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Abstract. The article presents the results of the research of the emergency loads effect on reinforced 
concrete turbine foundations of different types. Computational experiments were performed in a specialized 
finite element analysis program NX/NASTRAN. Calculations of the high-power turbine foundations of frame, 
wall, and vibration-insulated structures have been carried out. Emergency loads associated with a short 
circuit and a loss of synchronization (generator failure) were taken into account in the calculations by 
equivalent static and dynamic approaches. The comparison was carried out according to the calculated 
values of displacements and forces, in the elements of the computational model, where extreme values of 
forces were expected from the design experience. The results of the comparative analysis indicate that the 
use of a widespread statically equivalent approach often leads to a multiple overestimation of forces and 
displacements, in comparison with using of dynamic approach. Therefore, strength and dynamic analysis 
of high-power turbine foundations under emergency loads, it is necessary to apply a dynamic approach. A 
statically equivalent approach can be used for analysis of foundations for turbine units of relatively low 
power. 
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1. Introduction 
The turbine unit foundation is a special structure that integrates parts of the turbine and generator 

into a single system and used for taking static and dynamic loads and their transfer through the foundation 
plate to the ground base [1]. 

The object of the research is classic and vibration-isolated turbine unit foundations under the 
emergency loads, the subject of the research is the methods for calculating turbine unit foundations under 
emergency loads. 

Plenty of previous research works of authors and other scientists, engineers, and researchers were 
devoted to the analysis of the behavior of vibration-insulated foundations of high power under the seismic 
impact [2–9]. 

In particular, researches [2, 4] present methods for accurately accounting for viscous dampers and 
vibration-isolating elements used in vibration-isolated turbo-generator foundations. Researches [3, 5, 8, 9] 
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confirm the necessity of performing dynamic analysis for seismic calculations and demonstrate the 
effectiveness usage of seismic isolation. 

Research related to the analysis of the dynamic behavior of special building structures has been 
covered by wide range of works [10–22]. 

Article [10] investigates the influence of the scale factor on the dynamic response of framed 
foundations, while article [11] investigates the impact of framed foundation geometry on the dynamic 
response during high-speed turbomachinery operation. 

Research [12] demonstrates the importance of accurately accounting for equipment masses in the 
dynamic analysis model. Papers [13–15, 17–18] expand various aspects of soil-structure interaction in 
dynamic analyses of turbine foundation systems. Papers [19–22] demonstrates modern approaches to 
finite element seismic calculations. 

Steam turbine units are the main electrical generating equipment of thermal and nuclear power 
plants, and uninterrupted power supply to all spheres of life depends on their reliable operation. In the event 
of an emergency on the turbine units, it is the reliability of the building structure of the turbine unit foundation, 
which serves as its main support, that determines the severity of the consequences for all equipment and 
building structures of the engine room. 

The correctness of detailing and consideration in the strength analysis of turbine units foundations 
emergency loads on the generator, which are dynamic vibration loads by their nature, is a primary issue for 
the computational justification of the reliability of foundation building structures. 

Correct accounting of emergency loads on a turbine unit is relevant in the strength analysis and 
design of all types of turbine units foundations of any capacity. Since the energy industry and its 
technologies are actively developing [23–32], it is necessary to improve the calculation methods of special 
building structures – turbine units foundations. 

The purpose of the research is to compare the results of dynamic and statically equivalent 
approaches in the calculation of turbine unit foundations under the action of short-circuit loads on the 
generator. The research objectives include: 

• Performing computational experiments related to the use of dynamic and statically 
equivalent approaches for accounting of emergency loads from turbo-generators on various 
types of foundations; 

• Performing a comparative analysis of the computational experiment results by comparing 
two types of calculation approaches: static and dynamic, for different types of turbine unit 
foundations; 

• Evaluating the influence of the structural features of turbine unit foundations on the 
calculation results. 

2. Methods 
The main research method is making computational experiments. 

During implementing the chosen method, a certified calculation complex NASTRAN was used that 
implements finite element method [33–37]. The reliability and validity of the results confirmed due to the 
use of rigorous mathematical statements and hypotheses in the formulation and solution of problems 
adopted in the mechanics of deformable solids, structural mechanics, and dynamics of structures, as well 
as the use of modern proven numerical methods implemented by certified calculation complexes. 

The methods of static analysis, harmonic analysis based on the decomposition of oscillation forms, 
and direct integration of equations of motion were used. Due to the large number of time integration steps 
and degrees of freedom in the finite element model, the number of elements and nodes for comparison 
results was limited to nodes and elements in which maximum values of displacements and forces were 
expected. 

The analyses were performed using dynamic and equivalent static approaches (using the dynamic 
coefficient recommended by the standards or the equipment manufacturer). Graphs, diagrams, and 
graphical schemes were used to interpret the results, the data were summarized in comparative tables. 

The results of calculated displacements, forces, and bending moments were used as the main 
parameters for the comparison. As a result, the coefficients of proportionality between the analysis results 
for two types of approaches are derived. 
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One of the common types of emergency loads is considered: a short circuit (two or three-phase) or 
a loss of synchronization, that are, an accident on the turbine generator. 

The results of dynamic analysis obtained for five real types of turboset foundations were calculated 
and compared in the research. The main characteristics of turbosets and foundations are shown in Table 1. 

Table 1. General characteristics of the turboset foundations. 

№ Turbine 
type 

Foundation 
type 

Vibration 
isolation 

Operating 
frequency, rpm 

Power, 
MW 

Foundation 
mass, t 

Turbine unit 
mass, t 

1 Type-1 Wall no 1500 1000 22700 5060 
2 Type-2 Frame yes 1500 1250 6270 3540 
3 Type-3  Frame yes 3000 1200 4407 3817 

4 Type-4 Frame with 
columns no 3000 1000 19082 6190 

5 Type-5 Frame yes 1500 1250 6805 4760 
 

There are two options for steam turbine installations of high power. The installations with an operating 
frequency of 3000 rpm (the same as the frequency of the 50 Hz in the electrical network) are called “high-
speed”. Such turbines and generators have a lower mass and a two-pole generator. Installations with an 
operating frequency of 1500 rpm (25 Hz is a half of the frequency in the electrical network) are called “low-
speed”. These turbines and generators have a large mass and a four-pole generator. 

The design scheme of the wall foundation for a “low-speed” (1500 rpm) turbine unit is shown in Fig. 1. 
The model consists of a massive lower slab, walls, columns, and an upper structure of transverse crossbars 
(extensions on the walls) and longitudinal massive beams. This scheme is typical for the middle of the 20th 
century and is currently the only alternative to vibration-insulated turbine units foundations for the “low-
speed” machines. 

 
Figure 1. Finite element model of the wall foundation of the turbine unit Type-1 (1500 rpm). 

The design scheme of a vibration-insulated frame foundation for the low-speed (1500 rpm) Type-1 
turbine unit, manufactured in Russia, is shown in Fig. 2. The model consists of transverse crossbars and 
longitudinal beams of rectangular or close to rectangular cross-sections. The foundation is supported by 
vibration isolators, which are blocks that combine packages of cylindrical coaxial (one into the other) 
springs, some of the blocks are integrated with viscous dampers. The height of the reinforced concrete 
crossbars bearing the main load is up to 4.4 m. The structures are made of B30 grade concrete. 

 
Figure 2. Finite element model of the vibration-insulated part  

of the foundation of the turbine unit Type-2 (1500 rpm). 
The design scheme of a vibration-insulated frame foundation for the Type-3 “high-speed” turbine unit 

(3000 rpm) is shown in Fig. 3. The model consists of transverse crossbars, and longitudinal beams of 
rectangular or close to rectangular cross-sections. Similar to the Type-2 foundation, it is supported by 
vibration isolators (spring/spring-damping supports). The maximum calculated load-bearing capacity of the 
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vibration isolators used in normal operation reaches 1600 kN (2000 kN in an extreme situation). The height 
of reinforced concrete crossbars bearing the main load is up to 4.24 m. The structures are made of B30 
grade concrete. 

 
Figure 3. Finite element model of the vibration-insulated part  

of the foundation of the turbine unit Type-3 (3000 rpm). 
The design scheme of the classic frame foundation for the Type-4 “high-speed” (3000 rpm) turbine 

unit is shown in Fig. 4. The foundation consists of a massive lower slab of trapezoidal cross-section, 
columns, and an upper frame structure of transverse crossbars and longitudinal beams. Such a topological 
scheme has been standard for several decades for units with a capacity from 10 to 1000 MW. 

 
Figure 4. A finite element model of the classic frame foundation Type-4  

for a turbine unit (3000 rpm). 
The design scheme of the Type-5 vibration-insulated frame foundation for the “low-speed” 

(1500 rpm) turbine unit, produced in France, is shown in Fig. 5. The model consists of transverse crossbars 
and longitudinal beams of rectangular or close to rectangular cross-sections. Volumetric (8-node) end 
elements were used in the simulation to increase the accuracy of calculations. The number of degrees of 
freedom are 1200,000. Due to the huge mass of the structure, the foundation is supported by unique 
vibration isolators with high load-bearing capacity. The rated load-bearing capacity of the vibration isolators 
of this series can reach 4600 kN. The height of the crossbars made of reinforced concrete of B50 grade, 
bearing the main load, is 5.3 m. 

 
Figure 5. Finite element model of vibration-insulated foundation Type-5  

for a turbine unit (1500 rpm), France. 

3. Results and Discussions 
The following is a reference view of the intermediate results: 

− nodes for issuing the results of calculated forces and displacements for the vibration isolators 
(Fig. 6); 

− diagrams of bending moments in the foundation elements during a short circuit (Fig. 7); 
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− a selection of elements for determining forces (Fig. 8); 
− a graph of the vertical displacement of one of the nodes due to the dynamic loads (Fig. 9). 

 
Figure 6. Nodes for issuing the results of calculated forces  

in vibration isolators and their deformations. 

 
Figure 7. Bending moment diagram in foundation elements during  

a short circuit of vibration-insulated foundation Type-5. 

 
Figure 8. Elements for the internal forces calculation. 
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Figure 9. Function of the vertical displacement of the node number 43  

of vibration-insulated foundation Type-5 due to a dynamic load. 
Table 2 shows the results of displacements and forces due to a short-circuit on the turbine generator, 

obtained by two types of approaches: dynamic and statically equivalent for a Type-1 wall foundation for the 
“low-speed” turbine unit (1500 rpm). The coefficients of proportionality between the two types of 
approaches are derived. 

Table 2. The results of the calculation of the wall foundation for the “low-speed” turbine unit 
Type-1. 

Displacements 

No of 
node 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Uy, mm Uz, mm Uy, mm Uz, mm КUy, relative 
units 

КUz, relative 
units 

7575 0.116 –0.053 2.600 0.002 22.41 0.03 
7633 –0.165 –0.293 3.200 2.400 19.45 8.19 
7671 –0.171 0.218 3.000 1.400 17.53 6.42 
7715 –0.140 0.154 3.300 1.200 23.66 7.80 
7826 –0.129 –0.100 3.600 0.200 27.82 2.01 
7990 –0.033 0.031 0.400 0.200 12.21 6.44 
8015 –0.031 0.036 0.800 0.400 25.46 11.16 
8040 –0.066 0.054 1.500 0.800 22.82 14.89 
8041 0.043 0.029 0.074 –0.001 1.72 0.03 
8071 –0.050 0.032 0.200 –0.200 3.96 6.27 
8130 –0.123 –0.068 1.800 0.800 14.61 11.83 

Forces (bending and torques of beams and crossbars) 

No of 
element 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Mz, kNm Mk, kNm Mz, kNm Mk, kNm КMy, relative 
units 

КMk, relative 
units 

2429 236 –7 677 3 2.9 0.4 
2453 200 –10 841 24 4.2 2.4 
7291 –106 –24 167 25 1.6 1.0 
7340 390 223 1603 46 4.1 0.2 
7428 –923 1263 1251 1468 1.4 1.2 

18237 152 64 26 20 0.2 0.3 
18283 629 70 522 518 0.8 7.4 
18301 –529 63 234 287 0.4 4.5 
18318 –1328 86 281 611 0.2 7.1 
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A statically equivalent approach using load data from the turbine supplier results in an overestimation 
of displacements from 2 to 12 times for the vertical direction and from 1.5 to 28 times for the transverse 
direction. 

At the statically equivalent approach, the values of the bending moments Mz in the characteristic 
elements are 2–4 times higher than at the dynamic approach. It is impossible to draw an unambiguous 
conclusion for the Mk torque. A more detailed analysis with a large number of items in the sample is 
required. 

Table 3 shows the results of calculating the displacements and forces from a short circuit on the 
turbine generator, obtained using two approaches: dynamic and statically equivalent for the Type-2 
vibration-insulated frame foundation for the “low-speed” turbine unit. The coefficients of proportionality 
between the two types of the approaches are derived. 

Table 3. Results for a Type-2 vibration-insulated frame foundation for the “low-speed” turbine 
unit (1500 rpm). 

Displacements 

No of 
node 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Uy, mm Uz, mm Uy, mm Uy, mm Uz, mm Uy, mm 
2092 –0.158 0.393 0.408 4.150 2.582 10.560 
2131 0.240 0.610 0.188 2.030 0.783 3.328 
2142 0.173 0.477 0.209 8.220 1.208 17.233 
2166 0.246 0.712 –0.291 14.100 1.183 19.803 
2232 0.559 0.673 –0.259 11.200 0.463 16.642 
2244 0.632 0.802 –0.237 11.800 0.375 14.713 
2258 0.420 0.565 –0.388 11.800 0.924 20.885 
2268 0.447 0.782 –0.007 11.500 0.016 14.706 

Forces (bending and torques of beams and crossbars) 

No of 
element 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Mz, kNm Mk, kNm Mz, kNm Mk, kNm КMy, relative 
units 

КMk, relative 
units 

71 731 858 2495 1846 3.4 2.2 
248 –10905 –6059 26233 14237 2.4 2.3 
260 –2659 –6070 13159 14059 4.9 2.3 
453 6430 15134 2761 6795 0.4 0.4 
481 –13116 7326 51402 21581 3.9 2.9 
504 –21150 –18655 6069 29354 0.3 1.6 
660 –5210 –549 794 487 0.2 0.9 
668 –13636 6105 2055 597 0.2 0.1 
770 1698 1542 5911 7020 3.5 4.6 
839 2015 –783 3017 7093 1.5 9.1 

 

A statically equivalent approach using the data from the turbogenerator supplier for a short circuit 
and using dynamic coefficients (k = 2) gives an overestimation of displacements from 3 to 21 times for the 
vertical direction and from 0.01 to 2.6 times for the transverse direction. The increased values for the 
transverse direction are associated with a significant (5-fold) difference in the horizontal stiffness of the 
vibration isolators compared to the vertical one. 

At the statically equivalent approach, the values of bending moments Mz over the defining sections 
are significantly higher than at the dynamic approach. However, due to the mismatch of the maxima in the 
diagrams across the entire structural element (beam/crossbar), a research is necessary, including all the 
final elements inside the structural element. 

Table 4 shows the results of displacements and forces due to a short-circuit on the turbine generator, 
obtained by two types of approaches: dynamic and statically equivalent for a vibration-insulated frame 
foundation for a “high-speed” (3000 rpm) turbine unit. The coefficients of proportionality between the two 
types of approaches are derived. 
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Table 4. Results for a Type-3 vibration-insulated frame foundation for a “high-speed” turbine 
unit (3000 rpm). 

Displacements 

No of 
node 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Uy, mm Uz, mm Uy, mm Uy, mm Uz, mm Uy, mm 
459 –0.99 –1.19 0.83 6.93 0.8 5.8 
453 –0.79 –0.83 0.79 7.01 1.0 8.4 
980 –0.55 –0.66 1.59 6.93 2.9 10.4 
985 –0.43 –0.53 2.10 5.95 4.9 11.2 
450 0.39 0.63 2.40 6.72 6.1 10.7 
435 0.31 –0.27 1.82 3.16 5.9 11.9 
466 0.21 –0.18 1.25 1.17 6.0 6.4 
778 0.19 –0.10 0.99 0.46 5.2 4.5 
770 0.07 –0.12 0.53 0.18 7.7 1.6 
768 0.18 –0.15 0.10 0.07 0.5 0.4 

Forces (bending and torques of beams and crossbars) 

No of 
element 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Mz, kNm Mk, kNm Mz, kNm Mk, kNm КMy, relative 
units 

КMk, relative 
units 

783 1007 –1456 3301 5732 3.3 3.9 
772 4569 –1329 14821 5097 3.2 3.8 
183 –1509 –1462 1300 4869 0.9 3.3 
78 1610 594 6499 1535 4.0 2.6 
82 426 612 2230 1771 5.2 2.9 
57 –558 605 1592 2307 2.9 3.8 
28 –3467 320 880 1077 0.3 3.4 

442 –175 190 179 254 1.0 1.3 
454 –168 163 121 154 0.7 0.9 
478 90 103 78 70 0.9 0.7 

 

A statically equivalent approach using dynamic coefficients (k = 2) for a short circuit in the generator 
shows at least a 4–12 fold increase in displacement compared to the dynamic calculation in the load 
application area. In the part of the foundation furthest from the impact, the static forces are less than the 
dynamic ones, which is associated with a faster “attenuation” of static forces compared to the dynamic 
ones. 

The forces in the rods according to the results of the dynamic calculation are generally significantly 
less than those obtained from the results of the static calculation. However, there is reversed situation in 
some elements. 

Table 5 shows the results of displacements and forces due to a short-circuit on the turbine generator, 
obtained by two types of approaches: dynamic and statically equivalent for the classic Type-4 frame 
foundation for a “high-speed” (3000 rpm) turbine unit. The coefficients of proportionality between the two 
types of approaches are derived. 

 

 

 

 

 

 

 

 



Magazine of Civil Engineering, 18(1), 2025 

Table 5. Results for a Type-4 classic frame foundation for a “high-speed” turbine unit 
(3000 rpm). 

Displacements 

No of 
node 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Uy, mm Uz, mm Uy, mm Uy, mm Uz, mm Uy, mm 
478 –0.50 –0.37 4.44 1.22000 8.91 3.325 
455 –0.46 –0.29 4.23 1.12000 9.17 3.848 
501 –0.49 –0.34 4.60 1.25000 9.38 3.705 
431 –0.49 –0.21 4.64 0.00075 9.53 0.004 
128 –0.45 –0.19 4.18 0.00019 9.28 0.001 
129 –0.45 –0.12 3.93 0.00017 8.78 0.001 
130 –0.44 –0.10 3.59 0.00003 8.24 0.000 
328 –0.42 –0.06 3.34 0.00005 7.88 0.001 
326 –0.42 0.04 3.08 0.00003 7.36 0.001 
327 –0.41 0.09 2.81 0.00012 6.84 0.001 

Forces (bending and torques of beams and crossbars) 

No of 
element 

Dynamic analysis Static analysis The ratio of a statically equivalent 
solution to a dynamic solution 

Mz, kNm Mk, kNm Mz, kNm Mk, kNm КMy, relative 
units 

КMk, relative 
units 

498 –1635 –641 4894 392 –2.99 –0.6 
516 402 641 363 512 0.90 0.8 
472 381 521 315 191 0.83 0.4 

1198 –254 –1 8 70 –0.03 –50.3 
162 –373 43 212 69 –0.57 1.6 
157 218 –27 96 35 0.44 –1.3 
434 88 14 31 21 0.35 1.5 
357 –139 18 23 14 –0.17 0.8 
364 –117 –12 19 9 –0.16 –0.8 
272 60 –52 14 16 0.23 –0.3 
249 –85 127 3 37 –0.04 0.3 
222 –141 –78 3 80 –0.02 –1.0 
28 –137 –174 4 144 –0.03 –0.8 
52 515 –409 209 807 0.41 –2.0 

572 –503 145 30 228 –0.06 1.6 
578 108 74 30 111 0.28 1.5 

2 210 –102 6 51 0.03 –0.5 
 

At the static approach, the transverse and vertical displacements in the load application area are 
greater than the dynamic ones. Away from the load, small (almost zero) values of static and dynamic 
displacements do not correlate with each other. 

The forces in such a rigid foundation with a large number of columns are small themselves and there 
is no clear connection. 

Table 6 shows the results of displacements and forces due to short-circuit on the turbine generator, 
obtained by two types of approaches: dynamic and statically equivalent for a Type-5 vibration-insulated 
frame foundation for a “slow-speed” turbine unit (1500 rpm) of French production. The coefficients of 
proportionality between the two types of approaches are derived. 
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Table 6. Results for a Type-5 vibration-insulated frame foundation for a “low-speed” turbine 
unit (1500 rpm) of French production. 

Displacements 

No of 
node 

Uz, mm The ratio of a statically equivalent 
solution to a dynamic solution 

Loss of 
synchronizatio

n 
Two-phase 
short circuit 

Three-phase 
short circuit 

Static 
analysis Maximum Minimal 

1 0.96 0.35 0.39 0.27 0.8 0.3 
10 0.61 0.18 0.20 0.47 2.6 0.8 
19 1.13 0.35 0.37 1.48 4.2 1.3 
27 1.99 0.59 0.60 4.49 7.6 2.3 
34 3.14 0.90 0.93 9.8 10.9 3.1 
43 2.15 0.83 0.82 7.69 9.4 3.6 
48 2.28 0.71 0.75 8.18 11.5 3.6 

Forces in spring vibration isolators 

No of 
node 

Pz, kN The ratio of a statically equivalent 
solution to a dynamic solution 

Loss of 
synchronizatio

n 
Two-phase 
short circuit 

Three-phase 
short circuit 

Static 
analysis Maximum Minimal 

1 81.4 30.1 33.4 –23 0.7 0.3 
10 66.4 19.7 –21.7 –51 2.6 0.8 
19 123.6 38.4 40.6 –162 4.2 1.3 
27 217.1 64.1 65.3 –490 7.6 2.3 
34 266.6 76.6 79.3 –833 10.9 3.1 
43 199.9 77.5 76.1 –715 9.4 3.6 
48 193.5 60.4 64.1 –696 11.5 3.6 

 

A statically equivalent approach using dynamic coefficients (k = 2) for accidents in the electrical 
circuits of the generator shows at least a threefold excess in the area of application of loads. The maximum 
difference is more than 11 times. In the part of the foundation farthest from the impact, the forces are 
significantly less, and the static ones decrease much faster than the dynamic ones. In connection with the 
above, the force values in the part of the foundation farthest from the generator, obtained by the static 
method, may be less than the dynamic ones. 

The forces in the spring supports are distributed similarly to the forces in the foundation elements. 
The force values for vibration isolators near the generator, obtained from the results of dynamic calculation, 
are significantly less than those obtained from the results of static calculation. 

The analyzed literature [2–18] presents researches of the dynamic behavior of turbine foundation 
structures under vibration and seismic loads, emphasizing the influence of geometry, soil type, and scale 
factors. All researchers performed dynamic calculations. No comparable publications on similar calculations 
were found in open access. Therefore, a quantitative or qualitative comparison of the research results with 
similar results of other authors is not possible. 

4. Conclusion 
The simulations, analyses, and calculations performed are based on modern theoretical and 

numerical methods. The theoretical methods were based on the scientific principles of dynamic analysis. 
The computational studies were carried out using a modern, verified and one of the most powerful software 
systems. The results obtained during the research can be summarized in the form of the following main 
conclusions: 

1. Emergency loads are crucial in strength analysis of reinforced concrete structures of turbine units 
foundations and the selection of vibration-insulating elements. 

2. An equivalent static approach to load-bearing capacity testing is unacceptable. The dynamic 
approach gives the values of the criteria parameters several times/tens of times less than at the 
static solution, and is the only recommended one. Analysis of various types of foundations have 
shown that, according to the estimates of the maximum forces from a short circuit on the generator, 
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in reinforced concrete structures, the dynamic approach gives on average of 3–15 times lower 
values of forces compared with the statically equivalent approach based on the dynamic coefficient. 

3. The research results have been implemented in the practice of designing and calculating modern 
high-power turbine unit foundations for nuclear power plants of Russian design. 

At the next stages of the research, an additional analysis are required to clarify the determining forces 
within the structural element. These calculations should take into account the mismatches of the cross-
sections, where the maxima for static and dynamic calculations are reached. 
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