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Abstract. Autoregression models are widely used in economic practice both in modelling
stochastic processes and in forecasting them. However, all these models generating nonlinear
dependencies are essentially linear models. The accuracy of these models can be increased
by giving them a nonlinear form. However, at present, there are no universal methods
and techniques for forming such models, and the problem of constructing nonlinear auto-
regressions does not have a satisfactory solution. Researchers add non-linear components to
autoregressions, most often using intuition. In our study, we examine the possibility of using
the model of the elementary image of the Kolmogorov-Gabor polynomial as a formalized and
universal tool for solving such problems. Several examples show that imparting nonlinearity to
autoregression models can lead not only to an increase in the accuracy of approximation but
also to an increase in the accuracy of short-term forecasting.
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AHHOTamusga. Mozenn aBTOpPETpecCHil IMMPOKO MCIONB3YIOTCS B 3KOHOMMYECKON ITPAKTHUKE
KaK B MOJEJIMPOBAHMU CTOXACTMUYECKUX IPOLECCOB, TaK M B MX MPOrHo3upoBaHuu. OmHaKo,
BCE 3TH MOJEIM, TeHEepUpYIole HeJIMHEHHbIe 3aBUCUMOCTH, IO CBOEUM CYTH SIBIISIOTCSI JIM-
HEeHBIMM MopeissMU. TTOBBILIEHUSI TOYHOCTU 3TUX MOJEICil MOXHO TOOUThCS, NPUAAB 3TUM
MOCISIM HeJlmHeliHyo ¢dopMmy. Ho B HacTosiiee BpeMsi OTCYTCTBYIOT YHUBEPCAIbHBIC METOIbI
1 METOAMKU (OPMUPOBAHMS MTOAOOHBIX MOJENEN, M 3aJa4a MOCTPOEHUST HEJIMHEMHBIX aBTOPe-
rpeccrii He MMEeT YIOBJIETBOPUTEILHOTO pellieHus. McciienoBaren qo0aBIISIOT HeJTMHEHHbBIE
COCTABIISIIOIINE B aBTOPETPECCUM, Yallle BCETO, UCITOIb3YSI MHTYULINIO. B TaHHOM mccaenoBaHNT
M3y4aeTcss BO3MOXKHOCTb MCIIOJIb30BaHUsI B KadyecTBe (hOpPMaJIM30BAHHOIO U YHUBEPCAIbHOIO
MHCTPYMEHTa pelIeHMUsS] TaKMX 3aJad MOJIC/IM 3JIEMEHTapHOro obpasa mojumHoma Kosiamoropo-
Ba-I'abopa. [TokazaHo Ha HECKOJBKUX IIpUMEpax, YTO IpUAaHNEe HEJIMHEMHOCTU aBTOPErpecCh-
OHHBIM MOJIEJISIM MOXET IPUBECTU HE TOJBKO K MOBBILIEHUIO TOYHOCTH alMPOKCUMALIMN, HO U
K TOBBIILIEHNIO TOYHOCTH KPATKOCPOYHOIO MPOrHO3UPOBAHMSI.

KmoueBbie ciioBa: aBToperpeccuu, ajieMeHTapHbINA obpa3 moaunHoMma Koamoroposa-I'abopa,
MOJCIIMPOBAHUE CTOXaCTUYECKMX IIPOLIECCOB, KPAaTKOCPOYHOE MPOrHO3UPOBAHMUE, HEIMHEH-
HOCTb

Jna matupoBanus: Jlymapes K., CBetyHbkoB C. BOo3MOXHOCTh TOCTPOCHMSI YHUBEPCAIb-
HOI HeJuHelHou aBToperpeccuu // TexnoskoHomuka. 2025. T. 4, Ne 1 (12). C. 4—12. DOI:
https://doi.org/10.57809/2025.4.1.12.1

DTO cTaThsl OTKPHITOTO MOCTYMA, pactpoctpaHsemasi mo guieH3nu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction

One of the most in-demand tools for short-term economic forecasting and modelling sto-
chastic processes is the modelling of autoregressive dependencies using the corresponding mod-
els.

The essence of autoregressive models stems from the stochastic process they model, where
the current values of the variable being modelled are not determined by external forces but by
the previous values of the variable itself. Such stochastic processes are quite common in eco-
nomics, as the economy has a cyclical nature of development.

There are cases where the modelled process has an obvious cyclical component; for example,
the volume of goods consumed in retail is determined by the day of the week, and for such
series, an autoregression with a lag of 7 observations would be suitable.

Much more frequently in economics, we encounter cases where the modelled process con-
tains several cycles of varying lengths, which ultimately generate complex time series with
nonlinear dynamics.

The task of modelling such series is tackled with varying degrees of success using different
types of autoregressions, the main ones being simple autoregressions with a lag p AR(p); au-
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toregressions with moving averages of residuals ARIMA(p, d, q), where residuals are included
with a lag of q; autoregressions with a seasonal component SARIMA(p, d, q); autoregression
and distributed lag model ADL(p, q), where external factors with a lag q are used instead of
residuals; and vector autoregressions, where instead of one indicator, a vector of k indicators
VARK (p) is used along with their modifications.

In this group, there are theoretically known, but rarely applied in practice, nonlinear au-
toregressions.

This feature can be explained by the fact that linear autoregressions generate nonlinear pro-
cesses.

In these nonlinearities, it is impossible to distinguish between factors that affect the process
linearly and those that affect it nonlinearly.

Therefore, non-linear autoregressions are not used as often as they could be, and their prac-
tical application has been fragmented, as identifying nonlinearity remains a subjective task.

Let's consider the possibility of formally constructing nonlinear autoregressions.

Materials and Methods

All the main types of autoregressions are linear with respect to the variables and parameters
of the model. However, these models describe various types of nonlinear dynamics. The first
and simplest first-order autoregression model, studied by A.A. Markov, has the following form
(Markov, 1900):

yo=ay,, té (1)

Here, y, is the current modeled value of the indicator, y, , is its previous value, a is the
proportionality coefficient, and &, is the random component, which is normally distributed
with a zero mean.

Depending on the values taken by the constant a, the process can be either divergent or
convergent. However, in all cases, nonlinear dynamics are being modeled. Even when this
coefficient equals one, due to the influence of the random component, the model represents a
nonlinear stochastic process known as "random walk" (Bhattacharya, 2021).

It is evident that the more complex the autoregression model used, the more intricate
nonlinear stochastic processes it can describe. This very factor has determined the widespread
popularity of autoregression models in solving applied problems across various scientific fields,
including the modeling and forecasting of stochastic processes in economics.

Clearly, model (1) can be further refined and represented, for example, in the following
nonlinear form:

yt :a(yz—l)b +g[ (2)

It is clear that model (1) will be a special case of model (2). By assigning different values
to the coefficients a and b, different types of dynamics can be generated. Even more complex
trajectories are generated by such nonlinear autoregressions of order p:

b, b b
yt:al(yt—l)l+a2(yt—2)2+"'+ap(yt—p)p+gt (3)

However, solving the inverse problem, namely, determining the order of the autoregression
(3) from the available data, turns out to be impossible. This problem does not yet have a sat-
isfactory solution even for autoregressions in linear form, and it is even more unsolvable when
applied to autoregressions of type (3).

Moreover, nonlinear autoregressions, which can perfectly describe complex nonlinear types
of dynamics, do not reduce to power functions like (3). They can involve logarithmic, expo-
nential, or trigonometric functions, as well as their combinations. It is impossible to identify the
best ones from the available statistical data.

Therefore, autoregressions of any type are presented in a linear form, and the emergence of
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nonlinear models in practice is very rare.

This problem can be solved by using the elementary Kolmogorov-Gabor polynomial model.
The basic model, which we call the Kolmogorov-Gabor polynomial, was independently devel-
oped by V. Volterra (Volterra, 1930) with N. Wiener (Wiener, 1958) and Kolmogorov (Kol-
mogorov, 1956) with Gabor (Gabor, 1961). It has the following form:

m m

m m m m
y=a,+ Z a.x, + ZZayxixj +..+ ZZZ a; XX;.X, (4)
i=1

i=1 j=I i=l j=1 z=l

Here, y is the modeled nonlinear discrete process, x, are the discrete variables influencing
the process, a, are the polynomial coefficients, and m is the number of discrete variables con-
sidered in the polynomial.

The Kolmogorov-Gabor polynomial (or the Volterra-Wiener series) can theoretically de-
scribe very complex nonlinear dependencies accurately. However, this polynomial sharply in-
creases the number of its terms and, consequently, the number of unknown coefficients. There-
fore, this model has not found practical application.

At the end of the last century, the Ukrainian scientist A.G. Ivakhnenko proposed a meth-
od for stepwise construction of polynomial (4) (Ivakhnenko, 1963; 1971; 1975). However, his
method turned out to be cumbersome, resulting in a polynomial with a number of terms ex-
ceeding that of polynomial (4) (Svetunkov, 2024). It is evident that the properties of this new
polynomial by A.G. Ivakhnenko differ from those of the original polynomial (4), and thus it will
not always demonstrate the expected accuracy. Consequently, there are very few examples of
successful applications of A.G. Ivakhnenko's method, and mainly such examples are presented
in publications by scientists from former Soviet republics, although there are instances of its use
by foreign researchers as well (Marateb, 2023).

In 2024, an elementary image of the Kolmogorov-Gabor polynomial (hereinafter referred
to as the EI) was proposed, which serves as a simplified model of polynomial (4) (Svetunkov,
2024). In general form, the EI can be reprgsented asmfollows:

P=cy+ Y c(by+ Y bx)
Jj=1 i=1

where ¢; and b, is coefficients.
The essence of the model and the method for estimating its parameters is revealed by another
form of recording:

(&)

_V'=bytbx +bx, +...+b,x, (6)
Y= +e + 6,7 +ot o, ()" %)

As can be seen, the first equation (6) represents a simple linear one-factor model, the co-
efficients b, of which can be easily estimated from statistical data on the values of y and x,
corresponding to the characteristics of the stochastic process using a statistical method, such as
the method of least squares (MLS).

The second equation contains only one influencing factor, namely, the calculated values of
the linear multifactor model (6). These calculated values are used as a factor in the polynomial
of degree m. The values of the coefficients of this polynomial ¢; can also be easily determined
from the data on y and x; using a chosen statistical method.

If (6) is substituted into (7), and the brackets are expanded and grouped, a polynomial will
be obtained that structurally, in form, and in the number of terms completely coincides with
the Kolmogorov-Gabor polynomial. However, unlike it, constructing (5) requires estimating a
significantly smaller number of unknown coefficients: for instance, with the number of factors
m equal to 11, constructing the Kolmogorov-Gabor polynomial requires estimating 705,432 un-
known coefficients, whereas for constructing the elementary image, only 24 coefficients need to
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be estimated—12 unknown coefficients for model (6) and then 12 unknown coefficients for (7).

It is clear that model (5) is simpler than model (4), which means it is less accurate than
polynomial (4), of which it is a simplified version. However, as research has shown, the EI has
proven to be a surprisingly accurate model for describing various nonlinear economic processes.
It effectively describes exponential, power, and trigonometric trajectories, as well as various
superpositions of these nonlinear functions, sometimes yielding better results than those of arti-
ficial neural network models (Svetunkov, 2024). It can also be used to solve the problem posed
in our study. Let us demonstrate how this can be done.

A simple autoregression of order p = m can be represented as a linear multifactor model:

Vi=by+by  +by ,+..+b,y,., (8)

and it can be considered as the first part of EI (6).

Then, substituting the calculated values of the autoregression (8) into (7), we obtain the
second nonlinear part of the autoregression:

Y, =6 rai e () +ote, ()" 9)

Since the model is universal and describes various nonlinear forms, the question of selecting
the type of nonlinear function for the autoregressive model is resolved — the nonlinearity is
generated automatically by fitting the coefficients of polynomial (9).

For practical application of the nonlinear autoregression (8) — (9), it is necessary to find
an answer to the question of how to choose the order of autoregression for each series. We
proposed the following hypothesis to answer this question: the order of the best nonlinear au-
toregression (8) — (9) corresponds to the order of the best linear autoregression.

To test this hypothesis, an algorithm was developed in Python to compute the coefficients
of linear autoregressions of various orders from the first order up to p, where the order p can
be any number but should not exceed 1/3 N, with N being the number of observations. Since
these autoregressions form the basis for constructing the nonlinear autoregression, an algorithm
was also developed to construct the corresponding polynomials (9) for each autoregression (8).

Both linear and nonlinear autoregressions were tested for the accuracy of data approxima-
tion, where the measure of accuracy was the values of the approximation error variance. To
understand how much worse or better the nonlinear autoregression describes the nonlinear
processes of the data compared to the linear autoregression, the relative error of the EI was
calculated in comparison with the autoregression.

The calculation algorithm was carried out as follows: first, a first-order autoregression was
constructed, and its statistical characteristics (including variance) were calculated for all data.
Then the data was reduced by one unit, and the statistical characteristics of the first-order au-
toregression were recalculated. This process was repeated by reducing the data by one unit each
time. The variance values for the autoregression, depending on the number of used values in
the series, were recorded. After that, a second-order autoregression was built on all the data-
sets, and its statistical characteristics were determined. The database was then reduced by one
unit, and the calculations were repeated. As a result, a kind of “map” of the series was created,
showing, on one hand, how the variance of the approximation error of the autoregressive model
changed for fixed data as the order of autoregression increased, and on the other hand, how
stable the best model in terms of minimum variance approximation was when the number of
used data points decreased.

The recorded values of the coefficients from the linear autoregressions served as the basis
(8) for constructing nonlinear autoregressions (9) using the EI. Nonlinear autoregressions were
also computed based on the lag of the autoregression and the number of observations, similar to
how it was done for linear autoregressions. “Maps” of the series were created for them as well.

To visualize the obtained results, “heat maps” of the error variances and relative errors were
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constructed based on numerical values, allowing for a visual comparison of the areas of best and
worst performance of the models at various lags and degrees.

Results and Discussion

A comparative analysis of linear and nonlinear autoregressive models was conducted using
the M3C database from the International Institute of Forecasters (Makridakis, 2000). Monthly
series numbered 2830, 2834, 2835, 2836, 2837, 2838, 2839, 2840, 2841, and 2842 were selected
for this analysis.

The results showed that the optimal order of autoregression, which has the minimum ap-
proximation error variance, remains consistent as the sample size decreases. This indicates that
the modeled process exhibits the characteristics of autoregression of this specific order. For
example, for series number 2830, the optimal autoregression is of order p=29.

As indicated by the results of the statistical characteristics of the nonlinear autoregressions,
the order of the optimal nonlinear autoregression generally coincides with that of the linear
autoregression. This means that a researcher, having determined the order of the best linear
autoregression and estimated its coefficients based on statistical data, can use (9) to compute
its nonlinear form and can reasonably expect that this nonlinear autoregression will be the best
in its class for the given series.

As expected, nonlinear autoregressions consistently provided better approximations of the
data series than linear autoregressive models. For instance, for series number 2830, the optimal
linear autoregression has a variance of about 6700, while the error variance of the nonlinear
autoregressive model is equal to 5200.

It is well known that the best model for approximation is not necessarily the best for fore-
casting (Fildes, 1985; Makridakis, 1982). Although autoregressive models are tools for mode-
ling stochastic processes (Chen, 2023; Kulkarni, 2009), they are primarily used for forecasting
tasks (Athanasopoulos, 2023; Hyndman, 2008; Kwiatkowski, 1992). Therefore, it is essential
to assess the feasibility of using nonlinear autoregressions for short-term forecasting tasks. This
assessment was conducted on the same M3C database but for different data series. The existing
series was divided into a training set and a testing set. Statistical characteristics of the autore-
gressions were evaluated on the training set, while the forecast error variance was computed on
the testing set. For data series number 1402, the optimal model on the training set turned out
to be a third-order autoregression. It predicted data on the testing set with a forecast error vari-
ance of 810.01. The nonlinear autoregression on the testing set yieclded a forecast error variance
of 711.39. For another data series number 1429, the optimal linear autoregression is of fourth
order, providing a forecast error variance of 497.44. The nonlinear autoregression of the same
order has a forecast error variance of 437.29.

Conclusion

We demonstrated that the elementary image of the Kolmogorov-Gabor polynomial, which
has proven effective in modeling complex nonlinear economic dependencies, can be applied
as a formal model of nonlinear autoregression. Our research indicated that the process of con-
structing this autoregression should begin with the search for the best linear autoregression,
as the order of the optimal linear autoregression generally coincides with that of the optimal
nonlinear autoregression.

In randomly selected data series, it was shown that nonlinear autoregressions provide more
accurate forecasts in short-term forecasting of stochastic processes compared to linear autore-
gressions.

We examined the simplest of the autoregressive models, namely the AR (p) model, and
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demonstrated how to form a nonlinear autoregression based on it using the Kolmogorov-Gabor
polynomial. It seems that our approach can also be extended to more complex autoregressive
models, such as the ARIMA (p, d, q) model:

Y, =ia,~y,,- +ibj8,j (10)
i= =
we should first calculate the estimated values |, and ;,:
Vi = Zpl:aiy,_,», Vo = 21)]@,_]‘ (11)
P =
Then form a nonlinear ARIMA(p,d,q):
¥y, = ici(y,'_i)i +idj(ylij)j (12)
P =

But these are tasks for future scientific research. Similarly, other types of autoregressive
models can also be transformed into nonlinear forms.

Nonlinear models constructed using the elementary image of the Kolmogorov-Gabor poly-
nomial will always provide better approximations of stochastic processes than the original au-
toregressions. This can be explained by the way they are constructed: if the linear autoregression
perfectly describes the modeled process, then fitting it into the nonlinear form (9) using the
least squares method will result in all coefficients (9) being equal to zero, except for the coef-
ficient ¢, . In this case, a linear autoregression will be used.
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