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Abstract. The study presents an experimental and analytical investigation of foamed polyurethane
viscoelastic materials with varying density and pore structures, focusing on their dynamic mechanical
behavior relevant for vibration damping applications. Samples with distinct pore configurations (open,
closed, and combined) and varying densities (165—-380 kg/m?) were subjected to resonance-based dynamic
tests under static loads of 2, 5, and 10 kPa. The dynamic modulus of elasticity and damping characteristics,
including loss factor, fractional damping parameters, and relaxation times, were determined. Results
indicated that damping properties are strongly influenced by material density and internal pore structure,
with closed-pore materials exhibiting lower damping capacities compared to materials with open or
combined pores. A Fractional Standard Linear Solid (FSLS) model was effectively utilized to characterize
the observed nonlinear viscoelastic behaviors, successfully correlating experimental data through
parameter identification methods. The findings confirm that increased density generally enhances the
dynamic modulus while reducing damping capacity, whereas pore structure significantly affects the
material's dynamic response. These insights validate fractional derivative models as efficient predictive
tools, facilitating the optimized design of viscoelastic isolation systems for engineering structures.
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1. Introduction

Viscoelastic materials have been widely employed in numerous branches of science and engineering
to address critical issues such as reducing dynamic impacts on supporting structures, vibration and seismic
isolation of buildings and technical systems, and modifying the dynamic stiffness of structural elements. In
these applications, understanding the dynamic behavior of the viscoelastic elements is indispensable for
ensuring the reliability and efficiency of isolation and damping systems. Such behavior is inherently rate-
dependent, as the stiffness and damping characteristics of elastomers and polymeric foams generally
exhibit considerable sensitivity to strain rate, frequency, and amplitude of excitation. Consequently,
formulating accurate constitutive models becomes pivotal in designing vibration and seismic isolation
systems with predictable performance over their entire service life.

A broad spectrum of rheological models has been proposed to capture the complex time- and
frequency-dependent behavior of viscoelastic materials, ranging from simple two-parameter models, such
as the Kelvin—Voigt or Maxwell models, to sophisticated multi-element generalized models containing
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multiple chains of springs and dashpots [1]. However, classical integer-order models can fail to capture
certain real-world behaviors, especially when damping mechanisms arise from multiple or overlapping
relaxation processes. Furthermore, simplified models sometimes yield unphysical predictions. For instance,
Kelvin—Voigt-type models may exhibit artificially high or even unbounded loss factors under specific
parametric conditions. On the other hand, highly parameterized multi-element frameworks, such as the
Mooney—Rivlin model with eleven or more parameters, demand extensive experimental campaigns, making
them impractical for many engineering contexts.

Recent studies emphasize that these challenges can often be addressed by leveraging fractional
calculus, which introduces fractional-order derivatives into standard viscoelastic models. Fractional
operators enable more flexible representation of material memory effects than their integer-order
counterparts [2, 3]. Such models, including the Fractional Kelvin—Voigt, Fractional Maxwell, and Fractional
Standard Linear Solid (FSLS) models, can reconcile high modeling accuracy with comparatively fewer
model parameters [4]. Moreover, numerical advancements in solving fractional differential equations [5]
further encourage the use of fractional derivatives in practical applications.

Early applications of fractional viscoelastic models in structural mechanics have demonstrated
promising results. Studies on beams, plates, and shells resting on fractional viscoelastic foundations [6-9]
have shown that incorporating fractional damping provides excellent agreement between experimental data
and theoretical predictions for a wide range of frequencies. Furthermore, fractional operator models have

found utility in seismology, where they can represent constant-Q (quality factor) seismic waves more

effectively than classical integer-order approaches [10, 11]. These successes align with other experimental
validations in the literature: for instance, fractional models have demonstrated high fidelity in capturing the
creep and recovery behavior of asphalt mixtures [12], the rheological response of fiber-reinforced rubber
concrete [13], large-amplitude vibrations in metallic and polymeric systems [14], and viscoelasticity in
polyethylene [15, 16], silicone [17, 18], and various rubber compounds [19].

Notably, fractional derivative-based methodologies have facilitated accurate and efficient
identification of viscoelastic parameters. Beda and Chevalier [20] proposed a parametric identification
technique to determine fractional exponents and relaxation moduli from limited experimental datasets.
Similarly, Espindola et al. [21] and Guo et al. [22] extended these approaches to thermoplastics and
polymeric acoustic foams, revealing that fractional damping parameters often remain within a relatively
narrow range under typical operational conditions, thus enabling simpler yet robust models. In these
studies, the deviation between model predictions and experimental data was reported to be significantly
lower compared to classical models — often below 5 % across a wide frequency range.

Despite the recognized advantages, an ongoing challenge in fractional derivative modeling pertains
to the identification of fractional parameters from experimental data, which can be especially sensitive to
measurement noise, excitation frequencies, and other test conditions [5]. Recent investigations [13]
demonstrated that the fractional exponent for fiber-reinforced rubber concrete could be identified by
comparing analytical solutions of the FSLS model with experimental resonance data, obtaining an excellent
agreement (errors consistently under 4 % in the measured stiffness loss). Similar conclusions were made
for other polymeric and hyperelastic materials, highlighting how fractional damping exponents effectively
characterize time-dependent material behavior in both the low- and high-frequency regimes [17, 18,
20-22].

Driven by these findings, the present study focuses on foamed polyurethane vibration-damping
materials with combined pore structures and varying densities, aiming to elucidate the role of fractional
parameters in their dynamic response. By performing a series of resonance tests, the mechanical properties
—dynamic modulus of elasticity and loss factor — are obtained under a range of static preloads and dynamic
excitations. These datasets serve as inputs to a FSLS model, whose parameters are systematically
identified via nonlinear least squares optimization. Emphasis is placed on capturing both stiffness and
damping variations across different densities and pore structures, thereby highlighting the nuanced
influence of foam microstructure on global vibrational performance.

This paper presents a comprehensive experimental and analytical framework — encompassing test
setup, data acquisition, and model parameter identification — to ensure reliable quantification of viscoelastic
behavior. The insights gained herein extend the applicability of fractional operator modeling to a broader
class of vibration-damping materials, contributing to advanced design strategies for high-efficiency passive
isolation and noise control systems. The following sections detail the experimental methodology, describe
the fractional-derivative-based approach to parameter identification, and discuss the implications of the
results for future research and practical applications in vibration and seismic isolation.
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2. Method
2.1. Materials with Different Stiffness

Let us first consider the behavior of vibration-damping materials, widely used in various fields of
engineering and construction, made on the basis of foamed polyurethanes with different combination of
closed and open pores, as well as with different densities.

For a comparative evaluation of the behavior of materials under dynamic impact a series of samples
(type s.1.1-s.1.4 in Fig. 1 a—d) with combined pore structure and increasing density, as well as materials
with approximately the same density but different structure: type s.2.1 with closed pores (Fig. 1 €) and type
s.1.4 (Fig. 1 d) are considered.

These materials, due to their foam structure, have pronounced nonlinear characteristics. When the
applied compression load increases, the stiffness of the material in the range of its operation decreases,
which is due to the structural features of "collapse" of open pores and "pumping" of sealed air, and, having
reached the limit value, begins to increase.

The internal structure of the samples (slice fixation) of the materials is shown in Fig. 1. The images
were obtained using an optical microscope with 50x — 100x magnification. For materials of types s.1.1—
s.1.4 it could be noted that the increase in density occurs with a simultaneous increase in the number of
internal pores and a decrease in their size — the spread between large and small pores decreases and their
total diameter becomes more and more constant.

Figure 1. Internal porous structure f material samples: a) type s.1.1; b) type s.1.2;
c) type s.1.3; d) type s.1.4; e) type s.2.1.

2.2. Materials with Different Damping

We also consider the behavior of vibration-damping materials based on polyurethane foam, used as
a vibration-damping layer of vibration isolation systems for buildings and structures, machine foundations
and high-precision equipment.
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Two series of materials of approximately the same stiffness but with different structural features are
considered for comparative evaluation of materials behavior under dynamic influence:

e type d.1 — material with closed pores, which has the most elastic properties;

o type d.2 — material with communicating pores, it has high damping, its properties are close
to those of viscous liquids;

e type d.3 — material with combined pore structure, it combines the properties of materials of
types d.1 and d.2.

These materials, due to their foamed structure, have pronounced nonlinear characteristics. When
the applied compression load increases, the stiffness of the material in the range of its operation decreases,
which is due to the structural features of "collapse” of open pores and "pumping" of sealed air, and, having
reached the limit value, begins to increase.

2.3. Experimental Method

To determine the mechanical characteristics of the materials under study, a series of dynamic tests
were carried out using the resonance method on a stand developed in accordance with GOST 16297-80,
the general scheme of which is shown in Fig. 2. Experimental studies were carried out for samples in the
form of square plates with dimensions of 100 x 100 x 25 mm. The sample of vibration-damping material 3
was installed on the stage 2 of electrodynamic vibro-exciter 1 and loaded with steel cylinders (masses) 4,
providing constant loads on the sample of 2, 5 and 10 kPa.

Tests were conducted when the sample was subjected to broadband (white) noise. The perturbation
signal was set by the oscillation generator RFT 03004 7, which through the amplifier RFT LV-102 8 was
connected to the vibration exciter ESE-201 type 1. During the tests, the accelerations of the moving part of

the electrodynamic vibration exciter (base) 5' — function Z(t), as well as the response of the system 5 —

function x(t) were recorded by single-axis accelerometers PCB and multichannel measuring system
LCARD LTR-24-2.

a) b)
QT -y
B fo Tz |
Kl 2is 51. |

1 s S
7] | v
o

Figure 2. Test bench for dynamic tests by resonance method:
a) schematic diagram of the test bench; b) photo of the shaker.

According to the results of dynamic tests by the resonance method, the measured accelerograms of
base vibration z(t) and mass x(t) were processed to obtain the spectral characteristics of Z((D) and

x((o) The transfer function Tr(co) is defined as the ratio of the spectral characteristics of the vibration

accelerations obtained at the mass to the spectral characteristics of the vibration accelerations recorded at
the base:

(1)

where ® is the frequency of external kinematic influence, Hz.

Fig. 3 shows experimentally obtained curves of the transfer function modulus Tr((o) for the object
of study in the frequency range of 1-500 Hz at a constant load on the sample of 5 kPa.

Note that for materials with combined pores of types s.1.1-s.1.4, shown by the dashed line, with
increasing density, an increase in the resonance frequency of oscillations from 26 Hz (for type s.1.1) to
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53 Hz (for type s.1.4) is observed. At the same time, the amplitude of the transfer function modulus at the
resonance frequency remains approximately constant and varies in the range of 3—4. The materials of types
s.1.4 and s.2.1, having comparable density but different structure, show differences in the region of the
resonance frequency of the system: the material with closed pores (type s.2.1) has a lower resonance
frequency (44 Hz vs. 53 Hz) and a much larger (3 times) amplitude of the resonance peak.

The dynamic modulus of elasticity of the material could be determined in accordance with GOST
16297-80 using the formula:

A’ wi Ml
Egyn = TO 2)

where ® is the resonant frequency of the system, Hz; M is the mass of the load, kg; / is the height
(thickness) of the sample under load, m; and S is the area of the tested sample, m2.
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Figure 3. Modulus curves of the transfer function for the considered materials at a constant load
of 5 kPa: a) for materials with different stiffness, and b) for materials with different damping.

The resonant frequency has been determined as the frequency corresponding to the maximum peak
on the transfer function graph.

The loss factor has been evaluated by the width of the resonance peak [23], as shown in Fig. 4. In
this case, points A and B on the graph correspond to the frequencies at which the amplitude of accelerations

is \/5 times smaller than the maximum amplitude achieved at the resonant frequency.

Considering the introduced notations, the formula for the loss factor will be as follows:
Wy — O
n=——-
®o

Table 1 shows the obtained mechanical characteristics of the investigated materials.
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Figure 4. Schematic of resonance peak width determination.

Table 1. Dynamic parameters of the object of study.

Material identification Density, kg/m® Load, kPa Edyn , MPa n

2 0428  0.440

Type s.1.1 165 5 0.333 0.420

10 0.179  0.670

2 2 0.657  0.299
£ Types1.2 190 5 0659  0.324
2 10 0572 0.600
S 2 0637 0423
5 Typesi3 210 5 0.846 0281
% 10 0.782  0.343
o 2 1129  0.250
§  Types.14 380 5 1275  0.237
< 10 1.176 0.399
2 0.909  0.172

Type s.2.1 350 5 0.969  0.155

10 0.952  0.192

2 0.788  0.221

Type d.1.1 343 5 1.000  0.130

10 1.050  0.079

2 0.827  0.402

>  Typed.1.2 467 5 1190  0.187
g 10 1450  0.164
3 2 3.070 0.664
S Typed2. 353 5 5560  0.600
£ 10 6.690 0.620
= 2 7.280  0.581
E Type d.2.2 572 5 13.640  0.483
© 10 16.150  0.491
2 2 0.724  0.288
= Typed.3.1 280 5 1.070  0.194
10 1.260  0.177

2 1.060  0.319

Type d.3.2 381 5 1459  0.198

10 1.650  0.148

Materials belonging to type s.1 & d.1 have a combination of open and closed pores and have
pronounced viscoelastic properties with a relatively small loss factor value. It can be noted that with
increasing density, the dynamic modulus of elasticity increases, and the loss factor decreases. Materials
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with a structure with closed pores (type s.2.1) have more pronounced elastic properties, as evidenced by
rather low values of the loss factor compared to other samples.

2.4. Rheological Material Models

For mathematical description of viscoelastic characteristics of the considered materials, we would
adopt the standard linear solid model with fractional derivative, the rheological model of which is presented
in Fig. 5 in two modifications: Zener—Rzhanitsyn (Fig. 5 a) and Poyting—Thomson-Ishlinsky (Fig. 5 b). Both
variants are described by the following equation [3]:

c+1.D'c =E, (8 + rZ,DYG), (4)

where G is the stress in the element, N/mm?; ¢ is the strain of the viscoelastic element; T, and 1, are

the creep and relaxation times, respectively, s; £, and E_, are the relaxed and instantaneous elastic
moduli, respectively, N/mm2.

The fractional derivative in the Riemann—Liouville representation is defined as

t _
Dyx(t)zifx(t u)du’ 5)
dt o T (1=y)u’

where I’ (1 - y) is the Gamma-function.

Figure 5. Standard linear solid model: a) Zener—Rzhanitsyn representation,
and b) Poyting—Thomson-Ishlinsky representation.

Further we will use the standard linear solid model in the Zener—Rzhanitsyn representation,
consisting of an elastic element with modulus £,, N/mm?, connected in parallel with a fractional analog of

a Maxwell element involving an elastic element with modulus E;, N/mm?, and a viscous element n.

Parameters of this model entering in equation (4) are described by the following relationships [3]:

E0:E2, Ew:ﬂ’
El+E,
E+E ) E
=l =2y {—J =0 (6)
E, E\E, Ts E,

Let us consider the mechanical model corresponding to the experimental studies performed in
Section 2.

The relationship between the stiffness parameters k;, k, and viscosity coefficient ¢ of the

mechanical model (Fig. 6) and the rheological model parameters E;, E, and 1 (Fig. 5 a) is the following:

S S S
—E, k2:7E2, c=—n, (7)

k=
7 I
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where S and [ are the area and height (thickness) of the rectangular material specimen under load.

In this case, the damper will be described by the relation c:erl, where 7 is the fractional
parameter (O <7< 1). When v — 0, the material has purely elastic behavior, and when y — 1, it has
purely viscous behavior. In fact, every material has some combination of elastic and viscous properties.

The transfer function (1) for a single-mass system with a viscoelastic element described by equation
(4), in the case of a kinematic perturbation of the base z(t) = Zoeimt will take the following form:

Try =2 = L (e, ) (i(;))y , ®)
) 1+(Nr8)y(ioa)y—£;:)] (141 (o))

k T
where @y =,|—, i=+-1, N=-2.
m T

€

S - - gI
il é L—J "

Figure 6. Single-mass oscillating system with a viscoelastic foundation.

0 =

3. Results and Discussion

To describe the material behavior by the standard linear solid model with fractional derivative, it is
necessary to know 5 parameters: E,, E_, T., T, Y, in so doing 4 of them to be determined, and the

o0

5% one could be obtained using relations (6).

The experimentally obtained transfer functions Tr(w) (1) was approximated by the curve described

by the analytical solution (8) for the oscillating system shown in Fig. 6. The optimization problem was solved
in the MATLAB program Optimization Toolbox by the nonlinear least squares method using the Isqcurvefit
function. The natural frequency @, obtained from the experimental results was set as an initial
approximation.

Fig. 7 shows a graphical representation of the result of approximation of the experimental data for

material type 2.1 at a load of 2 kPa. Dots indicate experimental data, solid red line refers to the
approximated curve, red dotted line are lower and upper 95 % confidence interval.

The results of approximation of the rheological model parameters of the considered materials
according to the performed tests are presented in Table 2.
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Figure 7. Result of approximation of the transfer function modulus obtained from the results
of tests of material type s.2.1 at a load of 2 kPa.

Table 2. Approximation results.

Approximation results

Material identification Density, kg/m® Load, kPa

N Y Te, S o, Hz

288.14  0.83 83791109 42.64

Type s.1.1 165 5 58.71  0.68 5.9461810° 2473

10 42.86 095 4.82423-10°  14.80

2 343.73 091 1.09781-10° 56.00
£ Types.1.2 190 5 19.47 073 1.01912:10%  34.01
2 10 32043 082 6.8968810° 22.27
S 11849 079 3.06985-10° 54.14
5 Types13 210 5 2503  0.89 3.28268-10° 41.29
= 10 56.68  0.85  4.3767-107  27.43
N 3873  1.00 1.77606:10° 79.69
&  Types.14 380 5 156.45  1.00 1.78484-107 53.03
= 10 43.95  0.86  5.2626-107  36.74
26.84  1.00 3.14728:10° 68.40

Type s.2.1 350 5 17.89 088 2.75135:10° 44.99

10 8.85 1.00  4.12621-10°  31.64

Approximation results

Material identification Density, kg/m® Load, kPa

N Y T, S o, Hz

793.082 0.624 1.659-10°° 83.21

Type d.1.1 343 5 434170 0.890  3.713-10°° 62.28
10 101.443  0.920 1.597-10°° 45.86

9334.457 0.639 4.117-107 80.40

Type d.1.2 467 5 14363.697 0.773  1.296-1077 67.26

15202.664 0.802  8.908:-10°8 52.42
18633.192 0.757 1.865:107  165.39
Type d.2.1 353 5 38750.896 0.678 1.211-107  130.24

10 42758.908 0.682  1.445-107  100.41
5.861 0.806  7.042:10*  233.32
Type d.2.2 572 5 2849.600 0.544  1.060-10®  193.56

10 26344.363 0.671  1.036:107  161.13

Materials with different damping
o
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Approximation results

Material identification Density, kg/m® Load, kPa

N Y Te, S wo, Hz

2 266.839 0.588  1.256:10°° 77.50

Type d.3.1 280 5 4178.858 0.721 4.445-1077 63.81
10 23061.408 0.770 7.956-10-8 48.46

2 7520.506 0.487 4.618:107 86.73

Type d.3.2 381 5 6735431 0.752  2.565-1077 74.08
10 1223.899 0.749 1.284-10° 56.31

The scheme for determining the parameters of the rheological material model proposed in this work
is shown in the diagram below (Fig. 8).

Materials testing Input and response
by the resonance recording

Calculation

method #(t) m (L) |Tr(w)|

Determination of

c Approximation of Identification of
mechanical parameters ) ) )
— w0, Egyms 1] —  experimental data in — rheological model
B MATLAB parameters

Figure 8. Diagram of identification of parameters of the rheological model
of the materials under study.

Let us note several peculiarities of the behavior of the considered vibration-damping materials.

As can be seen from the test results presented in Table 2 and Fig. 9, with increasing load on each
of the samples, there is a decrease in the natural frequency of vibrations of the system, which corresponds
to the physical concept of the behavior of foamed materials. The increase in the resonance frequency is
proportional to the increase in the density of the samples.

N 200
Iﬁ —0—Types.1.1
g 80.0 —@—Types.1.2
70.0 —@—Types.1.3
—@—Types.1.4
60.0 —@—Types.2.1
50.0
40.0
30.0
20.0
—®
10.0
0.0

9 10
Pressure, kPa

Figure 9. Dependence between natural frequency w and acting load on the specimen
for materials with different stiffness.
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The dependence of the fractional parameter on the magnitude of the acting load on the specimen for
the tested materials is shown in Fig. 10.

a)
1.05
o=

1.00

0.95

0.90

0.85

0.80
0.75 ——Types.1.1
0.70 —@—Types.1.2
——Types.1.3
0.65 —8—Types.1.4
0.60 —@—Type s.2.1

2 3 4 5 6 7 8 9 10
Pressure, kPa
b)
0.95
P
0.90 =

0.85

0.80

0.75

0.70

0.65
Type d.1.1
0.60 —0—Type d.12
0.55 —0—Type d.2.1
’ —8—Type d.2.2
0.50 —0—Type d.3.1
0.45 —8— Type d.3.2

2 3 4 5 6 7 8 9 10

Pressure, kPa

Figure 10. Dependence of the fractional parameter on the sample load:
a) for materials with different stiffness, and b) for materials with different damping.

According to the test results, it should be noted that the fractional parameter for all materials is higher
than 0.65. This means that the selected materials have predominantly viscous properties.

The nature of the change in the fractional parameter with increasing applied load on the specimen
manifests itself in different ways. For example, for soft materials of types s.1.1 and s.1.2 (density 165—
190 kg/m?), the fractional parameter initially decreases from 0.85—-0.9 to 0.7-0.75, exhibiting more elastic
properties, after which it increases to 0.8—-0.95, i.e. the specimen starts behaving more viscous. Samples
with higher density — types s.1.3 and s.1.4 (density 210-380 kg/m?), on the contrary, demonstrate at these
values of loads from 2 to 10 kPa a decrease in ductile properties and an increase in elastic ones: the
fractional parameter decreases from 0.8—1 to 0.85. That can be related to the change in the structure of
the material with combined pores — at compression there is a gradual "collapse" of open communicating
pores, pore gas pressure increases, and gas redistribution between internal pores occurs. Gas pumping
between the pores is like the work of an ideal viscous damper. Further increases in load and compression
strain result in the operation of only closed pores, thus it is worth noting that for denser materials this state
is not achieved within the experiment described in Section 2.

The relaxation times determined from the approximation of the experimental data are shown in
Fig. 11.
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5.0E-07

5.0E-08
2 3 4 5 6 7 8 9 10
Pressure, kPa

Figure 11. Dependence of relaxation time for samples on load:
a) for materials with different stiffness, and b) for materials with different damping.

It can be noted that the lower the loss coefficient of the material, the shorter will be its relaxation time.
At the same time, the relaxation time depends on the acting load on the sample, which is associated with
the features of internal damping, including the elasticity of gas in the pores and its pumping between the
communicating pores.

The variation of the parameter N, equal to the ratio of creep and relaxation times, depending on the
load on the specimen is shown in Fig. 12.

The character of behavior of the parameter N coincides with the character of behavior of the
fractional parameter 7. In this case, the more the "viscous" part of the vibration-damping material works,

the smaller the parameter N is.
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—0— Types.1.1
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—@—Type d.2.2
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15000 —9

5000
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Figure 12. Dependence of the parameter N on the sample load:
a) for materials with different stiffness, and b) for materials with different damping.

Our findings align with previous research indicating that fractional derivative models effectively
capture the viscoelastic behavior of materials with fewer parameters compared to classical models. For
instance, a study on solid propellants demonstrated that a three-branch fractional Maxwell model provided
a satisfactory agreement with experimental data, highlighting the efficiency of fractional models in
describing viscoelastic behaviors [24].

Additionally, the dynamic mechanical analysis of polyurethane foams has been explored in prior
studies. One investigation utilized harmonic vibration tests to analyze the dynamic stiffness function of
polyurethane foams, revealing insights into their damping effects and frequency response characteristics
[25]. Another study emphasized the importance of considering dynamic properties, noting that while static
tests are commonly used, the behavior of polyurethane foams under dynamic conditions is crucial for
applications such as automotive seating [26].

The simplicity and practicality of the resonance method employed in our study are noteworthy. This
approach does not require extensive resources or sophisticated instrumentation, making it accessible for a
wide range of applications. The approximation of the experimentally obtained transfer function, with careful
selection of initial parameters, resulted in physically meaningful material characteristics.



Magazine of Civil Engineering, 18(2), 2025

4. Conclusion

In this paper, we investigated the viscoelastic behavior of foamed polyurethane vibration-damping
materials featuring combined porous structures, widely utilized in various engineering and construction
applications. To quantify the mechanical characteristics of these materials, dynamic resonance tests were
performed, enabling identification of parameters within a FSLS model. The fractional-derivative approach
proved highly effective in modeling complex viscoelastic behavior with fewer parameters compared to
classical integer-order models.

Our experimental results explicitly demonstrated the significant influence of both material density and
pore structure on damping properties:

e For materials with densities ranging from 165 to 380 kg/m?3, an increase in density resulted
in higher dynamic moduli of elasticity — from 0.428 MPa to 1.275 MPa (under a load of 5 kPa)
— and reduced loss factors from 0.420 to 0.237, indicating a clear inverse relationship
between density and damping capacity.

e The pore structure notably influenced damping performance: closed-pore materials exhibited
lower loss factors (0.155 at 5 kPa for type s.2.1) compared to open or combined structures,
confirming their predominantly elastic behavior.

e The fractional parameter vy, characterizing material viscoelasticity, was found consistently
greater than 0.65, confirming predominantly viscous behavior across tested materials.
However, y varied nonlinearly with applied load and density, capturing the transition between
elastic-dominated and viscous-dominated behaviors clearly.

e Relaxation times and the parameter N (ratio of creep to relaxation time) also correlated
significantly with applied load and material structure, highlighting the complexity of internal
damping mechanisms related to gas redistribution among communicating pores.

Overall, our findings emphasize the necessity of fractional-derivative modeling to accurately predict
the dynamic behavior of foamed polyurethane materials. The resonance-based testing approach provided
reliable data for fractional parameter identification, underscoring its practical applicability without requiring
extensive instrumentation. Future research directions should consider broader ranges of material densities
and structural variations to further refine fractional models and enhance their predictive capabilities for
advanced vibration and seismic isolation applications.

This study contributes significantly to the expanding field of fractional calculus applications in
mechanics of viscoelastic materials, bridging theoretical fractional-order models and practical experimental
validation. Specifically, the investigation enhances the existing understanding of how fractional-derivative-
based rheological models effectively represent complex viscoelastic behavior of foamed polymeric
materials used extensively in structural and vibration isolation contexts. Unlike classical integer-order
models, fractional-derivative models capture both elastic and viscous responses with greater fidelity while
reducing parameter complexity. The quantification and explicit identification of viscoelastic parameters,
presented in this research, underscore the pronounced dependency of damping properties on density and
pore structure, providing clear quantitative relationships valuable for material selection and system
optimization. Furthermore, this study showcases the applicability and robustness of fractional derivative
models for accurately predicting dynamic properties, contributing to the advancement of methods that
effectively address real-world engineering challenges in vibration and seismic isolation.
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