of DPL theory, the damping factor and frequency shift has been
observed to be higher than in LS models. The damping factor and frequency shift
decreases with increase in thickness for both the LS and DPL models.
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Fig. 135. Comparison of LS and DPL for damping V/S thickness
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Fig. 146. Comparison of LS and DPL for frequency shift V/S thickness

Conclusions

Traditional models assume classical (local) elasticity, where stress at a point depends
only on strain at that same point. The suggested model includes non-local elasticity,
which accounts for size-dependent effects-essential for modelling materials at small
scales, where classical theories become inaccurate. The advancement is to capture scale
effects relevant to micro/nano-structures, improving the precision of stress and strain
predictions. The present study investigates thermoelastic damping (TD) and frequency
shift (FS) in Kirchhoff plates, considering thermoelastic theory under the influence of non-
local parameters, dual-phase lag, and temperature-dependent properties. TD and FS are
analysed under simply supported boundary conditions. The results are tabulated and
displayed graphically with varying values of length and thickness to explore the impacts
of non-local parameters, temperature dependent parameters and the comparison
between LS and DPL models. It is observed that the damping quality factor and FS
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increase with the increase in non-local parameters & and &, and decreases with increasing
thickness with distinct magnitude.

Damping and frequency shift are likewise detected under the TDP effect, and they
increase with length. Additionally, it is noted that the damping and frequency shift
diminish as the empirical material constant (a*) increases. These graphs show also it is
observed that as thickness increases, magnitude of damping and frequency shift decrease
under the impact of TDP. The damping quality factor and frequency shift increase with
length for both the DPL and LS versions although magnitude of these field variables for
LS remains smaller than DPL.

It is concluded that the impact of non-local and temperature dependent parameters
play a valuable role in processing and characterisation to improve the material property.
The work presented here is useful for the researcher working in thermodynamics,
engineering, material science and hyperbolic thermodynamic model.
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ABSTRACT

High-entropy alloys are a new class of metallic alloys without a principal component. These materials are
attractive because of their unique structures and properties, including mechanical ones. Some high-entropy
alloys based on refractory metals are considered as advanced high-temperature materials. In this regard,
the study and description of the behavior of such materials under conditions of creep, fatigue and long-
term strength is of great interest. In the work, to describe the creep and long-term strength of high-entropy
alloys a damage conception is used. A system of interconnected kinetic equations for the creep rate and
damage parameter is formulated. A compressible medium is considered, and the mass conservation law is
taking into account. The damage parameter is specified in the form of the ratio of the current density of the
material to the initial one. The analytical solutions of these equations are obtained. The theoretical creep
and long-term strength curves are plotted and compared with the experimental results for CrMnFeCoNi
and CrFeCoNi alloys. The experimental results are in good agreement with the theoretical ones.
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Introduction

As high-entropy alloys (HEAs) are being actively explored for next-generation structural
materials, gaining a comprehensive understanding of their creep, fatigue, and fracture
behaviors is indispensable. These three aspects of mechanical properties are particularly
important because: creep resistance dictates an alloy’s high-temperature applications;
fatigue failure is the most frequently encountered failure mode in the service life of a
material; fracture is the very last step that a material loses its load-carrying capability.

As materials with superior properties are continuously searched, HEAs, formed by
the physical metallurgy of five or more metallic elements with equal or nearly equal
quantities, emerge as a class of revolutionary materials. HEAs break down the traditional
wisdom of alloy design in which a primary element serves as the foundation of properties,
and small amounts of additional elements are inserted for fine tuning, therefore, open
innumerable possibilities in developing advanced alloys [1,2].

One decade of dedicated research has revealed that many HEAs possess unparalleled
properties in comparison with traditional alloys, for instance, great thermal and
microstructural stability [3], high hardness [4], high strength at a wide range of
temperatures [5] and excellent resistance to wear [6], corrosion [7], fatigue [8], fracture [9]
and high-temperature softening [10]. Given these merits, applications of HEAs in various
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fields, particularly in structural engineering (e.g., used for gas-turbine engines), are being
actively explored. Among many performance indices, a thorough understanding of creep,
fatigue, and fracture behaviors of HEAs is crucial and indispensable to their sophisticated
engineering applications.

Kinetics of damage and deformation accumulation under high temperature
creep conditions

Literature survey

High-temperature creep of metals and alloys is characterized by the fact that in the body,
along with the accumulation of irreversible creep deformations, the formation and
development of defects (pores, micro- and macrocracks) occur, leading to fracture. In
1826, the phenomenon of creep was observed by Claude Louis Marie Henri Navier. First
systematic studies on creep processes were published by Edward Neville da Costa
Andrade [11].

To describe a brittle region of the long-term strength curve studies based on
continuum mechanics were conducted. These studies taking into account the
accumulation of damage, have led to the development of a separate direction of
continuum mechanics - the Continuum Damage Mechanics. This direction was created by
two outstanding Soviet scientists: L.M. Kachanov [12] and Yu.N. Rabotnov [13]. At the end
of the 1950s, they considered and introduced a new parameter at creep under uniaxial
tension: material continuity (Kachanov) and material damage (Rabotnov). Soon Rabotnov,
based on this approach, developed the kinetic theory of creep and long-term strength.

Subsequently, significant results in this area were obtained in the Soviet
Union/Russian Federation. Following Kachanov and Rabotnov, the mechanics of
continuum fracture began to develop in Europe, mainly in relation to the processes of
creep of metals. Since then, this area of research has been in the center of attention all
over the world with regard to the development of both its foundations (not all theoretical
problems have been solved) and applications [14-18].

When formulating the interrelated equations of creep and damage, the damage
parameter should be given a physical meaning. To materialize the damage parameter
various definitions were offered. The relative size of pores or irreversible change of
volume (lLoosening on Novozhilov’s terminology) are considered in [19]. The crack length
is taken as damage parameter in [17]. Maruyama and Nosaka [20] measured damage of
material based on micro-grinding using a transparent reference square grid. The ratio of the
number of nodes entering the region of pores and microcracks to the total number of nodes
in the grid was considered. In [21], it is analyzed dislocation density. Many authors [22-25]
considered the density of the material to be the most representative characteristic of
porosity and damage. Density measurement is carried out by known methods using
accurate weighing in air and in liquid (hydrostatic weighing). No methods of introducing
the damage parameter mentioned above allow its measurement during creep tests. To
determine the damage value at a given time by these methods, it is necessary to stop the
experiment, and when metallographic methods are used, in addition the specimens must
be cut. In [26], 2 method for measuring structural changes in metal directly during high
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temperature creep, without cooling and unloading of specimens is considered. It is
proposed to conduct the measurement of electrical resistance of the specimens during
stretching and to compare these data with the results of the length measurement of
specimens at the same time values.

Kinetic equations for damage parameter and creep strain

In this paper, the parameter of continuity is determined by the ratio ¥ = p/p, (oo is initial,
p is current density) and it is considered as integral measure of the structural microdefects
accumulation during long-term high-temperature creep [27,28].

Let’s consider the following system of equations [29,30]:

YL = pom, 6
Y= —ao™, 2)
where B, A,m,n, a, § are parameters and € = In(l/l,) is strain.

Taking into account the mass conservation law pylyF, = plF and the true stress

o =0oFy/F = 0,(l/1))(p/po) = ao(p/py)e = oype?, these equations can be written in
the following form:

% = Borymrem, ®)
% = —Aglpn%ene, 4)

The system (3)-(4) can be solved approximately, for the case of purely brittle fracture and
small deformations, when the following approximations e™¢ ~ 1, e™ =~ 1 or e™¢ = 1 + me¢,
e™ ~ 1+ ne can be taken into account. Let us consider each of these two cases. In the
case of e™¢ = 1, e™¢ = 1, the system (3)-(4) takes the following form:

o = BTy, )

¥ = —Aogye ©)
Under the initial conditions t = 0, Y = 1, from Eq. (6) we get:

Yp=[1—-(a—n+ 1)Aa§lt]ﬁ. (7)
Under the initial conditions t = 0, ¢ = 0, from Eq. (5) we can obtain that:

£ = #”:ﬂm@ Y Py 1)A0§t]am——r_fl+1} . (8)

Let us consider the case of purely brittle fracture and small deformations at
e™ =~ 1+ me, e™ = 1+ ne, then the system of equations (3)-(4) can be written as:

= = Bogy™F (1 + me); 9)
% = —AolY"*(1 + ne). (10)
Under the conditions m = 8, n = 1 + «, the system (9)-(10) is reduced to a non-

linear differential equation of the second order [31]. Under the initial conditions t = 0,
Y = 1, the expression for the continuity parameter has the following form:
Acl™ ™M (m-n) mBg™ Aol (m-n)
T G | (1)
Taking into account the conditions m = 8, n = 1 + a, under the initial conditions
t =0, e =0, from the system (9)-(10) we will have the flowing relation for creep strain

m
eBmagt_4

e=8 1 (12)

m
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Long-term strength criterion

Taking the fracture conditions in the form t = t;, ¥ = ¥,, from Eq. (7) we can obtain the

following long-term strength criterion:
1—1,b*a_n+1
f = A(a-n+1)alV’

(13)

Comparison of the solutions obtained with experimental results

The theoretical creep curves and the experimental results on creep for CrMnFeCoNi and
CrFeCoNi alloys are shown on Figs. 1 and 2, respectively [32]. The values of the coefficients
used in the calculations for Eq. (8) under the condition e™® = 1, e™® =~ 1 and Eq. (12)
under the condition e™® =~ 1+ me, e™ = 1+ ne are presented in Tables 1 and 2,
respectively.

0.2 0.2

000 CrMnFeCoNi
000 CrFeCoNi

0.15r ™ Theoretical creep curves (12)

000 CrMnFeCoNi
200 CrFeCoNi

0151 —— Theoretical creep curves (8)

m} m}

O

0.1F a.r

Creep strain
Creep strain

0.05F 0.051

Il Il
1 10 100 I TR 1 10 100 1=10° 1=x10*  1x10°
Time (hr} Time (hr}

Fig. 1. Theoretical creep curves obtained by Eq. (8)  Fig. 2. Theoretical creep curves obtained by Eq. (12)

and the experimental results for CrMnFeCoNi alloy  and the experimental results for CrMnFeCoNi alloy

at 650 °C and 50 MPa (squares) and CrFeCoNi alloy  at 650 °C and 50 MPa (squares) and CrFeCoNi alloy
at 650 °Cand 75 MPa (circles) [32] at 650 °C and 75 MPa (circles) [32]

Table 1. The values of the coefficients used in calculations according to Eq. (8)

0y, [MPa] A, [MPa]®[n]*! B, [MPa][h]! m n a /]
75 3.1-10Y 2-10° 2 6 6 2
50 2.8-10°1¢ 7.5-10° 2 6 6 2
Table 2. The values of the coefficients used in calculations according to Eq. (12)
0o, [MPa] B, [MPa]?[h]* m
75 1.9-10° 2
50 5.8-10° 2
Table 3. The values of the coefficients used in calculations according to Eq. (8)
Y. A, [MPa]®[h]! n a
CrFeCoNi 0.9 3.1-10Y 6 6
CrMnFeCoNi 0.9 2.8-10°16 6 6

Figure 3 shows the long-term strength curves obtained by Eq. (13) for CrMnFeCoNi
and CrFeCoN:i alloys at 650 °C[32]. The following values of the coefficients are presented
in Table 3. It was found that a good agreement between the theoretical and experimental
creep and long-term strength curves (Figs. 1-3) is observed.
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Fig. 3. Long-term strength curves obtained by Eq. (13) for CrMnFeCoNi (squares) and CrFeCoNi (circles)
alloys at 650 °C [32]

Conclusions

In the paper to describe the creep and long-term strength of high-entropy alloys (HEAS)
a damage conception is used. A system of interconnected kinetic equations for the creep
rate and damage parameter for a compressible medium is formulated. The mass
conservation law is taken into account, and the damage parameter is specified in the form
of the ratio of the current density of the material to the initial one. Analytical solutions
of these equations are obtained, and the long-term strength criterion is formulated. A
comparison with the experimental results for CrMnFeCoNi and CrFeCoNi alloys is given.
It was shown that the experimental results are in good agreement with the theoretical
ones. Thus, the proposed system of interrelated kinetic equations allows us to describe
the creep and long-term strength behavior of HEAs.
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ABSTRACT

This study highlights the improvement in the thermal properties of CFRP composites modified with lower
concentrations of graphene reinforcement (ADG-NH,/epoxy/CFRP). Thermal properties such as storage
modulus, loss modulus, damping factor and glass transition temperature of the composites were
investigated through dynamic mechanical analysis with a temperature scan range of 30 to 200 °C and
thermogravimetric analysis measurements. Five symmetrical CFRP composite laminates were prepared
through a hand layup process assisted by vacuum bagging technique using various wt. % proportions (0.25,
0.5, 0.75 and 1) of ADG-NH,/epoxy along with a neat epoxy. A slight increase of ~ 2 % in the glass transition
temperature T, was observed for the modified composites. It was observed that the ADG-NH2 composites
showed ~54 % increment in storage modulus £, ~ 41 % increase in loss modulus E"" compared to neat epoxy
CFRP laminate composites. Thermal stability values were determined through integral procedural
decomposition temperature measurement and an enhancement from 389.1 to 411.9 °C was observed.
Morphological properties of fracture surfaces were characterized by SEM micrographs and XRD analysis.
KEYWORDS

composite « CFRP ¢ amine functionalized graphene ¢« DMA ¢ TGA « SEM « XRD
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Introduction

Many engineering and industrial applications have broadened the requirement for carbon
fiber-reinforced polymer (CFRP) composites because of their superior thermal properties
such as stability, high insulation, high heat resistance, low shrinkage along with enhanced
mechanical properties like good dimensional stability, high tensile strength and modulus
etc. [1-5]. Nano additives like 2-D Graphene sheet composed of honeycomb structure
arrangement SP? carbon atoms were used in CFRP structures to enhance mechanical,
electrical and thermal properties [6,7]. Covalent functionalization shows more variation
in material properties and excellent bonding between the functional groups and particle
surfaces. Covalent bonding between the matrix and additive enables enhanced electric
charge, phonons transfer as well as mechanical load transfer across the particle / polymer
interface [8-11]. In order to form a strong amide bond with epoxies, amine functionalities
take part in the polymerization process [12] which is cured with amine-based hardeners
and are used in the majority of structural FRPs.

Many literatures report the study of crystallization behavior of polymeric
composites with the addition of very small amounts of graphene nano particles through
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non-isothermal DSC experiment analysis [13]. Through thermogravimetric analysis (TGA)
measurements, thermal degradation and thermal stability characteristics of polymeric
composites subjected to higher thermal loading and high temperature resistance to
mechanical deformations were investigated [14,15]. The viscoelastic properties of the
polymeric composites subjected to continuous sinusoidal loads such as damping factor
(tan 6), storage modulus (F) and loss modulus (E”) were analyzed through dynamic
mechanical analysis (DMA) [16,17]. Storage modulus (F’) indicates the rigidity and stiffness
of the polymeric structure and decreases with increase in temperature due to the
movement of polymeric chain segments [18,19]. Heat-released energy with the viscous
reaction of the composite was analysed by the measure of Loss modulus (£E"). The ratio of
storage modulus (E) to loss modulus (E”) was measured by damping factor (tan 6) [20,21].
Numerous studies have validated that combining synthetic fibers with plant-based
fibers can enhance the viscoelastic properties of composite materials [22-24]. A high
concentration of carbon-based materials has been shown to enhance the thermal
conductivity of polyamide composites. In a separate study, the thermal behavior of epoxy
resin-based composites was investigated by incorporating varying concentrations of
graphene nanoplatelets (GNPs) - specifically 0.25, 0.5, and 0.75 wt. % - using ultrasonic
dispersion. The findings revealed that the composite containing 0.75 wt. % GNPs exhibited
superior thermal stability compared to the other formulations [25]. It is reported that the
crystallization temperature and degree of crystallinity of polyamide graphene nanoplatelet
(GNP) nanocomposites increase with higher graphene loading [26]. Rheological analysis
further revealed that increasing the GNP weight percentage enhances both the storage
modulus and complex viscosity of the material. At elevated graphene concentrations, a
low-frequency plateau was observed, indicating a pseudo-solid-like behavior in the
polymer melt. Recent studies have shown that graphene nanoplatelets (GNPs), particularly
those prepared through acid treatment for improved suspension stability, significantly
enhance the thermal conductivity and stability of polymer composites. When these heat-
exfoliated graphene layers are embedded into epoxy matrices, they yield notable
improvements in thermal performance [27]. In another study, it has been shown that
functionalized graphene oxide (GO)-reacted with agents such as Ceylon achieved a
thermal conductivity of up to 5.8 W/m-K with 20 wt. % GO loading. Under mechanical
stress, GO-based polymer composites demonstrated a higher tendency to form well-
dispersed nanostructures, resulting in significantly improved thermal conductivity [28].
From the existing literature, it was observed that less work has been carried out on
the thermal properties of CFRP composites reinforced with low content graphene nano
particles (< 1.0 wt. %) compared to high-content graphene-filled polymer composites.
This paper reports on the preparation of amine-functionalized graphene-epoxy CFRP
composites with different percentages of ADG-NH, loading (£ 1 wt. %) and investigation
of thermal properties and morphological properties to establish the effect of amine
functionalization on the CFRP composites. This paper also describes the processing
method of ADG-NH; into the epoxy matrix, which has enhanced the properties due to the
better homogeneous dispersion of the ADG-NH, The main highlights of the research work
are use of aerospace grade epoxy and resin with amine functionalized graphene.
Significant increase in the storage modulus and loss modulus at 0.5 wt. % of ADG-NH;
graphene content compared to the neat epoxy CFRP composites indicating better
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elasticity, viscoelastic properties and energy dissipation capabilities. Minimum tan 6 for
0.5 wt. % of ADG-NH, graphene content compared to neat epoxy indicating better
damping, energy dissipation and superior interfacial bonding between fiber and matrix
interface. Fractographic analysis from scanning electron microscopy (SEM) and X-ray
diffraction (XRD) clearly demonstrates the improvement of layer adhesion for increasing
loading content up to compared to neat epoxy CFRP.

Materials

The amine functionalized graphene (product No.: ADG-NH;) was received from M/s
AdNano Technologies Private Limited, Shivamogga, Karnataka, India. Homogeneous
dispersion (purity ~ 99 %) of the amine functionalized graphene (containing 5-10 layers
of graphene) with the addition of (~ 2 to 5 %) NH, to graphene in order to achieve
the desired exfoliation and dispersion increases the thermal conductivity and mechanical
properties. The covalently functionalized graphene particles have an average thickness
range of 5-10 nm and an average lateral dimension of the range 5-10 pm
with bulk density and surface area of 0.1 g/cm?®and 60-200 m?/g, respectively (Fig. 1).

ADG-NH, Epoxy,
’ Epoxy solution @
Ultrasonication with ADG_NH’: S
(1Hr) : By mixing L
= ADG-NH,, Methanol e
Methanol
ADG-NH,
__ Methanol
Ultrasonicati Magnetic
stirring
(30 min) (20 min)
ADG-NH; Methanol Hot plate (60°C)
& Epoxy
Vacuum Oven
(a)
Hardener
Magnetic Hardener
Stirring solution
(20 min) with ADG-NH, Degassing

(until
Methanol
Evaporation)

By mixing at45 °C
& 10 bar
ADG-NH
Hot plate (60° C) solution—% Spue)

Brush for wet ADG-NH; modified
Lay up progess epoxy

Vacuum

Final Composite Connector CFRP bidirectional f
woven Laming
Laminate 5
6\2\: [
SN PR RGeS
) fis SR A
) #
sl | R =1
300mm -
Vacuum Bagging [« 0°/90°

fiF 450/-45°

(b)

Fig. 1. Schematic diagram of processing of ADG-NH; (a) and (b) fabrication of laminated components
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Bidirectional carbon fiber woven fabrics (T700), epoxy (LY 5052) and hardener (CH 5052)
were used for this study. The high-strength non-crimp carbon fiber fabrics (Product No.: T700)
were purchased from M/s Carbonext India Private Limited. Nashik, Maharashtra, India has a
thickness of 0.25 mm or 250 gsm. The T700 carbon fiber fabric had an aerial weight
of 634 g/m? (305 g/m?in the 90° direction, 315 g/m?in the 0° direction and was stitched
together with polyester knitting thread (14 g/m?). An aerospace-grade epoxy resin (ARALDITE
LY5052) and hardener (ARADUR 5052 CH) received from M/s Singhal Chemical corporation,
Meerut, UP, India were used for this study. The resin was mixed with hardener with a ratio of
100:38 (wt. %). Initially a baseline T700 carbon fiber fabric CFRP composite with neat epoxy
was manufactured. The mould release agent was received from Mohini Organics Pvt. Ltd.,
Malad (West), Mumbai, Maharastra, India and adhesive tape, release film & peel ply were
purchased from Aristo Flexi pack, Daman and Diu, India. For this composite Laminate system,
the densities of fiber and resin are 1.8 and 1.17 g/cm?®respectively and the nominal resin and
fiber volume was of the ratio 34: 66.

Fabrication of amine functionalized graphene (ADG-NH,)/epoxy

As shown in schematic representation (Fig. 1), during this study all the composite laminates
were prepared under similar environmental conditions. The desired amine functionalized
graphene (ADG-NH,) solution loading content was added to solvent medium (methanol) and
dispersed using an ultrasonic dispersion machine (Hielscher Ultrasonic homogenizer (Product
No. UP400 ST) with a 22 mm probe), for 1 h to ensure the homogeneous dispersion of
ADG-NH, by breaking the Vander walls attractive force of attraction between the nano particles.
This process completely removes ADG-NH, aggregates, enabling effective dispersion. A large
volume of methanol solvent was used for dispersion of ADG-NH,. The base epoxy resin was
then added to the ADG-NH, /methanol dispersion and the mixture was stirred continuously
with a magnetic stirrer. Methanol was evaporated from the ADG-NH,-epoxy solution by using
a rotorvap machine which was operated at 45 °C (10 bar). The resulting mixture was then
allowed to settle down inside the oven at 45 °C under the vacuum at 10 bar and methanol was
completely evaporated. A mixing machine with high speed of rotation (ROSS Laboratory High
shear mixer (Model 100LH), NY USA) operating at 3000 rpm for 20 min was used to mix the
ADG-NH;/epoxy. The mixtures were then allowed to settle down on the beaker stand and the
agglomerates were completely removed. The neat epoxy was treated similarly as the
processing stage of ADG-NH, different wt. % filler loadings [29,30]. Hardener Aradur 5052 CH
was then added to the ADG-NH,/ epoxy solution and a mixing ratio of 100:38 was incorporated,
which was mixed again using the mixing machine with high speed of rotation at 3000 RPM for
20 min. Then the degassing of the suspension was carried out in a vacuum chamber (pressure
~ 10 bar) at 45 °C for approximately 20 min while manual mixing through a mechanical stirrer
was carried out during the entire process. The mixture was then transferred into an open
beaker at room temperature (RT), which was used for the preparation of the CFRP laminate.

Fabrication of composite laminates

Bidirectional carbon fiber was cut into 4 pieces of 300 x 300 mm? with 0°/90° orientation
and 8 pieces of 45°/-45° orientation to prepare CFRP Laminate. For fabrication of the
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laminate, a 15 mm thick plane aluminum plate was considered, and its top face was cleaned
thoroughly with MEK on which the laminate wet lay-up process was carried out. A release
film (300 x 300 mm?) with 15 pym thickness was laid and on it a peel ply (30 um) was laid.
With the help of a brush, the mould release agent was applied to the peel ply and
prepared adhesive resin solution (ADG-NH»+ epoxy (LY 5052) + Hardener (5052 CH)) was
applied on it. Then the first carbon fiber bidirectional woven sheet (in 0°/90° orientation)
was kept on the adhesive resin solution. Then the second carbon fiber layer (at 45°/-45°
orientation) was kept over the first carbon fiber layer after applying the adhesive resin
solution on the first fabric uniformly with the help of a brush. To have a uniform thickness
of laminates and avoid epoxy starvation between the two carbon layers, the extra amount
of resins were squeezed with the help of a roller onto the carbon fiber woven sheets. The
third layer was kept (at 45°/-45° orientation) on the second layer and the same procedure
was followed. The 4th, 5th and 6th layers were kept at 45°/-45°, -45°/45° and 90°/0°,
respectively in the same manner and the same procedure was adopted towards the
preparation of twelve layers of symmetric cross-plied quasi-isotropic CFRP Laminate as
shown in Fig. 1. After laying the twelfth layer, peel ply has to be kept and an aluminum
plate has to be kept on the top. The carbon fiber/epoxy laminate staking sequence along
with fiber orientation and thickness is shown in Fig. 1. During the manufacturing of the
CFRPs, the vacuum Bagging Technique was used for curing the whole stack of laminate.
In this Vacuum Bagging arrangement, first a mild steel plate was taken and cleaned
thoroughly with MEK which was used to form the mould base. After treating this plate
with a mould release agent, for making the mould frame Tacky tape was used, with inlet
and outlet tubes. The thickness of the laminates fabricated in this entire process was
between 3 to 3.5 mm, which meets standard testing requirements.

During this process in order to address air entrapment and void formation the
laminate was cured at full vacuum (10 bar). The laminate was kept in this condition for
24 h curing at room temperature. Post curing, laminate was again cured for 1 h at 60 °C
and then again at a higher temperature of 120 °Cfor 3 h. A similar procedure was adopted
for the fabrication of other CFRP laminates with different ADG-NH,/epoxy wt. %
(0.25, 0.5, 0.75, and 1). The average thickness of various fabricated ADG-NH,/epoxy/CFRP
composite laminates were 3.02, 3.12, 3.23, 3.34, 3.45 mm respectively for neat, 0.25, 0.5,
0.75 and 1 wt. % ADG-NH,/epoxy. It was observed that due to the increasing addition of
ADG-NH; loading content, the average thickness of fabricated CFRP composite laminate
increases minimally. For mechanical and morphological characterization, composites
were cut into test specimens by means of a high-speed diamond cutter as per the testing
standard requirements. The same fabrication technique and identical conditions were
adopted for all neat epoxy resin base laminates to compare the performance of graphene
content addition.

Methodology of characterization study
Morphology study of ADG-NH,

In order to evaluate the characteristics of Amine functionalized graphene (ADG-NH;) nano
characterization methodologies such as Fourier transform infrared (FTIR) and scanning
electron microscopy (SEM) were carried out. FTIR spectra of the ADG-NH, were carried out



127 D.N. Choudhury, S.K. Panda

using a Hoverlab FT-IR spectrophotometer (model No. HV-5500) with a 2 cm™? resolution
over 64 scans. The surface was checked by using a SEM (ZEISS Microscopy, Germany,
(Model EVO 15) with a 20 kV acceleration voltage of and 2.5 mm working distance.

The morphology study of the cured ADG-NH; enhanced CFRP composites

For this characterization, fracture surfaces were gold coated, and images were studied
using a SEM. In order to enhance contrast, a thin gold layer of thickness ~ 3 nm was
applied on the fracture surface of the ADG-NH,/CFRP composite specimen. X-ray
diffraction (XRD) measurements were done with the help of a Siemens D5000
diffractometer along with a Cu-Ka X-ray tube beam radiation (A = 0.1542 nm) operated at
40 KV and 40 mA. The X-ray diffraction patterns were scanned with the help of a Nickel
filter and divergences slits of 1 mm under standard braggs angle 6-26 conditions. The
patterns were scanned over the Bragg angle (26) from 1 to 30 ° at a rate of 1°/50 sec™.

Thermal gravimetric analysis

Thermal gravimetric analysis (TGA) was carried out as per the international standard I1SO
11358-1 [31] at a heating rate of 10 °C/min under a nitrogen atmosphere to find the
thermal stability of modified composites [32]. From the TGA thermograms, various
thermal stability factors such as activation energy (E) for decomposition, integral
procedural decomposition temperature (IPDT), initial polymer decomposition
temperature (PDT) and char yield at 800 °C were determined [33]. IPDT, which indicates
the thermal stability of the polymeric materials in the degraded process, was estimated
from the TGA curves using the following equations:

IPDT = A"K*(6; — 6;) + 6, 1)
A = A1+A; ’ (2)
A1

where A* is the ratio of the total experimental curve defined by the total TGA
thermograms, K* is the coefficient of A%, 6; and 6; are the total initial and final
experimental temperatures respectively and A;, A, and As are the areas of the three
regions into which the TGA curve is divided as shown in Fig. 2.

1

WEIGHT LOSS (%)
= 2

S
=1

"
0 800 900

0 1|‘JO Zl.)ll 3IIJB 41‘)!] 5(.|U SIIJD 70
TEMPERATURE (DEG C)

Fig. 2: Schematic representation of A1, A2 and A3
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E: was calculated from the TGA curves using the integral method reported by
Horowitz and Metzger, according to the following equations [34]:

Infln (1 - @)™ = & Q)
_ (Mi_Ma)
B (Mi-My) ©)
a= 60— 0Opnux (6)

where ¢ is the extent of decomposition, M., M; and M; are actual, initial and final masses
of the sample respectively, R is the universal gas constant, 8,,,, is the absolute
temperature.

Dynamic mechanical analysis

Dynamic mechanical analysis (DMA) can identify critical thermal transitions in CFRPs,
such as glass transition temperature (Tg) and secondary transitions. Ty is the range of
temperatures at which the polymer matrix transitions from a rigid, glassy state to a more
flexible, rubbery state. Determining the composite's operational temperature limits
requires an understanding of T, While, secondary transitions, which can affect the
performance of the composite in different environmental conditions. The PerkinElmer
DMA 8000(part no N5330101) machine with strain rate of 0.40 and operating at 2 Hz with
a temperature range of 400 to -190 °C was used to determine T4 of the modified ADG-
NH,/CFRP composites through DMA. T, measurements were taken from the maximum
values of the tan & curve. Rectangular specimens of dimensions 3 x 12 x 60 mm?* were
used as per the ASTM D7028 standard [33]. The temperature variation from 30 to 200 °C
with an increment of 2 °C/min was carried out on samples. To have repeatability of material
response test was carried out on three specimens of each ADG-NH,/ epoxy wt. % content.

By using Eg. (3), the cross-link density of the ADG-NH,/epoxy composite with

various wt. % concentrations can be found:
El

p= T (7)
where p is cross-link density in mol/cm?, E' refers to the storage modulus in MPa in the
rubbery plateau region, R is the universal gas constant (8.3145 J/K mol), and T is the
temperature in rubbery plateau region in Kelvin at 7, + 50.

Results and Discussion
Morphology study of ADG-NH,

FTIR analysis of the ADG-NH; as received was carried out to detect functional groups and
characterize covalent bonding information as shown in Fig. 3. Micrograph analysis
through SEM for the as received ADG-NH, with the higher magnification image was
carried out as shown in Fig. 4. The average lateral dimensions of the functionalized
graphene particles were found to be of the order of 5 to 10 um.

Thermal gravimetric analysis

Figure 5 represents the various zones of the TGA theromographs of ADG-NH,/epoxy/CFRP
composite (a) weight loss (%) vs temperature (°C), (b) derivative weight loss (%/min) vs
temperature (°C).
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Fig. 3. FTIR spectroscopy of amine functionalized graphene (ADG-NH,)

Fig. 4. SEM image of amine functionalized Graphene (ADG-NH,)
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As shown in Fig. 5(a), Zone 1 is the glassy region where the first weight loss (10 %)
occurs between 25 and 350 °C may be due to the less cured epoxy resin, water
vaporisation and volatile impurities. As shown, Zone 2 is the glassy transition region
occured between 350 and 600 °C indicating the thermal degradation of the cured epoxy.
Figure 5(b) represents the derivative weight loss (%/min) vs temperature (°C) for different
wt. % of graphene fillers.

The thermal stability factors, including PDT, IPDT, E: and Char yield at 800 °C
are listed in Table 1. The PDT and IPDT values of the ADG-NH,/epoxy/CFRP composites
were 362.59 and 389.1 °C, respectively. The maximum PDT and IPDT values were
observed as 373.02 and 411.9 °C, respectively, occurred at 0.5 wt. % ADG-NH, content.
An increase of ~ 14 % was observed for the activation energy (£:) values of the modified
composites, which were increased from 61.63 to 69.93 KJ mol! as listed in Table 1.

Table 1. PDT, IPDT, E; and char yield at 800 °C values observed from TGA thermograms

ADG-NH; loading, wt. % PDT, °C IPDT, °C E:, KJ/mol Char yield at 800 °C
0 362.59 389.1 61.63 043
0.25 364.30 394.8 65.52 2.58
0.5 373.02 411.9 69.93 4.55
0.75 367.11 406.2 68.098 0.32
1.0 363.11 400.5 64.95 0.24

Also, an increase in characteristic yields of the prepared composites at 800 °C was
observed for 0.5 wt. % ADG-NH, content compared to neat epoxy and reduces
subsequently beyond 0.5 wt. %. These results indicate improved thermal stability
characteristics such as thermal resistance and thermal conductivity of the polymer
structure due to the addition of ADG-NH, graphene fillers of up to 0.5 wt. % compared
to neat epoxy. Beyond 0.5 wt. % ADG-NH, graphene fillers, there is an agglomeration
formation in the epoxy network which reduces the interfacial bonding characteristics of
the fiber epoxy network [33-35].

Dynamic mechanical properties

DMA uses modulus and tan é to quantify the sample's stiffness and damping. Since the
applied force is sinusoidal, the storage modulus (£’) can be expressed as an in-phase
component and loss modulus (E”) an out-of-phase component. The elastic response of
the sample is represented by the E’, and the capacity to dissipate energy is represented
by tan 6 (i.e. E"/F). This analysis quantifies the loss modulus (E"), storage modulus (E"),
damping factor (tan 8), and glass transition temperature (7,). Figure 6 represents the
viscoelastic properties of ADG-NH,/epoxy/CFRP composites w.rt temperature for
different wt. % of ADG-NH, filler investigated through dynamic mechanical analysis.
Figure 6(a) represents the storage modulus (E') vs temperature of modified
composites at different wt. % of ADG-NH,. These curves depict the three significant zones
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Fig. 6. Variation of (a) storage modulus vs temperature, (b) storage modulus (rescale showing T,+50) vs
temperature,(c) loss modulus vs temperature, (d) tan 6 Vs temperature, (e) peak T, w.r.t ADG-NH;
addittion, (f) Cole-Cole plots of ADG-NH,/epoxy/CFRP composites

of the material during the experiment, such as the glassy region (Zone 1) representing
the elasticity, the rubbery transition region (Zone 2) which indicates the degradation of
and decreases beyond 0.5 wt. %.

Due to the hexagonal molecular arrangement of graphene with carbon fiber atomic
structure, semi compatibilty local agglomerations elasticity till it stabilizes and enters the
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rubbery region (Zone 3). At 65-75 °C for all curves there is a sudden decreasing trend in
all the curves indicating the end stage of the glassy region of the CFRP composite. Table 2
lists the maximum storage modulus values of the ADG-NH,/epoxy/CFRP composite based on
the experiments on the different wt. % of ADG-NH, in CFRP composites. As the ADG-NH,
graphene concentration increases, £' of modified composites increased to 10325 MPa
(for 0.25 wt. %), 12872 MPa (for 0.5 wt. %), 9723MPa (0.75 wt. %), 9150 MPa (1 wt. %)
respectively from 8346 MPa (Neat CFRP) which corresponds to increment of 23.71, 54.22,
16.5 and 9.6 % respectively. It can be concluded from the above observations that the
storage modulus increased up to 0.5 wt. % of ADG-NH, were formed beyond 0.5 wt. %
which prevents higher elastic behavior for the rubbery transition zone across the full
temperature range [36-39].

Table 2. Maximum storage modulus and loss modulus observed during the DMA of ADG-NH,/epoxy/CFRP
composite specimens

ADG-NH, loading, | Max storage modulus (E’), | Increase in E’, | Max loss modulus E”, | Increase in E”,
wt. % MPa % MPa %
Neat epoxy 8346 + 41.53 0 1324 + 13.24 0
0.25 10325+ 51.63 2371 1750+ 17.5 32.17
0.5 12872 + 64.36 54.22 1866 + 18.66 40.93
0.75 9723 + 48.62 16.5 1545 + 15.45 16.69
1 9150 + 45.75 9.6 1487 + 14.87 12.31

Figure 6(b) represents the enlarged view of storage modulus (E') values of modified
composites at a temperature of T,+ 50 where the cross-link density, values are estimated
for different wt. % of ADG-NH,. Table 3 lists the cross-link density values of the modified
CFRP composite using Eq. (3). The cross-link density which indicates the stiffness
characteristics of the polymer structure is affected by the mobility of molecules in the
polymeric chain. Its value increased up to 0.5 wt. % of ADG-NH, and subsequently
reduced beyond 0.5 wt. %.

Table 3. Peak glass transition (7,) and peak tg 6 of ADG-NH, filled CFRP composites

ADG-NH, loading, Peak T, °C Peak Tg, °C Peak tg & Cross link density,
wt. % (Loss peak) (tan & peak) mol/cm3
Neat epoxy 84.24 +0.22 90.85 + 0.25 0.6041 0.041
0.25 84.39 + 0.25 92.5+0.32 0.5202 0.085
0.5 86.08 + 0.35 93.51+0.35 0.3284 0.191
0.75 85.72 + 0.33 93.39 +0.33 0.5144 0.068
1 85.65 + 0.30 92.87 +0.30 0.544 0.064

The reduction in the T, value listed in Table 3 indicates the decrease in stiffness
value of the composite material. The storage modulus values are directly related to highly
cross-linked polymeric chain and vice versa [40,41].

Figure 6(c) represents the loss modulus (E") vs temperature of modified composites
at different wt. % of ADG-NH,, which indicates the energy release by the polymer
structure when subjected to cyclic loading. As illustrated in these curves the values
initially increase in zone 1 i.e. glassy region and then sharply increases to the peak in
Zone 2 i.e. Rubbery transition zone but sharply reduces in this region and continues up
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to Zone 3 Rubbery region. It was observed that the loss modulus of approx. 41 %
increased up to 0.5 wt. % of ADG-NH, and decreased beyond 0.5 wt. %. The inclusion of
ADG-NH; frequently causes the loss modulus peak to broaden. This phenomenon is
typically attributed to either a suppression of the relaxation process occurring inside the
composite or a higher rigidity of the chain segments, hence increasing the material's
heterogeneity. In the ADG-NH,-loaded samples, the loss modulus was essentially
increased for three reasons: (1) the polymer chains were unable to move freely as a result
of the amino-functionalized GNP's enhancement of the crosslinking reactions between
epoxy and hardener; (2) the covalent bond formed between the amino-functionalized
GNP and epoxy enabled greater energy dissipation from the matrix to the amino-
functionalized GNP, and (3) demonstrating the enhanced adhesion and interfacial
bonding strength between the resin matrix and carbon fiber. The addition of amino
functionalized GNP raises the composites’ loss modulus (E") in comparison to the
untreated composite, which in turn raises the polymer's structural mobility inside the
composite. The polymer chain relaxation zones and confluence zones were observed for
all the curves towards the peak loss modulus values, but relaxation zones were more for
the more ADG-NH, graphene loading content beyond 0.5 wt. %. Peak E" was measured
at 1324, 1750, 1866, 1545 and 1487 MPa at 84.39, 84.72, 86.69, 85.33 and 85.28 °C.
The increase in loss modulus values up to 0.5 wt. %, which represents the better energy
dissipation and mechanical properties was may be due to the better graphene dispersion,
enhancement of the cross-linking reactions between epoxy and hardener, greater energy
dissipation from the matrix to the amino-functionalized GNP and enhanced fiber matrix
bonding [32,42].

Figure 6(d) represents tan 6 vs temperature of modified composites at different
wt. % of ADG-NH, which indicates the damping properties as well as the material
characteristics whether it is elastic or non-elastic in nature for the polymer structure.
A material with a high, non-elastic strain component is indicated by a high tan 6 value,
whereas a low value denotes a material with high elasticity. The damping factor is
governed by molecular motions and viscoelasticity, in addition to specific defects that
promote damping, are dislocations, grain boundaries, phase barriers, and different
interfaces. The damping factor is reduced with an increase in the bonding at the
fiber/matrix interaction because of decreased mobility of the molecular chains at the
fiber/matrix interface. Thus, the higher the energy losses with respect to its storage
capacity, the greater will be the tan 6 value in the composite system [43,44]. As depicted
from the curves, tané values obtained for different wt.% fillers are
0.6041, 0.5202, 0.3284, 0.5144, 0.544 respectively for neat CFRP, 0.25, 0.5, 0.75 and
1 wt. % as listed in Table 3. The peak T, values for all Tan & values are shown in Fig. 6(d)
and are listed in Table 3. It was observed that the peak of all the tan § values decreased
with an increase in ADG-NH; filler content. The minimum value obtained for 0.5 wt. %
represents more elasticity characteristics and better interfacial bonding compared to the
maximum value obtained for neat epoxy representing better damping, energy dissipation
and weak interfacial bonding between fiber and matrix interfaces [45-47].

Figure 6(e) represents the peak T, values for different ADG/NH, concentrations of
the CFRP matrix. The glass transition temperature T, is defined as the temperature where
(i) the middle point of £’ vs. temperature curve or (ii) the region where E’ increases with
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increasing frequency at constant temperature or (iii) maximum of E” happens or (iv)
maximum of tan § arises. It was observed that a very slight increment in T,up to 0.5 %
addition of ADG/NH,, thereafter decrement was observed.

Figure 6(f) represents the relation between the loss modulus indicating the
viscoelastic material energy dissipation and storage modulus indicating the stored energy
of the polymer material known as the Cole-Cole plot. These plots indicate the homogenity
or hetrogenity characteristics of material w.r.t different wt. % of graphene fillers and
information about the structural rigidness at high temperatures. As observed, all the
curves of the composite were of a warped semicircular contour indicating their
heterogeneous characteristics [48,49]. Due to localized agglomeration of the graphene
particles for higher wt. % beyond 0.5, curves were displayed as imperfect semicircles
indicating the viscoelastic behavior of the polymer structure [50,51].

Figure 7(a) represents the relationship between the cross-link density w.r.t ADG-NH;
wt. %. Figure 7(b) represents the relationship between FWHM (full width at half
maximum) of loss modulus w.r.t ADG-NH; wt. %. In both the grphs it was observed that
the values are increased up to 0.5 wt. % and reduced subsequently beyond 0.5 wt. %.
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Fig. 7. Variation of (a) cross link densty Vs ADG-NH; filler loading corelation, (b) FWHM of loss modulus Vs
ADG-NH; filler loading corelation

Fractographic analysis of ADG-NH,/CFRP

SEM micrograph and XRD analysis were carried out to evaluate the physical and chemical
properties along with the toughening mechanism of the ADG-NH, nano material for both
neat epoxy and ADG-NH,/ CFRP with different wt. % filler content (0.25, 0.5, 0.75 and 1)
(Fig. 8). Neat and ADG-NH,/CFRP composites epoxy with varying filler levels (0.25, 0.5,
0.75, and 1 wt. %) were examined using SEM examination. The fracture toughness of
CFRP laminate is determined by the toughness of the matrix and adherence of the carbon
fibers to the matrix. Amine-functionalized graphene increases fracture toughness,
because of its mechanical strength, surface area, wrinkled structure, and good interfacial
adhesion with epoxy. The amine groups improve bonding with the epoxy matrix, also
aiding uniform dispersion of graphene. At higher concentrations (0.75 and 1 wt. %),
graphene aggregation causes stress concentration and reduced adhesion, negatively
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impacting performance. SEM images confirm uniform dispersion in lower concentrations
but show exposed fibers and poor bonding at 1 wt. %, explaining the decline in
mechanical performance at higher filler contents.

BEM WV 100 KV
SEM MAG: 00

BEM VL 100 KV WO- 1535 i
M MAGH SO0 % Dot 2%

Fig. 8. SEM images of (A,B) CFRP with neat epoxy (100 um) & (50 pym), (C,D) CFRP with 0.25 wt. % of
graphene (100 pm) & (50 um), (E,F) CFRP with 0.5 wt. % of graphene (100 pm) &(50 um), (G,H) CFRP with
0.75 wt. % of graphene (100 pm) & (50 um), (1)) CFRP with 1 wt. % of graphene (100 um) & (50 ym)
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SEM pictures show weak mechanical properties due to brittle fracture behavior,
exposed carbon fibers, and poor bonding in neat epoxy matrix. In contrast, amine-
functionalized graphene strengthens adhesion, as demonstrated by the firmly bonded
carbon fibers in matrix material. As shown in Fig. 8(e,f), fractured samples with 0.5 wt. %,
graphene exhibits the best interfacial strength and rough fracture surfaces, indicating
plastic deformation and crack deflection. Increased surface area and energy absorption
during fracture propagation are indicated by dimples, which enhance mechanical
characteristics. Performance is adversely affected by graphene aggregation at higher
concentrations (0.75 and 1 wt. %), which results in stress concentration and decreased
adhesion in Fig. 8(g,h,l,j). The decrease in mechanical performance at increasing filler
amounts can be explained by SEM images, which show exposed fibers and weak bonding
at 1 wt. % but demonstrate homogeneous dispersion at lower concentrations.

X-ray diffraction (XRD) analysis was carried out on the ADG-NH,/CFRP composite
laminate to evaluate the crystallinity and interlayer distance of the nano materials. The
XRD image pattern for the neat epoxy CFRP indicates that the primary peak (002) was
observed at ~ 24.89°, which represents an interlayer distance of ~ 0.357 nm, along with
the (004) peak occurring at 44.60°. The XRD image pattern for ADG-NH,/CFRP composite
laminates with different wt. % filler content (0.25, 0.5, 0.75 and 1) indicates the primary
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Fig. 9. XRD patterns of (a) CFRP with neat epoxy with peak 26 =24.89°, (b) CFRP with 0.25 wt. % of
graphene with peak 26 =26.80°, (c) CFRP with 0.5 wt. % of graphene with peak 26 =26.65°, (d) CFRP with
0.75 wt. % of graphene with peak 26 =26.90°, (e) CFRP with 1 wt. % of graphene with peak 26 =25.78°



137 D.N. Choudhury, S.K. Panda

(002) peak were present at ~ 26.80, ~ 26.65, ~ 26.90, ~ 25.78° respectively which
corresponds to an interlayer distance of ~0.332, ~0.334, ~0.331, ~0.334 nm,
respectively (Fig.9). These XRD patterns indicate that the impurities or enormous
amounts of dislocated or corrugated carbon samples are not available in the composite
laminates. These diffraction patterns of the profile peaks also indicate the high degree of
crystallinity in the composite laminates.

Conclusions

In order to evaluate the effect of Amine functionalized graphene (ADG-NH,) reinforced
CFRP composites on thermal properties, various specimens of different wt. % have been
prepared as per ASTM requirements. The fractographic study indicates encouraging
thermal properties due to an improved adhesion mechanism influenced by the
homogenous dispersion of amine functionalization of graphene (ADG-NH,).

The results of thermal characterization of modified composites evaluated through
DMA reveal that an increase of ~ 55 and ~ 41 % was observed for the storage modulus
and loss modulus at 0.5 wt. % of ADG-NH, graphene content compared to the neat epoxy,
CFRP composites indicating better elasticity, viscoelastic properties and energy
dissipation capabilities. The minimum tan delta values were obtained for 0.5 wt. % of
ADG-NH, graphene content compared to neat epoxy indicating better damping , energy
dissipation and superior interfacial bonding between fiber and matrix interfaces. As
observed from the loss modulus curves and tan é curves the T,values were also observed
to be improved by ~ 2 % compared to neat epoxy CFRP. Fractographic analysis from SEM
and XRD clearly demonstrates the improvement of layer adhesion for increasing loading
content up to compared to neat epoxy CFRP. This work demonstrates the distinct
enhancements in thermal properties of laminates compared to previous results due to
homogeneous dispersion of GNP in ADG-NH,-epoxy CFRP composite and better load
transfer in nanomaterial.
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ABSTRACT

In this study, composite films of PbS nanoparticles and PANI were used. The PbS/PANI samples were
analyzed using XRD, UV-visible, FT-IR and TEM. Furthermore, the effects of PbSNPs on their optical,
structural and thermal parameter were determined using DTA, UV-Visible and XRD. The UV and XRD
confirmed the successful synthesis of PbS/PANI Nanocomposite. The TEM indicated homogeneous
dispersion of PbS in PANI with average diameter of particle is 20nm. Besides, the broadness and reduction
of PANI in XRD peaks intensity with increasing PbS is attributed to the intermolecular interactions of PANI
and PbS and indicates the successful incorporation of PbS in PANI. The thermal stability was enhanced at
different weight percentages of PbS nanoparticle indicated in DTA analysis. The structural changes in the
Pbs nanocomposite observed in the XRD.
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Introduction

Polymer composites are comprehensively used in vehicle, flying, advancement, and
electronic applications [1-5]. It was focused on mechanical, electrical, warm and other
genuine properties. The nanocomposites are one more class of materials that exhibit
superior properties compared to microcomposites [6-9]. A little development of
nanoparticles essentially deals with different properties without relinquishing the light
weight of polymer lattices. The nanocomposites generally suggest composites in which
something like one phase has viewpoint on the solicitation for several nanometers. They
can be made with the used of three particular kinds of nanoparticles. The vital sort of
nanoparticles simply has one angle in the nanometer scale. They have a platelet-like
development [10-14]. Soil is a certifiable delineation of the sort of nanoparticles.
Another sort of nanoparticles has two parts of the nanoparticles in the nanometer scale.
Nanotubes and nanofibers have a spot with this get-together [15-17]. The third sort of
nanoparticles has every one of the three angles in the nanometer scale, for example,
round silica particles. A collection of the sort of particles is outstandingly retentive
particles. While the component of the particle may be in the solicitation for microns, the
pore sizes are in the solicitation for nanometers [18,19].
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The filling of nanoscopic metals into polymer lattices tends to a decision to course
and change issues. For sensible purposes of nanoparticles, polymers are on a very basic
level required as filling stage since they would have different qualities: they can be an
electrical and warm encasing or conveyor [20]. Polymers could have a hydrophobic or
hydrophilic nature and can be definitively hard plastic or flexible versatile, and so on.
Ultimately, polymer filling is the least complex and most sensible way for nanostructures
metal change, treatment, and application [21-23]. This has fuelled assessment
concerning the preparation of metal-polymer nanocomposites. These composites most
generally show up as small polymer films or powders, as this is commonly the least
demanding development to design, and moreover extraordinary for exploiting the best
properties. The Readiness methodologies of polymer metal nanocomposite can be named
in-situ and ex-situ procedures. In the in-situ systems, the monomer is polymerized, with
metal particles introduced already or after polymerization [24-26]. Then, the metal
particles in the polymer structure are reduced falsely, thermally or by UV (ultraviolet)
brightening, to shape nanoparticles [27]. In the ex-situ process, the metal nanoparticles
are consolidated first, and their surface is normally passivized. In the current paper,
Polyaniline/PbS nanocomposite arranged, and it gets examination with DTA (differential
thermal analysis) for warm boundary and their solidness.

Materials and Methods

Compound combination of Polyaniline involving APS as oxidant and H,SO. (Fig. 1).
Unadulterated aniline broke down in 100 ml refined water with H,SO. added under
attractive blending for 2 h. The arrangement of ammonium per sulfate in sulphuric
corrosive was then added drop-wise in the arrangement of aniline. The encourage of
polyaniline acquired with dim green cloured [28]. The encourage washed with water. A
PANI encourage was dried under at 50-100 °C for over 8 h. Blend of PANI/PbS
nanocomposites a similar blend process was adjusted for readiness of PANI/PbS
nanocomposite at various weight proportion of PbS nanoparticle. PANI nanocomposite
was synthetically portrayed by infrared spectroscopy, XRD (X-ray diffraction) and TGA
(thermogravimetric analysis).

lolo‘ml .uf0‘4M 100 ml of 0.4M APS in
anilinein 1M H2504 1M H2504

Mixed with constant
stirring 1 hr

composite-

Cds,PbS & Mn02 added
in different wt ratio

Stirring for 6-7 Hr

Filtered PPT collected & wash
with distilled water &methanol

Dried in oven 70-80 degree

Emeraldine salt

Fig.1. Scheme of synthesis of polyaniline and nanocomposite
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Characterization of nanocomposites

XRD with Philips PW-3071, utilizing Cu-Ka radiation of frequency 1.544 A, with examining
pace of 2 °/min at 45 kV and 40 mA. Fourier transform infrared (FTIR) spectroscopy (Perkin
Elmer 200) with recurrence of 400-4000 cm™. Warm examination of test recorded by
Perkin-Elmer Precious stone TGA/DTA in argon air at a warming pace of 10 °/min.

XRD characterization of pure PANI and PANI/PbS Nano composite

The XRD patterns of unadulterated PANI and PbS and different wt. % of PANI/PbS
nanocomposite are displayed in Figs. 2 and 3. The molecule size of translucent molecule
of unadulterated PANI and the nanocomposites are determined by utilizing the Debye-
Scherrer equation: D = 0.941/Bcos6, where D is the typical crystallite size (nm), k is the
shape factor, which is much of the time relegated a worth of 0.94, A is the frequency of
Cu Ka radiation (1.5418 A), B is the full width at half limit of the diffraction top thinking
about the revision because of instrumental widening (0.09°). Translucent size of glasslike
molecules for unadulterated PANI, unadulterated PbS and different content (wt. %) of
PANI/PbS nanocomposite are given in Table 1. From the reference diagram of XRD top
plainly as 5-20 wt. % PbS nanoparticle expansions in the PANI lattice the level of
crystallites of nanocomposite additionally increments. Unadulterated PANI shows
glasslike reflection at explicit point in XRD and undefined at diffused foundation,
accordingly it uncovers the polycrystalline construction. It is observed that degree of
crystallinity increased in the nanocomposite as compared to pure PANI and PbS, indicated
the structural and surface morphological changes in the nanocomposite. Nanocomposite
is crystalline and has a more ordered structure compared to pure polyaniline.
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Fig 2. XRD patterns for 5%PANI/PbS Fig. 3. XRD patterns for PANI/PbS
nanocomoposite, pure Pbs and PANI nanocomposites with different contents of PANI
Table.1. Table indicated crystalline size of particle in nanocomposite
Sr. No Material Crystalline size particle, nm D’spacing, A 20,°
1 PURE PANI 0.710 3.520 25.270
2 PURE PbS 0.950 3.210 27.770
3 5% PANI/PbS 1.048 3.230 27.560
4 10% PANI/PbS 1.420 3.240 27.470
5 15% PANI/PbS 1.230 3.012 29.650
6 20% PANI/PbS 1.437 3.009 29.680
7 25% PANI/PbS 1438 3.0096 29.650
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Ultraviolet and visible (UV-Vis) spectroscopy of PANI/PbS nanocomposite

The most extreme assimilation frequency of unadulterated PbS and PANI/PbS
nanocomposite are displayed in the (Fig. 4). In unadulterated PbS the retention frequency
is getting at 263, 277 and 768 nm. It was interesting that the presence of retention groups
at 400 to 500 nm in PANI/PbS nanocomposite were found. Because this band is absent
from unadulterated PANI as well as unadulterated PbS. This fact demonstrated that when
PbS nanoparticle collaborates with PANI some underlying change happened. The presence
of this band in the nanocomposite gives the photoluminous qualities. The polaron-
T*transition band at 320 to 385 nm turns out to be more extensive and shows the red shift.
This infers that the doping condition of the nanocomposites has been moved along. Such
peculiarities can be credited to the presence of more noteworthy number of charges on the
polymer spine by bringing nanocrystalline PbS into the polymer matrix [16].
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pure PANI

5% PANI/PbS

—— 10% PANI/PbS
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Fig. 4. UV-Vis absorption spectra of PbS/PANI nanocomposite at different wavelength

Fourier transforms infrared spectroscopy of PANI/PbS nanocomposite

Figure 5 shows FTIR spectra of pure polyaniline and PANI/PbS nanocomposites
with different content (wt. %) of PbS. The incorporation of PbS nanoparticles caused the
shift of some peaks of PANI and PbS. The absorption peak corresponds to polyaniline
at 1566 shows red shift to 1561, 1557, 1516 and 1561 cm® respectively at 5%PbS,
10%PbS 15%PbS, and 20%PbS nanocomposites. The absorption peak at 1485 showed
a blue shift with respect to pure PANI peak, and they were moved to 1496, 1498, 1493
and 1495 cm! respectively at 5%PbS, 10%PbS, 15%PbS, and 20%PbS nanocomposites.
Similarly, the peak at 1284, 1284, 1290 cm, showed a blue shift with respect to pure
PANI peak at 5,10 and 20%PANI/PbS nanocomposites. But in 15%PANI/PbS
nanocomposite the peak shows the blue shift as compared to pure PANI peak.
The absorption peak at 1107 showed a blue shift with respect to pure PANI peak at 1179 cm™!
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for 5, 10 and 20%PANI/PbS nanocomposites. PbS and PANI formed a coordination bond,
and the electrons transferred from PANI to PbS which led to weakened bond strengths
and the conjugated system of PANI and thus weakened vibration of PANI. The band in the
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regions over 400 cm™ can be assigned to PbS stretching vibrations FTIR spectra of the
PANI/PbS nanocomposite are similar to those of PANI, but the bands' characteristic of
polymer backbone at 1400 and 1500 cm™ are shifted to higher values after annealing,
indicating deprotonation. The peak at 1107 cm™ is suppressed after annealing to a
greater extent for PANI compared to that for the nanocomposites, indicating a higher
extent of deprotonation in pure PANI compared to nanocomposites. The results of FTIR
spectra confirm the presence of both components in the nanocomposite.

Transmission electron microscopy of PANI/Pbs nanocomposite

Transmission electron microscopy (TEM) images (Fig. 6) show the morphology of
unadulterated PbS and PANI/PbS nanocomposite doped H,SO.. TEM image of
(10 %) PANI/PbS nanocomposite (Fig. 6(b)) shows that particles were collected into a
major construction, albeit the particles were in touch with one another. Most of the
particles are comparative size and have unpredictable adjusted shapes. When
content (wt. %) of PbS nanoparticle expanded in the polymer, then molecule size
diminished (Fig. 6(c)). The nanocomposite turns out to be more arranged structure,
consequently electrical conductivity is likewise expanded [29,30]. This is additionally
clear by XRD and UV spectra. The typical distance across nanoparticles is 12 nm territory.

DTA analysis of pure PANI and PANI nanocompposite

Figure 7 shows DTA thermogram of PANI/PbS (5 to 25 %) nanocomposite, which showed
just endothermic tops at around 230 to 245 °C because of the vanishing of water particles
caught inside the composite or bound to the polymer spine. while the change above
350 °C might be alloted because of the corruption of composite. The diminished
beginning worth of temperatures from 284 °C (unadulterated PANI) to 242.59, 244.15,
233.06, 227.55 and 237.25 °C for various wt. % of (5-25 %) PANI/PbS nanocomposite
demonstrated that the warm steadiness of nanocomposite is greater than that of

—&— 5% PANI/PbS
10 5 —— 10% PANI/PbS
15% PANI/PbS
—w— 20% PANI/PbS
25% PANI/PbS

J\ —<— pure PbS

Heat Flow

-10 -

-15 -

-20 —— 1 - T T 1 T 1 T T T T T T T 1T 1
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TEMP(°C)

Fig. 7. The graph of differential thermal analysis of pure PbS and PANI/PbS (5-25%) nanocomposites
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unadulterated PANI which could be credited to the impediment impact of nanostructures
PbS as hindrances for the debasement of PANI [28-30]. In DTA of PANI the glass progress
was not recognizable, in light of the fact that the glass change is covered in the top
because of the evacuation of water and it doesn't display hysteresis. The exothermic
progress at 99-160 °C is accepted not to be Tg. Rather it would be credited to a
progression of compound responses. The diminished pinnacle temperatures of PANI/PbS
nanocomposite, further show the arranged polymer structure as well as great interfacial
communications between the metal oxide and the polymer grid. The DSC (differential
scanning calorimetry) after-effects of composite materials are additionally found in great
concurrence with TGA results which demonstrate that all the nanocomposites show least
worth of beginning temperature as contrast with the unadulterated PANI.

Table 2 shows the data of warm boundary of Polyaniline nanocomposite with
various content of PbS. Some changes in the softening temperature and enthalpy in
PANI/PbS (5-25%) nanocomposite showed miscibility with PANI lattice.

Table 2. Thermal parameter of pure PANI and PANI/PbS nanocomposite

. Meltin Onset Enthal| Specific heat

Sr. No Material temp, ogc temp. °C change,r?/’g (ApCp), 1/gx°C Peak area
1 Pure PANI - 284.000 - 12.270 -
2 5%PANI/PbS 268.310 246.590 47.370 9.980 264.377
3 10%PANI/Pbs 267.880 244.150 34.460 6.520 167.613
4 15%PANI/PbS 266.810 240.060 30.479 6.479 123.622
5 20%PANI/PbS 265.130 232.550 28.699 5.192 125.700
6 25%PANI/PbS 263.420 230.250 26.861 4.405 120.234

Conclusions

XRD and UV-visible spectroscopy results indicated that the structural changes take place
in nanocomposite with PbS nanoparticle. Thermal analysis of PbS nanocomposite
indicated that the Polyaniline powder had discernible moisture content. This
phenomenon is in agreement with the XRD results. Moreover, in the first run of DTA
thermal analysis, an exothermic peak at 150-310 °C was found. This peak was due to the
chain cross linking, resulting from a coupling of two neighboring -N=0Q=N- groups to give
two -NH-B-NH groups through a link of the N with its neighboring Quindio ring. Thus,
based on the thermal profile of these materials, we can say that among all composite
material, the PANI/PbS composite materials, cross-linking or oxidative reaction starts at
higher temperature than other composites, which indicates that the thermal stability of
PANI/PbS nanocomposites is higher than oxides nanocomposites. These DTA results of
composite materials are also found in good agreement with XRD results.
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ABSTRACT

An analytical framework for time-fractional magneto-thermoelasticity in unbounded domains, focusing on
heat conduction in materials exhibiting non-classical thermal behavior, are presented. Thermal transport
is strongly influenced by temperature and the internal structure of the medium; in the presence of
imperfections such as inclusions, voids, or microstructural defects, the heat transfer process often deviates
from conventional diffusion laws. To model these complex phenomena, fractional calculus is employed,
and the governing equations are reformulated using dimensionless variables. Analytical solution in the
Laplace-Fourier domain was derived, with temperature distribution expressed in terms of Mittag-Leffler
and Fox H-functions. The use of uncoupled thermoelastic theory allows for a simplified treatment by
decoupling thermal and mechanical fields. Finally, numerical inversion techniques are used to reconstruct
time-domain solutions for displacement and stress, demonstrating how fractional-order parameters
influence both thermal wave propagation and material response.
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Introduction

In recent decades, the field of thermoelasticity has experienced considerable progress,
particularly in efforts to construct a more robust and comprehensive theoretical
framework that accurately describes the interplay between thermal and mechanical
effects in solid materials. Despite this progress, the conventional or classical formulation
of thermoelasticity - commonly referred to as the uncoupled theory - still suffers from
two major deficiencies that have long been criticized for their divergence from
experimentally observed behavior.

The first critical limitation of the uncoupled thermoelastic theory lies in the way it
formulates the heat conduction process. In this classical approach, the governing heat
equation is entirely devoid of any terms that account for mechanical or elastic influences.
Essentially, the model treats thermal processes as completely independent of mechanical
deformations, which is a significant oversimplification of reality. In real-world materials,
especially those undergoing rapid or large deformations, temperature changes can both
influence and be influenced by the mechanical stresses and strains present within the
body. By excluding this coupling, the uncoupled theory fails to capture the intrinsic and
complex interdependence between temperature evolution and material deformation,
thereby limiting its accuracy and applicability in many practical scenarios. The second
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major flaw inherent in the traditional uncoupled theory is a mathematical one, rooted in
the type of partial differential equation used to describe heat conduction. Specifically,
the classical heat equation is parabolic in nature. While this form is mathematically
convenient and widely used, it leads to an unphysical prediction: that thermal
disturbances - often referred to as "heat waves" - can propagate through a material at
infinite speeds. This implication is clearly at odds with empirical evidence and
experimental measurements, which have consistently shown that heat propagation in
solids occurs at finite velocities. As such, the parabolic character of the classical heat
equation undermines the theory’s physical realism.

Building upon such foundational ideas, Biot [1] introduced what is now known as the
coupled theory of thermoelasticity. This theory directly addresses the first shortcoming of the
uncoupled model by introducing a mathematical coupling between the equations
governing elasticity and those governing heat conduction. In doing so, Biot’s formulation
allows thermal fields and mechanical fields to influence each other, thereby providing a
more realistic and physically consistent description of how materials behave under
simultaneous thermal and mechanical loads. However, it is important to note that while
Biot's theory successfully overcomes the issue of thermal-mechanical independence, it
does not fully resolve the second major concern. Like the uncoupled theory, the coupled
theory also employs a parabolic heat equation, and thus still predicts infinite speeds of
heat propagation - a result that remains inconsistent with physical reality. Considering
these enduring limitations, further theoretical developments have been pursued in the
form of generalized thermoelastic theories, such as those incorporating hyperbolic heat
equations or finite speed models (e.g., the Lord-Shulman and Green-Lindsay theories),
which attempt to more accurately reflect the finite speed nature of heat propagation while
retaining the essential coupling between thermal and mechanical fields. In an effort to
overcome the first major limitation of the classical uncoupled thermoelastic theory - the
complete separation between thermal and mechanical responses - Biot [1] introduced
what became known as the coupled theory of thermoelasticity. This refined model directly
links the governing equations of elasticity and heat conduction, thereby eliminating the
unrealistic assumption that temperature changes and mechanical deformations occur
independently. By integrating these two domains, Biot's theory offered a more realistic
representation of material behavior under thermomechanical loads.

Building on the fundamental principles of fractional diffusion-wave equations,
researchers have extended these ideas to the realm of thermoelasticity. In [2], for
instance, a novel approach to fractional thermoelasticity was introduced, laying the
groundwork for further exploration of thermomechanical interactions using fractional
calculus. This line of inquiry was first explored in detail by Povstenko, who presented a
quasi-static, uncoupled formulation of fractional thermoelasticity. In materials with
microstructural irregularities such as voids or impurities, thermal conductivity can exhibit
non-classical behavior which motivated the use of fractional-order models. One such
approach employs a space-time fractional Fourier law within a quasi-static theory of
fractional thermoelasticity to capture anomalous heat conduction effects [3].

At micro- and nanoscales, or under ultrafast thermal excitation, the classical heat
conduction model based on Fourier’s law becomes inadequate. Its assumption of local
thermodynamic equilibrium breaks down under these conditions, leading to inaccurate
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predictions of thermal behavior. This has driven the development of alternative models
that can capture finite thermal propagation speeds and non-equilibrium phenomena. One
such alternative is the ballistic-conductive (BC) model, introduced by Kovacs and Van [4]
(2015), which extends the classical framework by incorporating both ballistic and
diffusive thermal transport mechanisms. While the BC model improves upon the
limitations of Fourier’s law, analyses of its solutions have revealed a counterintuitive
phenomenon: partial "immobilization” of thermal energy. This effect, considered
unphysical, highlights the challenges of modeling energy transport in the transition
regime between microscopic and macroscopic scales [5].

Moreover, incorporating two-temperature and nonlocal effects into thermoelastic
models is essential for accurately predicting material response in ultrafast and nanoscale
regimes, where classical thermoelastic theory (based on Fourier’s law and instantaneous
local equilibrium) fails to capture the true dynamics. To better capture thermal behavior
in such regimes, especially during ultrafast processes like laser-material interaction,
researchers have turned to two-temperature models. These models separate the electron
and phonon subsystems, allowing for local thermal nonequilibrium. Recent extensions to
these models introduce time-relaxation and spatial nonlocal effects, enabling more
accurate descriptions of thermal transport in metals [6]. Analytical investigations have
shown that under high-frequency excitation, key thermal parameters - such as phase
velocity, penetration depth, and apparent thermal conductivity - become strongly
frequency-dependent. In particular, the apparent thermal conductivity significantly
decreases near the characteristic energy exchange frequency between electrons and
phonons [7]. This frequency-dependent behavior leads to more complex phenomena such
as thermal resonance. Within the framework of the hyperbolic two-temperature model, it
has been shown that specific conditions in electron-phonon interactions can result in
resonant thermal effects. These findings emphasize the importance of advanced
modeling strategies—particularly those that account for microscopic energy exchange
mechanisms—in accurately predicting thermal behavior in modern materials [8].

Alongside these developments, fractional-order thermoelastic models have gained
attention for their ability to describe anomalous heat conduction and memory effects. For
instance, in the context of a semi-infinite medium exposed to a temporally decaying laser
pulse, fractional models using Laplace transform techniques have successfully derived
temperature, stress, and strain distributions. These solutions, when compared to classical
two-temperature models, highlight the advantages of fractional approaches in capturing
the subtleties of nonlocal and time-fractional behavior in thermoelastic systems [9].

Complementary to these theoretical advancements, studies have also explored the
response of double-porosity materials - complex media with two interacting pore
networks - under moving loads. Using Fourier analysis and numerical inversion,
researchers have examined the spatial and temporal distributions of stress and
temperature, revealing how porosity significantly affects energy dissipation and wave
propagation. These findings underscore the importance of microstructural design in
determining thermo-mechanical performance under coupled excitations [10].

Building on this understanding of microstructural effects, further studies have
investigated systems with layered structures and initial prestress, which introduce
additional complexity into the thermoelastic response. In such systems, harmonic thermal
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excitation leads to intricate coupling between thermal and mechanical fields. Notably,
prestress conditions have been shown to alter the pole distribution of the Green function,
fundamentally affecting the system’s dynamic behavior. This alteration governs wave
propagation, energy localization, and the emergence of resonance phenomena within
layered media [11].

This paper explores the impact of electromagnetic waves on fractional
thermoelastic behavior in unbounded media. In the next section, Maxwell’s equations are
merged with fractional heat conduction to model the interaction between thermal, elastic
and electromagnetic fields. Focusing on a one-dimensional uncoupled system, the goal
is to determine the displacement and temperature, linked through hydrostatic stress. The
temperature equation is hyperbolic, derived from generalized heat conduction. Using
Laplace and Fourier transforms, the PDEs are converted into algebraic equations, solved
analytically, and then inverted to retrieve physical solutions. In the "Numerical Analysis
and Discussion” sections, we present the final analytical expressions, revealing the
influence of material parameters on wave propagation and thermal relaxation.

Mathematical problem
Governing equations

In this sub-section, we will delve into the fundamental equations that govern the
behavior of magnetic and electric currents. These equations, collectively known as
Maxwell's equations. They describe the relationship between electric and magnetic fields,
as well as their interaction with matter. Now we are going to introduce Maxwell’s
equations as the following [12,13]:

VXE= 0B VXH= +0D

ot =J ot ’ 1)
V-D=0,
V-H=0,

where B represents the induced magnetic field which can be expressed as B = uoH
noting that u, stands for the magnetic permeability, H describes the intensity of a
magnetic field and J represents the electric current. Additionally, D represents the electric
displacement field, which can be expressed as D = gyE, noting that g, represents the
electric permeability and E is the electric field intensity. Now we can re-write Eq. (1) as
the following:

0H 0E
VXE=—M0§,VXH=]+SOE, )
V-E=0,
V-H=0.
Furthermore, we introduce Ohm's Law that is a fundamental principle in electrical
engineering that describes the relationship between voltage, current, and resistance, and
we can express Ohm’s law as the following [14]:

]=00(5+Z—1:x3), (3)

where u is the displacement vector, g, is the electric conductivity, and by setting g, = o
we obtain the perfect conductivity, we also are going to introduce Lorentz force which



Effect of electromagnetic waves on the thermoelastic Hookean unbounded domains based on fractional Fourier law 153

known as the force experienced by a charged particle moving through an electromagnetic
field. The mathematical equation of Lorentz force can be described as the following:

F =] XB,

F =] X to(Ho + ), @
where H, represents the constant or background magnetic field, it can be thought of as
the main steady state magnetic field present in the system. h represents the perturbation
or small deviation in the magnetic field caused by external influences and Hy + h
together describes the total magnetic field. Due to the linearity, we can re-write Eq. (4) as
the following:

F =] X B,. (5)

The classical theory of thermoelectricity consists of the modified Fourier law
mentioned in [15]. By neglecting the electric field intensity E = 0 and h = 0, so the

induced magnetic field becomes B = uyH, providing that Eq. (3) becomes as follows:
Ju

J = oolio (E X Ho)- (6)

From the unbounded domain configuration, the displacement vector u = (u, 0,0),
the electric current vector J = (0,/,0) and the magnetic field vector H, = (0,0, Hy).
Consequently, Eq. (6) becomes as the following [16]:

ou .
J = —0oouoHy 3_1: J- (7)
Additionally, Eqg. (5) becomes the following:
Ju
= —0yBy% — i 8
F 0oBo ot L (8)

The equation of motion, see [17] after inserting Eq. (8) as an expression for the
external force, we obtain the following:

0y = pil; + 0oBy” %. 9)

Consequently, by recalling the constitutive relationship presented in [17], as the
following:

0;j = 2pe;; + edij — xo06;;, (10)
where 1 and u are correspond to the standard Lamé constants, 8 = T — T, specifically
is the temperature of the medium, T is the absolute temperature and T, is the temperature
of the room, y, = (31 + 2u)ay, clarifying that a; is the parameter that quantifies the
linear dimensional change of a material in response to temperature changing or known
as the coefficient of linear thermal expansion, o;; are representing the components of
Cauchy stress tensor, §;; is the Kronecker delta function. And as mentioned above, u; is
the i-th component of displacement vector u, e = e;; = u;; = eq; + e, + e33 is known as
the cubical dilation and e;; is representing the strain tensor for linear elasticity defined

that is define as: ejj = %(ui,j + uj,i).
Now, the well-known stress-strain relation, see [18] can be modified by inserting
Eg. (9) as the following:

. ou;
pug i+ A+ i — xoT; = pil; + UoBoza_L;- (11)

At this stage, we will reintroduce the thermal energy balance equation in the
absence of a heat source in one dimension setting as the following [19]:
—qi; = pCeT + xoTo €. (12)
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where ¢ = % Additionally, it's important to revisit the core concept of heat conduction
known as Fourier's law. This principle states that the heat flux—defined as the amount of
heat energy transferred per unit area per unit time—is directly proportional to the
temperature gradient, which describes how temperature changes over distance. In
mathematical terms, Fourier's law is written as [20,21]: q; = —kT; . We will adopt an
alternative rule that will serve as the foundation for our proceeding analysis, offering a
more understanding of heat transfer phenomena under a given conditions as follows:

qi = koD T, (13)

The operator XiDZ denotes the left-sided Riemann-Liouville fractional derivative,
which is defined for a general function, further details can be found in [22-24]. Building
upon the insightful proposition by Compte and Metzler concerning the anomalous diffusion
coefficient, we propose the following functional expressions for the parameter k,:

Ko = KTI, (14)
where k is the classical thermal conductivity, T is a characteristic time constant. T will be
specified subsequently. Equation (14) becomes as the following:

q; = —kT"REDI=AT, (15)

To streamline our analysis, we will eliminate the heat flux term that appears in both
the energy balance equation (12) and Egq. (15). This will be achieved by employing a
suitable mathematical technique, as outlined below:

pCeT + xoTo € = k' *FEDI~oT ;.. (16)

Problem setting up

In this section, we will develop a mathematical framework to describe the system
outlined in Egs. (11) and (16). This system is defined over an unbounded spatial domain
—o0 < x < oo , signifying that it extends infinitely in all directions. To establish a
complete mathematical description, we must specify the initial conditions that govern
the system's behavior. These initial conditions will serve as the starting point for our
analysis and will significantly influence the subsequent evolution of the system. The
initial conditions are given as follows:

8(x,0) = 9,6(x), u(x,0) =222 =, (17)
where §(x) is the Dirac delta function assuming that the displacement initial state is
given as u(—,0) = u_,. By noticing the initial conditions outlined in Eq. (17), we
observe that the complexity of the problem can be significantly reduced to a one-
dimensional framework. This simplification arises due to the inherent nature of the initial
state, which exhibits a particular symmetry that allows us to focus our analysis along a
single spatial dimension. This means that all relevant physical quantities involved in the
problem can be expressed as functions of the spatial variable x (one-dimensional setting)
and time t. Consequently, the governing equations, represented by Eqgs. (11) and (16), can
be simplified to involve only derivatives with respect to these two independent variables,
x and t. This reduction in dimensionality significantly simplifies the mathematical
analysis and allows for more efficient numerical simulations. The simplified governing
equations are as follows:

02 oT . d
(A+2ﬂ)ﬁ_)(og=Pu+UoBoza_t: (18)
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o%T
pCEE+)(0TO Py = kr1eRlpl- it (19)

By employing Eq. (10) together with the previously established one-dimensional
framework, the individual components of the Cauchy stress tensor can be explicitly
calculated using the following procedure:

«= @+ 202 = xo(T = Tp), (20)

Oyy = Ozz :Az_z_XO(T_TO)- (21)

In the context of hydrostatic stress oy, we focus solely on the normal components.
By taking their arithmetic means, we obtain a single value that characterizes the overall
pressure exerted on the material from all directions. This average pressure is what we
refer to as hydrostatic stress:

P = (A4 2u) 55 = 20T = To). (22)
To facilitate a more comprehensive and insightful analysis of the problem, we will

introduce a set of dimensionless variables. By systematically reducing the number of

independent parameters, we can significantly streamline the mathematical model,

simplifying its interpretation and analytical processing as detailed below:
t

O'H:

X u
X>—, u->—,t-

an cn’ cin’
T_)%' (Gij'aH) - (/1+2M)(Uij»0H):77 =%' (23)
T > A+2u 9 + To; 2 = /'L+2;1,
Xo P
therefore, the governing equations (18) and (19) can be rewritten as the following:
06 _ 0% 0w . du (24)
ox  ax2 oz 0%
where
__ 0oBy?
“o 77()1+2ﬂ)’ (25)
69 + 6 u 1— dRLDl aa %]
oxdt 0x?
X0°>To

where € is the thermoelastic coupling constant and given as the following: e = ————— .
pCe(A+2u)

Additionally, the constitutive relations (20)-(22) can be also rewritten in the
dimensionless form as the following:

d
Oxx = az ’
ou (26)
O-yy go a - 9
where ¢, = ,1+/12#'
Additionally,
O'H=-£’13—1;—9, (27)
A+ 2
where ¢, = ((/1:235;

Now, we are going to use the dimensionless variable on the initial condition as
previously outlined in Eqg. (17) as the following:
0(x,0) = 0,6(x),
u(x,0) = au(xo) =0and u(—,0) =

Do
where 0, = X°A+° S

(28)

, noting that the dimensions of Dirac delta function §(x) in our context



156 N. Samir, M.A. Abdou, E. Awad

must be the inverse of the dimensions of x.

Solution in the transformed domain

In the subsequent analysis, we will embark on deriving an analytical solution for the
temperature field within the Laplace-Fourier domain. This certain mathematical approach
will enable us to delve deeper into the fundamental behavior of heat transfer within the
system.

To proceed, we will apply the Laplace transform on Eq. (24), as detailed below:
a6 _ #%u

il S2% — cysil, (29)
by differentiating Eq. (29) with respect to x, we get the following:

%8 _ 2% _ a5 (30)

72— gz S €~ Cose.

Now, to further our analysis, we proceed by applying the Fourier transform to
Eqg. (30). This mathematical operation will enable us to facilitate the subsequent analysis
and solution of the equation as the following:
—w?0 = —w?8 — 528 — ¢,ys8. (31)
Consequently, we apply the Laplace transform to Eq. (25), resulting in the following
transformed equation:

sO — 0,5(x) + esé = Tl‘“sl‘“zzTZ. (32)

To initiate our analysis, we employ the uncoupled theory of thermoelasticity by
setting ¢ = 0, a simplified approach that decouples the thermal and mechanical fields.
This theory assumes that mechanical deformations have a negligible influence on the
temperature distribution. In other words, changes in temperature do not influence the
mechanical deformation, and vice versa. Meaning that the heat conduction equation is
solved independently and the effect of mechanical deformation on heat conduction is
considered negligible [25].

Therefore, after applying Fourier transform on Eq. (32) which allows us to analyze
the equation and get an expression for 8(w, s) as the following:

bw,s) = (@—) (33)

TA— 15042
We proceed by applying the rule of Fourier inverse transformation mentioned in [26]

on Eq. (33) as follows: :7-"‘1{ ! } = 2—1Ce‘c|x|. Therefore:

w?2+c?
0(x,s) = %Wexp(—\/ra‘lsalxl). (34)
And subsequently, by simplifying and performing the technique of partial fraction

decomposition to further simplify Eq. (31), we obtain an expression for é(w, s) as the
following:

2 Qor¥ 151 —(s%4cys Te-1g@
é(w,s) = — ( (5 +605) )

- 15a_g2 e Py (35)
T 1@ —g52—cos \w?+s%+cps  w?+1%71s

Within the following discussion, we are going to calculate the temperature within the
material. Starting by reformulating Eg. (33) to convert the temperature function from the
Laplace domain, characterized by the complex variable s, back to the time domain,
characterized by the real variable t, we employ the inverse Laplace transform as follows [27]:

0(w,t) = L_l{ e } = QgEq(—w?t'7%t?), (36)

sy wirl-a
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where the symbol E,(-) denotes the Mittag-Leffler function with one parameter «, see

reference [28] for more details. By applying the inverse Fourier transform to Eq. (36),

referencing the relationships (A.10) and (A.20) in [18], we can derive a closed-form
expression for temperature, as follows:
al _ 1,1 2. 1-a,a (0'1)

0(w,t) = OgH;’, [a) T % 0,1), (0, @)

Upon applying the inverse Fourier transformation to Eq. (37), we arrive at the

following outcome:

1 a

1 )%X 2,1 x? (5,1),(1—5,a)

0(x,t) = %(fl—at“ Hy’3 J27l-aga (0,1) (} 1).(1 1) )
=\ )y

The symbol H;'fc'ln[-] represents the Fox H-function, a mathematical function defined
in terms of the Mellin-Barnes integral, as outlined in reference [29] and. When examining
the solution represented by Eq. (38), we notice that the closed-form expression of this
solution can be modified or transformed. The objective of the following analysis is to
determine the analytical solution for é(w, s), while numerical integration techniques can
provide approximate solutions. To proceed with the analysis, we will apply the following
inverse Fourier transform to Eq. (35) [26]:

(37)

(38)

1
Q7% 1s%71 —(s2+¢os)? (_ 2 1 )
é(x,s) = T > exp (—(s* + cos)z|x| ) +
(39)
1
a—1.a\5 1
+¥exp (—(r“‘ls“)flxl) .

To determine the displacement, we perform an integration of Eq. (39) with respect

to the spatial variable x. This approach is based on the relationship given by e = Z—u:

X
(I, + 1), 40)
recalling that ii(—co,s) = —11 —(s% + cos)zf_oo e~(s2+e0s)Elge | | = (ra-igay; J* e s el gg
based on the sign of x. Specifically, when x > 0, the absolute value simplifies to |x| = x,
while for x < 0, the absolute value becomes |x| = —x. To proceed systematically, we first

analyze the case where x > 0. Under this condition, the first and second integrals are
reformulated accordingly, and their expressions are derived as follows:

1 1 1
I, = _(52 + ¢y5)2 <f_000 e—(52+cos)2|f|df + fox e—(52+cos)2|g|d€>’ (41)
by replacing ¢ = —X therefore dE = —dX into the first part of integral (41) as
= —(s% + ¢y9)2 <f e~ (s +COS)ZXdX +f e—(s? +CoS)25d§>

@()T

—

10, 5) = -, 5) + 20

NI»—l

1 (42)
I, = e—(sz+cos)5x —92
And similarly for I,:
I = @15 (f_"oo R “V'f'df)
1 (43)

:(Ta_lsa)%<foooe (ala)zxdx++f ala)2§d€>_2_ (a 1a)zx
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Therefore, in case of x > 0 the displacement i (x, s) is given by employing Egs. (42)
and (43) into Eq. (40) as the following:

e 1 1
fi(x,s) = =22 4 o0 i <e‘(sz+605)2x — e"(fa_lsa)z’C), x > 0. (44)

s 274" 15X g2 )5

Subsequently, we examine the second case, where x < 0, and incorporate this
condition into the evaluation of the first and second integrals, denoted as I; and I, as the
following:

L = —(s® + cos)? (f_"w (5% reo ¥l g IN e-(sz+605>%lfldf>, (45)
by replacing & =-X therefore d&=-dX into integral Eqg.(45) as:
I = —(s? + cos): (f;" et fx gy 4 [° e—<s2+cOs>%de> _ _e(straskx

And similarly, for I,:

I, = (Ta—1sa)§ (f_o —(z* s “)Zlfldf f @ 1s “)2|f|d§>
. (46)

— a 1 Ol) <f e Ta-1g a)szX + +f a—1g a)szX> (Ta—lsa)ix.

Therefore, in case of x < 0 the displacement #i(x, s) is given by employing Egs. (45)
and (46) into Eq. (40) as the following:

a-lc.a-1

1 1
a(x,s) = U'S°° I <e(7“_15“)2x - e(sz’”os)zx), x < 0. (47)

2797 1s%—s2—cys

By considering the contributions from all relevant components or elements, the

displacement in the Laplace domain can be expressed collectively in the following form:
1

1
Ueoo 0,7 1501 e—(52+cos)2x _ e—(r“‘ls“)zx’ x>0,

ii(x,s) = (48)

—1e@_c2_ 1 1
s 274" 1@ g2 ¢4 e(.l_a—lsa)zx _ e(sz+cos)2x x < 0.
To determine the hydrostatic stress in the Laplace domain, we formulate the

expressmn as follows
At this stage, we proceed by substituting the appropriate expressions from Eqgs. (34)
and (48) into the previous formulation Eq. (49) as follows:

1 1
5= 9 | U_wo Qor% 1521 e—(52+cos)2x _ e—(‘r“_ls“)zx’ x>0
H=1t15- - L ) -
ox s 27215 g2 45 1 1
0 e(.l.a—lsll)zx _ e(52+C05)2x' x <0 (50)

(G)o\/‘ra 1ga—2 ,/Ta 1s“|x|)
2

Numerical analysis and Discussion

In this section, we reconstruct the solutions for displacement and hydrostatic stress in
the physical domain using a suitable numerical technique. One of the most effective
methods for inverting the Laplace transform is the application of the "Durbin” method or
the "modified Dubner—Abate” formula [30].
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NSum

(2] -

flx,t) = Zit {— %f(x, a)+ R lzk=0 f (x, a+ 2:1”() cos

zz:ﬂ f (x a++ Zzlk) sin (zﬁt)l},

where the parameter T, satisfies the inequality 0 < t < 2T;. The number of summed
terms, represented as NSum, typically ranges from 10> for small time values to 107 for
larger ones. values of time to yield stable results with negligible error given by the
following:
ERROR(q,t,T;) = )., _ e 2%Tif (x, 2kT; + 1). (52)
The implementation of series (51) can be carried out using an appropriate symbolic
computation software. Programs such as MATHCAD or MATLAB provide powerful tools for
handling symbolic calculations. On the other hand and before implementing the previous
series, we have obtained an exact solution for the temperature in Eq. (38), which can be

computed by the series expansion of the Fox H-function [29] as the following steps:
1

(51)

o~

—A

) 1 \2
0(x,t) = 2 (smms)” (02060 + 6,(x, ), (53)
to obtain 6, (x,t), we are going to use b, =b; =0, B, = B; = 1 and bty v, then we
1
get the following:
_ve DY kP \_TGv)rG)
Hl(xp t) _szo V! (szl—ata) F(%H/)F(l—%—av)' (54)
Similarly, for 6,(x,t) we use by, = b, = % B, =B, =1and b;i = % + v, then we
2
get the following:
1 1
o (-1)V |x|2 E+V F(E—(1+V))F(1+V) 55
0,(x,t) = Xvzo V! (2211-%“) r(@+)r(1-a@+v)) ()

For our numerical computations, we have chosen copper to be our material. We will
use its physical properties measured at room temperature (300 K) in our mathematical
models to simulate its behavior under various conditions. Since 7= 1/c?n ,
the dimensional characteristic constant t is selected such that the dimensionless
constant in all closed-form expressions and their series expansions equals one. Unless
explicitly stated otherwise, we will adopt the following specific values for the material
properties in our calculations. These values will serve as the standard parameters for the
material unless alternative data is provided.

a=171=001 0,=1, cg=4.36d—4. (56)

Equations (53)-(55) serve as the mathematical formulas directly applied in a
numerical technique to compute the temperature. The infinite series within these
formulae were approximated by summing the first seventy-one terms. Utilizing their
series representation, we visually illustrate the temperature distribution in Fig. 1, that
clearly demonstrates that the magnetic field has no influence on temperature, as there is
no coupling between the two; g, = 0. In Fig. 1, the temperature distribution is evaluated
for different values of a, at @ = 1 the curve leads to the normal distribution. Varying a
reveals the impact of anomalous thermal conductivity. Specifically, for smaller values of
a, the system exhibits low thermal conductivity, whereas larger values of a correspond
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to higher thermal conductivity, leading to a wider temperature distribution within the
medium.

tempreture at different values of @

X

Fig. 1. The temperature distribution evaluated for different values of a

Figure 2 shows the fractional-order parameter « fixed at a representative value of
0.5, while the temperature distribution is analyzed at multiple time instances:
t =0.1,0.5,1,5and 10. Initially, the temperature exhibits a sharp peak near the origin
due to the localized thermal disturbance. As time progresses, the peak diminishes and
the distribution extends symmetrically, reflecting the diffusion of heat through the
medium. This approach allows for the understanding of the temporal evolution of thermal
propagation under anomalous heat conduction conditions. The observed behavior shows
the effect of time on the diffusion of thermal energy in a medium governed by non-
classical (fractional) thermal conductivity, where heat spreads more gradually and the
profile undergoes significant changes in shape as time progresses.

temprefure at different values of time

~0(x, E)

Fig. 2. The temperature distribution for various time instances ¢t, illustrating the temporal evolution of the
thermal field

In Fig. 3, the displacement field u(x, t) is presented for t = 1 and various values of
the fractional parameter a, showing the impact of anomalous thermal conductivity on
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the mechanical response. As a decreases, the displacement profile becomes sharper and
more localized, indicating stronger non-local effects and delayed thermal diffusion. This
behavior indicates a significant limitation of thermal diffusion, resulting in a reduced and
more constrained mechanical response. Consequently, the displacement field tends to
freeze. In contrast, under normal (classical) thermal conduction, the thermal energy
propagates more rapidly through the medium, leading to a broader and more extended
displacement profile over space and time. This demonstrates the influence of fractional-
order behavior on the deformation characteristics of the material, while Fig. 4 represents
the displacement at a = 0.5 and different values of time t = 0.1,0.5,1,5 and 10. The
results demonstrate that, as time increases, the displacement propagates and smoothens,
showing the diffusive nature of the underlying thermoelastic response. The observed
behavior also emphasizes the time-dependent influence of anomalous thermal
conductivity on the mechanical response of the medium.

Displacement at different values of &

T a=1
a=107
— a=05 04
— a=103
—_— =01

Fig. 3. As the thermal conductivity decreases—represented by lower values of the fractional parameter a
is the displacement profile becomes increasingly localized and exhibits sharper curvature near the origin

Displacement at different values of time

t=0.1
—_—t=05

—_t=1
—_ t=5
—_—t=10 Bt

=4

u(x, t)

Fig. 4. The spatial profile of the displacement u(x, t) illustrated for various values of time ¢, highlighting
the temporal evolution of the displacement field
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Figure 5 represents the hydrostatic stress at t = 1 and different values of a which
reveal a significant role of the fractional-order parameter in governing the thermoelastic
behavior of the material. As a decreases, corresponding to stronger anomalous diffusion
effects, the stress profiles exhibit sharper gradients and deeper dips. This indicates an
intense stress concentration. Figure 6 demonstrates the temporal evolution of the stress
field, as time progresses, the stress profile becomes increasingly, well-defined and
exhibits greater symmetry about the origin, with the peak values shifting spatially and
magnifying in magnitude. The results show that, over time, the stress profile becomes
clearer and more symmetric around the origin, with peak magnitudes shifting and
deepening. This behavior reflects the dynamic coupling between thermal diffusion and
mechanical deformation, further influenced by the anomalous heat conduction
mechanism.

Hydrostatic stress at different values of a

1 X 1

Fig. 5. The distribution of hydrostatic stress represented for various values of the fractional parameter «,
illustrating the influence of anomalous thermal conductivity on the stress response

Hydrostatic stress at different values of time

Fig. 6. The variation of hydrostatic stress presented for different time instances t, showing the temporal
evolution of the stress field
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Conclusions

The interaction between electromagnetic fields and fractional-order thermoelasticity in
unbounded domains was studied. By incorporating Maxwell’s equations into the
governing system and applying Laplace and Fourier transforms, the uncoupled equations
for temperature and displacement are solved analytically. The analysis reveals the finite-
speed propagation of thermal and mechanical waves and highlights the effects of
material parameters on the system’s response. Analytical techniques are employed to
solve the system, revealing that the electromagnetic effects do not significantly influence
the temperature.
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ABSTRACT

A model for face centered cubic binary interstitial alloys and advance the theory of elastic deformation and
wave propagation within these alloys using the statistical moment method are presented. The theory
extends to include the elastic properties and wave dynamics of pure metals as a subset. The numerical
simulations for metals like Au and Cu, as well as the CuSi alloy are conducted. The results obtained for Au
and Cu were validated against experimental data and existing calculations. For the CuSi alloy, numerical
predictions offer insights that could be confirmed by future experiments.
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Introduction

Metals and alloys are traditional and popular materials in industry and practical life. There
are substitutional alloys and interstitial alloys. In interstitial alloys, the interstitial atoms
are usually non-metals such as Si, C, H, Li, etc., which are smaller in size than the main
metal atom. Although the interstitial atom concentration is very small, only a few percent,
it significantly affects the physical properties of the alloy. Transition metals and their
interstitial alloys such as Cu, Au, CuSi, and AuSi are widely applied in superconducting
wire fabrication technology [1,2].

Interstitial alloys are crucial in various aspects of human life and have long been a focus
for both theoretical and experimental researchers. Investigating the deformation properties
of these alloys in relation to temperature, pressure, and interstitial atom concentration is
essential for predicting material strength, mechanical stability, diffusion, and other
properties [3—-5]. AuSi has many functional applications and unusual physical properties.

There are numerous theoretical approaches to studying the elastic deformation of
metals and alloys, including the ab initio method, molecular dynamics method, the tight-
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binding Hamiltonian method, the density functional theory, etc. In the first principles
(or ab initio) method, the many-electron wavefunction is constructed from the one-
electron wavefunctions in a suitable effective potential. The calculations are based
primarily on the laws of quantum mechanics and relevant physical constants such as the
masses and charges of the nuclei and electrons. Ab initio has been widely used in the
study of alloy deformations such as the study of the electronic and thermodynamic
properties of B,-eSi interstitial alloy by ab initio calculations using ab initio plane waves
(FPPW) combined with the quasi-harmonic Debye model (QHD) [6], the study of FeH
interstitial alloy by ab initio combined with DFT (the density functional theory) and GGA
(generalized gradient approximation) [7], and the study of FeCrSi alloy by ab initio
combined with DFT and GGA [8]. Ab initio has been used in the study of deformation of
metals such as the study of the effect of pressure on the elastic properties of crystalline
Au by ab initio using local density approximation (LDA) [9] and the study of the elastic
modulus of the BCC (body-centered cubic)-Fe [10]. Molecular dynamics (MD) is a method
of modeling atoms as a system of classical particles obeying Newtonian mechanics.
Newton's second law can be used to write the equation of motion for each atom. Some
works using MD to study the deformation of metals and alloys include the
thermomechanical properties of CuAu alloy [11], the effect of pressure on the elastic
constants of Cu, Ag and Au [12], the thermomechanical properties of some FCC (face
centered cubic) transition metals [13], using Morse potential to study the temperature
dependence of Young's modulus for metals Ni, Cu, Ag, Au and Al by Zahroh et al. [14].
The tight-coupled Hamiltonian (TB) method [15-17] is simpler, less computationally
intensive but can be applied to larger model systems than ab initio. Recent studies have
used the TB Hamiltonian method to calculate the atomic volumes, elastic constants, bulk
moduli, etc. of FCC and HCP (hexagonal close-packed) crystals [17] and to study the
structural properties of FCC transition metals [16]. In the density functional theory (DFT),
instead of using a multi-electron wave function as in the Hartree-Fock method, the
electron density plays a central role [18] and the total energy of the system is a unique
function of the electron density. DFT studies of metals and alloys can be mentioned as
works by Olsson et al. [19], Psiachos et al. [7] and Lau et al. [20]. In addition to the
methods mentioned above, to study the properties of materials, there are other methods
such as the modified embedded atom method (MEAM) [21-23], the lattice Green's
function method [24], the machine learning method (MLM) [25], harmonic theory [26] and
quasiharmonic theory [27], etc. From the methods presented above, we see that most of
the methods for studying the deformation of metal and alloy crystals are approximate
methods, not mentioning the influence of pressure on the deformation processes of the
object, not considering the dependence of the deformation quantities depending on the
concentration of substitutional and interstitial atoms. The results of theoretical methods
for studying deformation are mostly for metals and are limited for alloys. Some results
obtained from theoretical methods are not really consistent with experiments.

For example, the interaction of impurity atoms of light elements with vacancies and
vacancy clusters in FCC metals was studied by MD of Poletaev et al. [28]. Among
theoretical methods in studying mechanical and thermodynamic properties of metals and
alloys, the statistical moment method (SMM) has significant contributions [29]. SMM is a
contemporary approach in statistical physics used to examine the structure,
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thermodynamic properties, elasticity, diffusion, phase transitions of metals, alloys,
semiconductors, inert gases, oxides with BCC, FCC and HCP structures. SMM has been
particularly applied to the thermodynamic study of cubic interstitial alloys [30-35].
Recently, the SMM has been successfully applied in the study of thermomechanical
properties of multicomponent materials with complex structures such as HCP metals of
Hoc et al. [36,37], ternary and binary interstitial alloys of Hoc et al. [34,38,39], perovskite-
structured alloys of Hoc et al. [40-42].

There are many studies on classical wave propagation in complex materials with
periodic structure [43-46]. Some work has been extended to the study of sound waves
and elastic waves in other periodic media. Most of the research on this problem is based
on the calculations of the plane wave method [47-51]. The planar wave method has
proved to be quite effective in studying many types of periodic complex structures but is less
effective for disordered chaotic systems. Multiple-scattering theory (MST) method [52,53] is
based on electronic band structure calculations. The equations of motion of the particles are
builded in an elastic body [54]. Some works such as the work of Grechka et al. [55] refer to
the propagation of sound waves in an anisotropic medium. Mozhaev [56] showed its
applicability to two- and three-partial surface acoustic waves in crystals. Additionally,
Nayfeh and Chimenti [57] extend the analysis to free wave propagation in a general
anisotropic plate, presenting numerical results for special cases.

In this paper, we examine the elastic deformation and wave propagation in
FC binary interstitial alloys under pressure using the SMM. The next section will detail
the theory and methodology and numerical results.

Theory and Methodology

Our model of FCC interstitial alloy AB assumes that the concentration of interstitial atoms
B is very small compared to the concentration of main metal atoms A. In this model,
atoms B are located at the body center, atoms A; are at the face centers, and atoms A; are
at the vertices of the cubic unit cells [30-35].

To investigate the elastic properties of alloy AB using SMM, we first calculate the
mean nearest neighbor distance between two atoms A in the alloy using the following
equations [31,32,35]:

r1a(P,T) = 191a(P,0) + y(P,T),  191a(P,0) = (1 — cp)7p14(P,0)+C57p14(P,0),
y(PT) = Ex cx yx (P,T), 7614(P,0) = V37915 (P,0),

718(P,T) = 1g15(P,0) + y4,(P,T), 71a(P,T) =1¢14(P,0) + y4(P,T),

714, (P, T) =115(P,T), 71a,(P,T) =114, (P,0) + ys(P,T),

[y, (P0)62 _ 6 (rx(P0)6\!
yX(P'T) - \/ 3k§((P,O) AX (P,T), AX(P'T) - alX(PﬂT) + Zi:Z ( kg((P,O) ) aiX(P'T)’
no [k
Zy = xxcothxy, xx = m—’;,

1 13 47 23 1
a1X=1+EZX, arx = ?+?ZX+?Z)2(+EZ}%;

25 121 50 16
gy = — (? + Iy + TZE+ TZE+ %Z;?),

6
43 93 169 83 22 1
Ayux = ? + 7ZX + TZ)Z( + ?Z)?(’ + ?Z)% + EZ)S(,
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asx = —(£+EZX+£ZX+EZX+@ZX+ ZX+ ZX)

561 1489 927 733 145

Here, rlA(P,T) = alA(P,T) and rmA(P,O) = a01A(P,0) denote the mean nearest
neighbor distances between two atoms A in the alloy under pressure P and temperature T,
and under pressure P and temperature T =0 K, respectively. The mean displacement of atom

A from its equilibrium position in the alloy is indicated by y(P,T). The nearest neighbor
distance between two atoms A in the pure metal is labeled 1514 (P,0). The distance between
two atoms A in the region containing the interstitial atom B is denoted by 74,,(P,0).
The displacement of an atom X (where X can be A, A4, A,, B) within the alloy is represented
by yx(P,T). The nearest neighbor distances between two atoms A in the pure metal or
between atom X and other atoms in the alloy are represented by r1x(P,T) and ry1x(P,0).

The value ry1x(P,0) is derived either from the condition of minimum uyy or from the
equation of state, as detailed in [30,32,33]:

1 dugx hwox 0kx
Pvgx= — 1 ( )
0X 01X \6 org1x = 4kx 9roix/’ (2)
3
_ _ 11X _ |kx(P,0) _ Ny _
where  191x = 191x(P,0), vox = vz Wox= — Cx = N'=Ng+ Ny, + Ny, + Np,

0 = kT, kg represents the Boltzmann constant, # is the Planck constant. The symbol my denotes

the mass of atom X. The terms ugy, kx, Y1x, Y2x and yx correspond to the cohesive energy
and crystal parameters of atom X within the metal A or the alloy AB, as detailed in [30,32,33]:

1 «n;
Ugx = _Zi 11 Pio»

0
‘Z ( (p()) = myw%, ¥x= 4ix+v2x), 3
eq (3)

Tll (a ‘Plo) _ Tll ( a Pio )
ﬁ au au eq
where ulﬁ(ﬂ X.),Z) represents the displacement of the i*" particle from its equilibrium

position in the direction B, ¢;, indicates the interaction potential between the 0™ particle
and the i™" particle, and (...)eq denotes the value of these parameters at equilibrium. The
number of atoms in n; coordination sphere is indicated by ni, «, S =% 3, z a # .

The Helmholtz free energy of the alloy AB is expressed as follows [29-33,35]:

WYap= N, ;= Ny cxiPx — TSED),
Wy= N, = Ugy+ Wox+ 3N{ [vaxzi - 225 (1 4+ )] +

3
+55 [ VixZx (1 + 3 ) - 2(rix+ 2v1Xsz) (1 + ) (1+ Zx)]}
‘I’OX— 3NB[xx+ In(1 — e2x)],
where ¢,=1 — 15cg, ¢4, = 6Cp, cy,= 8cp and SAB is the configurational entropy of the
alloy AB.
Young modulus of the alloy AB is given by [31,33,34,36]:

%y

(4)

Txcx—2 1 2y% 62 1
Evap= Eya —752—, Ea » Bia = |1+ VA (1+—ZA) (1+Z,) |,
%Wy nriaBia’ 2
9¢2 (5)
1 azlPX _ 262u0X hwy aZkX 1 0kyx 2 + (6u0x 3hw xcothxy akx)
3N 9e2 (3 ar¥y kx |orZy  2kxorg|) 01X ar1x 2ky  0rx/ 01X

where Ey, is Young's modulus of the pure metal A and ¢ represents the strain of the alloy AB.
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The bulk modulus K, shear modulus Ggs, elastic constants Ciias, Cizas, Casns,
Poisson's ratio was, longitudinal wave velocity V,,p and transverse wave velocity Vg are
calculated by Hoc et al. [30,32,33,35]:

Eyap
Kyp = — 6
AB 3(1-2vap)’ ( )
EyaB
Gpp = ——— 7
AB 2(1+VAB), ( )
Eyap(1-vap) EyABVAB Eyap
Copn = B0V Bvvas e 8
HTAB ™ (1vap)(1-2vap) 128 ™ (14vap)(1-2vap) " 4B ™ 2(14vup) (8)
VAB=CqV4+CpVp = Vg, )
_ |2C44aB+C124B _ |Ca4aB
Vap= |———— Vup = [— (10)
PAB PAB

where v, and vg respectively are the Poisson ratios of materials A and B, psg = % R Py,
AB

Vag = Nv,ug, pag and p, denote the densities of materials A and AB, respectively while Vg
represents the volume of alloy AB.

When the concentration of interstitial atoms is zero, the characteristic quantities for
elastic deformation and elastic wave propagation of the primary metal A can be
ascertained. For Au, Cu, and CuSi, we utilize the Mie-Lennard-Jones (ML) potential as
follows Magomedov [58,59]:

n m
o) =75 |m(?) - n(?)] 1y

T
The parameters D, ro, n, m, the Poisson's ratio v and the density p are listed in Table 1.

Table 1. Potential parameters, Poisson ratio v and density p [58-60]

Interaction m n D/ks, K ro,10°m v p, g/cm?®
Au-Au 5.5 10.5 4683 2.8751 0.39 19.283
Cu-Cu 5.5 11 3401.1 2.5487 0.37 8.932

Si-Si 6 12 32701.7 2.295 0.28 2.329

The Cu-Si interaction is also described using the MU n-m potential:

A n m
o =325 1m () - 8 (3)"] 12
where
Dey.si= v Deu-cuDsi-si> Tocu-si = %(TOCu-Cu + Tosi-si)s (13)
where 7 and mm are empirically determined [61]. Therefore, Dc,si/kgy = 10546.2 K,
Tocu.si =2.4218% 1071° m, and we empirically choose 7 = 1.29, 7 = 9.92 by fitting the
theoretical result with the experimental data of Santra et al. [2].

The numerical calculations for Au, Cu and CuSi are placed below. The calculated
results for the elastic moduli Ey and K, the volume ratio V /V, (where V is the volume at
pressure Pand V; is the volume at P = 0), the elastic constant (44 and the longitudinal wave
velocity V, for metals Au and Cu are summarized in Table 2 and illustrated in Figs. 1-6.

Table 2. G(P,T) for Cu from SMM calculations, other calculations and experiments

G, GPa G, GPa G, GPa . .

P, GPa T, K SMM Expt. [62] Calc. [62] 6SMM-Expt. [62]» % 6Calc. [31]-Expt. [62] » %
12.1 346 5.94 6.28 5.95 5.7 5.5
12.5 348 6.00 5.90 5.99 1.7 1.5
23.2 418 7.50 7.55 7.14 0.7 5.7
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In Table 2, we compare the shear modulus G of Cu calculated by the SMM with other
theoretical calculations and experimental data from Peng et al. [62]. The SMM
calculations are in good agreement with both the theoretical and experimental results of
Peng et al. [62] with an overall error of 5.7 %. Notably, at P = 23.2 GPa, the discrepancy
between the SMM calculations and experimental results is only 0.7 %, whereas the error
between Peng et al. calculations [62] and experiments is 5.7 %.

Figure 1 shows the temperature dependence of Young's modulus Ey for Cuat P=0
in the range from 0 to 1200 K. The SMM calculations are in good agreement with
calculations of Cdgin et al. [13], Li et al. [63], Zahroh et al. [14] and experiments of
Lonzinskii [64], Chang and Himmel [65], Reed and Mikesell [66], Joshi and Bhatnagar [67].
Figure 2 illustrates the temperature dependence of Young's modulus Ey for Auat P=0in
the range from 0 to 1100 K. The SMM calculations are in good agreement with
calculations of Cagin et al. [13], Li et al. [63], Zahroh et al. [14] as well as experiments of
Chang and Himmel [65], Tikhonov and Kononenko [68]. Figure 3 shows the pressure
dependence of volume ratio V/V, for Au at T = 300 K in the range from 0 to 1000 GPa.
The SMM calculations are in excellent agreement with other calculations of Ciftci et al. [69],
Yokoo et al. [70], Matsui [71] and Guler and Guler [21]. Figure 4 illustrates the pressure
dependence of elastic constant C4 for Au at 7= 300 K in the range from O to 100 GPa.
SMM calculations are compared with experimental data from Biswas et al. [72], Hiki and
Granato [73], Duffy et al. [3], Tsuchiya and Kawamura [9]. The SMM calculations align
more closely with experimental data in the range from O to 30 GPa than in the range from
30 to 100 GPa. Most SMM calculations are higher than the experimental values with the
discrepancy increasing at higher pressures. This difference is likely due to the influence
of defects such as vacancies on the metal's volume at high pressures, which is not
accounted for in our model. Figure 5 presents the pressure dependence of the elastic
constant Cy4 for Au at T = 300K in the range from O to 100 GPa calculated by SMM and
other calculations of Guler and Guler [21]. The observations and comments for this figure
are similar to those for Fig. 4. The pressure dependence of longitudinal wave velocity V,
for Au at T= 300K in the range from O to 7.5 GPa is shown in Fig. 6. Here there is a good
agreement between SMM calculations and experiments of Hiki and Granato [73], Daniels
and Smith [74], Mao Shuang et al. [75]. The agreement between SMM calculations and
experiments in the range from 0 to 2 GPa is better than in the range from 2 to 7.5 GPa.

The analysis above indicates that SMM calculations for metals Au and Cu are in very
good agreement with experimental data and other calculations. In many cases, our SMM
calculations are closer to the experimental values in comparison with other calculations. This
provides a strong foundation for our subsequent calculations for the interstitial alloy CuSi.

The SMM calculations for elastic deformation quantities of CuSi are shown in Figs. 7
and 8. Figure 7 illustrates the silicon atom concentration dependence of Young's modulus
Ey for CuSi at T=300 K and P =0 in the range of silicon atom concentration from 0 to 5 %.
These SMM calculations are compared with experimental data from Ledbetter and
Naimon [76] and Santra et al. [2]. As silicon concentration increases, Ev decreases, which
is consistent with experiments of Santra et al. [2]. The closest alignment between our
calculations and experimental data is at a silicon concentration of 4 %. Figure 8
shows the temperature and pressure dependence of Young's modulus Ey for CuSi at silicon
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and experiments [2,76]

concentration cg; =1 % in the temperature range from 0 to 1100 K and the pressure range
from 30 to 70 GPa using SMM calculations. Our SMM calculations demonstrate that
Young's modulus for CuSi decreases with increasing temperature and increases with
increasing pressure.

Young's modulus Ey of CuSi exhibits a decline with increasing temperature T. For CuSi
with a silicon concentration of 3 % and at P=0, Ey drops from 114.89 to 93.45 GPa
as T rises from 0 to 1100 K. This is because the kinetic energy of the atoms increases with
temperature, causing the lattice constants to expand, and consequently, Ey, K, G, Ci1, Cia,
Cas, Vo and V; all decrease. Conversely, Ey increases with pressure P. For CuSi with 1 % silicon
at T=300 K, Ey rises from 114.28 to 308.58 GPa as P increases from O to 70 GPa. This is
due to the compressive force acting on the material, which reduces the lattice constant and
results in increases in £y, K, G, Ci1, Ciz, Cus, V, and V.. Additionally, Ev decreases as the
concentration of interstitial silicon atoms increases. Our SMM calculations align well with
the experimental data from Santra et al. [2]. As explained by this group, when the crystal
lattice of Cu is supplemented with Si, the lattice constants increase.

Increases according to a linear law. As a result, the interactions between the
particles in the crystal lattice weaken and £y, K, G, Ci1, Ciz, Cas, Vp and V; decrease. This rule
is also consistent with experiments of Smith and Burns [77], in which, when cs; increases
from O to 4 %, Cs4 of CuSi decreases from 75.6 to 75.5 GPa.

Conclusions

The new contribution of the paper is the development of statistical moment method
(SMM) in studying the elastic deformation properties and elastic wave velocity of
interstitial alloy materials with face-centered cubic (FCC) structure. By applying SMM, the
paper derives the analytical expression of Helmholtz free energy, the average nearest
neighbor distance between two main metal atoms, characteristic elastic deformation and
elastic wave quantities such as Young's modulus, bulk compressive modulus, shear
modulus, elastic constants, longitudinal wave velocity and transverse wave velocity of
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binary interstitial alloys with FCC structure. The elastic deformation and elastic wave
quantities of the main metal in the interstitial alloy are a special case when the interstitial
atom concentration is zero. The numerical calculation results of SMM using Mie-Lennard-
Jones (n-m) interaction potential, coordination sphere method, Maple and Origin
softwares for Au, Cu metals are in good agreement with the experimental results and
other calculation results. The numerical results for CuSi interstitial alloys are new and
predictive, providing guidance for experiments. The studied temperature range is from
0 to 1200 K, the studied pressure range is from 0 to 1000 GPa and the interstitial atomic
concentration range is from 0 to 5 %.
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AHHOTALUA

MNpuBeaeHbl ONMCaHWE TEXHOMOMMW M3rOTOB/IEHUS KOMMO3UTOB C MOBbILEHHOM M3HOCOCTOMKOCTbIO Ha OCHOBE
dToponnacra-4 (INTM3), nonyyeHHbIX BBEAEHUEM B KaYeCTBe HAMO/HUTENEN MEXaHOAKTUBUPOBAHHbIX CIOUCTbIX
CUNUKATOB (KAOMMHUT, CEPMEHTUH, BEHTOHWUT) U LUMUHENN MarHWs, OCHOBHbIE Pe3y/bTaTbl MO MCCIELOBAHMIO
M3HOCOCTOMKOCTM, CTPYKTYPbl M XMMMYECKOrO COCTaBa MOBEPXHOCTM TPEHWS METOOaMM  3NEKTPOHHOW
MUKpocKonun u MK-cnekTpockonuu, U OaHHble MEXaHMYECKUX WCMbITAHWUIA: CEMENCTBA KPUBbLIX PACTSKEHUS C
Pa3HbIMM CKOPOCTSIMM [0 Pa3pyLUEHWs, KPUBbIX Harpy)XeHUs M pasrpy3ku C pasHbIMM CKOPOCTSIMM U KPUBbIX
MoN3y4ecTy 1 BOCCTAHOBNEHMS NS Pa3HbIX YPOBHEN HAMPsKEHMS, NOMyYeHHble B UCMbITaHMaX MTM u wectm
KOMMO3MTOB, AUCNEPCHO-HAMONHEHHbIX CEPMEHTUHOM W LUMMHENbID MarHMs C MaccoBon gonei ot 1 go 5 %.
B mepBoi Yactu cTatby OMMCaHbl LENW M CMCTEMA MPOrpaMM KBa3MCTAaTMHECKWMX MCMbITAaHWIA MOAMMEPOB U
KOMMO3WUTOB [/ BCECTOPOHHErNO W3Y4YeHUsl WUX BA3KOYMPYromiacTMYeCKUX CBOWCTB (COBOKYMHOCTM BCEX
HabMOLAEMBIX B MCMbITAaHWUAX 3(DPEKTOB), BOSMOXHOCTM MX OMMCAHMS C MOMOLLBID HECKONIbKMX (U3MYECKM
HENIMHENHbIX ONPEeLENsIOLLMX COOTHOLWEHWI BA3KOYNPYFrOMIACTUYHOCTM (OAHO M3 KOTOPbIX YYUTHIBAET B3AUMHOE
BAMSIHWME 3BOJIOLMM CTPYKTYPbI M MpoLecca AeOpMUMPOBAHMS) U METOAONIOMUS aHaM3a AAHHbIX UCMbITAHUI U
BbIOOpa aLEKBATHbIX OMPeLENstOMX COOTHOWEHWUIA AfS MX MOAENMPOBaHMS. B yacTHoCTW, paccMOTpeHbI
MpU3HaKKU GU3NYECKOW HEIMHEMHOCTM MOBELEHWUS MATEPUANIOB, T.€. MHAMKATOPbl HEMPUMEHUMOCTU MHEMHOTO
MHTErpanbHOrO COOTHOLIEHWSI BsA3KOynpyroctu bonbuMaHa-BonbTeppbl, KOTOpble MOXHO OBHApyXwTb B
UCMbITAHUAX MO Pa3HbIM MPOrpaMMaM HArpyXXeHus,, Cnocobbl 0YepTUTb AMAMNa30oH JIMHEMHOCTM NOBEAEHUs
BA3KOynpyroro Mmatepuana. OnucaHbl MCNbITaHWS AN NpefBapuTeNbHOM AMArHOCTMKM TWUMA  NOBEAEHUs
MaTepuana, eciuM  XapaKTepu3oBaTb €ro  KaTeropusMuM  Ympyruid, BS3KOYMPYrui,  BS3KOMAACTUYHBbIN,
YNpYroBsSiI3KOMIACTUYHBIM, M METOLOMOMMS BbIOOpa aAeKBATHOM MOLENN A/S OMUCAHWS NOBELEHUS KOHKPETHOro
mMaTepuana. Bo BTOpo# yacTv cTaTbi NpoBefeH MePBUYHbIA aHANU3 BbIPKEHHOCTU HACNEACTBEHHbIX CBOMCTB
MaTEPUANOB, B YaCTHOCTM CKOPOCTHOM YyBCTBUTENBbHOCTM, CMOCOOHOCTU K TEYEHMIO MPU NOCTOSIHHOM HaMPsKEHUH,
MOM3Yy4YeCTM M BOCCTAHOB/IEHUIO MOC/E PA3rpy3Ku, U BANSHUA HA HUX COCTABA, COCTOSIHWUS U 40U HAMOSIHUTENEN.
KJTKOYEBDIE CJIOBA
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AMarpaMMbl  4edOpMUPOBAHUS © KPUBbIE HArpy3Ku-pasrpy3ku o KpUBbIE MON3YYECTM WM BOCCTaHOB/IEHMS
KPUBbIE PElaKCaLym ¢ CKOPOCTHAs YYBCTBUTENbHOCTD *
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ABSTRACT

A description of the technology for manufacturing composites with increased wear resistance based on
polytetrafluoroethylene is given. The composites were obtained by introducing mechanically activated
layered silicates (kaolinite, serpentine, bentonite) and magnesium spinel as fillers. The main results of the
study on wear resistance, structure and chemical composition of friction surface using electronic
microscopy and infrared spectroscopy and mechanical test data are presented, including families of tensile-
to-failure curves at different strain rates, loading and unloading curves at different rates, and creep and
recovery curves for different stress levels obtained in tests of pure PTFE and six PTFE composites
particulate-filled with serpentine and magnesium spinel with a mass fraction ranging from 1 to 5 %.
The first part of the article describes the objectives and system of quasi-static testing programs for polymers
and composites for a comprehensive study of their viscoelastoplastic properties (@ set of all effects
observed in tests), the possibilities of describing them using several physically nonlinear constitutive
relations of viscoelastoplasticity (one of which takes into account the mutual influence of structure
evolution and the deformation process), and the methodology for analyzing test data and selecting
adequate constitutive relations for their modeling. In particular, the signs of physical nonlinearity of
material behavior are considered, i.e. indicators of inapplicability of the linear integral Boltzmann-Volterra
viscoelasticity relation that can be detected in tests using different loading programs, and methods for
outlining the range of linearity of viscoelastic material behavior. The tests for preliminary diagnostics of
the type of material behavior are described, if we characterize it by the categories elastic, viscoelastic,
viscoplastic, elastic-viscoplastic, and the methodology for selecting an adequate model to describe the
behavior of a particular material. In the second part of the article, a primary analysis of the expression of
hereditary properties of materials is carried out, in particular, speed sensitivity, the ability to flow under
constant stress, creep and recovery after unloading, and the influence of the composition, state and
proportion of fillers on them.

KEYWORDS

polytetrafluoroethylene  nanocomposites ¢ wear resistance e viscoelastoplastic properties e stress-strain curves family
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BesepneHue

3apa4m BCECTOPOHHEro 3KCNEePUMEHTANIbHOMO M3yYeHMs BA3KOYMNPYroniacTMYeckmx CBOMCTB
MaTepuanos (NOAMMEPOB, METANIOB M CMIABOB, KEPAMMUK, KOMMO3UTOB C Pa3HbIMKU TUNAMM
MaTpuL, U HaNoNHUTENEeN) NpU pasHblX TEMMEepaTypax U PexXMMax HarpyxeHus, Co34aHus
(ymobHoro ons nonb3oBartener) 6aHka 3TUX CBOMCTB B BUAE HAOOPOB KPUBbLIX UCMbITAHMI MO
pa3HbiM 6330BbIM U CreuManbHbIM NPOrpaMMaM HarpyxeHus u Habnogaemblx 3hdeKTos,
a He TONMbKO HEeCKONbKMX MPOCTEMLUMX CKANSPHbIX XapakKTepucTuk (MOAynb Yrnpyroctw,
npenen NpoYHOCTU NPU PACTSHKEHWUM, OKATUM UK M3rnbe, nedbopmaums Npu paspyLeHnm),
npobnema BbibOpa apekBaTHOro onpegenaiouwero cootHoweHus (OC) u  HapexHoro
MOJEeNMPOBaHUs npoueccos AedOpMUPOBAHUS U paspyLUeHUs, AIUTENIbHOM MPOYHOCTU U
LOITOBEYHOCTU BA3KOYMNPYronaacTUYHbIX MaTePUANOB M SNEMEHTOB KOHCTPYKLMIA C YYETOM
dU3nNYecKkom W reoMeTpuyeckom HeNnMHEMHOCTeN, HACNeACTBEHHOCTM M CKOPOCTHOWM
4yBCTBUTENbHOCTM MO-NPEXHEMY OCTAKTCS aKTyaNbHbIMW B MEXaHUKe, MaTepuanoBefeHnm
M MPAKTUKE UHXEHEPHbIX PacYETOB.

MN3-3a BbICTPOro pocta KOMMYEeCTBa HOBbIX MATepuanoB M MoAenen Afis OnucaHust Mx

noBeAeHUs W MoBbleHusi TpeboBaHWM K Becy, pa3MepaM, YAeNnbHOW MNPOYHOCTY,
[AONTOBEYHOCTU, HAAEXKHOCTU U IKOHOMWMYHOCTU 3S/IEMEHTOB KOHCTPYKUMM UM MEXaHW3MOB,
NepBOCTENEHHYK PO/b UrPAKT BOMPOChbI NOCTPOEHMS UK BbIBOPA (M3 COTHU CYLLECTBYHOLLMX)
apekBatHbix OC, aHanu3a M nacnopTM3auMu MX CBOMCTB, BO3MOXHOCTEM M 06nacTu
NPUMEHUMOCTH, Chep BAMSAHUS MX MaTepuanbHbiX GyHKUmMM (MD) n dbeHoMeHonormyecknx
orpaHuyeHui Ha Hux. C 3TMM BONPOCAMM TECHO CBS3aHbl 334341 pa3paboTkn MHOOPMATUBHBIX,
HO 3KOHOMMYHbIX KOMM/IEKCHbIX MPOrpamMM UCMbITaHMM 06pasLoB MaTepuana (KenatenbHo He
CMWKOM  OAWUTENbHbIX W MHOFOYMC/IEHHbIX), METOAMK OnpefeneHus  MartepuanbHbIX
napameTpoB U dyHkuuii OC no mx pesynsbtatam (MoeHtubukaumm) n sepudukaumm OC. ITu
TeMbl uccnenyotcd B cratbax [1-13] M ap., MOCBSALWEHHbIX aHanu3y, atrectauum WU
naeHtMdumkaummn nuHenHoro OC Baskoynpyroct bonbuMaHa-Bonsteppbl:
e(t) = [, 1(t = 1) do(2), o(t) = [, R(t — T) de(7), t 20, (1)
n natm 6onee o6wmx HennHenHbix OC BA3KOYNPYronaacTMYHOCTHM C LUMPOKMMKM 061acTIMMU
npuMeHuMoctn [1-4,9-13], o4HO 13 KOTOPbIX YYUTbIBAET B3aUMHOE BIMSIHWE 3BONOLUU
CTPYKTYpbl MaTepuana v npouecca gedopmuposanus [11,12]. JinneinHoe OC (1) onucbiBaet
OOHOMEpHble M30TepMuyeckue mnpoueccbl AedOpMUPOBAHUA CTPYKTYPHO-CTABUbHbIX
(HecTaperLwwmx) MaTepmnanos, CBA3bIBAS UCTOpUK HanpsxkeHnus o(t) n pedopmaumnn £(t) B
TOUKE Tena JUHEWHbIMU WHTErpanbHbIMW OMNEpaTopaMu; OHO COAEPXKWUT NULb OOHY
He3aBUCUMYI MaTepuanbHyo GyHKUuM (MD), T.K. PYHKLMM NON3y4yecTM M penakcauuu
II(t) n R(t) cBg3aHbl YyCNOBMEM B3aMMHOW obpaTHOCTM onepaTtopoB (1) B BUAE
WHTEerpanbHoro ypasHeHus Bonbteppsl [4,9].

B cuny cBoent dyHOAMEHTaNbHOW CNOXHOCTU, BONbLIOr0 KOAMYeCTBa MCMbITaHUN,
HeobX0AMMbIX 0N MUCCNefoBaHMUS BSA3KOYNPYronnactMyeckux (2 He TOMbKO YMpyrux)
CBOMCTB MaTepmanoB, CIOXKHOCTM aHaNM3a AAHHbIX UCMbITAHWI B BUAE CEMENCTB KPUBbIX U
MHOFOYMCNEHHOCTM pa3HoobpasHbix OC, NMpepsioXXeHHbIX B HAy4YHOW nuTepatype Ans
OMMUCAHUA TEX MU UHBIX KOHKPETHbIX MaTepManoB (MpU KOHKPETHbIX BUAAX HArPY>XKEHUW),
MHOIMe M3 YNOMSHYTbIX TEM HeA0CTAaTOYHO pa3paboTaHbl, @ MOPOM NPOCTO UFHOPUPYHOTCS
M NOAMEHSTCA C1ab0 HanoNHEHHbIMU DU3UKON, XUMUEN U MEXAHUKOM BbIYMCIUTENbHBIMU
CXeMaMu. JTO Hepeako NpUBOAMT K HEAOCTOBEPHOCTM pe3ynbTaTOB MOAENMPOBaHUS (U
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MOOHbIX HblHE "UMIPOBLIX OBOMHWMKOB"), OMUPAKLMXCA HA MaANoe KOJIMYeCTBO
NPOCTENLUMX WCMbITAHUMA ONpPeAeNieHHOro TMMa M He CnoCOOHbIX OnNUCaTb KOMMEKC
OCHOBHbIX 3(G(EKTOB, U YKOPEHEHWUIDO HEBEPHbLIX MNPEeACTaBNEHUMA KaK B Hay4YHOWM
nuTepaType, Tak U B UHXEHEPHOM NPaKTUKe.

Monutetpadtopatunen (MNTA3, ¢proponnact-4) — WMPOKO UCMONb3YEMbI BO BCEM
Mupe nonuMmep, oH obnagaet 60MbWMM HAaOOPOM MONE3HbIX (M BO MHOTOM YHWKasbHbIX)
XUMUYECKMX U PU3NKO-MEXAHMYECKUX CBOMCTB [14-86]: 1) oyeHb HU3KMIA KOIDDULMEHT
Tpenus, 2) rmapodobHOCTb M OTCYTCTBME HANMNAHMSA OPYrMX MaTepuanoB, BKAKYAS U
aaresvBbl, K MNOBEpXHOCTM wu3genui w3 [TM3, 3) Hu3kMe BOOOMOMNOLEHME U
ra3onpoHMLAEMOCTb, BbICOKAsi CTOMKOCTb K arpeccMBHbIM CpefaMm, K BO34EMCTBMIO BOAbI,
cgeta, Y®-usnyyeHus, NpupoaHbIX 3arpsisHeHUn, 4) BbicokMe [edOopMaTUBHOCTL U
NNacTM4HOCTL (0becneymBatowme WMpokoe npuMmeHeHue MNTM B kayecTBe MaTepmana ans
yrnnoTHeHWA U repMetukoB [14-22,26,27]), 5) @wu3nonornyeckas HENTPanbHOCTb,
6) COXpaHeHMe MHOMMX ULEHHbIX (U3MKO-MEXAHUYECKMX CBOMCTB W BO3MOXHOCTb
3KCNAyaTaumm Npu HU3KMX U KpMOreHHbIX TeMnepaTtypax (o1 -260 go +260 °C) [20,22,24,27].
Bnaropaps 3tum ceoncTeaM MNTMOD UMeeT LWMPOKMIA CNEKTP NPUIOXKEHMI B Pa3HbIX OTPACSX
MPOMBIWAEHHOCTU U TEXHWKWU:  MALMHOCTPOEHWUW,  TPAHCMOpTe  YrneBOAOPOLOB,
CTpOUTENbCTBE,  JNEKTPOTEXHMKE, MedMuMHe, TMNULLEBOW, LBEMHOW, XMMUYECKOM
MPOMBbILLNEHHOCTM, BOEHHOW M a3poKocMuyeckom TexHuke. [NTAM ocobeHHo 3ddeKkTMBEH B
KayecTBe YNAOTHUTENbHOIO 1 TpMboTEXHUYECKoro Matepuana [14-22,26,27,31-86].

N3-3a Hu3koro koadpduumeHta TpeHuns MNTAOS wWMpoOKO NpUMEHsieTCs B KadvecTse
OCHOBbl KOMMO3UTOB A5 M3rOTOB/IEHUS OeTanel CaMblX OTBETCTBEHHbIX Y3/10B TPEHUS
(noawmnHMKOB, onop MoctoB U T.Nn). [14,17,20,22,31-86]. OH He 3aMeHMM B y3nax "cyxoro”
TPeHUs, MOCKONbKY HEe TONbKO MMeeT HU3KUKA KOIDPUUMEHT TpPeHUs no CTanu, HO MU
obnapaer camocmasbiBalowmMm cBorMctBamMu. OQHO M3 OCHOBHbIX Npenmywects MTMO3 u
KM Ha ero ocHoBe nepepn apyrumu nonnmepamm — obecneyeHme pabotocnocobHOCTM y3na
TpeHus 6e3 NpMMEeHeHUs CMa3ku B YCNIOBUAX LMKINMYECKOro 06pa30oBaHUS U yAaneHUs
nneHkn nepeHoca [85]. [letanu, U3rotoBneHHble Ha OCHOBE TakMx KM, MMeT MeHbLUyo
MacCy M CHUXAKT TPAHCMOPTHbIE pacxoabl, He BOATCS HU3KMX TeMNepaTyp M arpecCUBHbIX
cpen, paboTtaloT npaktuyecku 6GecwyMHO, obnagatoT gemndupyrowen cnocobHOCTLH,
MOBbILLAKT HAAEXKHOCTb U AONTOBEYHOCTb (XOPOLLO CNPOEKTUPOBAHHbIX) Y3/10B MALUMH.

OpHako y MTM3 ecTb M HepoCTaTKM: OH 06/MafaeT HU3KOM M3HOCOCTOMKOCTbLHO,
6onbwmM  KO3OPUUMEHTOM  JIMHEMHOTMO  TEPMMYECKOr0  PaCLUMPEHUSsl,  BbICOKOM
nedbOopMaTUBHOCTbIO (3TO CBOMCTBO nonesHo B npumeHeHuax [MNTAO3 B kayecTse
YMNNOTHEHWI U TEPMETUKOB, HO BPeAHO BO MHOTUX APYrnx 061acTax npumMeHeHus) 1 bbicTpo
HakanaMBaeT NaacTMyeckyo AedopMaumio Kak Npu NOCTOSHHOM, TaK U NPU LUKINYECKOWM
Harpyskax: MoABepXeH NoN3yyYecTu (X1agoTeKyvyecTi) U pITYETUHIY AaXe NPU HeBONbLLMX
Harpyskax B HOpPMasbHbIX ycnoBuax. Ong ynydweHus CBOWCTB M pacwmpeHus obnactu
npumeHeHus B NTAMD BBOAAT pasHble HanonHuTenu [17-86]: yrnepoaHble U CTeKNsHHbIe
BOJIOKHA, OKCUAbl METANN0B, CMIMKATbI, AETOHALMOHHbIE HAHOA/IMa3bl, MOPOLLKM BPOH3bI,
avcynbduaa monubaeHa, rpaduTa, KOKca, CAAbl, Meau, HUTpuaa 6opa. bonbwKMHCTBO
NPOMbIWNEHHO BbIMNYCKAEMbIX MaTepuanoB Ha ocHoBe MTM3 - KOMMNO3MLMK C BbICOKOM
ponen HanonHutenen (6onee 15-30 %), yTO NpMBOAWUT K M3OBITOYHOMY MOBBILIEHWUIO
YEeCTKOCTU M XPYNKOCTM MaTepuana. Ha pbiHke Poccun WiMpoko npeactaBneHbl cnegyrowme
mMapkn KM Ha ocHoe MTM3I: ®-4K20, ®-4K20M5, ®4C15, ®nyboH-15 1 ®nyboH-20
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[22,26,32]. 3T BblicOKOHanonHeHHble KM o06napatoT MOBbIWEHHBIMU U3HOCOCTOMKOCTHIO
(3o 1000 pa3 no cpaBHeHUIO € ncxogHbiM MTM3) n Moaynem ynpyroctu, HO 3HaYUTENbHO
MeHbLUEN NOAATIMBOCTLIO U pecypcoM AedOpPMaTUBHOCTU, YTO CHUXKAET X IOPEKTUBHOCTb
B YN/JIOTHEHUSIX.

B pabotax [34,36,65-81] nokasaHo, YTO 3aMeTHOEe MOBbIEHNE WM3HOCOCTOMKOCTY
AOCTUIAeTC Npu BBEOEHMM MANoro KonuyectBa (A0 5 %) HanonHuutenew (cepneHTuH,
KaONMHUT, BEPMUKYNUT, BEHTOHUT, LEOSIUT, OKCUA, aNIOMUHUS, OKCUA, MArHWs, OKCUA KPEMHMUS,
6a3anbToBOE BOJIOKHO, YrnepogHoe BOJIOKHO) Mpu 3TOM AedhOopMaLMOHHO-NMPOYHOCTHbIE
XapakTepucTnkm nonyvaemMoro KM coxpaHstotcs Ha ypoBHe unctoro [MTM3 nnm nosbiwakoTcs
(cM. Huxe). B pabotax [65-70,73,74,76-80] nokasaHo, 4TO BBeAeHME MWHEPaNbHbIX
CnoncTbIx cunmkaTos B [MTM3 npuBoauT K cCHUXeHuo usHoca B 700-2000 pas.

BonokHuctble HanonHutenu npmuaatot KM Ha ocHoBe MNTM3 npoYHOCTb, XKECTKOCTb U
n3HococTomkocTtb [51]. B pabotax [70-72,77] ycTaHOBNEHO, 4TO BBeAeHMe 5 % KOPOTKMX
yrepoaHbiX BOJIOKOH MoBblwaeT naHococtonkoctb KM B 70-80 pa3 no cpaBHeHUIO C
ncxogHoiM MNTM3. OCHOBHOM HEOOCTATOK YrNepOAHOro BONOKHA — €ro BbliCOKAs LieHa
(B 3aBMCMMOCTM OT TMNA U Ka4yecTBa YriepoaHOro BOJIOKHA, OT CMPOCA HA HEro B pPa3Hbix
CerMeHTax pblHKa ero LeHa MOXeT CYLLEeCTBEHHO pa3nnyathbes). A cbipbe Ans NpoM3BOACTBA
MOXeT ObiTb B 5-25 pa3 pgopoxe, 4eM y CTeKN0BONOKHA. BO3MOXHbIM Bonee pelueBbil
HanonHutenbs ana MTM3 - 6asanbToBble BoNOKHA [50,81]: oHM 06napaldT BbICOKMMMU
MEXaHUYeCKUMU XAPAKTEPUCTUKAMU U TEPMUYECKOM U XMMWUYECKOW CTOMKOCTbI, HO
TEXHONOMMS MX MNPOM3BOACTBA 3HAUMTENIbHO MNPOWE W MeHee 3SHEeproeMka, Cbipbe
(NPUPOAHOrOo MPOUCXOXAEHUS) HE OFPAaHUYEHO M 3HAYUTENbHO JAeleBne, a oTpaboTaslme
BOJIOKHA He 3arps3HAI0T OKpyxawwyo cpeny. lepsble ucnbiTaHua nokasanu [81], uto
BBeAeHUn 5 % KopoTkMx 6a3anbToBbIX BONOKOH (anaMetpom 8-10 MKM) CHMXKAET M3HOC
KM B 55 pa3 no cpaBHeHuto c MNTD3.

Heob6xoaMMOCTb OCBOEHUSI perMoHOB ApPKTUMKM POXAAET MOBbIWEHHbIA CNpPOC Ha
pa3paboTKy M MpUMEHeHue B TeXHUYECKMX YCTPOMCTBAX MOPO30CTOMKMX MaTepuanos C
ANUTENbHBbIM CPOKOM cnyx6bl. MMTM3 n paspabatbiBaemMble KM Ha ero ocHoBe OYeHb
NepcneKkTUBHbI AN9 pelleHns 3TUX 3a4ad. [epcnekTMBHbIM NpeacTaBAsSeTcs M covyeTaHue
YKa3aHHbIX HanonHuTenen ¢ MeTogoM pagnaunoHHon mogudukaumum MTO3 obnyyeHnem
MasibiIMK 4033aMK B pacrniaBe (YyTb Bbile TemnepaTtypbl NaaBneHus kpuctanamtos 327 °C),
KOTOpoe W3MeHsieT HaaMonekynspHytw cTpyktypy MNTd3 [42,46,82]; pabota B 3TOM
HanpaeneHun Bepetcsa B coTpyaHmyectBe ¢ C.AA. XatunoBbiM. Takum obpas3om, co3paHue
KM Ha ocHoBe TMT®3 c yAyyleHHbIM KOMMIEKCOM 3KCMAyaTaUMOHHbIX CBOMCTB
npeacrasnseT 60MbWOW HAYYHbIM U NpakTUYeckuit nHTepec. Mccneposanma KM Ha ocHoBe
MT®3, nNpuMeHeHWEe HOBbIX HAMOMHUTENEW AN MOBbIWEHUS (PU3NMKO-MEXAHUYECKUX
CBOWCTB U pa3BUTME TEXHONIOTMIA U3roToBNeHns KM — BaXKHble 3a4a4u, peleHne KOTopbIX
TpebyeT KOMMNIEeKCHOro N0AX0A4a, BKIOUAIOLLEro MaTepuanosefyeckme, TeXHONOrnYeckme,
MeXaHMKO-MaTeMaTMyeckme U SKOHOMUYECKME aCneKTbl.

JTa pabota - BBOAHAA CTaTbsl UMKAA CTaTel, MOCBAWEHHbIX BCECTOPOHHEMY
3KCNEepPUMEHTANIbHOMY  UCCNEeOO0BAHMI0  BA3KOYNPYronnacTMY4eCKMX  CBOWCTB U
MOJEeNMPOBaHUIO NoBeAeHUS PToponiacTa-4 n HeCKonbkux ceMencTs KM ¢ noBbIlLEHHOM
M3HOCOCTOMKOCTbIO HA €ro OCHOBe, NofyyeHHbIX B nocnenHue 20 net B nabopatopusix
"TexHonornm nonuMMepHbIX HaHOKomno3uToB" u "lonumepHble komMno3uTbl anga Cesepa”
CeBepo-BoctouHoro depepanbHoro yHusepcuteta uM. M.K. AMMocoBa BBegeHueM B
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KayecTBe HaMoAHUTENe CNOUCTbIX CUIMKATOB (MEXAHOAKTUBMPOBAHHbIE KAOMUHUT W
CEepNeHTUH, LWMNMHEeNb MarHug) M KOPOTKMX 0a3anbTOBbIX MAW YrNepoAHbIX BOJIOKOH
[34,36,65-81]. B paHHOM umukne u3 8-10 ctatei BHMMaHue ByneT CcOCpefOTOYEHO Ha
CUCTEMHOM MCCNefoBaHMU BCEro KOMMAEeKca BA3KOynpyronaactmyecknx csoncts MNTMI u
YKa3aHHbIX HAHOKOMMO3MTOB (@ HE UX OTAE/NbHbIX XapaKTepUCTUK) U pa3paboTke CUCTEMBI
NpOrpamMM KBa3UCTAaTUYECKMX TEPMOMEXAHUYECKUX MUCMbITAHWI, MO3BONAOWMX NONYYUTD
MaKCMMaNbHO MOMIHYK MHAOPMAUMIO O PEONornYecKnX CBOWMCTBAX WUCCAeayeMblX
MaTepuanoB (KOTopble B AanbHeKnweM OyayT Mcnonb3oBaHbl Ansg nacnoptusaunn KM u
nonbopa onpenensiowero COOTHOWEHMS WM MOAENMPOBAHUA UX AedOpMUPOBAHUS U
pa3spywenus [1-13]). lNocne MexaHUM4ecKMX WCMbITAHUM NPOBOAATCS WCCAef0BAHMUS
n3MeHeHu MUKpOCTPYKTYypbl [TM3 1 KM Ha ckaHupyoweM 3neKTPOHHOM MUKPOCKONeE.

B cTratbe 6yayT onucaHbl pa3paboTaHHbie MaTepuanbl U TEXHONOMMU UX NOJTyYEHUS,
OCHOBHbI€ pe3ynbTaTbl MO UCCNEA0BAHUIO CTPYKTYPbl U XMMUYECKOIO COCTaBa MOBEPXHOCTH
TPEeHUs MeToLaMMU 3NeKTPOHHOM MUKpocKonuu U MK-cnekTpockonuMu n no MOBbIWEHWUIO
M3HOCOCTOMKOCTM 3TUX MaTepmnanos (3a cueT 06pa3oBaHMS NIEHKU NepeHoca U BTOPUYHbIX
CTPYKTYp B pe3ynbTaTe TpuMOOOKMCIMTENbHbIX npoueccos). byper onucaHa cuctema
NpOrpamMM KBa3MCTAaTUYECKMX MCNbITAaHW NONMMEpPOB M KOMMNO3UTOB (N0 6a30BbIM U
CNeuManbHbiM  MPOrpaMMaM  HarpyxeHus) An9  KOMMAEKCHOMO0  M3y4YeHus  UX
BS3KOYNpPYroniacTMyeckux CBOMCTB (BCEM COBOKYMHOCTM Habnwopaembix 3PGheKToB) u
MEeTOLOMOMMS  aHanu3a AaHHbIX MCNbITaHMM KU Bbibopa noaxogawmux OC pns  umx
MogenMpoBaHus. B yactHocTu, ByayT pacCMOTpeHbl NPU3HAKK HU3NYECKON HETMHEMHOCTH
noBefeHNs MaTepuanos, T.e. MHAMKATOPbl HEMPUMEHUMOCTU JIMHEMHOIO WHTErpasibHOro
OC Baskoynpyroctn bonbuMaHa-BonbTeppsbl, KOTOpbie MOXHO OOHAPYXXUTb B UCMbITAHUSAX
MO pasHbIM MpPOrpaMMaM HarpyxeHus, Cnocobbl O4YepTUTb [AMANA30H JIMHEMHOCTU
noeefeHns BA3Koynpyroro matepuana [87-92].

ByneT npuBeneHa 4aCTb MONYYEHHbIX 3@ MOCAeAHUE ABA roAa AAHHbIX UCMbITAHUM
obpasuos MMTO3 n KM Ha ero ocHoBe: ceMenCTBa AMArpaMM paCTHKEHUS C Pa3HbIMU
CKOPOCTSIMM A0 pa3pyLUeHusl, KPUBbIX HArPY>XeHUs U Pasrpy3ku C pasHbIMU CKOPOCTIMM,
KPUBbIX MNONI3y4eCTM M BOCCTAHOB/EHMS AN Pa3HbiX YpPOBHEW Hanpskenus. byayt
MccnefoBaHa  BbIPAXXEHHOCTb  HACNeACTBEHHbIX CBOMCTB  MaTepuanoB (CKOPOCTHas
YyBCTBUTENbHOCTb, CMNOCOBHOCTb K TEYEHWMO NPU MOCTOSHHOM HanpskeHwu, pecypc
£edOopMaTUBHOCTU U CNOCOBHOCTb K BOCCTAHOBMIEHUID MOCNEe pasrpysku), onpeneneHsl
MIFHOBEHHbI MOZyNb, Mpefen TeKyyecTu, HanpskeHue u gedopmauus npu paspbiBe B
3aBUCUMOCTU OT CKOPOCTU HArpyXXeHWs, HayaT aHanu3 BAMSAHUS HA HUX COCTaBa, AOAU U
COCTOSIHUA HAMONHUTENEMN.

B panbHerwem 6ynet noapobHO npenctaBnieH BeCb HAKOMNEHHbIM 06beM AaHHbIX
MCNbITaHMI U 0OHapYXXeHHbIX 3ddekToB, OyayT AeTanbHO NPOAHANM3MPOBAHbI CEMENCTBA
AnarpamMmm aedopMUpoBaAHUS MPU PACTKEHUM (L0 pa3pyLleHus) Heckobknx KM, kpusble
Harpy>xeHns W pasrpysku, MX CKOPOCTHAs YyBCTBUTENbHOCTb WM 33aBMCMMOCTb OT
TeMnepaTypbl, KpMBbIE NONM3YYECTU U BOCCTAHOBNEHUS MPU Pa3HbIX YPOBHSAX HANPSHKEHUS
M Temnepatypbl W TMpPOBEAEH CPaBHWUTENbHbIA aHAaNU3  CTPYKTYPHbIX WU3MEHEHUN
nccnepyembix KM nop pencTBuMeM pasHbiX NporpaMM Harpyxenus. o cemenctsam
NMOCTPOEHHbIX AnarpaMM AedOpPMUPOBAHUS, KPUBBIX HArpy>XeHUs U pasrpy3ku U KPMBbIX
NMON3y4yecTy U BOCCTAHOBNEHUS ByaeT OCyLLecTBAATLCS BbIOOP M NpoBepKa MHAMKATOPOB
NPUMEHUMOCTM K OMUCaHUIO AedOpPMUPOBAHMSA  UCCIEAYEMbIX MaTepuanoB MaTU
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dusmyeckn HenunHenHbix OC BA3KOYNPYronnacTUYHOCTU, MOCTPOEHHbIX W AeTaNbHO
M3y4yeHHbIX paHee B umkne ctater [1-13] m ap. OaHa M3 BaXHbIX 33434 BCEro LMKNA cTaTen
- KOMMJIEKCHAs XapaKTepu3auuMss M CUCTEMHOE onucanme cBonctB MTM3 un KM,
npoBeAeHWe W aHanuM3 MUCMbITAaHUA OOHMX W Tex >Ke MaTepuanoB MO pPasHbIM
MHPOPMATMBHBIM MporpamMmaM: gaxe no uyuctomy MTO3 (pa u gpyrum matepuanam) B
Hay4yHOM nuTepaType MpeacTaBfieHbl TOMbKO Pa3pO3HEHHble [aHHble WCMbITAaHWK MO
OTAEeNbHbIM nporpaMMam o06pasuos MNTA3, M3roTOBAEHHbIX U3 Pa3HOrO Cbipbsl B Pa3HbIX
YCNI0BUSIX MO Pa3HbIM TEXHOMOMMSAM, KOTOPble HeNb3s MCNOob30BaTh BMecTe Ans Bbibopa,
noeHTMPUKaumMmM 1M BCeCTOpOHHelr Bepudukaumm OC gnga onucaHusa BCEro KoMmaekca
peonornyeckmx ceoncTs MNTO3.

UcxopHble maTepuanbl u TexHonorusa nonydyeHns KM Ha ocHose MNTP

3a ocHOBYy pa3pabatbiBaeMbix M wuccnepyembix KM B3ar nopowok [MT®3 [MH-90
npoussogmMbln OAO "Tanononumep lNepmb” (cpeaHuin pasmep yactuu: 46-135 mkm). B
KayecTBe Cbipbsi ANS HAMNOJHMUTENeW B AaHHOM paboTe Obiv BbiOpaHbl: 1) KaOAMHMUT,
TMMHUCTBIA MUHEPan U3 rpynmnbl BOAHbIX cMankaToB ¢ obwen dopmynon Als[SisO10](OH)s
(M3 KaonMHa ANTalCKOro MeCTOpPOXAEHMUS, CpeAHMEe pa3Mepbl YacTUL, A0 U3MENbYEHUS —
170 mkMm); 2) cepneHTuH (Mgs(OH)s[Si4O10]) XamenoBckoro mectopoxaeHuss MypmaHckon
obnactm B BMAE KPYNHOAMCNEPCHOro MOpOLWKa CO CpeAHMM pasMepoM 4acTuy, 3 MM;
3) WwnuHenb MarHus (CNOXHbIM okcua, obwaa xumuyeckas cdopmyna MgAl,04) B BUAae
HaHOMOPOLWKA C pa3MepoM YacTuy 75 HM, CMHTE3MpoBaHHOrO B WHCTUTYTE XUMUMK
TBepaoro Tena un mexanHoxummun CO PAH (HoBocnbupck).

HanonHutenn npocywusann B neun [13-0041 npu 120 °C B TeuyeHue 4 u.
N3menbyeHne (MexaHOAKTUBALMIO) KAONUHUTA U CEpNEeHTMHA NPOBOAMAN B MIAHETAPHOM
menbHuue "AktmBatop - 25" (1356 06/MuH, BpeMs 06paboTku 2 MMH); B pe3ynbraTte
CpeaHUn oMaMeTp YacTuL, KaoNIMHKUTA U cepneHTUHa coctansan 100 Hm, 1.e. 8 1700 n 30000
pa3 MeHbLUe, YeM A0 aKTUBALMM.

NT®3 npocywwmsann B neun [13-0041 npu 180 °C B TeyeHue 4 4. BbiCyLIeHHbIN K
OXNnaxaeHHbin B neun MNTADD nomewancs B 3KCMKATOP (CTEKNSHHbIA COCYA, B KOTOPOM
NOLLEPXMBAETCS  ONpefeNieHHass BNAXHOCTb  BO34yxa). BbicyweHHbIi  nonumep
M3Menbyancs Ha MenbHuue W npocemBanca 4vepes cuto (N21 K). [ns coBmelieHus
komnoHeHToB KM ucnonb3oBancsd MeTon CyxOro CMeweHuss C  WUCMo/Jb30BaHMEM
BbICOKOCKOPOCTHOro nionactHoro cmecutens (1200 06/MuH).

Hanee npoussogunucb dopmoBaHme obpasuoB KM u cnekaHue. MexaHuueckue
MCNbITaHMA MNPOBOAMAMCL HA  OTNPECCOBaHHbIX o0b6pasuax B ¢dopMe 0oMaTok,
cootBetctBytowen [OCT (MCMbITaHMA Ha pacTsKeHMe Mo PpasHbIM MNporpaMMam) u
uunuHgpos (ctonbukos), Bbicoton 20 MM u  aguametpom 10 MM (MChbITAaHMS HA
M3HOCOCTOMKOCTb U Ha okaTtue). [Ina nsrotosneHuns nonatok Tpebyetca 11 r MNTd3, a ans
n3rotosneHus ctonbukoB - 3.5 r. O6pasupbl U3roTaBAMBANMUCL NO TEXHONOMMU XONOLHOIO
dopMoBaHus B npecc-popme B ruagpasnnyeckom npecce GT-7014-H10C nog aasneHnem
50 Mrla (ckopocTtb HarpyxeHusa 0.45 MIlla/c, BpeMa Bbiaepxku nof aasneHnem 50 Mla -
2 muH). CnekaHue npoussogunu B neum SNOL npu temnepatype 375 °C B TeyeHune 90 MuH,
HarpeBaHue OT HayanbHOM TeMnepatypbl 25 £ 5 °C nponssoamnu co ckopoctbto 2 °C/MUH
c Bblaepxxkon 30 muH npu Temnepatype 300 °C. MNepexopn NTM n3 TBEpLOro COCTONHUS B
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BA3KOTEKYYEEe MPOUCXOOUT CKAYKOOBpas3HO, a He MNaBHO KakK Yy MHOMMX Apyrux
TepMOMNIACcTMYHbIX nonumepos. lNpu Temnepatype 327 °C BCe KPUCTANNUTbI NEpPEXOONT B
aMop@dHOe COCTosiHME (TEPSIOT NAMENNSPHYI0 CTPYKTYPY, HO COXPAHSAIOT GUOPUNNAPHYIO),
HO MaTepuan ele He MAaBUTCA, a Pa3MArvyaeTcs, CTAHOBMTCA XeneobpasHbiM. [lpu
poctmxenun Ttemnepatypbl 350-380 °C wactmubl KM “cnnaBnsiiotca” M nony4vaercs
MOHONUTHbIM 6noK. MNocne cnekaHus n oCTbiBaHUS 06pa3Lbl-CTONOUKM AN UCCNef0BaHUS
TPUOOTEXHUYECKMX XapaKTepUCTUK MoABepraancb kanubposke: obpasubl nomewann B
neyb ES-4610 n Harpesanu po 180 °C, nocne Boigepxku npu 180 °C B TeyeHme 30 MuH,
o0bpa3ubl npeccoBanu noa aaeneHnem 50 Mlla 1 ocTaBngnM ocTbiBaTb NOA AABJNEHWMEM B
npecc-gopMe 00 KOMHATHOM Temneparypsl.

BnusHue HanonHutenen Ha KO3 PULMUEHT TPEHUS U CKOPOCTb U3HOCA
KOMMO3UTOB U NPOLECCbl HA NOBEPXHOCTU TPEHUS

lNpoBeneHbl TpMboTeXHMYECKME UcnbiTaHua 0bpa3yos MNTMI u wectn KM Ha ero ocHoBe ¢
WEeCTbl Pa3HbIMU COOEPXaHMAMWU HanonHutenen: matepumansl KMc-1, KMc-2, KMc-5
cogepxanu 1, 2 uan 5 % cepneHtnHa (no macce), a B 06pasubl Matepuanos KMcw-1,
KMcw-2, KMcw-5 6bina nobasneHa ewe WnuHenb MarHms (CyMMapHas A0NS HANOAHUTeNewn
- 1,2 n5%) v oin umenn cnepyowmn coctas: KMcw-1: NTO3 + C0.9% + UM 0.1%
(WM - wnwuHenb MarHug, C — cepneHtuH); KMcw-2: MTO3 + C 1.5% + UM 0.5%; KMcu-3:
NTdO3 + C3.8% + WM 1.2%. CreneHb kpuctannmuHoctu MNTM3, onpeneneHHas MeToaoM
PEHTreHOCTPYKTYpHOro aHanu3a (Ha audpaktometrpe ARL X'TRA, LUsenuapus)) coctaBuna
66 %, a y KM - HeMHoro Bbiwe: 0T 67 go 75 % (v pocna ¢ yBenmyeHneM AONn HarnonaHuTenen).

KoadpduumeHt tpenus MTOS n KM no ctanu u CKOPOCTb MacCOBOr0 W3HALLUMBAHUA
onpeaensanu Ha yHMBepCasbHOM BbicOkoTeMnepaTypHoM Tpubometpe CETR UMT-3 (CLLA) no
cxeme TpeHus “naneu-amck” (CTanbHoe KOHTpTeno), npu Harpyske 160 H u ckopoctu
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CopnepxkaHie HamoneuTenell, Mac. % Copep:xaHHe HAONHHATeNell, Mac. %
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(@) (b)

Puc. 1. CpepaHss ckopocTb u3HawmBaHus [ (a) u koadduuneHT TpeHns f (b) komnosmTos Ha ocHose MNTMD
no CTanu B CTafuu NpupaboTku (LnutenbHOCTbio 1.5 4) 1 Ha BTOpoW cTaguu (4 u)
B 3aBMCMMOCTU OT JOJIM HAMNONHUTeNEeN (CepNeHTUHA U LINUHENU MarHus)
[Fig. 1. Average wear rate / (a) and friction coefficient f (b) of PTFE-based composites against steel
during the running-in stage (lasting for 1.5 h) and the second stage (4 h) depending on the filler
content (serpentine and magnesium spinel - s or Msp)]
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ckonbxeHms 0.25 M/c (yacToTa BpaleHns amcka 96 06/muH). UcnbitaHme obpasuos B popme
ctonbukos (Bbicotom 20 MM u guametrpom 10 MM) cocTosno M3  ABYX CTafaui
anutenbHoctblo Ty =1.5 4 (ctapus npnpaboTtkn) u T, = 4 4 B KOHLE KaXZOM U3 KOTOPbIX
NpOM3BOAMNOCH B3BelWMBaHWEe 00pasua U m3MepeHue notepu Maccel Am. CpenHioro
CKOPOCTb U3HALUMBAHMS HA KaXXAO0M CTaAuM OLeHMBANMU No notepe Maccbl 06pa3uoB Am 3a
Bpema T;: [; = Am/T; (Mr/u). [aHHble UW3MepeHu CKOPOCTeM M3HAWMBAHUA [ WU
Ko3apduumenta TpeHma f KM no ctanu B 3aBUCMMOCTM OT COAEPXKAHWMA HAMOJHUTENewn
(CepneHTUH 1 WnuHenb Marumsa B Konuyectse 1, 2 n 5 %) npuseneHsl Ha Puc. 1: cMHUM #
3e/1eHbIM LBeTaMn — KpuBble ans obpasuoB KMc, KpacHble u xentble — ang 06pasuos
KMcL; cMHMe M KpacHble KpuBble OTHOCATCS K cTaann npupaboTku (T; =1.5 v), 3eneHble n
Xentble — Ko BTOpon ctaguu (T, = 4 u).

OpHoBpeMeHHOEe BBefEeHWe CepneHTUHA M LWNWHENW MarHus no3BOAUIO MOBbLICUTb
M3HOoCOoCTOMKOCTb MaTepmnana B 1100 pa3 no cpaBHeHMto ¢ unctbim MTOI3. C yBenmyeHnem
COOEPXKAHMUS HAaNOMHUTENS CKOPOCTb M3HOCA 3aMETHO YMEHbLUAETCS, XOTS Ko3pduUMeHT
TPeHUs HeMHOro pacteT (KpuBble Ha Puc. 1(b) nexart B 06paTHOM nopsake No CPaBHEHUIO
¢ Puc. 1(a)). PucyHok 1(a) nokasbiBaeT, YTO BBEOEHME LUNWUHENM MarHua MoBbIWaeT
n3Hococtonkoctb KM B 2-3 pasa no cpaBHeHU0 ¢ KM, HanOAHEHHbIM NI1LIb CEPNEHTUHOM.
MN3BeCcTHO, 4YTO MOBbIWEHWE M3HOCOCTOMKOCTU MOXET ObiTb 00YyCNOBNEHO yCuneHuem
aAre3sMoHHOro B3aUMOLENCTBMS KOMMOHEHTOB B KOMMO3MTE BCNEACTBME Y4aCTUS
HanofHuTeNnen B (QOPMUPOBAHMM TPAHMYHOIO CNOSA HAa rpaHuue pasgena "nonumep-
HanonHutens" [67]. oes ucnonb3oBaHUs WNUHENU MarHus B KayectBe dyHKUMOHANbHOWM
[06aBKM OCHOBaHA Ha CMOCOBHOCTU CTPYKTYPHO-aKTUBHOIO HaNoIHUTENs CNocobCcTBOBaTb
npoueccy ynopsiAiOYeHHOCTM U OpPMEHTaUMM MNpu TPEHMM, Y4acTBys B npoueccax
TpnboaecTpykuMm nonMmepa 1 NoCneayLero CTpyKTypupoBaHus [34].

Nna 6Gonee peTanbHOrO MCCNEAOBaHMSA MNpoLecca  M3HAWMBAHMS MpPOBELEHbI
CTPYKTYPHblE MCCNea0BaHMS NOBEPXHOCTEN TpeHMs 06pa3L0oB MeToAaMM CKAHMPYHOLLEN
anekTpoHHOM Mukpockonuu (Puc. 2) n UK-cnektpockonuu (Puc. 3 u 4). Nx ocywectenanu
Ha CKaHuWpyoweM 3neKTpoHHOM Mukpockone Jeol JSM-7800F (JEOL, finoHus) B pexume
BTOPMYHbIX 3N1EKTPOHOB, a Takxke Ha MK-cnektpomeTpe ¢ Dypbe-npeobpasosarHmnem 7000
FT-IR (Varian, CLLUA). MK-cnekTpbl A0 U nocne TPeHUs Moayyvanu C NOMOLLbIO MPUCTABKU
HapyLUEHHOro MOJHOIO BHYTPEHHEro oTpaxkeHus B aAmnanasoHe 500-4000 cm?. Ha Puc. 2
npeacraeneHbl Mukpodotorpadpum (¢ ysenudeHnem B 500 pas) noBepxHOCTeW TpeHus
MT®S (@) u wectn KM Ha ero ocHose (b-q): B neBom ctonbue - KMc-1, KMc-2, KMc-5 ¢
pa3Hoi ponen ceprneHtMHa. A B npasoM — KMcuw-1, KMcw-2, KMcw-3 ¢ pobasneHnem
CepneHTUMHa W WnuHenn MarHus. [oBepXHOCTb TPEHUS KOMMO3WUTOB MO CPABHEHMUIO C
ncxopgHoiM - MTM3  oTaMuyaeTca  OGonbluer  WEPOXOBATOCTbIO M HaAM4YMEM
bparMeHTUPOBaHHbIX CTPYKTYPHbIX 31€MEHTOB B Buae 4vewyek pa3mepoM 5-40 MkMm
(Puc. 2(c—g)). BrtopuuHbie cTpykTypbl 00pasywTcqa B  pe3ynbrate  NpoTeKaHus
TPUOOOKMUCAUTENBHBIX MPOLLECCOB MPM Y4aCTUM MaTpuLbl, 4YaCTUL, HANOMHWUTENEN U
CTanbHOro KoHWTpTena [73,74,76]. B npouecce TpeHus MexaHMYeckoe W TennoBoe
BO3AENCTBUSI YCKOPSAIOT CErMeHTasbHOEe [OBMXeHMe Makpomonekyn MTMD npu 3TOM
pa3pbIBAlOTCS MEXMONEKYNSIPHbIE U [AXe XMMMYecKMe CBA3M (B TOYKAX JIOKANbHOMO
neperpesa), KOTOpble MPMBOAAT K 0Opa30BaHMIO aKTMBHbIX LEHTPOB. B panbHenwem,
06pa3oBaHHble aKTUBHbIE LEHTPbl, B3aMMOAEWCTBYS C 4YacTMLAMW HAMOJHUTENEN,
06pasyloT TakK Ha3blBaeMbli BTOPUYHbIM 3aLLMTHbINA CNOW [22].
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10 um

10 pm

Puc. 2. MukpodoTorpacdum nosepxHocteit Tperus MTMO3 (a) 1 KM Ha ero ocHose: (b,d,f) KMc-1, KMc-2, KMc-5 ¢
HanosHeHWeM cepneHTMHOM B 1, 2 unn 5; (c,e,g) KMcw-1, KMcw-2, KMcw-5 ¢ HanonHeHWeM cepneHTUHOM m
LUNMHENbIO MarHus (coctasbl: MTM3 + C0.9% + UM 0.1%; MTM3 + C 1.5% + LM 0.5%; MTdO3 + C 3.8% + LLIM 1.2%)
[Fig. 2. Microphotographs of the friction surfaces of PTFE (a) and its composites (CM): (b,d,f) CMs-1, CMs-2, CMs-5
with serpentine (s) filling of 1, 2, or 5 %; (c,e,g) CMsMsp-1, CMsMsp-2, CMsMsp-5 with serpentine and magnesium
spinel (Msp) filling (compositions: PTFE + 5 0.9% + Msp 0.1%; PTFE + s 1.5% + Msp 0.5%; PTFE + s 3.8% + Msp 1.2%)]
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Ha Puc. 3 npeactasneHbl MK-cnektpbl NMTM3 u komno3ntos KMc-1, KMc-2, KMc-5 u
KMcuw-1, KMcw-2, KMcw-5 ¢ pasHbIM copepXaHMeM HanonHUTeNnewn A0 U nocne TPeHus.
Bo Bcex UK-cnekTpax camble MHTEHCMBHbIE — MOOCHI, OTHOCALLMECS K BaneHTHbIM
konebanusm CFp-rpynn (1200 u 1146 cm). B 06nact HU3KMX BONHOBbLIX 4ucen (B
okpecTtHocT 650 cM?) pacnonaratotcs BeepHble (640 cM™) u nedopmaumoHHble (552 cm?)
konebanus CF,-rpynn. [lMonocbl B o6bnactu 800-700 cM?! oTHOCAT K KonebaHusam
MONeKynsapHbIX uenen B amopdHon dasze MTOS [39]. Mocne 5.5 4 TpeHus Bo Bcex MK-
CNeKTpax MosBASKOTCA HOBble MOM0ChI MOMNOLWEHUS, COOTBETCTBYIOLWME BASIEHTHbLIM
konebaHunam O-H ceazeit B o6nactn 3600-2600 cM™ M aHTUCUMMETPUYHBIM U CUMMETPUYHBIM
KonebaHusaM KapbokcunaT-aHMoHoB: 1655, 1435, 1350, 1315 u 1310 cm™. lNosiBneHne 3tmx
MMKOB MOATBEPXKIOAET OKUCNEHWE KOHUEBbIX rpynn dparMeHToB Makpomonekyn [NTd3
B npovuecce TpeHus (B NpUCYTCTBUM HanonHutenen) [74,76]. Muku (pa3Huua B UHTEHCMBHOCTAX
CMEKTPOB) CTAHOBATCA 6onee BbIpaKEHHbIMM C POCTOM [OSIM HAMOMHUTENEN, T.e. NPOLecChl
Tpubookucnenuns yckopsitotcs. UK-cnektpbl unctoro [MTM3 (4epHble LWITPUXOBbIE NIMHMM)
MoKasblBakoT, 4To uctupanue [TAD (B TeyeHue 5.54) He npuBOAMT K 0Opa3oBaHUIO
KMCIOpOACOAEPXKALWMX Tpynm.
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Puc. 3. MK-cnextpbl [T®3 1 KM Ha ero ocHoBe B 3aBUCMMOCTW OT COAEPXKAHUI HAaNONHUTENEN:
(a,b) KMc n KMcw po tpenus; (c,d) KMc n KMcw nocne 5.5 4 TpeHus
[Fig. 3. IR spectra of PTFE and its composites depending on the filler content: (a,b) Ms and CMsMsp before
friction; (c,d)- CMs and CMsMsp after 5.5 h of friction]
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PucyHoK 4 wunnatoctpupyeT BavsaHuWe [006aBoK wnuHenu MarHna Ha MK-cnektpel KM ¢

CepneHTUHOM (NpU COXPaHEeHUM CYMMApHOM MACCOBOW [OOMM HAMOMHUTENS) MOCAe TPEHUS.
3aMeHa YacTu ceprneHTMHa Ha WnuHeNb MarHus (nepexog ot KMc k KMcuw) npuoaut K pocty
MHTEHCMBHOCTEN MMKOB KMCNOPOACOAEPXKALLMX rPYnn B AOPOXKKax TpeHus KMcw-2 n KMcw-5,
copepxkawmx He MeHee 0.5 % wnuHenu marHug, no cpasHeHuto ¢ KMc-2 u KMc-5.
B0O3MOXHO, WNWHENb MarHMS BbICTYNAeT KaK aKTUBHbIM KAaTanM3atop TPUOOOKUCIUTENbHbIX
MpOLLEeCCOB, YTO U 0becneynBaeT 3HaUYMTENbHOE CHUXEHME M3HOCa KOMNO3MTOB [73,76,79,80].
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Puc. 4. BnnaHue pobasok wnuHenn MarHna Ha MK-cnektpbl KM ¢ cepneHTMHOM nocne TpeHus:
(@) cpaBHeHue KMc-1 un KMcuw-1, (b) KMc-2 n KMcw-2, (c) KMc-5 n KMcw-5
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[Fig. 4. The effect of magnesium spinel additives on the IR spectra of CMs with serpentine after friction:

(@) comparison of CMs-1 and CMsMsp-1, (b) CMs-2 and CMsMsp-2, (c) CMs-5 and CMsMsp-5]

Taknm 06pa3oM, OCHOBHOM MEXaHWM3M MOBbIWEHMS U3HOCOCTOMKOCTM KM Ha ocHoBe

MNT®3 - 310 dopMMpoBaHME B 30HE TPEHUS 3ALMUTHON BTOPUYHOW CTPYKTYPbI, UrpaloLLem
ponb TBEPAOMN CMA3KMU.
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MeTtoponorusa u cuctema nporpaMM KBasMCTaTM4eCKMX UCMbITAaHUMA
nonumepos u NNKM ana KOMNAeKCHOro U3y4eHus UX peOHOMHbIX CBOMCTB,
BblGOpa ¥ uaeHTuduKauun Mmoaenu

MopenupoBaHue MexaHu4veckoro nosegeHus nonumepos U [IKM B paMkax nuHenHoum
(@QHM30TPOMNHOM) TEeOpMM YNpPYyroctu (MAM TepMOoynpyroctv) AONYCTMMO Nvwb B 06/acTu
LOCTAaTOYHO MasblX HanpskeHun, nedopMauMii U HEBLICOKMX Temnepatyp (Huxe
TeMNepaTypbl CTEKNOBAHUS MOMMMEPA WM AHANIOTMYHBIX XapaKTepHbIX TemnepaTyp Ang
MaTpuL, MHOro COoCTaga). Jaxe B 3T0M 061acTM MexaHnyeckoe nosegeHme KM ocnoxHaeTcs
TakKUMU  SBNEHMSMM  KAK  aHM3O0TPOMMS  YNpyrMX U MPOYHOCTHbIX CBOWCTB MU
Pa3HOCONPOTUBASEMOCTb (MPU OAHOOCHBIX UCMBITAHUSAX HA PACTSXKEHUE U COKATUE OHA MOXET
NPOSIBNATLCS KaK Pa3sHOMOAY/NbHOCTb MM KaK pasnnune KpuBbiX AedhOpPMMPOBAHUS UMK
MON3Yy4YecTu NpU PACTHKEHMUM U COKATUM HE HA HAYaNbHOM Yy4yacTKe, a Npu bonee ANUTENbHOM
nedopmumpoBaHun). Nonumepsl n MKM Henb3g cumutath ynpyrumu, ecim gedopmaumm He
OYeHb Masbl, CKOPOCTU AedOpMaLMM He CITMLLKOM BbICOKM, @ TEMNepaTypa He ropa3ao HMxe
TemnepaTypbl CTEKNOBaHUS nonumepa. Jaxe npu HEBbICOKMX TemnepaTypax M Harpyskax
nonnmepbl (0CO6EHHO TepMMONAaCTbl) U KOMMO3WUTbl HA UX OCHOBE MPOSIBASIKOT HE TONbKO
yrnpyrme CBOMCTBA, HO W YMNpyronnactMyeckue, BSA3KOYNpyrue, BS3KOMIACTMYECKME WU
BSA3KOYMNPYroniacTMyeckue, OHW MPOSIBASIOT BblPAXXEHHYK 33aBUMCMMOCTb CBOMCTB  OT
BPEMEHW, CKOPOCTU HArpyxeHus, npeabictopun pedopmupoBanuns [92-113]. [Ona wmx
NnoBeAeHUs CBOMCTBEHHbl Takue 3(PdeKTbl Kak non3yyectb M obOpaTHas nonsyyecTb,
ANUTENbHAS NMPOYHOCTb, PeNaKcaums HanpsKeHUM, CKOPOCTHAsH YyBCTBUTENIbHOCTb KPUBbIX
AedOPMUPOBAHMSA U HArPYXeHus, CyLWeCTBEHHOEe OTK/IOHEeHWe BEeTBM pas3rpy3km OT
NPSMONIMHEMHOCTM U HanMuMe Yy Hee TOYKM nepermba, octaTtouyHas pedopmauus nocne
pasrpy3ku M ee HAKOMIEeHWE NPU LUMKINYECKUX HArPYXKEHUSIX, 3aBUCMMOCTb KO3hduMLMEHTA
nonepeyHor Aedopmaumu Npu pPaCTHKEHUM OT BPEMEHW M NPOrpaMMbl HArpyXeHwus,
BbIPAaXXEHHAS' HEIMHENHOCTb NoBefeHus (HeNMHENHOCTb 3aBUCMMOCTEN CEMENCTB KPUBbIX
Harpy>XeHus, nonsyyectM U penakcaumm OT CKOPOCTM Harpy>XeHUs U YpOBHEN Harpyskw),
CUNbHOE BNAUSIHWE HeBONbWKNX U3MEHEHUI TeMNepaTypbl HA MexXaHU4Yeckoe noeeaeHue (Ha
BbIPAaXXEHHOCTb U CKOPOCTb NPOTEeKaHMs BCeX YNoMsaHyTbIX 3ddekToB) 1 ap. [1-13,89-114].

[Mo3TOMy, BMECTO XapakTepu3aunm 0CHOBHbIX CBOMCTB MaTepuana TOMbKO TEH30pOM
ero ynpyrmx Mopynem (M MPOYHOCTHbIX XAPaKTEPUCTMK: Mpendenbl MPOYHOCTU MU
npegencHole AedopMauumn MNpu  PaCTSHKEHUWU, COKaTUM, cOBure u 6Honee CNOXHbIX
nporpamMmax), BO3HWMKAeT HeobXO0OAMMOCTb M3Yy4YeHMs BCEro KOMMAEeKCa YKa3aHHbIX
SIBNEHWI, MpoOBefeHWe MUCMbiTaHui obpa3uoB Matepuana no 6a30BbIM M CheuuanbHo
pa3paboTaHHbIM NpOrpaMMaM TEPMOMEXAHMYECKOro HarpyxeHus unu nebopMmMpoBaHus
Npu pasHbiX NapameTpax HarpyXeHuin (YpoBHAX TemnepaTtypbl, HArpy3ku, aedbopmaumu,
cKopocTen aedopMaLMn UK Harpy>XeHUs, AIMTENbHOCTEN CTaAMI Harpy>KeHUs COCTaBHbIX
NporpamMMm, CKauykoB TeMnepatypbl UAW HArpy3ku u T.n.) [92], n BHeceHue B «macnopT»
MaTepuana BCeX CEeMENCTB KPUBbLIX-OTKIMKOB Ha 06s3aTenbHble M [AOMNONHUTENbHbIE
NpOrpamMmbl  TEPMOMEXAHMUYECKOrO HArpyXXeHusl, OTpaXKaloWMX 3aBUCUMOCTb  3TUX
OTK/IMKOB OT BPEMEHM M MapaMeTpoB HarpyxeHus (a B "nacnopt” ntoboro OC - pe3ynbratos
aHaNM3a KAYeCTBEHHbIX CBOMCTB 3TUX KPUBbIX-OTK/IMKOB): KPWUBbIX MOA3Yy4eCTU U
BOCCTAHOBJ/IEHWUS, KPUBbIX penakcauuu, KpuBbIX AePOPMUPOBAHMS C MOCTOSHHbIMMU
CKOPOCTSIMM HarpyxeHns mnu nedopMaumu, KpuBbIX Harpy>KeHus-pasrpysku, KpUBbIX
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LUMKIMYECKOrO HarpyXXeHus npu pasHbiX NapameTpax LMKIOB, KPUBbIX MON3Yy4yecTu npwu
CTYNEHYATOM HarpyXeHuu (C KyCO4YHO-MOCTOSSHHOM Harpy3Kkon) u ap.

Mpn  Manbix pedopMaumsax w  ckopoctax aedopmupoBaHus  nuHenHoe OC
Bs13Koynpyroctu (1) xopowo onucbiBaeT 60bLIMHCTBO HabaaeMbix Npu aedopMUpoBaHUK
CTPYKTYPHO-CTABUIbHBIX MATepPUaNoB OCHOBHbIX 3PPEKTOB, CBA3AHHbIX C AMCCUMALMEN
3HeprMM U  HACNeACTBEHHOCTbIO  (NaMATbO  MpeabicTopun  HarpyxeHus) [87-113].
C yBenuuyeHneM pedopmMaumin (HaNpSHKEHWA) M AMNAWUTYL LMKIMYECKMX Harpysok
noBefeHne MaTepuanoB BCe gpye MpOsIBASET HEeynpyroctb M reoOMeTpUYecKkyr W
dOU3NMYECKYD M HENUHEMHOCTM, B YaCTHOCTM, 3aBMCUMMOCTb OT BMAQ HAMNPSHKEHHO-
AedOpPMUPOBAHHOIO  COCTOSIHMUS,  CTPYKTYPHble  U3MEHEHUS U UX BAMSHME HA
TepMOMexaHW4yeckne CBOMCTBA MaTepuana. M3meHeHne ob6bemMa Mpu  HArpyxeHuwu,
pa3BUTME pasHbIX BUOOB AedeKTOB U ApyrMe U3MeHeHUs CTPYKTYypbl, 06beMHAs NON3y4ecTb
M penakcaumus, BAUSHWE CPefHEero HanpsXXeHus (rMApOCTaTMYECKOro AABMIEHUS) U ero
MCTOPUM HA OCeBble U CABUIOBble AedopMaLmm U CBA3AHHbIE C HUMKU TEpMOMEXAHUYEeCKHe
3bdekTbl CTaHOBATCA BCe 6onee CyweCTBEHHbIMW NPU ONUCaHUKU AedOPMUPOBAHMS,
NMPOYHOCTU U paspylieHns matepuanos [1-13,92-114].

NccnepoBaHMe  BbIPAXXEHHOCTM  BA3KOYMPYronaacTMyeckux  CBOWMCTB M UX
3aBMCMMOCTMU OT MapaMeTpoB NPOrpaMM HarpyxeHus u Temnepartypbl TpebyeT AeTanbHON
pa3paboTku M NpoBeaeHMst OBLWMPHOWM NPOrpaMMbl UCMbITAHWUIA 4K NONYYEHUS CEMENCTB
KpPUBbIX NOBeAeHMs MaTepuanosB npu 6a30BbiX NPOrpaMMax HarpyXeHus, No3BONSHOLLMX
NOAYYUTb KOMMIEKCHYH WHPOPMALMIO O PpeoniorMyeckMx CBOMCTBAX WCCNesyeMbixX
MaTepuanoB M HeobxoaMMble AaHHble ANg pa3paboTku, naeHTudukauumn n sepudbukaumnm
mMoaener ux nosedeHus (oans Bbibopa OC ang onucaHus nosepdeHwus Matepuana B
3aBUCUMOCTU OT OOHapyXeHHbIX B WCMbITaHMAX 3ddekToB, pas3paboTku MeToauk
noeHTuduKaumMm n Bepudurkauunm NOCTPOEHHOM MOAENU MO AAHHbIM UCMbITaHuK) [92].
MpakTMyeckn BaxHas 3adadya nNpuM 3TOM - aHANU3 BO3MOXHOCTEM COKpaLLeHus
Heobxo4MMOM NporpaMMbl UCNbITaHMM 6e3 CyLecTBeHHOM NoTepyu B MHOOPMATUBHOCTU U
B aleKBAaTHOCTM MOAENUPOBAHMSI.

Ha nepBom »3Tane wuccnenoBaHWs MaTtepuana MpencraBnsercs HeobxoAuMbIM
NPOBECTU MCMbITAHUS MPU OAHOOCHbIX KBA3MCTAaTUYECKMX HArpyXeHusx (pacTskeHwue,
OKaTMe WAuM  CABUr) MO pasHbIM nporpaMMaM (CM. HuKe) npu  HUKCUMPOBAHHbIX
TemnepaTypax u3 paboyero pAauanasoHa (C NOCNeAyWMM  aHANM30M  CTPYKTYpbI
MCMbITaHHbIX 06pasuoB) ONS MCCefOoBaHWUA HaNMuMa M OCODEHHOCTEM NpOosBEHUS
cnenyrowmx BaxHenwmnx adgdextos (3to 6a3oBas YacTb HEOHXOAMMOrO CMCKA).

CKopoCTHas YyBCTBUTENbHOCTb U 0CO6e€HHOCTH (popMbl AnarpamMm aedopmMUpoBaHUA
(A4) c NOCTOAAHHBIMK CKOPOCTSIMU A0 pa3pylieHus obpasua.

[pu HarpyxeHuu nNo nporpammam &(t) = at CTPOATCA CEMENCTBA OTKIUKOB 0 = a(t,a) u
[0 o = o(g,a) Npu pasHbIX CKOpPOCTIX AedOpMUPOBaHUS a (MM CKOPOCTAX ABUXKEHUS
3aXBaTa, KakK 4acto OblBaeT Ha MNpaKTUKE), WM3y4aeTCs BbIPAXKEHHOCTb 3aBMCUMMOCTH
cemenctea O o = g(g,a), MTHOBEHHOrO M KacaTenbHOro MOAyNs, npepena TekyyecTu
(ecnn OH ecTb), HanpsKeHus U gedopMauun Npu paspyLleHUn OT CKOPOCTU a npwu
OUKCUPOBAHHbLIX BEIMYMHAX TEMMEpPATypbl; UCCNefO0BaHME CYLLeCTBOBAHMS PaBHOBECHOM
Avarpammbl (NpefenbHOM Mnpu CKOpOCTM AedOPMMUPOBAHUS, CTPEMSLLENCS K HYNI0).
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Puc. 5. lmarpammbl necdopMmnpoBaHus C pas3HbIMU CKOPOCTSIMU ¢ = a (g, @), Topoxaaemble uHenHbiM OC
BsA3Koynpyroctv (1) ¢ pasHbIMU GYHKLUMSMM NON3YYECTU MPU Pa3HbIX CKOPOCTAX AedOpMUPOBAHUS a:
(a) mopoxxaaemble Mmogensmu KenbsuHa, Makcsenna n @oinrra; (b) nopoxaaemble cTeneHHoM dyHKLMEN
non3syyectu ¢ nokasarenamu n =0.1 (yepubie A1), n = 0.5 (rony6bie) u n = 0.9 (kpacHbie)

[Fig. 5. Stress-strain curves at different strain rates o = o(g,a), generated by linear viscoelastic constitutive
equation (1) with different creep functions at various strain rates a: (a) generated by the Maxwell, Voigt,
and standard linear solid models; (b) generated by the power-law creep function with exponents n=0.1

(black curves), n= 0.5 (blue curves), and n = 0.9 (red curves)]

Y 60MbWWHCTBA CTPYKTYpHO-CTabunbHbIX MaTepuanos ceMenctea [ o =o(g a)
Bo3pacTatT no a [1-3,6,7,9,13,88,92] HO y MaTepnanosB C U3MEHAIOLWENCS B npouecce
nebopMMpPOBaHUSA CTPYKTYPOM MOHOTOHHOCTb MO 0 MOXEeT HapywaTtbcs [12].

Ha Puc. 5 npusepeHbl cemenctea O o = a(e, a), nopoxaaembie nuHerHbiM OC
Baskoynpyroctm (1) ¢ pasHbIMM  QYHKUMSMM MON3Y4YeCcTM, NpPU  PasHbIX CKOPOCTSX
nedbopMUpoBaHMA: NopoxaaemMble moaenamm Makceenna, @onrra n KenbeuHa (Puc. 5(a),
Tpex3BeHHas Moaenb C ABYMS yNpyrMMu aneMeHTamu, "standard Llinear solid"), T.e. Mogensimu
¢ dyHkumen nonsyuvectu (PI1) Buaa:

Ot)=at+pf—ye ™ 1>0,ap=0,y€[0,8], (2)
n nopoxgaaemblie cteneHHon O I1(t) = ct™, n € (0; 1), c nokasarenamm n = 0.1 (4epHbie
[0), n = 0.5 (ronybeie) un = 0.9 (kpacHble) [88,92].

Ha Puc. 6 npusepeHbl cemenctea Ol o = o(g,a), nopoxaaemble @U3MYECKM
HenunHenHbiMM OC Bsaskoynpyroctu KO.H. PaboTtHoBa [93,98]:
¢(e(0) = [; 1t =D do(@), a(t) = [y Rt = 1) ¢ (e(D)de(D), £ 2 0, (3)
ob6obwatowmnm nuHenHoe OC BeegeHneM BTopor MO ¢ (bDyHKUMM HenuHerHocTH) [7,9]
(Puc. 6(a)), HenuHerHbiM OC BSA3KOyNpyronaacTMYHOCTU TMNa Makceenna [3,6] (Puc. 6(b) u
yepHble A1 Ha Puc. 6(c)):
() =E'F(a(t)) +n71 fOtV(O'(T))dT, wmé = E"F'(0)d + 1,7V (0)], t > 0, (4)
roe F(x) w V(x) - Bo3spactawowme MO, ynpaBnsioowme 3aBUCMMOCTbIO YMpYyron w
BA3KOM/IACTUYECKON KOMMOHEHT AedopMaumu OT HAMpPSHXKeHUs)) U MOLENbl TeyeHus
TUKCOTPOMHbIX  BA3KOYMPYronnacTUYHbIX Cped, Y4YMTbIBAIOWEN B3aUMHOE BAUSHUE
3BONIOLMK CTPYKTYpbl U npouecca gedopmupoBanmns [11,12] (Puc. 6(c,d)). Pa3Hble useTa
A0 Ha Puc. 6(a) cootBeTcTBYOT pasHbiM napamM M® OC PabotHoBa: kpacHbie A1 ans
dyHKUMM HennHenHoctm [7,9]:
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Puc. 6. lnarpamMmbl LedopMUPOBaHMS C Pa3HbIMU CKOPOCTAMM, MOPOXKAAEMbIE TPEMS HU3UYECKM
HenuHerHbiMM OC ong BA3KOYNPYronaacTUYHbIX MaTePUANIOB MPU pasHbiX CKOPOCTIX AedOpMUPOBaHUS:
OC PabotHoBa (3) ¢ pa3HbiMn MO (a), OC Tvna Makcsenna (4) ((b) n wepHbie 41 Ha (c)) n OC, yunTbiBaOWMUM
3BOMOLMIO CTPYKTYPSI (C,d) [1-3,6,7,9,12]

[Fig. 6. Stress-strain curves at different strain rates o = o(g,a), generated by physically nonlinear Rabotnov
constitutive equation (3) (a), Maxwell-type constitutive equation (4) ((b) and black stress-strain curves in (c)),
and the model of thixotropic viscoelastic-plastic media flow accounting for structure evolution (c,d)]

o) =o0.(1—e¥B), u>0 &) =¢!=BlIn[o./(co. —x)], x €[0;0,), (5)
MMEIT rOpPM30HTaA/IbHbIE aCMMMTOTbI, YepHble 1 ronybblie [[] cootBeTcTBYOT MOD:!
@ (x) = 0.5C(x™ + x1/™). (6)

KpacHble v ronybeie 1] Ha Puc. 6(d) cOoTBETCTBYIOT OAMHAKOBOMY Habopy CKOpOCTen
COBMIA, HO OTIMYAKTCA HAYaNbHbIM 3HAYEHMEM CTPYKTYPUPOBAHHOCTU MaTepuana (04HUM
M3 MaTepuasbHbIX NapaMeTpoB MOAE/NN), OT KOTOPOM 3aBMCAT MOAY/b CABUIA U BA3KOCTb
(v Bpems penakcauuu). AHanorunyHble no gpopme A1 HabnAAOTCA B UCMBITAHMSAX Pa3HbIX
mMaTepuanos (cM. cemerictea [ MNTAD3 n KM Ha ero ocHoBe BO BTOPOM YacTH CTATbM).
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Mo cemenictBy OTKAMKOB 0 = ¢(t,a) (N0 ero 3aBUCMMOCTM OT d) MOXHO OLEHWUTb
AMANA30H JIMHEMHOCTM MOoBegeHus ™Matepuana (npuMeHuMocTM  auHernHoro OC
Ba3koynpyroctu (1)), T.e. AOManasoH CKoOpocTen, B KOTOPOM OTKAMK o = d(t,a)
nponopunoHaneH ckopoctn a (o(t,a)/a He 3aBUCUT OT a). [logyepkHeEM, 4YTO 3TO SIMLb
HeobxoaMMoe YCNOBME NUHEMHOCTM, M Jydlle MCMNOoNb30BaTb €ro HapylweHue Kak
A0CTaToOYHOE YC/I0BUE HENPUMEHUMOCTU NIHENHOM Teopum [87-90,92]: ecnm 3aBUCUMOCTD
OoTHoWweHus a(t,a)/a OT a CTAaHOBUTCS 3aMeTHOM (NpeBbllLaeT 3a4aHHbIM A0NYyCK B paboyem
AManasoHe BpeMeH), TO0 ucnonb3oBaTb nHenHoe OC (1) Henb3s. OTMETMM, YTO BaXHO
MCMNONb30BaTb MMEHHO OTKNIMK 0 = ¢ (t, a) Kak QYHKUMIO BpEMEHW, a He aedopmaumu, nbo
OC (1) nopoxpaer AN Bupa o(g,a) = P(g/a)e, rae P(t) - ocpegHeHue GyHKUMM
penakcaumu [87,88,92], n 3Ta PyHKUMA He NnHeNHa no a (o (e, a)/a 3aBucuT oT d). Henb3s
ncnonb3osatb MHenHoe OC (1) n B TOM cnyyae, Korga akcnepumeHTtansHbole 1 nmetor
TOYkM nepernba (Puc. 6(a)) M y4acTku BbINyKNOCTU BHU3 (nMHenHoe OC npu nwobbix a
nopoxgaaeT Bo3pacratowme Bbinyknabie Beepx O o(¢g) [88,92] - cMm. Puc. 5).

Mo cemenctBy OTKAMKOB 0 = ¢(t,a) (N0 ero 3aBUCMMOCTM OT d) MOXHO OLEHUTb
AMAaNasoH JNIMHEMHOCTM noBedeHus Matepuana (NpuUMeHuMocTu nauHenHoro OC
Baskoynpyroctn (1)), T.e. OManasoH CKOpOCTel, B KOTOPOM OTKMMK o = d(t,a)
nponopuuoHaneH ckopoctu a (o(t,a)/a He 3aBUCUT OT d). [logyepkHEM, YTO 3TO NULLb
HeobxoaMMoe YCNOBME NMHEMHOCTM, M Jy4lle MCMNOoNb30BaTb €ro HapylweHue Kak
AOCTaTOYHOE YC/I0BUE HEMPUMEHUMOCTU NnHeNHoM Teopum [87-90,92]: ecnm 3aBUCUMOCTD
oTHoWweHus a(t,a)/a OT a CTAaHOBUTCS 3aMeTHOM (NpeBbllLaeT 3a4aHHbIM A0NYyCK B paboyem
AManasoHe BpPeMeH), To ucnonb3oBaTb nHenHoe OC (1) Henb3s. OTMETUM, YTO BaXHO
MCNONIb30BaTb UMEHHO OTKIMK 0 = o (t, a) KaK QYyHKLMIO BpeMeHHU, a He aedopmaumu, nbo
OC (1) nopoxpaer AN Bupa o(g,a) = P(g/a)e, rae P(t) - ocpegHeHue dyHKLMM
penakcaumu [87,88,92], n 3Ta OYHKUMUA HE NnHENHA no d (o (g, a)/a 3aBUCUT OT a). Henb3s
ncnonb3oBatb nnHerHoe OC (1) u B TOM Ciy4yae, Korga akcnepumeHTansHole [, nmerot
TOoukM nepermba (Puc. 6(a)) 1 y4yactkm BbiNykNoctu BHU3 (nuHeriHoe OC npwu nobbix a
nopoxgaaeT Bo3pacrtatowme Bbinyknbie Beepx O o(g) [88,92] - cMm. Puc. 5).

Llenecoobpa3Ho HauyaTb C MCNbITAaHWA Ha AedPOpMUPOBAHME C MOCTOSAHHLIMM
CKOPOCTSIMU 00 paspyweHuss 06paszyd, NOCKONbKY (MMHUManbHble M MaKCUMasbHbIE)
HanpsxeHus 1 gedopmauuun npu paspyweHun o, U &, (Kak 1M npepenbl ynpyroctm u
TEKYYECTU) MOCNYXKAT BaAKHbIMU OPUEHTMPAMM MNPU NNAHUPOBAHUM WCMbITAHMI 6Ge3
paspyweHus obpasua, npu Bbibope napameTpoB 6oee CNOXHbIX NPOrpaMM HarpyXxeHui
(Ha HarpysKky-pasrpysKky, nonsy4yectb M BOCCTAaHOB/IEHME, CTYyMeH4YaToe U UMKAMYeckoe
Harpy>xeHue u gp. — CM. HUXEe U BTOPYH Y4acTb CTATbM).

AHanornyHo npu HarpyxeHnn o(¢) =bt C NOCTOAHHOM CKOPOCTbIO b > 0 CTpOATCA U
n3yyaroTca cemencrea oTknukos &(t,b) w OO e(o,b) (Mnn o = o(g, b)) npu pasHbIX
ckopocTsax HarpyxeHus [6,9,90]. JiunenHoe OC (1) npu nwbom b nopoxpaer
BO3pacTalolwue BbINyKble BBEPX KpuBble HarpyxeHuus o = a(g, b) [90], KayecTBeHHO
6nunskue no popme k [ Ha Puc. 5. Henb3a ncnonbsosatb amHenHoe OC (1) B Tom ciyyae,
KOorga 3KCNepuMEeHTaNbHble KPUBbIE HArpy>XXeHus MMET TOYkM nepernba u yyvacTKu
BbINYKNOCTM BHU3 (Puc. 6). Bce HennHelHble OC, paccMoTpeHHble Bbiwe [1-13], cnocobHbI
OMMUCbIBATb CaMble pa3Hble GOPMbl KPMUBbIX HArPY>XEHUS U AN NPOBEPKU UX MPUMEHUMOCTH
HY>XHbl 6onee TOHKMEe KoNMYyecTBeHHblie nHamkaTopbl [1-13,92,114,115].
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3aBMCMMOCTb AuarpamMmm aedopMUpoBaHMs OT TeMNepaTypbl

MNocTtpoenne OJ1 npu UKCUMPOBAHHLIX CKOPOCTAX AedOpMUPOBAHMS, HO MPU Pa3HbIX
TemMnepaTtypax M3 paboyero AuanasoHa, OnpeaeneHne MWHUMANbHOM TemnepaTypsbl,
npv KOTOPOM HAa AuarpaMMe MNOSIBNSETCS  BblpaXEHHAas MNAoWaAKa TeKy4vectu
(rOpM30HTaNbHbIM Y4aCTOK), UCCNEA0BAHME 3aBUCMMOCTM MTHOBEHHOIO MOAYNS, Npeaesnos
NPOMOPUMOHANBHOCTU U TEKy4yecT, HanpshkeHus u gedbopMaumm Mpu paspyLieHnn wu
noKasaTens CKOPOCTHOW YyBCTBUTENIbHOCTM MaTepuana OT TeMnepaTypbl U T.0.

B KBasucTatMueckmx UCnbITaHUSIX BONBLIMHCTBA CTAOUIbHBIX MATEPUASOB (B KOTOPbIX He
NpoMCXoasT XMMuyeckune, $a3oBble M CTPYKTypHble MpeBpaLLeHus) C pOCTOM TemnepaTypbl
HabnoaaeTcs CMeLeHne BHU3 KPUBbIX peflakcaumm U CMelleHne BBepX KPUBbIX MOM3Yy4YecTy,
yBe/IMYEHME CKOPOCTEN MOM3Yy4ecT M penakcauuu, cMeleHne BHM3 Bcex [fl 6 =o(g,a) u
6 =0(g,b) C NOCTOSHHBIMM CKOPOCTSMM Ae(DOPMUPOBAHUS MU HATPYKEHUS, YMEHbLLEHWNE
MIHOBEHHOr0 MOAyNs U npefena TekyyectTn (eciv ecTb Naowaaka tekyyectr Ha [/1). B ctatbe
[3] atoT BOnpoc m3yyeH ans HenuHenHoro OC Tmna Makceenna (4) ¢ npoun3sonbHbIMKM MO U
3aBMCMMOCTAMKU Moayna ynpyroctm u Baskoctm E = E(T) v n =n(T) oT TemMnepatypbl U
[OKa3aH KpuTepui: u4ToObl TeopeTuyeckne Kpueble AedOPMMPOBAHMS, penakcaumm U
nonsydyectn OC (4) Benn cebs npu M3MEHEHMM TemnepaTypbl TaK e, KaK M KpuBble
N30TEPMMYECKMX UCMbITAHUIA BONBLUIMHCTBA CTaBUNbHBIX BS3KOYNPYronaacTMyYHbIX MaTepUanoB,
HeobxodumMo u docmamoyHo, 4mobsl E u n, a makme BpeMsi penakcaumm 1, = n/E, 6buiu
ybobigarowumu - yHkyusimu T (MM TOMONOTMYECKOM TemnepaTypbl, WM OTHOWEHMS K
Temnepartype CTek/ioBaHus ons nonumepos). Ans obecnevenuns yboisanms E(T), n(T) v 7,(T)
MOXHO, HanpuMmep, 3aaaTtb ux B Buae n = nyexp(a/T), E = Eyexp(B/T), a > B > 0.

0C06eHHOCTM KPUBbIX HarpyXXeHus-pasrpysKu-BoCCTaHOB/IEHUSI MaTepuana

Jn kpmBble (KHP) cTposiTca no pesynbTataM UCMbITAHWI NO TPEXCTAAUMHBIM NPOrpaMMam
Harpy>xeHus:

o(t)=btnput € [0;t],o(t) = —bt + 2bty npu t € (ty; 2t1), 0(t) =0 nput > 2t;, (7)
roe t; = T/2 > 0 - pAUTENbHOCTb NONYUMKIA HAMPY>KEHUS C NOCTOSAHHOW CKOPOCTbO b > 0
(Puc. 7(a)). UccnepyoTcs KpUBOIMHENHOCTb MAW NPAMONIMHEMHOCTb BETBU Pa3rpy3ku Ha
KPUBOM HArpy>XeHMs-pasrpysku, 3aBUCMMOCTb MaKCMMANIbHOM M OCTAaTOYHOM AedopMauuu
OT TeMmnepaTypbl W CKOPOCTU HArPYXeHUs W pasrpysku, CKOPOCTb M MOJHOTA
BOCCTAHOBJ/IEHUS MOCNE CHATUS Harpysku [6,114]. HarpyeHus npoBOASATCS C pa3HbIMU
CKOPOCTSIMM  b; [0O BEAMYMH MAKCUMMANbHOrO Hanpskewus &; = b;t; (Hanpumep,
6 = io,/10, roe o, — MMHUMANbHOE HanNpsHKeHWe Npu paspyLieHum, HanaeHHoe B cepuu 1).
Ha Puc. 7(a) TpeTbsa cTagms ¢ o(t) = 0 obpesaHa: oHa HAMHOTIO ANUTENbHEE.

Mo pe3ynbTaTaM ucCnbiTaHMa (7) CTpOATCS OTKAMKM — 3aBMCMMOCTb gedopMauuun ot
BpeMeHu &(t; ty, b;) npu pasHbix 6; = b;t; (Puc. 8(a,c)), N0 KOTOpLIM (NOCNE UCKYEHUS
napameTtpa BpeMeHu) ctposatca KHP a(g;ty, b;) npu pasHbix ckopoctax b; (Puc. 8(b,d)).
Heobxoammo noctpountb M KHP npu pasHbiX SAUTENBHOCTAX HarpyXeHus t; (CM. HWXe u
[6,114]). Ha Pwuc. 8(a,b) npuBeneHbl otknuku &(t;tqy, b;) n KHP o(g;ty, b;) obpasuos
KoMno3uTa Ha ocHose MNTM3 ¢ 5 % MenkogucnepcHOro cepneHTUHa Npu PacTHKEHUM MO
nporpammaM (7) (Puc.7(@) c¢ t; =300c, 6 =io, /10, i=1,...,5, o, =16 Mla, T.e.
0=16,32,48,64, 80Mla (Ha Pwuc. 8@ nokasaHa TONbKO u4eTBepTb CTaauu
BoccTaHoBneHus). Ha Puc. 8(c,d) — oTknuku (t; t1, b;) v a(g;ty, b;) HennHenHoro OC Tuna
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Puc. 7. Mporpammbl HarpyxeHus (7), (8), (9) B ucnbiTaHMAX Ha Harpy3Ky-pa3rpy3Ky- BOCCTAaHOBNEHUE, HA
NON3y4eCTb M BOCCTAHOBNEHME U HA PENAKCALMIO HAMPSXKEHWUIA C YHETOM HaYanbHOM CTaauu
C pa3HbIMM NapaMeTpaMm HarpyxXeHus
Fig. 7. Loading programs (7), (8), (9) for loading-unloading-recovery tests, creep and recovery tests, and
stress relaxation tests taking into account the initial stage with different loading parameters

Makcsenna (4) (c BpeMeHeM penakcaumu t, = 1) Ha HarpyxeHue (7) ¢ GUKCMPOBAHHbIM
t; = 5 n pa3HbiMK ckopoctamu b = 0.01i, i =1,...,8 [6].

Otknukn obpasuos MNTMOD Ha TpeyronbHbiM uMnynbc Harpysku (7) (Puc. 8(a,b)) ¢
nedopmaumen, Npoao/HKAKOLWEN pacTM U B Ha4ane pasrpysku, 1 C 60bLLIMMM OCTAaTOUYHbIMMI
AedbopMauMSIMM  KayeCTBEHHO BeCbMa CXOAHbl C HAbnwAaemMbiIMM B UCNbITAHUAX
achanbTob6eToHOB, TBEPABIX TOMIMB M APYrMX MATEPUAnoB. B UCMbITaHUSIX KOMMAEKCHbIX
nonnadupHbIX HUTen [114] oH He nposaBnancs. IT0T 3hdeKT He CBSA3aH C HEIMHENHOCTbIO
noBeAeHUs MaTepuana: ero onucbiBaer gaxe nuHenHoe OC (1), paxe npocteiwasn
NMHerHas wMogenb Makesenna [6]. KHP, nopoxpaeMble HenuHerHbiM OC  Tuna
Makceenna (4) (Puc. 8(c,d)) n HenuHenHbIM OC Ans TUKCOTPOMHBLIX Cpen, YYUTbIBAOWMM
3BONOLUMIO CTPYKTYpbI [11,12], kauecTBeHHO cxoxu no ¢popme ¢ KHP MTM3 n komnosnTos
Ha ero ocHoBse Ha Puc. 7(a,b), noatomy (nocne npoBepku cuctemsl MHAMKATOpOB No KHP u
no KpmBbIM nonsyyectn) 371 OC MOXHO NPUMEpPUTL K onmcaHunio nosenexus MNTAOS [6,114].
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Puc. 8. OTknukK Ha NporpaMMy HarpyxxeHusi-pasrpysku-socctaHoBneHus (7): (a,b) akcnepmumeHTanbHble
otknunkm £(t, b) n o(e, b) obpasua KM Ha ocHose MT®3 npu t; = 300 ¢, 6 = io,/10,i =1,...,5; (c,d)
oTknuku £(t; t1, b;) v a(g;tq, b;) HenuHenHoro OC TMna Makceenna (4) (c BpemeHeM penakcaumu 7,.=1 ang
duKCMpoBaHHOro t; = 5 1 pasHbix ckopocten b= 0.1/, /1 =1,...,8
Fig. 8. Responses to the load-unload-recovery program (7): (a,b) experimental responses g(t,b) and o(g,b)
of the PTFE-based composite samples at t; = 300 s, 6 = io, /10,1 =1,...,5; (c,d)- responses &(t;t1,b) and
o(g;t1,b)) of the nonlinear Maxwell-type constitutive equation (4) (with a relaxation time t,, = 1) for a fixed
t; = 5 and different strain rates b = 0.01/, /= 1,...,8]

MonsyyecTb Npu NOCTOSAHHOM Harpyske

BbicTpoe HarpyxeHue Ha HayanbHOM CTAAMM OO 33[AAHHOMO YPOBHS HAMPSHKEHUS, MOXHO
CYMTaTb MFHOBEHHbIM NpU MaTeMaTUYeckon obpaboTke ang ee ynpouwenus: a(t) = ¢ h(t),
t >0, roe h(t) - dyHkuma Xesucanga (Puc. 7(b), nepsas cragums). M3mepsietcs passutme
fedopmaumm BO BPEMEHU U CTPOUTCA CeMeNCTBO KpuBbix nonsydvectu (KM) &(t; ) npu
pa3sHbIX YPOBHSAX HanpsxeHus a (Puc. 9), nayyaetcs 3aBUCMMOCTb CpeaHen U MUHUMANbHOM
CKOPOCTU NON3YYECTH OT YPOBHS HANPSXKEHUS & M OT TeMMNepaTypbl, CKNIOHHOCTb MaTepuana
K OFpaHUYEHHOW MON3y4yecTun (HanuumMe ropusoHTaNbHbIX aCUMMTOT Y KPUMBBIX NON3YyYeCTyH)
MAN K YCTAHOBMBLUENCS MON3YYeCTU U TeYeHU0 NpU AOCTAaTOYHO BbICOKMX TeMnepaTtypax
(MWEeTCA HMXKHAS rpaHMUa TemnepaTtyp, Npu KOTOPbIX MOA3y4eCTb He 3amMepnsieTcs C
TeYeHMeM BpeMeHu BMAOTb [0 paspywenus) [1-4,8,89,115]. Tllepsbii cnyyan
mMoaenupyetcs, HanpuMep, nuHerHbiM OC Baskoynpyroctn OC (1) unm HenuHenHbiM OC
PaboTHoBa (3) ¢ orpaHuyeHHoM dyHKumern nonsydectu [4,89,90], a BTopon — atumu xe OC
C GdyHKUMEN non3yyecty, MMEKLWeEeN HAKNOHHYK aACUMMNTOTY, MAM HenuHerHbiM OC
BA3KOynpyronnactuyHoctM tmna Makcsenna [5,8] u ero obobweHuamu [10,13]. Mo
3aBMCMMOCTU 3KCNEPUMEHTANbHbIX KPUBBIX MOM3YYeCTU OT HAMPSXKEHWUs ¢ onpenensercs
AMANasoH JIMHEMHOCTM MNOBeAeHUs MaTepuana (OAManasoH HanNpsXeHur, B KOTOPOM
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Puc. 9. Kpusbie nonsyuectu, nopoxaeHHblie OC PabotHoBa (3) n imHerHbiM OC (1) ¢ pasHbiMm M®: (a) KT
NATM IUHeHbIX Moaeneii ¢ pasHbiMu DI (cteneHHon @I - KM 1 unm O Buaa (2) - wrpuxossle K1 3,5,7,9)
W NATU HeNMHeHbIX Moaenei ¢ MM (6) n Temu xe nateto @I (KM 2,4,6,8,10) ons & = 1; (b) KM ona pasHbix
HanpshkeHuit &, NopoxzaeHHble AByMs BapuaHTamu OC PaboTHoga (3) ¢ M® (5) ¢ B = g, = 0.1, 1 pa3HbIMK

@r: cteneHHor @I ¢ nokazatenem n = 1/3 (kpacHbie KIM) uan OM (2) cA=0.1, a=0.02,p=1,y = 0.5

[Fig. 9.Creep curves generated by the nonlinear Rabotnov constitutive equation (3) and the linear
constitutive equation (1) with different creep functions: (a) creep curves of five linear models with different creep
functions (power-law function - creep curve 1 or function of the form (2) - dashed creep curves 3,5,7,9) and
five nonlinear models with a material function (6) and the same five creep functions (creep curves 2,4,6,8,10)
for 6 = 1; (b) creep curves for different stresses ¢ generated by two variants of the Rabotnov constitutive
equation (3) with material function (5) withB = 0.005, g, = 1.5, and different creep functions: power-law
function with exponent n = 1/3 (red curves) or function (2) with A=0.1,a=0.02,3=1,y=0.5]

noaatnuMeocTb &(t;0)/G He 3aBUCUT OT YPOBHS HAMNPSXKEHMS), TOYHee, [AManasoH
(HEe)NpUMEHMMOCTU NMHENHOWM BA3KOYNpyrocTu). [loayepkHeMm, 4To 3To nwb Heobxoanmoe
yC/I0BUE IMHEMHOCTU U Ny4lle MCNOJSb30BaTb ero HapylleHWe Kak AO0CTaTOYHOe YCIoBUe
HeIMHEMHOCTU: eCNu 3aBMCMMOCTb NOAATAMBOCTU £(t;6)/G OT ¢ CTAHOBMUTCA 3aMeETHOWM
(NpeBbIWwaeT AONYCK), TO UCMONb30BaTb IMHeNMHOe OC BA3KOYNpPYyrocTu Henb3s.

Ha Puc. 9 npusepenbl KI1, nopoxaeHHble nnHertHbiM OC (1) n OC PaboTHoBa (3) ¢
pasHbiMu M®. Ha Puc. 9(a) npusenenbl Kl e(t,d) = all(t) (c 6 = 1) NaTM NUHEWHbIX
mopenei: ¢ OMN 1T = t%°/800 (kpusas 1) u c uetbipbMs @I Buaa(2):cy = 0, « = 0.0001,
B =0.01 (Mmopenb Makceenna), c a =0, =y =0.015, A =0.1 (Ponrra), c a =0,
B =0.01, y =0.005, 41 =0.1 (Mmogenb KenbBWMHa C TeM >Xe BpeMeHeM peTapAauuu
T =1/1 = 10), mogenb broprepca (nocneposatenbHoe coeauHeHwe mopenen Makcsenna u
@onrma) c A = 0.1, « = 0.0001, § = 0.01, y = 0.005 (wTpuxoBble KpuBbie 3,5,7,9), a Takxke -
KM 2,4,6,8,10 natn BapuantoB OC PabotHoBa (3) ¢ Temu xe natbto @M n MO (6) ¢ € = 0.5,
m=3.Y KM 246,10 ectb y4actkn Bbinyknoctn BHu3, KIM 2 (Mogenu co creneHHon @r1)
COOEPXMUT BCE TPU TUMNWUYHbIE CTaAMM MON3Yy4ecTM (3aMeaIeHHONM, YCTAHOBMBLLENCS U
yckopeHHon nonsyyectun), KIM 6,8 o0bnapatoT ropus3OHTanbHbIMM acMMNTOTaMu (Kak u 5,7).
MpumeyatensHo, uto KIM 6 Mmogenn @oirra ¢ MO (6) MMeeT aBe Toukun nepernba. Y cteneHHoM
@M 11(0) = 0, kak 1 y Moaenn MoiirTa, HO ewg u I1(0) = o, n y KIT HET rOpU3OHTaNBLHOVA
acuMnToThl (T.K. [1(o) = ©0). Kl 3 nnHeinHon mogenn Makceenna npsimonuHenHa, a KM 2 v 10
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HennHerHbIX Mogenen (ana creneHHon O u ana mopenu broprepca) MMELOT BblpaXKeHHbI
Y4aCTOK YCTAaHOBMBLLENCS nonsyyectu (6amsku K npsimonmHenHbimM). Ha Puc. 9(b) npuseaeHb!
KM e(t,a) = @(all(t)) C pa3HbIMK YPOBHAMM HanpskeHUs & Asyx BapuaHTtoB OC PaboTHoBa
cMOD (5)cB =0.005,0, =1.5naBymMa OIM: PM (2) cA=0.1,a = 0.02, =1,y = 0.5 nm
creneHHon @I [T = t1/3/3. Ona crenenHon ®dI - ¢ =0.5;0.8;0.9;1.0;1.1;1.2;1.3; 1.7
(kpacHbie KI), pna ®IN mopenu broprepca - ¢ = 0.4;0.5;0.6;0.7;0.8; 0.9; 1 (4épHble KIT);
ctpenkamu nomedeHbl KIM ¢ ¢ = 1. Bce atn KIN nmMetoT Touky nepernba u Bce Tpu TMNMYHbIE
ctagm  nonsydyectn. T.k. MO @(x) wu3 (5) obnagaer acumnToton x = a,, 10 KII
e(t) =Aln[o,/(o, —all(t))] HeorpaHuyeHHo pactyT npu [I(t) — o0,/d, ecn TonbKo ¢ >
0. /I (o) (ans YKa3aHHbIX @ 370 BbINO/HEHO npu BCEX o >0,
T.K. [1(00) = 00), T.e. KI1 nMetoT BepTuKanbHyto acumnToty t = t,(d),rae I1(t,) = 0./ (MOXHO
TPaKTOBaTb t, KaK BpeMs A0 pa3pyLleHus, a t,(d) Kak KpUBYO AnnTenbHon npoyHocty [1,4,91)).

Ecnu uccnepyetca pavtenbHas npoYHOCTb Npu nonsyyectu [1-3,91], To Hago NpoBoAnTb
UCNbITaHWE A0 PaspyLleHus, YTobbl onpeaenuTb 3aBUCMMOCTb BPEMEHWU PA3PYLUEHUS MPU
MON3y4yecT OT HAMpPSHKEHMS, T.e. NOCTPOUTb KPUBYHK AJIMTENbHOM MPOYHOCTM MPU [AAHHOM
TeMMNepaType WM HEeCKONbKO KPWBLIX MNPV pasHbIX Temnepatypax, 4Tobbl MCCenoBaThb
3aBMCUMOCTb A/IUTENbHOM NPOYHOCTM OT Temnepatypbl. [10 AaHHbBIM UCNbITaHW 06pa3LLOB Ha
nonsyyectb Npu (GUKCMPOBAHHOM YPOBHE HAMPSHKEHUS U MPU  Pa3HbIX MOCTOSAHHbIX
TeMnepatypax MOXHO MOCTPOUTb CEMEWCTBO KPWBbLIX MON3Yy4eCTM WM AN KAXKAOro
HanpsXKeHUs 1 NOCTPOUTb (CMPOrHO3MPOBaTb) EANHYHO KPUBYHO MON3YYeCTU HA CYLLEeCTBEHHO
bonblweM uHTepBane BpeMEHW, YeM BpeMsl MUCMbITaHUMK (Ha OCHOBE TemnepaTypHO-
BPEMEHHOM aHanormMum, eCin OHa CnpaBeanvBa AN UccieayemMoro Matepumana).

BoccTraHoBneHue (o6paTHas nonsy4yectb) Npu NOMIHOM pasrpyske Nocse NoN3y4ecTu

BocctaHOoBneHMe w3yyaeTcss B MCMbITAHMAX M3 OBYX [AJMUTENbHbIX CTagui: CTaguu
MON3y4yecT Npu AO0CTAaTOYHO HU3KMX Harpy3kax &, Kak MpaBuIO, He MPEeBbIAKLLMX
0.5...0.7 npegena NpoYHOCTM T, U HE CAUILKOM OONbLIOM BpeMeHM MX npunoxeHua T
(4TOBbI MCKNOUUTL Pa3pyLLEHKE) U CTaAMMU BOCCTAHOBIEHNS MOC/E NOSHOM pasrpy3ku (OHO
MOXEeT MpOA0/IKATbCA A[O0Ar0 M MOTOMY HALEXHO OLEHUTb HeobpaTuMyr 4acTb
AedbopMaumm MOXHO TONbKO B AIUTENbHbIX UCNbITaHUAX) [4,8,13,89,115]. Ecam Harpyska u
pa3rpy3ka npoBOAATCA ObICTPO, MOXHO CYMTATb WX MFHOBEHHbIMM W CUYMTATb, YTO
NporpamMma HarpyXeHus COCTOMT M3 ABYX CTaauih (@ He 4eTbipex) M OnucbiBaeTcs
dbopmynom:

o(t) =d6[h(t)—h(t—-T)],6 >0,T >0, (8)
(NPAAMOYrONbHbIA MMMYNbC HArpy3ku AauMTenbHocTu T). Mo faHHBIM UCMbITAHMS CTPOUTCS
CEMENCTBO KpuBbIX non3yvyectu MW BoccTaHosneHus (KMNB) &(t;6,T) npu  pasHbiX
HanpskeHuax ¢ (Puc. 10) u pa3HbIX AAUTENbHOCTAX CTaAUM NON3YYeCTU U BOCCTAHOBIEHNS
nocne CHATUSA Harpy3ku. M3yyaeTca ckopocTb 1 rybrHa BOCCTaHOBNEHMS, CTabunansaumsa u
BE/IMYMHA OCTAaTOYHOM AedopMauun (K KOHLY MCMbITaHMSA) B 3aBUCMMOCTM OT YPOBHS
Harpysku u oJIMTeNbHOCTU HarpyxxeHus (v TeMnepaTtypbl).

Ha Puc. 10(@) npueneHbl 3kcnepuMeHTanbHble KIB 06pa3uoB KOMMO3WUTOB Ha
ocHoBe MT®3 c 5% cepneHTMHa, MOAUDULMPOBAHHbLIX A030M 0bnyyeHuns 80 klp B
pacnnase no TexHonorun [41,42,46,82], n3aMepeHHble B MUCMbITAHUAX MO Mporpamme
Puc. 7(a): BnmMTenbHOCTM CTagui NON3yvyectM M BOCCTaHOBAeHMs - no 4 4, ¢ = io, /10,
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i=1,...,5 o, =16 Mla, T.e. = 1.6; 3.2; 4.8; 6.4; 8.0 MlMa. Ha Puc. 10(b) npuseseHsbl
KMNB, nopoxaeHHbie Tpems OC [13]: 1) nunerHbiMm OC Bsskoynpyroctn (1) ¢ dyHkumewn
nonsyvectn I1 = At%, u = 1/3, A = 0.03, — KpacHble WTPUXOBble KpUBble 6e3 CKayka B
MOMeHT t = T; 2) HenuHerHbIM OC TMna Makceenna (4) [8] — ronybble WTPUXOBbIE KPUBbIE;
3) HennHenHbiM OC, nonyyeHHbIM MX cKpewmBaHueM [13] - yepHble KI1B.

21 g% lew ‘

20

10 /_/’3

e 1 o —
o0 L. . . . . . . . n i ; ; ! ; e B , i ‘
0 3600 7200 10800 14400 18000 21600 25200 f,C ° 10 o !t

(@) (b)

Puc. 10. Kpuble nonsyyectv n BocctaHoBnenus £(t; , T) B uchbiTaHusx no nporpamme (8): (a) KINB obpa3uos
KOMMO3MTOB Ha ocHoBe MTM3 ¢ 5 % cepneHTuHA, MOaUdUUMPOBaHHbIX A0301 0bnyyeHuns 80 kl'p B pacnniase no
TexHonoruu [41,42]; (b) KMB, nopoxaeHHble Tpems OC [13]: nuHerHbiM OC (1) ¢ dyHKumer nonsyyectu
T =At"%, u=1/3, A= 0.03 (kpacHble WTpUxoBble KpuBbie), HenuHelrHbiM OC TMNa Makceenna (4)
(ronybble wWTpmxoBble Kpusbie) U HenuHelrHbiM OC, nonyyeHHbIM Ux ckpewmsaHueM [13] (yepHbie KT1B)
Fig. 10. Creep and recovery curves &(t; ,T) in tests according to the program (8): (a) experimental creep
and recovery curves of PTFE-based composite samples with 5 % serpentine, modified by irradiation (the
dose of 80 kGy) in melt according to technology [41,42]; (b) creep and recovery curves generated by three
constitutive equations [13]: a linear viscoelasticity model (1) with creep function N = At*, u=1/3, A=0.03
(red dashed curves), the nonlinear Maxwell-type model (4) (blue dashed curves), and the nonlinear model
obtained by their hybridization [13] (black creep and recovery curves)

Penakcauus HanpsykeHuit Npu NOCTOSHHOM AedopMaLumm

NedopMunpoBaHmMe C BbICOKOM CKOPOCTbIO HA HAYyaNbHOW CTaguu A0 33aAaHHOMO YPOBHSA
nedopMaumm, MOXHO CUMTATb MFHOBEHHbIM NpW MaTeMatuuyeckonm obpaboTke ons ee
ynpouweHusa: £(t) = Eh(t), € > 0. OTknukn matepuana unm OC Ha Takue npoueccbl -
ceMencTBo KpmBbix penakcauun (KP) a(t; €). U3yuarotca 3asucumocts KP oT BpemeHu
(BbINYKNOCTb BHM3, FOPU30HTANbHAS aCMMMTOTA, CNEKTP BPEMEH penakcauuu U T.n0.) u oT
3a,aHHOr0 YpOBHS AedopMaLmm €, onpeaensierca AManasoH (He)NpUMEHUMOCTU IMHENHOM
BA3KOYNpYyroctM MO  HE3aBUCMMOCTM  IKCMEPUMEHTANbHOrO  MOAyNs  penakcauumu
p =o(t;€)/€ OoT € (B NIMHENHOM BA3KOynpyroctu p(t; €) He 3aBUCUT OT € M COBMAZAET C
dyHkumen penakcaumu) [4,7]. opyepkHeM, YTO He3aBUCMMOCTb p(t; ) OT € - NUWb
HeobxoamMMoe YCnoBME JIMHEMHOCTM W Jlydlle MCNOSb30BaTb €ro HapylleHWe Kak
LOCTaToOYyHOE yCnoBue HennHenHocTn. Cnepyet 3aMeTuTb Takxke, U4To nodobue KP a(t; €)
(m.e. ceolicmeo a(t;C€) = Ca(t; €)) cosceM He 2apaHmupyem JUHeUHOCMb nosedeHus
Mamepuana: Hanpumep, dusmyeckn HenuHerHoe OC PabotHoBa nmopoxpaetr nogobHble
KpuBble penakcaumm o(t, &) = @(§)R(t) NpuM MrHOBEHHOM HArpyXeHun u CnocobHo
mMoAenupoBaTb 060N TUN 3aBUMCMMOCTM MOAyna penakcaumm p(t; €) OT YpOBHA
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(b)
Puc. 11. (a) Kpusble penakcaumu u (b) Mogynu penakcauum p(t; €) = @ﬂnﬂ £=0.01i,/=1,.,5,

nopoxgaemole asyms HenuHelHbiMu OC PaboTHoBa (3) ¢ M@ (5) ¢ B = g, = 0.1 1 pa3Hbimu OP:

c perynsipHoi ®P R = A (e-ﬁ + r), A=10,7=1,r =0.1 (kpuBble 1-5) n HeorpaHnyeHHo OP
R=A({t"%+7r),A=10,a =0.5r = 0.1 (xpusbie 6-10). LUTpuxosble nmHmmn 1,3,5" (kpacHbie) 1
6°,8,10" (cuHue) — KP nuHerHbix Mogenen ¢ Temu xe OP ona £ = 0.01; 0.03;0.05
Fig. 11. Relaxation curves (a) and relaxation moduli p(¢t; ) = a(t; €)/€ (b) for € = 0.01i,i=1,...,5,
generated by two versions of nonlinear Rabotnov constitutive equations (3) with the material function (5)
with B = g, = 0.1 and different relaxation functions: the regular relaxation function R = A(e™*/* + 1),
A =10,7=1,r =0.1 (curves 1-5) and the unbounded relaxation function R = A(t™* +r), A = 10,

a = 0.5, = 0.1 (curves 6-10). The dashed lines 1', 3', 5" (red) and 6/, 8', 10’ (blue) represent the relaxation
curves of the linear models with the same relaxation functions for € = 0.01; 0.03;0.05

nedopmaumm (ybbiBaHWe, BO3pacTaHMe, HEMOHOTOHHOCTb) NPU Haanexalem Boibope MO
(Puc. 11(b)) [7]. Apyrue npumepbl cobnogeHns nogobus KP, nopoxaeHHbIX HENMHERHbIM
OC, patot HenunHerHoe OC, npepnoxeHHoe B ctatbe [1] n OC TeyeHMs TUKCOTPOMHbIX
BA3koynpyronnactuuHbix cpen [11,12]. Mo wucnbiTaHMaM Npu pasHbliX TemnepaTtypax
uccnepyetcs 3aBucuMocTb cemenctBa KPP (ckopoCcTM M MONHOTHI  penakcauuu) OT
Temneparypsl [3].

Ha Puc. 11(a) npusepeHsl KP ang € = 0.01i, i = 1,...,5, nopoxaaembie OByMmS
HenuHelrHbiIMM Mogensamu PabotHoBa (3) ¢ M® (5) ¢ B =0, =0.1, n pa3sHbiMK
GyHKUMAMM penakcaumumn (PP): ¢ ®P (momenu KenbeuHa) R = A(e~t/" + 1), A = 10,
T=1, r =0.1 (4epHblie KP 1-5) n c HeorpaHunyeHHon OP R = A(t™* + 1), A = 10,
r=20.1, a = 0.5 (ronybeie KP 6-10). Y obenx mopenen R(o0) = 0.1 (0AMHAKOBbIN
ANUTENbHbIA MOAyNb) M notoMy ux KP ¢ oaMHakoBbIM & MMelT 06y acuMMNTOTY
o = 0.1¢. WTpnxoBble nuHumn 1,35 (kpacHbie) u 6,8,10" (cuHue) - KP nuHenHbIx
mopenen (1) c temu xxe OP gna € = 0.01; 0.03;0.05. Kpusas 53 — KP OC PaboTHoBa ¢
®P monenu KenbeuHa npu ramp-gedopmmpoBanmm ¢ € = 0.05 u t, = 1 (cM. Huxe).

Ha Puc. 11(b) npusegeHsl rpacdvkn moaynen penakcaumm p(t; €) = a(t; €)/€ Tex xe
AByx mogenen gna &€ = 0.01i, i =1,...,5 (kpuBble 1-5 n 6-10); p(¢) ybbiBaeT no &.
LLITpxoBble NMHUKU — rpaduKK Moaynen penakcauumn AByx nuHenHoix mogenen: ans OC (1)
p(t) = R(t) (He 3aBUCUT OT &).
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Mpu nobbix MO cemencteo KP OC PabotHoBa a(t, &) = @(£)R(t) (M NUHenHoro
0C(1)) Bo3pacTaet no napametpy & (KP caBuratotcs BBepx € poCTOM YpPOBHS AedopMaunm),
a kaxpas KP ybbiBaeT no BpeMeHu (3T0 HEOO6XOAMMbIE MHAMKATOPbI UX NPUMEHUMOCTH).
Ona OC, yuuTbiBalOWEro B3aMMHOE BAUSHWE 3BOMOUMM CTPYKTYpbl M npouecca
nedopmuposarusa [11,12], sBTopoe CBOMCTBO COXpPaHAETCA, @ NMEpPBOE HapyLlaeTcs U3-3a
M3MEHEHMS CTPYKTYPUPOBAHHOCTM B NpoLLecce penakcauuu.

BnusiHMe ANNTENBHOCTU HaYyaNbHOM CTaAUM HarpyXXeHus unm aedopMnpoBaHuUs Ha
KPUBbIE NON3Y4YeCTU MU penaKkcaumm

HarpyxeHne Ha wuCnbITaTeNbHbIX MAWWHAX He MOXEeT OblTb MMHOBEHHbIM B OTAMYME OT
naeanu3saumm u cnegyeT U3yuuTb NOrpeLHOCTb U Npeaesbl AoNYCTUMOCTY Takon naeanvsaumm),
nccnepoBaHMe Hanmums (M CKOPOCTH) 3aTyXaHWs NaMITU B 3aBUCMMOCTU OT CKOPOCTU U YPOBHS
Harpyxenus [5,7,87] w Temnepatypbl [3]. HanpwuMep, MCMbITaHMS C  NPOU3BOJSIbHLIMM
MOHOMOHHbLIMU HAYaNbHbIMKU CTagnsaMu dedopmupoBanus (Puc. 7(c)) wam no nporpamMmam ¢
MOCTOSIHHOM CKOPOCTbIO AeOPMMUPOBAHUS HA HAYaNIbHOM CTaamu (ramp tests) C HeCKONbKMMMU
Pa3HbIMU OUTENBHOCTSAMU HaYvanbHOM CTaguu t, (rise time), T.e. C pa3HbIMK CKOPOCTSMM
nedopmmpoBaHua a = £/t, npy GUKCMPOBAHHOM LieneBoM yposHe gedopmauum € [7,87]:
e(t)y=atnput € [0;ty], e(t) = € = const npu t = t,. 9)
Taknme UCNbITaHUS BKIKOYEHbI B €BPOMEMCKME W aMepUKaHCKMe CTaHAApTbl.
HayanbHyto cTtaguio  nedopMMpPOBAHUS U BAUSIHWME €e  OAUTENbHOCTM t, Ha
aKcnepuMeHTanbHble M Teopetnveckne KP a(t; €, t,), Ha mux oTknoHeHue ot KP npwu
MFHOBEHHOM HarpyxeHuu o (t; €) U Ha "OKHO HabnwopeHua" penakcaumu t > kty, k > 1,
cnepyet yuuTbiBaTb npu obpaboTke KP, nonyyaembix B MCMbITAHUSIX MATepuanos, Npu
noentudukaumm OC 1 npu onpepeneHnn 061acTy IMHEMHOCTU NoBeaeHns Matepuana (6o
noentndukaumm OC 1 npu onpepeneHmMm 061acTM NMHEMHOCTU MOBELEHMS MaTepuana

c 1N, o
1 —

Puc. 12. Kpusble penakcauumn o(t; €, t,) npu Harpyxenumn (9) c € = 0.1 n ty/t =10; 5; 10/3; 2; 1,
nopoxgpaemblie nuHenHbiM OC (1) (a) n HenmHeRnHbiIM OC PaboTHoBa (3) ¢ dyHKumen HennHenHocTu (5) (b) [7,87]
[Fig. 12. Relaxation curves o (¢; &, t,) generated by the linear constitutive equation (1) (namely, the
Standard linear solid model) (a) and the nonlinear Rabotnov constitutive equation (3) with the
nonlinearity function (5) (b) under the ramp loading (9) with € = 0.1 and t,/7 = 10;5; 10/3; 2; 1]
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(6o t, BAugeT Ha Moaynb penakcauuun p(t; & ty) = o(t; €, t9)/€) [7,87]. TunnyHbie KP
o(t; € ty), T.e. OTKNIMKM Ha npoueccbl (9), nokasaHbl Ha Puc. 12.

Ha Puc. 12(a) npusegeHbl KP 1-5, nopoxaeHHble nuMHeHOM Moaenbio KenbBMHA €
BpeMeHeM penakcaumm T =1 npu pedopmupoBaHmnm no nporpamme (9) ¢ €=0.1 u
to/T = 10;5;10/3;2; 1, T.e. co ckopoctamun a = 0.01; 0.02; 0.03;0.05;0,10); kpacHas KP 6 -
npeansHaa KP o(t; €) npu MrHoBeHHOM HarpyxeHun &(t) = €h(t) (npenpenbHas Kpusas
cemenctea KP npu t, — 0) [87]. Obwas acumnTtota Bcex KP npu t — oo — npsMas
o = éAr = 0.1. Ing cpaBHeHuUs Wpux-NnyHKTMpOM HaMeueHbl KP a (t; €, ty) mopenn KenbBuHa
Cc yeenuueHHboiM B 10 pa3 BpemeHem penakcaumm ang t, = 10;5;1 (kpuBble 7-9)
nupeanoHas KP 10. Ha Puc. 12(b) npusegneHsl KP, nopoxaeHHble HennHeHbiM OC PaboTHOBa
(3) ¢ dpyHKuMen HenuHenHoctH (5) ¢ B = 0.1, ans tex xe nporpamM gedopmuposanus (9) [7].

l 5
(© (d)

Puc. 13. 3aBcmocb KP o (t; €, t; Wy ), nopoxkaaeMbix OC, yuUTbIBAOLLMM 3BOMOLMKO CTPYKTYPbI, P ramp-Harpy>keHnn (9)
cE=1%@nawy, = 0.5@uw, =0 ([b)uné=>5%(cd) oT LMTENBHOCTU HauanbHOM CTapmm to/t = 0.1; 1; 3; 5; 7; 10
Fig. 13. Dependence of the relaxation curves o(t; €, ty; wy) generated by the constitutive equation that
accounts for structural evolution under ramp loading (9) with € = 1 % (a) for w, = 0.5, (b) for w, = 0)
and € =5 % (c,d) on the duration of the initial stage t,/t = 0.1;1; 3; 5; 7; 10
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Ha Pwuc. 13(a,b) npusepeHbl KP a(t;é, ty; wy), nopoxgaemole OC, yuuTbiBaOWMM
B3aMMHOE B/MSHWE 3BOMOUMKM CTPYKTYpbl M npouecca aedopmupoBanua [11,12],
c BpeMeHeM penakcaummn T = 1 uM® g = e’5, npu nedopmMuposarmum no nporpamme (9) ans
§=1%, n paMTenbHOCTeM HayvanbHOM ctagumn ty/t = 0.1;1;3;5;7;10. PucyHok 13(a,b)
OT/IMYAKOTCS TONIbKO HAYaNbHbIM 33aHYEHWEM CTPYKTYPUPOBAHHOCTM MaTepuana: w, = 0.5
(Puc. 13(@)) nnam wy = 0 (Puc. 13(b)). KpacHas nyHktupHas KP - ana t, = 0; Ha Bcex
pucyHkax KP ¢ ty/t = 0.1 (4epHas wTpuxoBas KP) 6auska k Henn. pu wy = 0.5 KP
o(t; € ty; Wo) UMET NPUMEPHO TaKoM xe Bug Kak u KP, nopoxaeHHble nnHerHbiM OC (1)
(Puc. 12(a)), nocKonbKy CTPYKTYPUPOBAHHOCTb BbICTPO BbIXOAMT HAa CTALMOHAPHOE 3HaYeHue
(w, = 0.98 = 1 pna paccMaTpnBaeMOn MOLENMN) U MEHSIETCS He CUMIbHO (YBenu4mMBaeTcs B 2
pa3a K MoMmeHTy t =5). Ho npn wy =0 (Puc. 13(b)) 3HayeHne Hanps>keHUs B KOHUE
HayanbHOM cTagmu 6(ty; & wy) = a(tg; € to; Wy) YyKe He ybbiBaeT MOHOTOHHO C pOCTOM
anut HC, a pocturaetT MakCMManbHOM BENUYMHDI MpU ty/T = 3 (KpacHas KpuBas) U TONbKO
NOTOM y6bIBaeT No t,. 3TO MPOMCXOAMT MU3-3a TOTO, YTO CTPYKTYPUPOBAHHOCTb (CM. XXENTYHo
WTPUX-NYHKTUPHYKO KpuBYH Ha Puc. 13(d), ¢ Hen camsatoTca rpacdmkn w(t; 1,ty; 0) npu
BCEX ty, KOraa & = 1 %) oyeHb ObICTPO pacTeT K CTALMOHAPHOMY 3HAYEHWUIO M BbICTPO
meHsaeTcs oT 0 go 1: 6onee HM3Kas CKOPOCTb B 3HAUYNTENbHO Bonee CTPYKTYPMPOBAHHOM M
XeCTKOM MaTepuane Bbi3biBaeT b6onbwne Hanpskenms. Ha Puc. 13(c,d) npuseneHbl KP
o(t; € ty; Wo) M rpaduKn CTPYKTYPUPOBAHHOCTU W(tL; €, ty; Wo) BN € = 5 % mnwy = 0.5.Ha
3Tux KP HanpsxkeHue & yxe He aBnseTcs Hambonbwmm, b0 M3-3a BbICOKOM CKOPOCTU
AedOpMUPOBAHUS HA HAYaNbHOM CTaguun C tp/t=0.1;1;3;5;7 (B8 5 pa3 Bbiwe, 4eM Ha
Puc. 13(a,b)) cTpykTypMpOBaHHOCTb yCNeBaeT 3HaumTenbHo ynactb (Puc. 13(d)).

[Npu GUKCMPOBAHHOM ANTENBHOCTU HAYanbHOM cTaamm ceMencTBo KP a(t; €, ty; wy)
MOXEeT HEMOHOTOHHO 3aBUCETb OT YPOBHA AedopMaLmm € (4TO HEBO3MOXHO AN IMHENHOTO
OC (1)) u KpuBble C 6OnbWKMM € MOFYT HbIPATb HWXKE WM3-33 3aMETHOro MaAeHUs
CTPYKTYPUPOBAHHOCTM HA HAYaNbHOW CTAAMM WM BbI3BAHHOTMO MM YBENUYEHUS CKOPOCTM
penakcaumm.

ﬂ.uarpaMMbl Aed)OPMMpOBaHMSI CO CKa4KaMu CKOpoCTHU p,ed)opmau.uu WU HarpyxeHuq

NccnepyeTca BNMSHUE CKAvKa CKOPOCTU AePOpPMUPOBAHUS B HEKOTOPbI MOMEHT BpEMEHMU
Ha [l 0 = o(&,a) B UCNbITAaHUAX U3 OBYX CTaAMM C pa3HbIMU CKOPOCTAMMU:
ety =aytnput € [0;t1], e(t) = a,(t —ty) +aty nput > ty. (10)
Mo HUM CTpOATCS CeMeNncTBa OTKANKOB a = a(t; aq,ty,a,) M A o = a(g,a4,a,) Npu
pa3sHbIX CKOpOCTAX aedopMmpoBaHma u conoctasnsatoTca ¢ A o = a(t,a;) o = a(t, a,)
(cM. Puc. 14(a) pna tutaHosoro cnnasa BT-6 npu Temnepatype 900 °C u3 [116]). Takue
MCMNbITAHUS MCNOMb3YTCS NpU UCCNEfO0BAaHMM METANIOB M CMAABOB B COCTOSIHUM
ceepxnnactmyHoctv [88,116-118], Ho oHM BNoHE UHDOPMATUBHbI U A4/ AeOPMATUBHBIX
NoJIMMEPOB C BbICOKOM CKOPOCTHOM YYBCTBUTENbHOCTLIO U KM Ha 1x ocHOBe (M anga renen
M pacniaBoB MOAMMEPOB B MCMbITAHUAX HA CABMWI): B HUX MO 33aBUCMMOCTU BEJIMYUHDI
CKAyKa HaNpshKeHUs B MOMEHT t; OT CKayka CKOpPOCTU a, — a; U OT CKOPOCTU 3aTyxaHus
namMsaTM O MepBOM CTAaAMM HATPYXKEHUS MOXHO OnpefenuTb BeMYMHY MOoKasaTens
CKOPOCTHOW YYyBCTBMTENbHOCTM MaTepuana [88], 0COBEHHOCTM 3aBUCMMOCTU HAMPSXKEHUS
TEeYEHUS OT CKOPOCTU U ApYyrne XxapakTepuctuku Matepuana. Ha Puc. 14(b) npusepexnl O[]
o =o0(t; aq,t,a,), NOPOXKAAEMbBIE YETLIPEX3BEHHOW TIMHENHOM MOLENLIO BA3KOYNPYrocTu C
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dyHKuMet penakcaumn R(t) = Ae~t/™1 + A,e~t/™2, T.e napannenbHbiM COEAMHEHNEM [BYX
mMogenen Makcsenna ¢ BpeMeHaMu penakcaumm t, = 1, 7, = 10, npu HarpyxeHuu (10)
ct; =5;10;15,a; = 1 (kpuBasg 1 - 0l o = a(t,a,))na, = 0.5;0.1;0.01 (A0 o = o(t, a,)
— LWUTPMXOBbIe YepHble KpuBble 2-4, BCe OHWM 061a4al0T rOPM30HTANIbHBIMM AaCMMMATOTAMM
0 =a,(A 71 + A,1,)); A0 0 = a(g,a4,a,) MOXET UMETb TOUKY IKCTPEMYMA B MHTEpBane
E>¢, eam 11ln2 <ty <1,In2 (310 unnoctpupyoT ronybele A1, cooTBeTCTBYKOLWME
t; = 1;3;5; 6.5). Ho Hbipok nog Ol o = a(¢, a,) (kak Ha Puc. 14(a)) nnHeinHoe OC (1) He
mogenupyet. OgHako ero cnocobHo ™mogenunpoBatb OC, yuuTbiBalOLWEE 3BOMKOLMIO
CTPYKTYpbI Npu aedopmuposarHum [11,12].
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Puc. 14. 11 0 = o(t; ay, t4, a,) CO CKauKOM ckopocTn aedopmupoBaHums: (a) Al TutaHoBoro cnnasa BT-6
npu temnepatype 900 °C [116]; (b) .1 nopoxaaemble napannefbHbiM COeIMHEHUEM ABYX JIMHEWHbIX
mMogenein Makceenna ¢ BpeMeHamu penakcaumm 7; = 1, 7, = 10
Fig. 14. Stress-strain curves o = d(t; a4, t;, a,) with a jump in strain rate: (a) stress-strain curves of the
VT-6 titanium alloy at temperature of 900 °C; (b) stress-strain curves generated by a parallel connection
of two linear Maxwell models with relaxation times 7; = 1, 7, = 10

MonsyuyecTb NpU CTyNeHYaTbIX Harpy>XeHUAX

Uccnepytotcs otknmku matepuana mam OC Ha npouecchl Harpy>eHusi C Npou3BOJbHbLIM
KONIMYeCTBOM CTyrneHen Mpu OAHOOCHbIM UM HEOOHOCHOM HarpyxeHuax, 3ddekTsl npu
HEenosIHOM pasrpyske, Npu nepecTtaHOBKE CTyNeHen HarpyXeHus, Ckavyku gedopmaumm npu
[Orpy3Ke M pasrpyske, Hanuuue 3SKCTpeMyMOB AedopmaummM Ha OTAENbHbIX CTyrneHsXx,
aCUMMTOTKKA, 3aTyxaHue namsatn [1-4,8,89,91,92,115,119,120]. UcnbiTaHna Ha nonsy4yectb
(Npu pacTKeHUU-oKaTum, casure, cnoxxHoM HAC) npu cTyneHYaTbiX HAarpyXXeHUaX no3BonsoT
ynoBUTb M 06CNeaoBaTb pasHble aAcnekTbl NOBeAEHUS MaTepuana W AeTanu peanvsauuu
MHOrMX 3PdekToB cobpatb 6onee Horatyto MHOOpMaumo ans Bblbopa, MAEHTUDUKALMMN U
BepudUKaLMM  onpesensiolmx COOTHOWEHUM no cpaBHeHuto ¢ KI1 npu NOCTOSIHHOM
HanpskeHun (Takue KI1 Bce Mogenu onucbiBalOT afeKBaTHO MPU MPaBUIbHOW HACTPOMKE).
B uvacTHOCTM, OHWM nNO3BONAOT OOHAPYXWUTb MNPU3HAKM HENMHEMHOCTM B NOBEAEHWUU
MaTepuana, UCCNefoBaTb 3aBUCUMMOCTb KPMBBIX MOA3YYeCTM OT YPOBHS HAMNPSHKEHUS M
npeabicTopumn HarpyxeHus [1-4,8,89,91,92,115,119,120], BoCCTaHOBNEHWE M OCTATOYUHYHO
AedopMaumio Npy NOTHOM M YAaCTMYHOM pasrpyske [4,8], BAMsSHME nepecTaHOBKMU CTyrneHewn
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HarpyxxeHus [119] ckopocTb 3aTyxaHusi namatu, 3d@eKkTbl, CONPOBOXAAOWME CKAYOK
HanNps>XeHWs BHU3 UK ero boicTpoe ybbiBaHWE 33 Manbii NPOMEXYTOK BpeMeHu (dip tests,
non-monotonic creep behavior) [4,89,115], BanaHne ckaukoB HaMNpsKeHUs Ha AJIUTENbHYI0
MPOYHOCTb M OTKIOHEHME OT nNpaBuna JIMHEMHOr0 CYMMWMPOBAHWUS MOBPEXAEHHOCTM
(Miner’s rule, linear damage rule, cumulative damage theory) [120].

dddekTbl NPU LUKNNYECKUX HArPYKEHUNAX C pasHOM PopMOM, aMNaUTYAO0N U
K03 PULUMEHTOM aCUMMETPUM LUKNA

Mpu MATKUX NEPUOAUYECKMX HArPYXXEHUAX (KOraa 3a4aeTcs NporpaMMa no HanpsKeHuo)
MCCNepyTca HaKoMeHuMe OCTaToyHoW AedopMaumu, Bo3pacTaHuMe uau  ybbiBaHue
(BO3MOXHO, CTpPEMJIEHMNE K HY/IH0) CKOPOCTM €€ HAKOMNEHUS C YBESIMYEHMEM YMCNIA LUKIIOB,
CKNOHHOCTb K P3TYETUHTY WAM npucnocobneHno martepuana (B 3aBUMCMMOCTM  OT
TeMnepaTypbl); CTPOATCS KPWMBbIE MANOLUMKIIOBOrO HAarpy>XeHus npu pasHbiX napameTpax
unknos [4,6,89,92,115].

Ha Puc. 15(a) npuseneHs! KI1 ong MAarkoro ommHysnego020 CTyNeH4yaToro UMKAMYeCcKoro
HarpyxeHus ¢ nonyumknom T = 5 1 pasaMaxom ¢ = 1, Nopoxaaemble YeTbIPbMS IMHENHbBIMM
mogensmMu (1) ¢ pasHbimu O@I1: 1) mogenn co creneHHon I ¢ nokasateneMm n = 0.5
(uépHas KIT); 2) momenn broprepca (2) ¢ A= 0.1 (Bpemsa petapgaumm t© = 1/A = 10),
a = 0.001, g =0.015, y = 0.01 (ronybas KI); 3) mopgenn Pounrra (2) c A =0.1, a =0,
B =y = 0.01 (kpacHas KI1); 4) mogenn Makcsenna (cuHsaa KIM) ¢ I1 = at + 5, « = 0.001,

Puc. 15. KpuBble LIMKANYECKOTrO HAarpyXeHUsA, NOPOXKAEHHbIE NATbIO AMHENHbIMM Mogenamm (1) co cteneHHo
@I (4épHble KN) n @M Buaa (2) (KpacHble Kpusble — mogenn Poiirta, cuHue — moaenu Makcesenna,
ronybble — mogenn bioprepca): (a) 4nA OTHYNEBOro CTyneH4aToro uukna c otapixom (t; = iT, T =5, 05,1 = G,
05 = 0), (b) N8 CUMMETPUYHOrO CTYNEHYATOrO UMKNA (Oy,_1 = O, Oy = —0)

Fig. 15. Cyclic loading curves generated by five linear models (1) with the power-law creep function
(black curves) and the creep functions of the form (2) (red curves - the Voigt model, blue curves - the
Maxwell models, cyan curves - the Burgers models): (a) for a zero-to-tension step cycle with a relaxation
period (t; = iT, T =5, 05,1 = 6, g, = 0); (b) for a symmetric step cycle (0yx_1 = G, 0y = —0)
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B = 0.005 (Bpems penakcaummn t = B/a=5) [89]. Mopenn broprepca n Makcsenna
perynsptbl (I1(0) # 0), u notoMy ux Kl umetoT B Toukax t = kT pa3pbiBbl CO CKAYKaMu
+o11(0); cBoncTBO v > 0 BbI3bIBAET HAKOMAEHMe nnactuyeckon pecdopmaumm [4,89].
Y mopenun ®@oinrta n cteneHHon Mmogenu v = 0 u I1(0) = 0, n notomy Kl HenpepbiBHbI NpU
Bcex t > 0. LUTpux-nyHKTUpHble KpuBble 1-4 - ob6bluHbie KI1 3TMx mMopenen npu
NMOCTOSIHHOM HanpskeHun ¢ = 0.56 (cpeaHeM 3a umkn), Npu AocTaToyHo 6onbwmx t Kl
mMoaenen Makcsenna u broprepca, UMeroLWwmMe HAKJIOHHY aCMMNTOTY € = at + [ nexar He
HUXe, a Bbiwe cteneHHor KM 1. Ina moaenn Qonrta u cteneHHoM Moaenun AoNONHUTENbHO
npuseneHsl Kl ¢ yaBoeHHON AUTENbHOCTLIO UMK, T.e. T = 10 (WwTpuxoBbie KpuBble 5,6).
Ha Puc. 15(b) npueepeHsbl KT 1ex e natn anHerHbix mogenei (1), yto u Ha Puc. 15(a),
HO [ONS CUMMEMPUYHO20 LMKINYECKOrO CTYNEHYaTOro HarpyXeHus, COCTOSILLEero U3
OOMHAKOBbIX MPSMOYrO/bHbIX MOMYLMKNOB PACTHXKEHUS U OKATUS AnuTenbHocTM T u
amnnutyabl 6. Bce Kl orpaHunyeHsl Ha nyde t > 0, y Bcex KIT yyacTku BO3pacTaHus u
ybbiBaHMS uepeayloTcs, a NoOCNefoBaTeNlbHOCTM  MAKCMMaNbHbIX W MUHUMANbHbIX
nedopmaumii umknos {M;} u {m;} ybbIBalOT, OrpaHUYEHbl U UMEKT Npenenbl, CpeaHss
nedpopmaumsa ¢ = 0.5(M; + m;) ybbiBaetr u & — 0.56vT npn i - oo [91]. WTpux-
MYHKTUPHblE KpacHble KpuBble — 06biyHble KI1 mopenn ®onrta npu ¢ =11 (npu
LOCTAaTOYHO 60NbLIMX BpeEMEHAX MakCMManbHble gedhopmaumm M; v |m;| npyn LMKAMYECKOM
Harpy>xeHuu B 4 pa3a MeHbLUe, YeM npepenbHble fedopMaLmn nonsyvyecty npu ¢ = +1).

MposiBneHus pusmyeckon HeNMHEMHOCTU B NOBEAEHUU MaTepuana

C yBennyeHuem gedopmaumnin (HanpsXkeHUM) U aMNAUTYL, LUKIUYECKUX Harpy3oK noBeaeHune
MaTepuanoB BCe sipye MpPOSIBNSET HEYrnpyroCTb M reoMeTpuyeckyrd U GU3MYeCKy |
HEeNIMHEMHOCTU, B YACTHOCTM 3aBUCMMOCTb OT BMAA HaMpskeHHO-AedOopMUPOBAHHOIO
COCTOSIHUS, CTPYKTYPHblE M3MEHEHUS U WX BAUSIHWE HA TEepMOMEXaHW4eckue CBOMCTBA
MaTepuana. MU3meHeHne obbeMa nNpu HarpyxxeHuu, pa3BuUTMe pasHbiX BUAOB AedeKkToB U
ApYyrMe U3MeHeHus CTPYKTYpbl, 06beMHas Non3yyecTb U penakcauus, BAMSHUE CpefHero
HanpsxeHuns (TMApOCTaTMYECKOro AABNEHMS) U ero UCTOPUM Ha OCeBble U CABWUIOBble
nedbopMaumMm U CBS3aHHbIE C HUMU TepMOMeXxaHnyeckne 3ddekTbl CTaHOBSATCSA BCe bonee
CYLLEeCTBEHHbIMM  NpPU  ONUCaHUU  AePOPMUPOBAHMUS, MNPOYHOCTM U paspyLleHUs
MaTepuanos [92]. OcHOBHble 3D deKTbl U NPU3HAKM HENMHEMHOCTU 0OCYXKAANUCh Bbllwe, A
noapobHee — B cTatbax [1-13,87-92,114,115,119,120].

MNpexae BCcero cnepyeTt M3yyaTb XapakTep HEMHEMHOCTU 3aBUCUMMOCTEN CEMENCTB
KPMBbIX MOM3Yy4YeCTU U penakcaumMm OT YpOBHEW Harpysku u gedopmaumu, a ceMencrs
avarpamm gecdopMupoBaHna 1 =0 u o = a(g, b) OT ckopocT AedOpMUMPOBAHUA UK
HarpyxxeHus [1-13,87-90,92,114]. Hepeako ciy4yaercs, 4To HEMHEMHOCTU MOBEAEHUS
MaTepwuna NpunucbIBaloT 3O eKTbl, aeKBAaTHO ONMUCbIBAEMbIE B paMKaX JIMHEMHOM TEOpUH,
BbITEKAOWME NUWb M3 HANMYMS HACNEACTBEHHOCTM M MNpuUcylme g8cem (No4uTv BCEM)
JIMHEWHO BS3KOYNPYrMM MaTtepuanaMm (Npy  [AOCTAaTOMHO Manbix gedopMaumax w
ckopocTsix) [92]. ToyHoe 3HaHME apcCeHana BO3MOXHOCTEM U rpaHuy, obnactu
npumeHumoctn nuHenHoro OC Baskoynpyroctv (1) M MMMaHEHTHbIX CBOWMCTB
nopoXaaeMbiX et 0a30BbIX TeOpeTUYeCKMX KPUBbIX, BbITEKAIOWMX M3 MNOCTYNaToOB
HacneaCcTBEHHOCTHU, IMHEMHOCTU U MHBAPUAHTHOCTM OTHOCUTENbHO CABMIOB MO BPEMEHMU
MHTErpanbHbIX onepatopoB (1), CBA3bIBAKOLWMX UCTOPUM HANPSKEHWA M AedopMaumi,
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HeobxoAMMO [nsi rpaMOTHOIO MOAENMPOBaHMSA, ANa Bbibopa uau noctpoeHus 6onee
CNIOXHbIX W TOYHbIX MoAener MnoBefEeHUS PEOHOMHbIX MaTepuanoB, MCNOJb3YHLLMX
JIMHEMHYIO TEOPUIO BA3KOYNPYrocT n 0606watomx ee B onpeaenéHHbIX acnekrax, o ux
noeHTuduKaumm, atrectaumm M CONOCTaBNEHUS, U, B LENOM, — AJ19 COBEPLIEHCTBOBAHMS
PACYETHbIX CXEM U METOLOB PAaCYETa KOHCTPYKLUNM.

Hanpumep, KpUBOAMHEMHOCTb AuarpamMM  ae@opMMpoBaHMS € NOCTOSIHHbIMU
ckopoctamu o(g,a) v o(g,b) cBMAETENLCTBYET NMLWb O TOM, YTO MaTepuan He BeaeT cebq
JIMHEMHO YMpyro, U eLwe He roBOpUT 0 PU3NYECKON HESIMHEMHOCTU: IMHEMHO BA3KOYnpyrue
MaTepuasbl UMEKT HENPSAMOJIMHENHbIE AuarpaMMsl gedpopMupoBanus (Puc. 5), 3asucsawme ot
ckopocTu. Henb3a mcnonb3osatb nnHerHoe OC Bsiskoynpyrocty (1) B TOM ciyvae, Korga
akcnepumenTanbHble O o(g,a) v a(g,b) nnn KpuBble NON3y4eCTn UMEIOT TOUKM Nepernba u
YYaCTKu BbiNyknoctn BHU3 (Puc. 6 1 9), nockonbky nunenHoe OC (1) npu nobon ckopoctu
Harpy>xeHus nopoxaaeT Bo3pacTtatowme Bbinykablie Beepx u O o(g,a) v a(gb) [88,90]
(Puc. 5) n npu ntobom ypoBHe fedopMaummn — BbiMyK/ble BBEPX KpuBble nonsyyectu [4,89].
Ewe oovH npumep MHAMKATOPA HENMHEMHOCTU: HEMOHOTOHHOCTb 3aBMCMMOCTM CEMENCTBA
aKcnepumeHTanbHbix KP Matepuana a(t; €, ty) npy ramp-HarpyxeHuu (9) oT napaMeTpos t, 1
& (npn dukcmMpoBaHHOM t): Beab cemenctBo KP o (t; €, ty), nopoxaaemoe nuHerHbiM OC (1)
MOHOTOHHO Mo ty u € [87]. HennnentHoe OC PabotHoBa (3) [7] wam OC, yuuTbiBatolLee
3BOMOLMIO CTPYKTYpbI [12], cnocobHbI MOAENMPOBaTb KaK MOHOTOHHYHO, TaK M HEMOHOTOHHYIO
3aBucmMMocTb ceMenctBa KP a(t; €, ty) oT ty u €. [lpyrme nHankaTopbl (HE)NPUMEHUMOCTH
nuHenHoro OC (1) pa3obpaHbl Bbiwe m B cTatbsx [1-13,87-92,114,115,119,120].

MOHUTOPUHI U aHaNu3 U3MEHEeHUs NonepeyYHoi u 06LeMHoM aedopmaumm o6pasuoB

B npouecce Bcex yKasaHHbIX Bblle M30TEPMUYECKUX UCMbITAHWUIA HA PaCTSXXEHWe-oKaTme
M3y4aloTCs HanmMyme 06bEMHOM NON3YYeCTH, MIACTUYECKOTO Pa3pbIXIEHUSA, MOBPEXAEHHOCTH
U CTPYKTYPHbIX U3MEHEHWI, 3aBUCMMOCTb MX MOPPONOrMU U KONMYECTBEHHbIX MEP OT YPOBHS
TemMnepaTypsbl, 3BOAOUMSA KO3PdUUMEHTa nonepeyHor Aedopmaummn CO BPEMEHEM U B
3aBMCMMOCTU OT MPOrpaMMbl HarpyXeHus, ero (He)MOHOTOHHOCTb U BO3MOXHOCTb CMEHbDI
3Haka [90,121]. Hannune obbemMHOM fAedopMaLmm B UCMbITAHUAX HA CABUI CBUAETENbCTBYET
0 TOM, 4yTO 0obbeMHble gedopmaumm n gedopmaumm GOpPMOM3MEHEHUS HE HE3ABUCUMDI U
Henb3s ucnonb3oBatb OC, B KOTOPbIX WAPOBbIE YAaCTU M AEBUATOPbI TEH30POB HANPSKEHUM
n fnedopmaunin pasgenaroTca U CBA3aHbl HE3aBUCUMbIMU YPABHEHUSAMM.

JKCnepuMEeHTa/IbHOE U TeopeTHUYECKOe UCCIef0BaHMe 0COGEHHOCTe! NoBeaeHuUs
MaTepuanos NPU HEOAHOOCHBLIX HAarPyY)XXeHUAX

B uactHOCTM, uccnepoBaHMe BO3MOXHOCTEM MO MOAENMPOBAHMIO BAUSHUSA OObEMHOM
NON3y4yecTy M rMApOCTaTMHECKOro AAB/IEHNS U ero CKaYKOB Ha MexXaHW4yeckoe nosegeHue
(Ha KpuBble UCNbITaHWi 1 3pdekTuBHbIe cBOMCTBA) KM 1 cnocobHocTh pa3sHbix Bepcuii OC
OMUCbIBATb BAMSIHWE BMAA HANPSHKEHHO-AEPOPMMPOBAHHOIO COCTOSIHMSA, B YaCTHOCTM
AMNATALMI0O U Pa3HOCONPOTUBASEMOCTb PACTSXKEHUIO-CKATUIO MPU NON3Y4eCcTU U ApYyrux
BMAAX HarpyxeHus. AHanu3 npenenos NpUMEHUMMOCTM MOCTYNaTOB O HE3aBUCMMOCTU
obbeMHOV gedopMauMM  OT KacaTeNbHbIX HAMpsHKeHWn (OT AeBMaTopa TeH3opa
Hanps>KeHWn), a COABMIoBbIX AedopMaumMii — OT CPeHEero HanpskeHus (oaenexHus), o6
yrpyrom cBa3un mexay obbeMHoOM aedopmaumen U CpefHUM HanpshKeHMEM B Touke (T.e.
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npeHebpexeHns 00bLEMHOM MONA3YYeCTblD), MOCTyNaTa O MOCTOSHCTBE KO3dhdUuueHTa
[MyaccoHa M noctynata O HEOKMMAeMOCTM Matepuana B 33aBUMCMMOCTM OT AMANA30HOB
TemMnepaTyp v Harpy3ok. KoHeyHo, nccnefoBaHus aHM30TPONUM UM MOBEAEHMS MONUMEPOB
n KM npu HEOAHOOCHbIX HarpyxeHuax TpebyloT ropasfo 6onee obWMPHOro cCnmcka
NpOrpamMM MCMbITAaHWUIM, YeM OAHOOCHbIE MPOrpaMMbl NpeablAyLLMX MYHKTOB, C KOTOPbIX
cnepyeT Ha4YMHATbL UCCNIefOBaHMeE, HO 3TO TeMbI NOCNeAYLWMX paborT.

Camble MHqJOpMaTMBHbIe MCNbITAaHUA HA HAYaJIbHOM 3Tane UCC1eA0BaHUMA U AMArHOCTUKA
TUMNa noBeaeHna Mmatepuasna

Ha HayanbHOM 3Tane wuccnefoBaHWMM MO MNPOEKTUPOBAHUIO M OTpaboTke nporpamm
MCMbITAaHWUKA, METOAMK perncTpaumMmM AaHHbIX MUCNbITAHUA UM UX 0BpaboTKM MOXKHO
OrPaHUYUTLCS TONIbKO CEpUAMM UchbITaHmni 3.1-3.5 no nporpammam &(t) = at m (7), (8)
(Puc. 7). Kaxxgast u3 Hux TpebyeT npoBefeHuns, Kak MUHUMYM, 5—7 ucnbiTaHUi Npu pasHbIX
napaMeTpax NporpaMM HarpyeHust (MX KONMYeCcTBO Hag0 YMHOXMTb Ha 3 + 5 NOBTOPHbIX
MCNbITAaHMIA AN OCPeOHEHUs M OueHKM pa3bpoca). Ecnn HyXXHbl CBOMCTBA MpU pasHbiX
TemMnepartypax, To notpebyetcs 15-30 mcnbiTaHMi NpM pasHbIX NapaMeTpax Nporpamm
HarpyxeHus. Hanpumep, wuCMbITaHMS HA NOA3y4YyecTb ciedyeT nNpoBoAuTb nNpu 3-4
3HaYeHusax TemnepaTtypbl (Ha NEPBOM 3Tane —nulb NPU KOMHATHOM TeMnepaTtype) 1 npu
4-5 ypoBHsx HanpskeHua (He Bblwe 0.5...0.7 npepena Npo4yHOCTU NpU MAKCUManNbHOM
Temnepartype). lpy 3TOM AAMTENbHOCTb MCMbITaHUS T (ewe OAMH BaXkHblM napameTp)
[OMKHA OblTb OOCTAaTOYHO 60NbWON, YTOObI BCE OCOOEHHOCTM PaA3BMTUS MON3YYECTU
NPOSIBUIUCb Ha KPUBbIX MON3y4yecTu. B MCMbITaHMSX HA BOCCTAHOB/IEHWE MpPU HYNEBOM
Harpy3ke (8) nosBnseTcs ewe OOMH MAPAMETP HarpyXeHus - AAUTeNbHOCTb CTaaMM
BOCCTaHOBMEHMS (MM ee OTHOLEHME K AIUTENIbHOCTb CTaAuM NON3y4ecT Noa Harpyskom 7).

OpHa 13 caMbiX MHPOPMATUBHBIX MPOrPaMM UCMbITAHUI (Cepus 3.3) — HarpyxeHue c
nocnenywullen MnofHOM pasrpy3kom M HabnwaeHMem BOCCTAHOBAEHUS MNPU HyNeBOW
Harpy3ke (7) ong 1 NOCTPOEHUS KPUBOM HArpy>KeHWUS-pa3rpy3KnM-BOCCTAHOBEHUS (OTK/IMKA
obpasua Ha HarpyxeHue (7)) — cm. Puc. 8 n getanbHo - B [6,114].

Ha Puc. 16 npusegeHbl oTkankm OC, yunTbiBaOWEro B3aMMHOE BAUSIHUE IBONOLUU
CTPYKTYpbl ¥ npouecca pnedopmupoBanmna [11,12,115], ¢ BpemeHeM penakcaumu
T=1/Go =1 nMD g = e’S Ha nporpamMMy HarpyxeHua-pasrpy3ku-BocctaHoBieHns (7)
C OUKCUMPOBAHHBLIM t; = 2, Pa3sHbIMM MAKCUMMAJIbHbIMU HanpskeHuamu s; = 3;4;5;6 u
CKOpPOCTAMM  HarpyxeHuus b; = s;/t; (kpuBble 3,456) p[nN9 HavyanbHbIX 3HAYEHWUN
CTPYKTYypupoBaHHOCTM w, = 0;0.5;1 (ronybble, cuHMe W KpacHble Kpusble 3,4,5,6°).
Ha Puc. 16(a,b) - rpadvkun gedopmauuu y(t;ty, b;) v CTpyKTypupoBaHHOCTU W(t; tq, b;),
Ha Puc.16(c) - KkpuBble HarpyxeHus-pasrpysku-socctaHosnenus (KHP) o(y;ty, by).
OueBnpHo, d¢opmbl KHP, nopoxaeHHbix OC yuuTbiBaKOWEro B3aWUMHOE BAUSHUE
3BONIIOUMUCTPYKTYpbl M HenuHenHoro OC Ttuna Maksenna (Puc. 7(c,d)), cxoaHbl (U
KayectBeHHO noxoxu Ha KHP TMT®3, npuBeneHHble Ha (Puc. 7(a,b)), HO ¢ pocTtom
HanpshKeHUs MOXeT MNpou3onTM 06Ban CTPYKTYpUMpOBaHHOCTU (KpuBble 5,6 M 5,6° Ha
Puc. 16(b)), Bbi3biBalOWMIA "MU3NOMbI" HA KPWBbLIX HarpyxxeHus (kpusble 5,6 u 5,6" Ha
Puc. 16(c) noxoxun Ha ABYX3BEHHbIE NOMaHbIE, MPUBbIYHbIE B MOAENAX YIPYrOnNaIacTUYHOCTH
C YNPOYHEHMEM) U ycunumeatowmi 3ddekT Bo3pactaHms AedbopMaumm Ha CTaamMm pasrpysku.
Ha kpuBbix 3,4 n 34" (ang Manbix HanpskeHun) Ha Puc. 16(a,c) 3Tnx 3¢ dekToB ewe HeT,
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XOTS HEMOHOTOHHOCTb W(t) nosiBnsieTcs yxe npu s; =4 (Puc. 16(b)). Ha Puc. 16(d)
npusegeHbl KHP ong s =3, HO p[n9 HayanbHbIX 3HAYEHWM CTPYKTYPUPOBAHHOCTM
wo = 0;0.1;0.3; 0.5; 0.7; 1, nokasbiBatolLme, Kak C poCTOM W, BbIMNYKIOCTb BHU3 KPUBOM
Harpy>XeHns MeHSIeTC Ha BbINYKNOCTb BBEpX, Kak ybbiBaeT gedopmMaumsa (o4nsg manoro
HanpskeHns w(t) MOHOTOHHO BO3pacTaeT Npu BCeX w, — CM. kpueble 3 n 3" Ha Puc. 16(b))
M KaK yMeHblaeTcs nnowaab ‘netnn” nog KHP, paBHas yaenbHOW amMccunaumm sHeprum B
TOYKe, M OCTAaTOYHas AedopMaLmMsa Nocne NoSHOM Pasrpysku.
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Puc. 16. Otknmkn OC, yunTbiBatOLLLErO B3aMMHOE BIMSIHWME 3BOMIOLLMM CTPYKTYPbI 1 NpoLecca AedopMmUpoBaHus,
C BpEMEHEM penlakcauuu T =1 Ha NporpaMMy HarpyxeHus-pasrpysku-socctaHosnexus (7) ct; = 2 1
pasHbIMU MaKCUMaNbHbIMKU HAaNpXKeHUaMu s; = 3;4; 5; 6 (kpusble 3,4,5,6) g pa3HbIX Ha4YaNbHbIX
3HaYeHWI CTPYKTYPUPOBAHHOCTU Wo: (@—C) rpadukm aedopmaunm y (t; tq, b;), CTPYKTypupoBaHHOCTU W(t; t1, b;) u
KPMBble Harpy)XeHMs-pasrpy3ku-BOCCTaHOBNEHUs o (¥; ty, b;) anawo=0;0.5;1 (ronybble, cuHme 1 kpacHble kpyBble 3,4,5,6);
(d) KHP y(t; tq, by), Bnsa wy = 0;0.1;0.3; 0.5; 0.7; 1 npu MakCMManbHOM HanpsXXeHuu s = 3
Fig. 16. Responses of the constitutive equation that accounts for the mutual influence of deformation and
structural evolution (with the relaxation time t = 1) to the loading-unloading-recovery program (7) with
t, = 2 and different maximum stresses s; = 3;4;5; 6 (curves 3, 4, 5, 6) for different initial structuredness
values wo: (a-c) deformation graphs y(¢; t1, b;), structuredness graphs w(t; t;, b;) and loading-unloading-
recovery curves o(y; ty, b;) for wo = 0;0.5;1 (cyan, blue, and red curves 3, 4, 5', 6); (d) loading-unloading-
recovery curves a(y; t;, b;) for wy = 0; 0.1; 0.3; 0.5; 0.7; 1 and maximum stress s = 3
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C nomMowplo wucnbiTaHuMi Buaa (7) (nyywe cepun  UCAbITAHUA C  PasHbIMM
MaKCMMAJIbHbIMU HAaNPSKEHUSIMU U CKOPOCTSMU HArpy>XeHUs M, BO3MOXHO, NMpW PasHbiX
YPOBHAX TemnepaTtypbl, ecnuM TpebyeTrcs wccnenoBaTb 3aBMCMMOCTb CBOMCTB  OT
TemMnepaTtypbl) yAOOHO nposecmu npedsapumenibHyl0 OUAGZHOCMUKY munda nosedeHus
Mamepuana (B NnepBOM NpuUBAMKEHMM), ECIN XapaKTEPM30BATb €ro KAaTeropusMm ynpyrum,
BA3KOYNPYrui, BA3KOMAACTUYHBIN, YNPYroBA3KOMNAACTUUYHBIN:

(1) ecnn kpuBas pasrpysku JIOXKMUTCS HA KPUBYHK Harpysku Mpu AOCTAaTOYHO HWU3KMX
CKOpoCTX AedopMUpOBaHUS (HET MeTAn ructepesnca), To MaTtepuan MOXHO CUYMTaTb
ynpyrum (B MCCNeAOBaHHOM AMana3oHe HanpskeHun, pedopmaumin, CKopocTen
Harpy>xeHua u Temnepartyp);

(2) ecnn netnsa ructepesnca ecTb, HO HeT OCTaToYyHOM Aedopmaumm (OHA AOCTATOYHO
ObICTPO NOMHOCTbIO MCYE3aeT NOC/E Pa3rpy3Ku, CTAHOBUTCS MEHbLLE A0MYCKa), TO MaTepuan
MOXHO CYMTATb BA3KOYNpPYruMm;

(3) ecnun neTns ructepesnca ectTb U COXPAHAETCS oCcTaTovHas aedopMaums (nocne NOaHOM
pasrpyskM W  OJMTENbHOM  BblOEPXKKM  AedopMaumsa  CTPEMUTCS K HEHyNeBOM
rOPM30HTANIbHOM "aCMMNTOTE", BOCCTAHOB/IEHWE "BblAbIXAETCA"), TO HEeNb3s npeHebperatb
CNOCOBHOCTbIO MaTepuana HakanamMeaTb HeobpaTuMyo gedopmauuio u Matepuan cneayet
pacCcMaTpmBaTb KakK YNpyroBs3KONAaCTUYHbIN (CM. Hanpumep, Puc. 8 u 16);

(4) e BbINONHAKTCS YCNOBUS M. 3, HO KPUBAsi HarpyXeHus (M pasrpysku) He 3aBUCUT OT
CKOPOCTU HarpyxeHus (B MCCnefoBaHHOM AMana3oHe CKOPOCTen M Temnepatyp), @ OCTaTouHast
AedopMaums NpaKTUYeCKn He penakcupyet (BOCCTaHOBNEHWME 3aKaHUMBAETCS 33 Masioe Bpems,
HanpMMep, pPaBHOE O/UTENBHOCTU CTagMM HarpyXeHus-pasrpysku, u aanee nedopMaups He
MEHSIETCA C TEYEHUEM BPEMEHM), TO MaTepHan MOXHO CUMTATb YMpPYroniacTUYHbIM.

YcnoxHeHne nporpamMMbl UCNbITaHUM (7) BBeAEHWMEM [OOMOMHWUTENbHOW CTagauu
BbIAEPXXKM NPU NOCTOSIHHOM HEHYNEBOM Harpyske (Mocae NepBoM CTaAMM HArpy3Ku, nepes
CcTagven pasrpysku) BeCbMa MoSIe3HO ANS YTOYHEHWUS "AMarHo3a“: e Ha 3TOM CTaguu
Habnopaetcs poct gedopmaumm (NOA3y4ecTb), TO MaTEPUAN MOXHO KBaNMGULMPOBATb Kak
YNPYroBs3KONAACTUYHbIA MAX BA3KOYNPYrM, a ecin gedopmaums NoCTONHHA, TO — Kak
YyApyrumi wMan ynpyronaacTUuHbid (pasnuuve Mmexay HuMM 6yaeT 3aMeTHO Ha CTaauu
pa3rpysku, Kak Obis10 ONUCAHO BbIWe).

B npuHuMne ang Takoro 3kcnpecc-aHanusa Tuna noBefeHUs MaTepuana MOXHO
NpOBECTU CEPUID UCMbITAHMI Ha OOPATHYI0 NON3Y4ecTb, T.e. HAarpy>XeHue NpsiMOYrofibHbIM
MNMMYNbCOM  HanpsbkeHus, ObICTpyto ("MIHOBEHHYHK') Ppas3rpysky M NoCienyroLyro
BbIAEPXKY NPW HYNEeBOW (MM NOYTU HYNEBOM) Harpyske. Ho mo cyTu ucnbiTaHua ByayT
NPOBOAMTLCS MO TOWM K€ MPOrpaMMe HarpyXeHusi, UMeLLen oyepTaHue Tpaneuuu, Ho
Harpyska v pasrpyska 6yayT cuMTaTbCsl "MFHOBEHHbIMM" (3TO ynpolleHue, cxeMaTu3aums
NPOrpamMMmbl HarpyxeHus npu 06paboTke pe3ynbTaToB UCMbITAHWUN).

B cywHoCTH, nepeyncneHHble KayeCTBEHHble CBOMCTBA MOXHO paccMaTpuBaTb Kak
nepBUYHblE WHAOMKATOPbI ANS npedsapumensHo2o 8bibopa knacca OC, KOTOpble CTOWUT
MCMNONb30BaTb AN OMUCaHMS MoBeAeHus Matepuana [92]. 3Tux rpybbix CBOWCTB He
[OCTAaTOYHO [An1a Bblbopa KoHkpeTHoro OC M HeobxoguMbl MpuUBEYEHME [OAHHbIX
LONOSIHUTENbHbIX WUCMbITAaHMI M yyeT Bonee TOHKMX 3PdEKTOB NoBefeHUs MaTepuana,
NPOSBASIOWNXCS KaK NpU HarpyxxeHusax (7), Tak v npu Apyrux nporpaMMax UCnbiTaHUi (Npu
LUMKIIMYECKUX HATPYXXEHUAX, MPU CTYNEHYATON NON3Yy4eCcTu U T.M.).
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Jlydwwe He TONbKO NPOBECTU UCMbITAaHWS NO Nporpamme (7) Ha CKaTUe, pacTsXKeHUe U
coBur (MHorve matepuanbl 061a4al0T Pa3sHOCOMPOTUBASEMOCTbIO, BbIPAXKAMOLWLENCS He
TONbKO B Pa3HOMOAYNbHOCTU, HO U PAa3HOM BUAE KPUBbIX NON3Yy4eCcTU U AedOpPMUPOBAHMS
NpU pacTSXKeHUM M OKaTuM), HO W MNpPOBECTU WCMbITAHMUS ewe M Mo nporpamme,
LOMNOJTHEHHOM TaKMM Xe LUMK/IOM C U3MEHEHWEM 3HAKa HArpy3ku, NpuyeM B ABYX BEPCUSX:
CHayana pacTKeHWe - NOTOM CkKaTve M HaAobopoT. JTO ecTeCTBEeHHble MOAXOoA K
nNporpaMMaM LMKIMYECKOrO HarpyxeHus (cepus wucnbitaHun 11 u3 cnmcka n. 3) c
CMMMETPUYHBIM LIMKJIOM M C OTHyneBbiM umknom (Puc. 15); nocnepHue B psge cnydvaes
yAO6HO unu uenecoobpasHo NpoBOAUTL MO CXEME TPEXTOYEYHOro usrmba [122-127].

3aknyeHue

Cratba nocBsILLEeHA KOMIMJIEKCHOMY 3KCMepUMEHTaNIbHOMY U3YYEHUIO
BA3KOYMPYroniactuyeckmx CBOWCTB MNOAMTETPAGTOPITUIEHA WM HECKOJIbKUX CEMENCTB
komno3utoB (KM) c nosbiweHHon (B 2000 pa3) WM3HOCOCTOMKOCTbIO Ha €ro OCHOBe,
NOMyYeHHbIX B MOCNeAHWe rogpl B nabopatopusax MHCTUTYTa ectecTBeHHbIX Hayk CBADY um.
M.K.  AmMMocoBa BBeAeHMEM B KayeCTBe HAMOMHUTENIeM  CIOUCTbIX  CUMKATOB
(MeXaHOaKTMBMPOBAHHbIE BEPMUKYUT, KAOIMHUT, CEPNEHTUH, BEHTOHUT), LWNMUHENMN MarHus 1
KOpOTKMX 6a3anbTOBbIX WM YrNepoAHbiX BOMOKOH. [lpuBeaeHbl ONMCaHWe TeXHONOruu
M3roTOBNEHUS KOMMO3MUTOB M OCHOBHblE pe3ynbTaTbl paboT No MCCNEeLOBAHUIO CTPYKTYpPbl U
XUMMYECKOro COCTaBa MOBEPXHOCTM TPEHWUS METOAAMM 3MeKTPOHHOM MuKpockonun u UK-
CMEKTPOCKOMMU U MOBbILEHUID M3HOCOCTOMKOCTM 3TUX MaTepuanoB 3a CYeT 0O6pa3oBaHMS
MIEHKN NepeHoca M BTOPUYHBIX CTPYKTYp B pe3ynbTaTe TpMOOOKMCAUTENbHbIX NPOLECCOB.
OnucaHvbl uenn u cucTeMa NPOrpaMm  KBA3UCTAaTMUECKMX WUCMbITAaHUA MNOAUMEPOB U
KOMNO3WTOB A/l  BCECTOPOHHEro M3yyeHus WX  BA3KOYNPYronnacTuyeckux CBOMCTB
(COBOKYMHOCTU BCEX HabMOAaEMbIX B MUCMbITAHUAX 3PPEKTOB), BO3IMOXKHOCTM HECKONbKMX
OU3NYECKM HENIMHENHbIX OnpefensowWwmx COOTHOLEHMI BA3KOYNPYronaacTMYHOCTU (O4HO U3
KOTOPbIX Y4MTbIBAET B3aMMHOE BIMSIHWE 3BOOLLMM CTPYKTYPbI U Npouecca AedopMUpoBaHUS)
MO MX OMUCAHWMI M METOAONOMMS aHANM3a AAHHbIX WMCMbITAHUA U BblIOOpa afeKBATHbIX
onpeaenstoLmMX COOTHOWEHMIM ANg UX MOAEIMPOBaHMS. B 4acTHOCTU, pacCMOTpeHbI MPU3HAKK
dU3MYECKOM HEeNMHEMHOCTM MOBeAeHWs MaTepuanos, T.e. MHAMKATOPbl HENnpUMEeHWMOCTU
NIMHENHOr0 MHTErpanbHOr0 COOTHOLIEHWS BA3Koynpyroctu bonbumaHa-Bonbteppsl, KOTOpble
MOXXHO OBHapPYXMTb B UCMbITAHUAX MO Pa3HbIM NPOrpaMMam Harpy>KeHus, cnocobbl 04epTUTb
AManasoH NIMHEMHOCTM MOBedeHus BA3KOYNpyroro Matepuana. OnucaHbl UCNbITaHUS ang
npefABapuUTeNbHOM AMArHOCTUKM TUMA NOBeAeHMs MaTepuana (B NnepBoM NpUBAMXeHUK), ecim
XapaKTepu3oBaTb €ro  KaTteropusMu  YNpyruin,  BS3KOYMPYruid,  BA3KOMIACTUYHbIN,
yNpyroBa3KOMIaCTUYHbIA, U MeTOAO0NorMsa BbiOOpa ageKkBaTHOM MoAenu [Ans OnuMcaHus
noBefeHus KOHKPETHOro MaTepuana.

Bo BTOpOM YacTh cTaTbm ByayT NpUBEAEH M NPOAHANM3UPOBaH 60/bLIOM 06beM AAHHBIX
MCMbITAaHUI Ha PaCcTSHKEHWE NO pasHbIM NporpaMMamM 06pa3uoB-n1onaTok u3 ymuctoro MNTMI u
wect KM Ha ero ocHoBe C HAMOMHEHMEM CEPMNEeHTUHOM UM CEPrEeHTUHOM U LUMUHENbHO
MarHus (0o 5 % no Macce): nony4YeHHble CEMENCTBA AUarpaMM pacTskeHus g (€,a) C pa3HbIMU
CKOPOCTSIMU A0 paspyLUeHUs, KPUBbLIX HArpyXXeHUA-pasrpy3kn-BOCCTaHOBAEHUS &(t; tq, b;) U
o(gty, b;) C pa3HbIMM CKOPOCTAMM W OJIMTENIHOCTAMM CTaOMM HArPYXXEHUSA U KPUBbIX
non3yyectu u BoCCTaHoBNeHus &(t;0,T) ANA pasHbiX YPOBHEM MOCTOSAHHOWM Harpysku wu
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LNUTENbHOCTEN €e NpunoXeHus. byaeT npoBefeH NEPBUYHBIA AHANM3  BbIPAXXEHHOCTU
HacneACTBEHHbIX CBOMCTB MaTepuanoB, B YAaCTHOCTU CKOPOCTHOM UYyBCTBUTENbHOCTU,
CNOCOBHOCTM K TEYEHMIO MpPWU MOCTOSIHHOM HAMNpsPKeHUM, pecypca AedOopMaTUBHOCTU U
CNOCOOHOCTM K BOCCTAHOB/MEHWUIO MOCAE Pasrpy3ku, M BAUSIHME HA HMUX COCTaBa M LOM
HanonHutenen. byayT onpepeneHbl 6330Bble CKanspHble XapakKTepUCTUKM MaATePUANoB:
MIHOBEHHbIM MOAYfNb, Npefen TekyvyecTW, HanpskeHue u gedopmaums npu paspbise B
3aBMCUMMOCTM OT CKOPOCTU HarpyxeHus u ap. byayt npveeaeHsl pe3ynbTatbl MCCNEA0BAHMS Ha
CKaHMPYHOLLEM 371EKTPOHHOM MUKPOCKOME M3MEHEHWI MUKPOCTPYKTYPbl UCMbITaHHbIX 00pa3L.0B
MTM3 1 KOMNO3UTOB C pa3HbIM COAEPXKAHMEM HAMOMHUTENEN B 30HAX pa3pyLleHns 06pasLoB
(MO CpaBHEHMIO C WCXOAHOM CTPYKTypoW). byaeTr wccnenoBaHO BAMSHWME ManbiX AONen
HanosHUTENEeN Ha CTPYKTYPY M MHOTME BA3KOYMNPYronaactuyeckme CBOMCTBA Matepuasnos.

ABTOpCKUM BKNapg,

Auppeir  BnapummpoBuu  Xoxnos . paspaboTka KOHUenuuu, nNpoBeaeHue
MccnefoBaHuUs, KYypMpoBaHME AAHHbIX, HANMCAHUE PYKOMUCK U pefaKTUPOBaHUE, HayYHoe
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