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Abstract. Autoregression models are widely used in economic practice both in modelling 
stochastic processes and in forecasting them. However, all these models generating nonlinear 
dependencies are essentially linear models. The accuracy of these models can be increased 
by giving them a nonlinear form. However, at present, there are no universal methods 
and techniques for forming such models, and the problem of constructing nonlinear auto-
regressions does not have a satisfactory solution. Researchers add non-linear components to 
autoregressions, most often using intuition. In our study, we examine the possibility of using 
the model of the elementary image of the Kolmogorov-Gabor polynomial as a formalized and 
universal tool for solving such problems. Several examples show that imparting nonlinearity to 
autoregression models can lead not only to an increase in the accuracy of approximation but 
also to an increase in the accuracy of short-term forecasting.
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Аннотация. Модели авторегрессий широко используются в экономической практике 
как в моделировании стохастических процессов, так и в их прогнозировании. Однако, 
все эти модели, генерирующие нелинейные зависимости, по своей сути являются ли-
нейными моделями. Повышения точности этих моделей можно добиться, придав этим 
моделям нелинейную форму. Но в настоящее время отсутствуют универсальные методы 
и методики формирования подобных моделей, и задача построения нелинейных авторе-
грессий не имеет удовлетворительного решения. Исследователи добавляют нелинейные 
составляющие в авторегрессии, чаще всего, используя интуицию. В данном исследовании 
изучается возможность использования в качестве формализованного и универсального 
инструмента решения таких задач модели элементарного образа полинома Колмогоро-
ва-Габора. Показано на нескольких примерах, что придание нелинейности авторегресси-
онным моделям может привести не только к повышению точности аппроксимации, но и 
к повышению точности краткосрочного прогнозирования.
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Introduction
One of the most in-demand tools for short-term economic forecasting and modelling sto-

chastic processes is the modelling of autoregressive dependencies using the corresponding mod-
els.

The essence of autoregressive models stems from the stochastic process they model, where 
the current values of the variable being modelled are not determined by external forces but by 
the previous values of the variable itself. Such stochastic processes are quite common in eco-
nomics, as the economy has a cyclical nature of development.

There are cases where the modelled process has an obvious cyclical component; for example, 
the volume of goods consumed in retail is determined by the day of the week, and for such 
series, an autoregression with a lag of 7 observations would be suitable.

Much more frequently in economics, we encounter cases where the modelled process con-
tains several cycles of varying lengths, which ultimately generate complex time series with 
nonlinear dynamics. 

The task of modelling such series is tackled with varying degrees of success using different 
types of autoregressions, the main ones being simple autoregressions with a lag p AR(p); au-
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toregressions with moving averages of residuals ARIMA(p, d, q), where residuals are included 
with a lag of q; autoregressions with a seasonal component SARIMA(p, d, q); autoregression 
and distributed lag model ADL(p, q), where external factors with a lag q are used instead of 
residuals; and vector autoregressions, where instead of one indicator, a vector of k indicators 
VARk (p) is used along with their modifications.

In this group, there are theoretically known, but rarely applied in practice, nonlinear au-
toregressions. 

This feature can be explained by the fact that linear autoregressions generate nonlinear pro-
cesses. 

In these nonlinearities, it is impossible to distinguish between factors that affect the process 
linearly and those that affect it nonlinearly. 

Therefore, non-linear autoregressions are not used as often as they could be, and their prac-
tical application has been fragmented, as identifying nonlinearity remains a subjective task.

Let's consider the possibility of formally constructing nonlinear autoregressions.

Materials and Methods
All the main types of autoregressions are linear with respect to the variables and parameters 

of the model. However, these models describe various types of nonlinear dynamics. The first 
and simplest first-order autoregression model, studied by A.A. Markov, has the following form 
(Markov, 1900):

1t t ty ay ε−= +                                                 (1)
Here, ty  is the current modeled value of the indicator, 1ty −  is its previous value, a is the 

proportionality coefficient, and tε  is the random component, which is normally distributed 
with a zero mean.  

Depending on the values taken by the constant a, the process can be either divergent or 
convergent. However, in all cases, nonlinear dynamics are being modeled. Even when this 
coefficient equals one, due to the influence of the random component, the model represents a 
nonlinear stochastic process known as "random walk" (Bhattacharya, 2021).

It is evident that the more complex the autoregression model used, the more intricate 
nonlinear stochastic processes it can describe. This very factor has determined the widespread 
popularity of autoregression models in solving applied problems across various scientific fields, 
including the modeling and forecasting of stochastic processes in economics.

Clearly, model (1) can be further refined and represented, for example, in the following 
nonlinear form:

1( )b
t t ty a y ε−= +                                               (2)

It is clear that model (1) will be a special case of model (2). By assigning different values 
to the coefficients a and b, different types of dynamics can be generated. Even more complex 
trajectories are generated by such nonlinear autoregressions of order p:

1 2
1 1 2 2( ) ( ) ... ( ) pbb b

t t t p t p ty a y a y a y ε− − −= + + + +                           (3)
However, solving the inverse problem, namely, determining the order of the autoregression 

(3) from the available data, turns out to be impossible. This problem does not yet have a sat-
isfactory solution even for autoregressions in linear form, and it is even more unsolvable when 
applied to autoregressions of type (3). 

Moreover, nonlinear autoregressions, which can perfectly describe complex nonlinear types 
of dynamics, do not reduce to power functions like (3). They can involve logarithmic, expo-
nential, or trigonometric functions, as well as their combinations. It is impossible to identify the 
best ones from the available statistical data. 

Therefore, autoregressions of any type are presented in a linear form, and the emergence of 
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nonlinear models in practice is very rare. 
This problem can be solved by using the elementary Kolmogorov-Gabor polynomial model. 

The basic model, which we call the Kolmogorov-Gabor polynomial, was independently devel-
oped by V. Volterra (Volterra, 1930) with N. Wiener (Wiener, 1958) and Kolmogorov (Kol-
mogorov, 1956) with Gabor (Gabor, 1961). It has the following form:

0 ...
1 1 1 1 1 1

... ... ...
m m m m m m

i i ij i j ij z i j z
i i j i j z

y a a x a x x a x x x
= = = = = =

= + + + +∑ ∑∑ ∑∑ ∑                    (4)

Here, y is the modeled nonlinear discrete process, ix  are the discrete variables influencing 
the process, ia  are the polynomial coefficients, and m is the number of discrete variables con-
sidered in the polynomial. 

The Kolmogorov-Gabor polynomial (or the Volterra-Wiener series) can theoretically de-
scribe very complex nonlinear dependencies accurately. However, this polynomial sharply in-
creases the number of its terms and, consequently, the number of unknown coefficients. There-
fore, this model has not found practical application. 

At the end of the last century, the Ukrainian scientist A.G. Ivakhnenko proposed a meth-
od for stepwise construction of polynomial (4) (Ivakhnenko, 1963; 1971; 1975). However, his 
method turned out to be cumbersome, resulting in a polynomial with a number of terms ex-
ceeding that of polynomial (4) (Svetunkov, 2024). It is evident that the properties of this new 
polynomial by A.G. Ivakhnenko differ from those of the original polynomial (4), and thus it will 
not always demonstrate the expected accuracy. Consequently, there are very few examples of 
successful applications of A.G. Ivakhnenko's method, and mainly such examples are presented 
in publications by scientists from former Soviet republics, although there are instances of its use 
by foreign researchers as well (Marateb, 2023).

In 2024, an elementary image of the Kolmogorov-Gabor polynomial (hereinafter referred 
to as the EI) was proposed, which serves as a simplified model of polynomial (4) (Svetunkov, 
2024). In general form, the EI can be represented as follows:

0 0
1 1

ˆ ( )
m m

j
j i i

j i
y c c b b x

= =

= + +∑ ∑
                                        (5)

where ic  and ib  is coefficients.
The essence of the model and the method for estimating its parameters is revealed by another 

form of recording:

0 1 1 2 2ˆ ... m my b b x b x b x′ = + + + +                                        (6)


2
0 1 2ˆ ˆ ˆ( ) ... ( )m

my c c y c y c y′ ′ ′= + + + +                                     (7)
As can be seen, the first equation (6) represents a simple linear one-factor model, the co-

efficients ib  of which can be easily estimated from statistical data on the values of y and ix  
corresponding to the characteristics of the stochastic process using a statistical method, such as 
the method of least squares (MLS). 

The second equation contains only one influencing factor, namely, the calculated values of 
the linear multifactor model (6). These calculated values are used as a factor in the polynomial 
of degree m. The values of the coefficients of this polynomial ic  can also be easily determined 
from the data on y and ix  using a chosen statistical method. 

If (6) is substituted into (7), and the brackets are expanded and grouped, a polynomial will 
be obtained that structurally, in form, and in the number of terms completely coincides with 
the Kolmogorov-Gabor polynomial. However, unlike it, constructing (5) requires estimating a 
significantly smaller number of unknown coefficients: for instance, with the number of factors 
m equal to 11, constructing the Kolmogorov-Gabor polynomial requires estimating 705,432 un-
known coefficients, whereas for constructing the elementary image, only 24 coefficients need to 
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be estimated—12 unknown coefficients for model (6) and then 12 unknown coefficients for (7). 
It is clear that model (5) is simpler than model (4), which means it is less accurate than 

polynomial (4), of which it is a simplified version. However, as research has shown, the EI has 
proven to be a surprisingly accurate model for describing various nonlinear economic processes. 
It effectively describes exponential, power, and trigonometric trajectories, as well as various 
superpositions of these nonlinear functions, sometimes yielding better results than those of arti-
ficial neural network models (Svetunkov, 2024). It can also be used to solve the problem posed 
in our study. Let us demonstrate how this can be done. 

A simple autoregression of order p = m can be represented as a linear multifactor model:

0 1 1 2 2ˆ ...t t t m t my b b y b y b y− − −′ = + + + +                                    (8)
 and it can be considered as the first part of EI (6).
Then, substituting the calculated values of the autoregression (8) into (7), we obtain the 

second nonlinear part of the autoregression:


2
0 1 2ˆ ˆ ˆ( ) ... ( )m

t t m tty c c y c y c y′ ′ ′= + + + +                                   (9)
Since the model is universal and describes various nonlinear forms, the question of selecting 

the type of nonlinear function for the autoregressive model is resolved — the nonlinearity is 
generated automatically by fitting the coefficients of polynomial (9). 

For practical application of the nonlinear autoregression (8) — (9), it is necessary to find 
an answer to the question of how to choose the order of autoregression for each series. We 
proposed the following hypothesis to answer this question: the order of the best nonlinear au-
toregression (8) — (9) corresponds to the order of the best linear autoregression. 

To test this hypothesis, an algorithm was developed in Python to compute the coefficients 
of linear autoregressions of various orders from the first order up to p, where the order p can 
be any number but should not exceed 1/3 N, with N being the number of observations. Since 
these autoregressions form the basis for constructing the nonlinear autoregression, an algorithm 
was also developed to construct the corresponding polynomials (9) for each autoregression (8).

Both linear and nonlinear autoregressions were tested for the accuracy of data approxima-
tion, where the measure of accuracy was the values of the approximation error variance. To 
understand how much worse or better the nonlinear autoregression describes the nonlinear 
processes of the data compared to the linear autoregression, the relative error of the EI was 
calculated in comparison with the autoregression.

The calculation algorithm was carried out as follows: first, a first-order autoregression was 
constructed, and its statistical characteristics (including variance) were calculated for all data. 
Then the data was reduced by one unit, and the statistical characteristics of the first-order au-
toregression were recalculated. This process was repeated by reducing the data by one unit each 
time. The variance values for the autoregression, depending on the number of used values in 
the series, were recorded. After that, a second-order autoregression was built on all the data-
sets, and its statistical characteristics were determined. The database was then reduced by one 
unit, and the calculations were repeated. As a result, a kind of “map” of the series was created, 
showing, on one hand, how the variance of the approximation error of the autoregressive model 
changed for fixed data as the order of autoregression increased, and on the other hand, how 
stable the best model in terms of minimum variance approximation was when the number of 
used data points decreased.

The recorded values of the coefficients from the linear autoregressions served as the basis 
(8) for constructing nonlinear autoregressions (9) using the EI. Nonlinear autoregressions were 
also computed based on the lag of the autoregression and the number of observations, similar to 
how it was done for linear autoregressions. “Maps” of the series were created for them as well.

To visualize the obtained results, “heat maps” of the error variances and relative errors were 
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constructed based on numerical values, allowing for a visual comparison of the areas of best and 
worst performance of the models at various lags and degrees. 

Results and Discussion
A comparative analysis of linear and nonlinear autoregressive models was conducted using 

the M3C database from the International Institute of Forecasters (Makridakis, 2000). Monthly 
series numbered 2830, 2834, 2835, 2836, 2837, 2838, 2839, 2840, 2841, and 2842 were selected 
for this analysis.

The results showed that the optimal order of autoregression, which has the minimum ap-
proximation error variance, remains consistent as the sample size decreases. This indicates that 
the modeled process exhibits the characteristics of autoregression of this specific order. For 
example, for series number 2830, the optimal autoregression is of order p=29.

As indicated by the results of the statistical characteristics of the nonlinear autoregressions, 
the order of the optimal nonlinear autoregression generally coincides with that of the linear 
autoregression. This means that a researcher, having determined the order of the best linear 
autoregression and estimated its coefficients based on statistical data, can use (9) to compute 
its nonlinear form and can reasonably expect that this nonlinear autoregression will be the best 
in its class for the given series.

As expected, nonlinear autoregressions consistently provided better approximations of the 
data series than linear autoregressive models. For instance, for series number 2830, the optimal 
linear autoregression has a variance of about 6700, while the error variance of the nonlinear 
autoregressive model is equal to 5200.

It is well known that the best model for approximation is not necessarily the best for fore-
casting (Fildes, 1985; Makridakis, 1982). Although autoregressive models are tools for mode-
ling stochastic processes (Chen, 2023; Kulkarni, 2009), they are primarily used for forecasting 
tasks (Athanasopoulos, 2023; Hyndman, 2008; Kwiatkowski, 1992). Therefore, it is essential 
to assess the feasibility of using nonlinear autoregressions for short-term forecasting tasks. This 
assessment was conducted on the same M3C database but for different data series. The existing 
series was divided into a training set and a testing set. Statistical characteristics of the autore-
gressions were evaluated on the training set, while the forecast error variance was computed on 
the testing set. For data series number 1402, the optimal model on the training set turned out 
to be a third-order autoregression. It predicted data on the testing set with a forecast error vari-
ance of 810.01. The nonlinear autoregression on the testing set yielded a forecast error variance 
of 711.39. For another data series number 1429, the optimal linear autoregression is of fourth 
order, providing a forecast error variance of 497.44. The nonlinear autoregression of the same 
order has a forecast error variance of 437.29. 

Conclusion
We demonstrated that the elementary image of the Kolmogorov-Gabor polynomial, which 

has proven effective in modeling complex nonlinear economic dependencies, can be applied 
as a formal model of nonlinear autoregression. Our research indicated that the process of con-
structing this autoregression should begin with the search for the best linear autoregression, 
as the order of the optimal linear autoregression generally coincides with that of the optimal 
nonlinear autoregression.

In randomly selected data series, it was shown that nonlinear autoregressions provide more 
accurate forecasts in short-term forecasting of stochastic processes compared to linear autore-
gressions.

We examined the simplest of the autoregressive models, namely the AR (p) model, and 
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demonstrated how to form a nonlinear autoregression based on it using the Kolmogorov-Gabor 
polynomial. It seems that our approach can also be extended to more complex autoregressive 
models, such as the ARIMA (p, d, q) model:

1 1

ˆ
p q

t i t i j t j
i j

y a y b ε− −
= =

= +∑ ∑                                         (10)

we should first calculate the estimated values 1ty′  and 2ty′ :

1 2
1 1

,    
p q

t i t i t j t j
i j

y a y y b ε− −
= =

′ ′= =∑ ∑                                    (11)

Then form a nonlinear ARIMA(p,d,q):

1 1

ˆ ( ) ( )
p q

i j
t i t i j t j

i j
y c y d y− −

= =

′ ′′= +∑ ∑                                    (12)

But these are tasks for future scientific research. Similarly, other types of autoregressive 
models can also be transformed into nonlinear forms. 

Nonlinear models constructed using the elementary image of the Kolmogorov-Gabor poly-
nomial will always provide better approximations of stochastic processes than the original au-
toregressions. This can be explained by the way they are constructed: if the linear autoregression 
perfectly describes the modeled process, then fitting it into the nonlinear form (9) using the 
least squares method will result in all coefficients (9) being equal to zero, except for the coef-
ficient ic . In this case, a linear autoregression will be used.
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