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Abstract. Concrete filled steel tubular (CFST) column is one of the most effective building structures types
that combine high bearing capacity and economy. Three-dimensional nonlinear finite element analysis is
the most common and reliable method for determining the bearing capacity of CFST columns. This
approach is usually applied to individual elements and is not suitable for calculating buildings and structures
with CFST elements as a single whole, due to high computational complexity. The purpose of the article is
to develop a simplified model that allows reducing a three-dimensional problem of calculating a CFST
column to a two-dimensional one. Rectangular CFST columns subjected to eccentric compression with
eccentricity in two planes are considered. The problem dimension is reduced based on the hypothesis of
plane sections. Rectangular elements are used for the concrete core and one-dimensional bar elements
are used for the steel pipe. The developed model was verified by comparing calculation results with the
results of three-dimensional finite element modeling in ANSYS. The maximum discrepancy between the
results for stresses was 2.3 %. The model was also validated on experimental data for 38 samples
presented in 3 different papers. The proposed model allows to significantly reduce the machine time costs
when calculating CFST columns in a physically nonlinear formulation.
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1. Introduction

Concrete filled steel tubular (CFST) columns have attracted considerable attention in the construction
industry due to their excellent mechanical properties, including high load-bearing capacity [1], ductility [2],
and fire resistance [3]. The combined action of the steel tube and concrete core in the circumferential
direction improves the compressive strength of concrete [4], making CFST columns a popular choice for
high-rise buildings [5], bridges [6], and other unique structures. Accurate calculation of the CFST columns
load-bearing capacity is essential to ensure the reliability of buildings and structures and optimize the
design.

When calculating the bearing capacity of CFST structures, it is necessary to take into account the
confinement effect of the concrete core by the steel pipe. Mander et al. [7] developed the model for confined
concrete, which was adapted for CFST columns. This model was improved in the studies of Yu et al. [8] to
take into account the nonlinear behavior of the confined concrete.

Numerical modeling, in particular finite element analysis (FEA), has become a powerful tool for
predicting the load-bearing capacity of CFST columns [9]. This modeling can provide the detailed analysis
of the structural behavior and the interaction between the steel tube and the concrete core [10]. The finite
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element (FE) method allows for the consideration of complex stress-strain relationships for both steel and
concrete [11], as well as the separation of the steel tube from the concrete core [12] and local buckling
effects [13].

FEA of the CFST columns is usually performed in a three-dimensional setting. Ahmed et al.
developed in paper [14] the 3D FE model to simulate the behavior of CFST columns of square cross-section
strengthened with additional spiral reinforcement. The developed model accurately predicted the load-strain
curves and failure modes. The article of authors Almasabha et al. [15] is devoted to three-dimensional
modeling of CFST columns with circular cross-section under quasi-static axial compression. The emphasis
in this work is on the scale effect, which has a great influence on the strength of large-diameter columns.
In the article [16], three-dimensional FEA is used as a tool for studying the shear behavior of CFST columns.
The developed FE models showed an average error of 12 % compared to the experimental results.

Parametric studies using nonlinear FEA allow to analyze the influence of various factors on the load-
bearing capacity of CFST columns. Yadav and Chen [17] conducted a comprehensive parametric study for
centrally compressed circular columns using the Abaqus software. Factors such as the diameter-to-
thickness ratio of the steel pipe, the yield strength of the steel, the compressive strength of the concrete,
and the slenderness coefficient of the column were considered. A similar problem was also considered in
[18], but the friction coefficient between the concrete core and the steel shell was added to the factors listed
above.

The authors of paper [19] studied self-stressing CFST columns using FE modeling in Abaqus. The
initial self-stress value varied from 0 to 10 MPa. As a result of the parametric study, the calculation formula
was proposed that allows taking into account the self-stress effect. In the paper [20], a comparative bearing
capacity analysis of the round and square CFST columns with traditional reinforced concrete elements was
performed. The comparison was carried out by means of laboratory experiments, as well as numerical
experiments in Abaqus. The comparison results showed that the bearing capacity under axial compression
for CFST columns is, on average, 1.5 times higher than that of reinforced concrete columns with the same
consumption of concrete and steel.

The authors of work [21] compared the results of FE modeling with the provisions of various countries
design codes for CFST columns. It was established that FEA provides more accurate results compared to
empirical formulas.

Currently, machine learning methods are gaining increasing popularity in the task of predicting the
bearing capacity of building structures, including CFST columns [22-24]. Unlike the theoretical and
experimental approach with the selection of empirical formulas, machine learning methods allow taking into
account complex nonlinear dependencies between parameters [25, 26]. However, to build reliable machine
learning models, a large amount of data is required, which can only be obtained through laboratory and
numerical experiments.

The conducted review shows that the FE method is the most common and effective method for
determining the bearing capacity of CFST columns. At the same time, most publications are devoted to
modeling the stress-strain state of individual CFST elements using three-dimensional FEA. Calculating
CFST structures in a three-dimensional formulation taking into account physical nonlinearity requires large
computational resources. This approach is not applicable for calculation of buildings and structures that
include reinforced concrete elements as a single whole.

In [27], a simplified FE model was proposed that allows the three-dimensional problem of calculating
a CFST column to be reduced to a two-dimensional problem based on the hypothesis of plane sections.
This model was developed for columns of circular cross-section. The purpose of this work is to develop the
proposed model for calculating rectangular CFST columns in the presence of the axial force eccentricity in
two planes. Within the framework of the stated goal, the following tasks were formulated:

1. Obtaining resolving equations for determining the stress-strain state of a CFST element in a
simplified two-dimensional formulation and developing a calculation algorithm.

Verification of the developed model by comparison with the results of three-dimensional FEA.

3. Validation of the developed model by comparison with the experimental results of other authors.

2. Methods

The calculation scheme of an eccentrically compressed CFST column with rectangular cross-section
is shown in Fig. 1.
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Short CFST columns are considered, for which deflection does not lead to a noticeable increase in
the bending moment. According to Russian design codes SR 266.1325800.2016, columns are considered
short if their slenderness (the ratio of the calculated length to the radius of gyration of the reduced cross
section) does not exceed 14.

Figure 1. Calculation scheme.

When constructing the resolving equations for determining the stress-strain state of a CFST element,

we will take into account the stresses G, in the direction of the column axis, as well as the stresses G,
G, and T,, in the plane of the cross section. Stresses 1., and 7, will be neglected. A simplified

calculation method is based on the hypothesis of plane sections. In accordance with this method, the
deformation along the z axis under the combined action of bending moments in two planes and axial
forces can be represented as:

82=8(2)+yx1+xX2' (1)

The first term in formula (1) represents the axial deformation, the second and third terms include
changes in element curvature x; and .

When using the plane sections hypothesis, local effects at the ends of the CFST element are
neglected, assuming that the load is transmitted through a rigid stamp.

Let us obtain the relationship between the internal forces (axial force N, bending moments M .

and My)and generalized deformations a(Z), %1 and x,. The physical equations for concrete, establishing

the relationship between stresses and deformations, have the form:

8x=%(ﬁx—v(6y+62))+8§; (2)

€, =%(Gy—v(6x+62))+8;; (3)

o = Kooy v
2(1+v) .

Yxy ZTTxy +ny7 ()

. .. . . ' . *
where E is the concrete modulus of elasticity, v is the Poisson's ratio of concrete, €, 8;,

are the additional terms that may include creep deformations, shrinkage, dilatation deformations,
temperature deformations, etc.

* d *
e, and y,,
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age *
Quantities &), ),

take into account physical nonlinearity, the modulus of elasticity £ in formulas (2)—(5) is taken as a function
of coordinates x and y.

sz and y;y will be referred hereinafter to forced deformations. To be able to

The stress G, can be expressed from (4) as:

c, =E(SZ —8:)+V(Gy +Gx)=E(8(Z)+yX1 + X% —8§)+v(0y +Gx). (6)

The physical equations for a steel shell are written as:

€0 = L(Gse — VO, ); (7)
Es
€ = E_(Gsz _VSGSB)’ (8)

S
where E_ and v, are respectively, the modulus of elasticity and Poisson's ratio of steel.

Let us express from (7), (8) the stresses in the steel pipe through deformations:

E
c,, :ﬁ(ssz +VEgp ) (9)
S
E
Os0 = > 2 (SSO +Vs8sz)' (10)
1-vj

It is assumed in the calculation that there is no slippage between the steel pipe and the concrete
core. This hypothesis is usually fulfilled, since when designing CFST concrete columns, engineers strive to
ensure a reliable connection between the steel pipe and the concrete core by welding on short periodic
profile steel bars from the inside, or by using concrete on prestressing cement, which creates initial lateral
compression stresses. Also, the support nodes are usually designed in such a way that the forces are
transmitted simultaneously to the concrete core and the steel pipe.

From the condition of the concrete core and the steel shell joint work in Z axis direction, deformation
€, atthe pointin the pipe with coordinates (xs;ys) can be written as:

0
Sszzgz+yle+xsx2' (11)
Substitution of €., from (11), as well as €,y from (7) into the equation (10) leads to the equation:
_ 0
o, =FE, (5z+ysX1+xsX2)+VsGse- (12)

Internal forces in a column represent the sum of the forces perceived by concrete and steel:

N=N;+N, = | o,dA+ | o.d4; (13)
As Ab
M, =M +M,, = I G, VdA+ f G, ydA; (14)
AS Ab
M, =My +M,, = [ ouxdA+ [ o.xdA, (15)
AS Ab

where 4, and A, are respectively the cross-sectional areas of the concrete core and the steel shell.

The relationships between generalized deformations 82, X1> %, andinternal forces M , My, N
can be obtained by substitution of (6) and (12) into (13)—(15):
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N N EA ES, ES,|[¢ N*
M, t=iN-e,v=|ES, EI EIl, |7 (—1M; ¢, (16)
M, N-e ] |ES, El, EI,|\X2] |M,
where
EA= _[ E (x,y)dA+ f E(x,y)dA; 17)
A, 4,
ES, = j E (x,y)ydA+ j E(x,y)ydA; (18)
As Ah
ESy = j E (x,y)di+ I E(x,y)di; (19)
AS Ab
EI. = j E (x,y)ysz+ I E(x,y)ysz; (20)
As Ab
Ely = _[Es (x,y)xsz+ j E(x,y)xsz; (21)
AS Ab
Elxy = j E (x,y)xydA+ j E(x,y)xydA; (22)
As Ab
N*= | (E(x,y)g:+v(cx+cy))dA+vs [ o4pd4; (23)
Ab As
M= | (E(x,y)g: +v(csx +Gy))ydA+vS [ o40y,d4; (24)
Ab As
M; = | (E(x,y)sz +v(cx +c5y))di+vS [ o4gx,dA. (25)
A A

i~

N

To determine the stresses acting in the plane of the cross section, the concrete core is divided into
rectangular FEs, and the steel shell is modeled by one-dimensional bar elements (Fig. 2). Rounding of
corners in rectangular bent-welded sections will be neglected.

V2 §
y 1/72
“ Uz
4 3 Y 2
Vi u;
QIO 0
_ X
QN ] Ui
] a a 2 X
2 | 2

a) b)

Figure 2. Finite elements for determining the stress-strain state in the plane
of the cross-section: a) finite element of the concrete core, b) finite element of the steel shell.
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The FE of the concrete core has 2 degrees of freedom at the node: displacements u# and v in the

plane of the cross section.

Approximation of displacements # and v is taken in the form:

u=0y +Oczx+ot3y+ot4xy;

V=P +Byx+ B3y +Baxy.

Expressions (26), (27) in matrix form have the form:
u I x y v 00 0 O { }
= a 5
% 0 00 0 I x y xy
T
where {o} ={a; a, aj oy By By B3 Ba) -

The vector {(x} can be found by substituting the coordinates of the nodes into (28):

R
2 4
o0 o o 1 -4 b a
2 2 4
T S
2 2 4
0o 0 0 0 1 % —2 —“Tf’
s b ab {o} =[®]{a} ={U},
1 £ 2 % v 0 o0
2 2 4
o0 o o 1 & b ab
2 2 4
A S Y S
2 2 4
o0 o o 1 -4 b _a
i 2 2 4

(26)

(27)

(28)

(29)

T . . .
where {U} ={u; v; uy v5 u3 v3 uy v4} is the vector of nodal displacements in the plane of the cross

section.

The vector {a} is expressed from (29) as: {a.} =[(I)]71 {U}. The matrix [CI)]71 has the form:
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oy Loy Loy Ly
4 4 4 4
S L EE SIS
2a 2a 2a 2a
1 1 1 1
- 0 - 0 — 0 — 0
2b 2b 2b 2b
oy L oy L o L
[q)]*l: ab 1 ab 1 ab 1 ab . (30)
0 — 0 — 0 — 0 —
4 4 4 4
o -L o L o L 4 _L
2a 2a 2a 2a
o L o -1 4 L 4 L
2b 2b 2b 2b
o L o L o L o _L
L ab ab ab ab |

The deformation vector in the cross-sectional plane is determined as follows:

ou
gx 0103y 000 0
fe}=¢ = 1=10 0000 0 1 xl{a}=
o 001 x 010 y
ou_ ov (31)
oy Ox
010y 0000
100000 0 1 x|o"{U=[B]{U},
001 x 010 y
where
[ b b b ]
2 0 2= 0 Z+y 0 —2- 0
Y= Y y S
[B]=L 0 x—g 0 —ﬁ—x 0 —+Xx 0 g—x (32)
ab 2 2 2 2
» Y72 2 P R R 2 7]

Next, the relationships will be obtained that allow determining the stress-strain state in the plane of
the column cross-section. To do this, the quantity o, should be excluded from equations (2)-(4).
Substitution of the equation (6) into the equations in (2)—(3) leads to the following expressions:

£, :ELI(GX —vlcy)+8’; —v(sg + YL+ XY —sz); (33)
gy:ELI( y—VIGx)+8;—V(82+yX1+XX2—8;), (34)

where E; :E/(l—v), v :v/(l—v).
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The equality in (5) can be represented as:

2(1+v1)

ny = E1 Txy + ny' (35)

The stresses in the concrete core are expressed from (33)—(35) through the deformations in the form:

Ox = l_i’lz (Sx TViE, —(sx +V18y)+v1 (82 + YA+ XX —82)); (36)
E * * *
G, = I_le (sy tVvig, —(Sy +V18x)+v1 (82 + YA+ XX —82)); (37)
£ i
Ly :2(T1V1)(ny —ny)- (38)

Equalities (36)—(38) can be represented in matrix form:

{o} =[D]({e}~{e"})+ (o} (39)

E 1 v o, o, €, 8:1:
where [D]z1 12 vi 1 , {o} = c, , {o} = c, , {e} = g, ,{8*}: 8; ,
-V
Ho o v Ty Ty Yy Yoy
L 2
£ 1
{01}:1 1V12 (82+yX1+xX2—82) 1
—vi 0
Formula (6) can be written as:
1
cz:E(82+yx1+xxz—sz)+v{c}T 4. (40)

0

The resolving equations of the FE method for determining the stress-strain state in the plane of the

cross section can be obtained based on the Lagrange variational principle. The potential strain energy of a

CFST structure consists of the concrete core potential energy I, and the steel shell potential energy I1,.

The value II, is determined by the formula:

1
=E | (G £y +0 8 l+‘rxyyxy+6 sel)dA (41)
A4,

The indices "el" in formula (41) correspond to elastic deformations. They are calculated as the

difference between the total and forced deformations. The potential strain energy of the concrete core (41)
can be represented as:

o, (S(Z) + Y+ XYy —Es )dA +%j {G}T ({8} - {8*})dA. (42)
b

—

1
Hb_E

LN
S3

The first integral in (42) can be represented in the following form:
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1 " 1 £ \2
5 [ 02(82+yxl+xx2—82)d/1:5 [ E<8(Z)+J/X1+XX2—82) dA+
Ab Ab

1 (43)
+§ j {G}T 1 (S(Z) + YY1+ XX —SZ)dA.
A4, 0

After differentiation with respect to the vector of nodal displacements {U} to find the minimum of
the total energy, the first term in (43) vanishes. The second term in (43) can be written as:

1
%I{G}T 1 (eg+yx1+xxz—8:)d/1:
A4, 0
; 1
—%J'({Gl}T+({8}T—{8*} j[p]j (24 yopy + 2, € )dd =
4, 0
T | (44)
:% I({GI}T—{S*} [D]) 1 (82+yx1+xx2—sz)dA+
A, 0
1
+ [ {UY (B [DI{ 1 (&2 + vty + 3y —€% )dd |.
A, 0

The first integral in (44) also vanishes when differentiated with respect to {U} When calculating

the second integral, the simplifying assumption is introduced that the forced deformation 8: does not

change within the FE. This hypothesis is justified if the FE mesh is dense enough. Taking into account the
adopted simplification, the second integral in (43) is represented as:

1
%j (U} [B] [DI{1 (82 + 3ty + 02— ) dd =
4, 0
1
=AU [BY [Py 1| (e2 el )4 | yddsrs [ xdd =
0 4 4,
| (45)
1 *
=AUV [B]" 4, VDI (a2 4y + 3 2 ) =
0
1 E 1 1
=1y (8] 4, 1 lilz (2 4 +xta —e2 ) =5 (U} [B] 4, {on).
i,

Quantities x. and y,. in formula (45) represent the coordinates of the FE center of gravity.

Let us further expand the second integral in (42):



Magazine of Civil Engineering, 18(2), 2025

T * T * i X . .
The terms {8 } [D]{g } and {0'1} {6‘ } vanish when differentiated with respect to the vector

{U}. Let us separately expand the remaining terms:
> 1 [Dlehda = v} (8] [D][B)4 (0} = 0V (K )0} @
Ab

where [Kb] = [B]T [D][B]Ab is the stiffness matrix of the concrete core FE.

5 ! for) {e}ad = i{a}T{cl}dA%{v}T[B]T{cl}Ab; o)
(e} [D){e"}aa={u}' [B] [D]{e"} 4, ={U} {F"}. (49)
4y

Steel shell is assumed to operate under momentless stress conditions, i.e. the FEs of the steel shell
have only translational degrees of freedom, and rotational degrees of freedom are neglected. This
hypothesis is valid for all points except corner zones in the absence of corner rounding. Real rectangular
pipes have corner rounding, so this hypothesis can be considered for all points of the pipe. A linear
approximation is adopted for axial displacements u of the shell FE:

u(s):ul+u21_u1 S. (50)

The circumferential deformation of the steel pipe is determined as the derivative of the displacement:

o =%{—%H2} (811U}, s

The stresses in the steel shell can be written based on (9)-(11) as:

— E, 0 .
G0 = 2 (839 + Vs (82 T Vsk1 +xsX2)): (52)
I-v

N

0
= s 5 (gz + Y1+ X Xo +VS8S9). (53)

Q
Il

N

Coordinates x, and y, change within the FE, but for simplicity it is proposed to calculate them at
the FE center of gravity. The potential strain energy of the steel shell FE is determined as follows:

[ /
HS=l{SJ'GSesseds+8j0szsszds]. (54)
2 0 0

Let us expand the first integral in (54):
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l E )

Josods = =T ({U (B + v (e 4 xea ) )[B{, ds =

0 Vs 0
El Ev.l

=S BT B (e s [BIU = 69
1 T Trpo T EsVil( 0
) Q0 B )|

where [K ] ELSlz[BS ]T [B,]= E—‘Sz{_l _1} is the stiffness matrix of the steel shell FE.
1-v; (1-vZ)L-1

Next, we expand the second integral in (54):

l /

[o.e.ds = j(s + X1 + XX + Vg {Uy }T [B, ]T)(S(Z) + ¥ +xsX2)dS -
0 1- V 0 (56)

[ 2
-l H ) e s |
0 0
The firstintegral in (56) vanishes after differentiation with respect to the vector of nodal displacements
{U}. The second integral in (56) can be written in the following form:

eyl Evyl
l_s:% (e 3 ) [B,1U s = w8, ﬁ(ag FV X)) (57)

The work of external loads on the column displacements in the Xxy plane is equal to zero.

Consequently, the Lagrange functional for the problem under consideration is equivalent to the potential
strain energy. Differentiation of the expression for the potential strain energy by the vector of nodal

displacements {U} leads to the following system of equations:

[K]{U}+{F,}+{F}-{F"} =0, (58)
where [K]=[K,]|+[K]
1
(7 =[] {1}y = (81 4y (e 32 =) 1 )
Vi 0
{f}}=[BS]T?S_8 :21( V) (60)

The vector {F

S
of the steel shell FE. When forming the system of equations of the FE method for the entire section, it is
necessary to transform matrices and vectors from local coordinate systems to the global one using the
formulas:

} in (60), as well as the matrix [KS] in (55) are written in the local coordinate system

U} =[L]{U}: (61)

K]=[L] [K][L]: 62
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(F=[L] {F}; (63)
coso sina 0 0
[L] { , } (64)
0 0 coso.  sino

The bar above the vectors and matrices in formulas (61)—(63) corresponds to the local coordinate
system.

To take into account the thickness of the pipe wall when calculating the stiffness in formulas
(17)—(25), matrices [KS] and vectors {FS } , hodal coordinates of the steel shell are reduced to the middle
of the wall thickness according to the formulas:

B-0
X, =X+ ; 65
p = B, (65)
H-38
=V, - , 66
yp yb Hb ( )

where x;, and y,, are the coordinates of the node on the contour of the concrete core, x,, and y,, are the

coordinates of the node on the center line of the pipe wall, B, and H), are the dimensions of the concrete
core.

The system of equations (58) allows to calculate the stresses G,, © as well as o in the

v Ty
plane of the cross section using the values of generalized deformations 82, % and .

The equations of the concrete deformation theory of plasticity by G.A. Geniyev [28] are used as a
model of the material for concrete. In these equations, the dilation effect is taken into account by introducing

the value of dilation deformation € ;. The value &, is determined by the formula:

r2
£, :_gOT’ (67)

2
where g, is the dilation modulus, T = \/;\/(81 —g& )2 + (&) — &3 )2 +(g —¢3 )2 is the intensity of shear

deformations.
Dilatational deformation can be considered a special case of forced deformation

*

(si =€, 8: =g,, yzy = 0). The adopted stress-strain diagram for steel is a diagram of ideal elastic-

plastic material with the Huber—Mises—Hencky yield criterion.

The calculation taking into account physical nonlinearity is performed according to a scheme with a
stepwise increase in load in the following sequence:

1. At the first step of loading, the modulus of elasticity of concrete and steel are taken equal to the
initial values corresponding to the elastic work of the material. Dilatational deformations are absent

at the first step.
EA ES, ES, AN”
2. Cross-section stiffness matrix [Dl] =| ES, EI, EI,, | and vector {AM * ¢ are calculated
ES, El,, EI, AM ,

using formulas (12).

3. The increments of generalized deformations are determined by the formula:
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AS(Z)
{Ae} =1 Ay, p=[D] " H{AF), (68)
Ay,
AN | |ANT
where {AF} =AM, ;+<AM}
AMy AM;

1. The stress-strain state in the plane of the cross section is determined based on the values of
generalized deformations using the system of equations (58).

2. The tangential elastic moduli of concrete and steel are corrected based on the calculated stresses
and deformations.

3. The corrected matrix [Dl'] and the residual vector of forces {SF}z{AF}—[D{]{AS} are
calculated.

4. Vector of additional deformations {de} = [Dl’]71 {AF} caused by the discrepancy of forces is
determined.

5. The vector {AS} is corrected according to the formula {As} = {AS} + {58}.

6. Steps 36 are repeated in approximations from the second to ;... , where j .. isthe maximum
number of iterations. Starting from the second iteration, convergence is controlled using the

formula:
132} -3 )]

ffoe/ ]
where ”{a}” = \/{a}T {a} is the vector norm.

Each loading step ends with the calculation of total deformations and stresses, as well as
recalculation of stiffness matrices.

-100% < 0.1%, (69)

The described calculation algorithm was implemented by the authors in the MATLAB environment.

3. Results and Discussion

At the first stage, the developed method was compared in an elastic setting with the results of a
three-dimensional analysis in the ANSYS 2021R1 software package. The eccentrically compressed CFST
column with the cross-sectional size of 300x200 mm, length of 2000 mm, and wall thickness of 5.73 mm

was considered. A concentrated force /' = 1 kN was applied at the corner of the cross-section (Fig. 3).
The column had a fixed support at the bottom. To eliminate local effects at the upper end caused by the
action of the concentrated force, the 10 mm thick metal rigid plate was installed on top, which in ANSYS
Workbench was set as “Surface Coating”. Surface Coating objects are the shell FEs whose nodes coincide
with the nodes of volumetric FEs located on the surface of the concrete core. Stiffness behavior for the
plate on the upper end was taken as “Membrane and Bending”. The steel pipe was also modeled with
“Surface Coating” objects with stiffness behavior “Membrane Only”. This stiffness behaviour was adopted
to eliminate local effects caused by bending moments at the corners of the rectangular tube. The concrete
core was modeled using FEs in the form of parallelepipeds. The FE mesh size was taken to be 10 mm.

Since the steel pipe was defined by “Surface Coating” objects, then when modeling using the author's
method, it was simply assumed that B =B, H = H,, and formulas (42) were not used.
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Figure 3. Calculation scheme in ANSYS.

Figs. 4, 5 show the stresses G, isofields for concrete in the middle section (z = L/Z), obtained as

a result of three-dimensional modeling in ANSYS and using a simplified method proposed by the authors.
The highest tensile stresses were 32.16 kPa when calculated in ANSYS and 32.58 kPa when calculated
using the author's method. The highest compressive stresses were 52.08 kPa when calculated in ANSYS
and 52.04 kPa when calculated using the author's method.
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Figure 4. Stress isofields o; (Pa) in ANSYS.
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Figure 5. Isofields of stresses a; (kPa), obtained using the author's method.
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Figs. 6, 7 show the stresses G, isofields in concrete obtained as a result of calculation in ANSYS

and according to the author's method. Figs. 8, 9 are the same for stresses G,,. The maximum stress G,

value was 5.68 kPa in ANSYS and 5.81 kPa according to the author's method. The minimum stress G,
value was —3.55 kPa in ANSYS and -3.54 kPa according to the author's method. The maximum and

minimum stresses o, in the calculation with ANSYS coincided with the maximum and minimum stresses

o,.. When calculating according to the author's method, the maximum stress G, was 5.75 kPa, and the

y
minimum was —3.49 kPa.

Thus, the greatest deviation of the calculation results using the author's method from the results in
ANSYS is 2.3 %, and the average deviation is 0.5 %.
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Figure 6. Isofields of stresses ox (Pa) in concrete core obtained in ANSYS.
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Figure 7. Isofields of stresses ox (kPa) in the concrete core, obtained using the author's method.
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Figure 9. Isofields stresses o) (kPa) in the concrete core, obtained using the author's method.

The developed method was also tested on experimental data for 38 samples given in [29-31]. The
experimental data included results for centrally compressed CFST columns, as well as for eccentrically
compressed columns with eccentricity in one and two planes. Table 1 compares the calculation results
according to the author's method in a physically nonlinear formulation with the experimental results. In this

table, R, is the compressive strength of concrete determined from tests of concrete cubes, N, and
N, are respectively experimental and calculated values of the ultimate load.
Table 1. Comparison of calculation results with experimental data.
Sample B 'mm H,mm t,mm Rc MPa Ry, MPa ey, mm ey, mm Ny kN Neaie, kN
B. Uy, 2001 [29]
HSS1 110 110 5 28 750 0 0 1836 1834
HSS2 110 110 5 28 750 0 0 1832 1834
HSS3 110 110 5 30 750 15 0 1555 1431
HSS4 110 110 5 30 750 30 0 1281 1153
HSS8 160 160 5 30 750 0 0 2868 2 806
HSS9 160 160 5 30 750 0 0 2922 2806
HSS10 160 160 5 30 750 25 0 2024 2105
HSS11 160 160 5 30 750 50 0 1979 1662
HSS14 210 210 5 32 750 0 0 3710 4205
HSS15 210 210 5 32 750 0 0 3483 4205
HSS16 210 210 5 32 750 25 0 3106 3292
HSS17 210 210 5 32 750 50 0 2617 2669
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Sample B mm H mm {mm R MPa Ry, MPa ey, mm ey, mm Ny kKN Neaie, kN
Y. Yang et al., 2011 [30]

Scfst-1 150 150 3 59.3 324 0 0 1618 1559
Scfst-2 150 150 3 59.3 324 15 0 1260 1260
Scfst-3 150 150 3 59.3 324 30 0 1244 1057
Scfst-4 150 150 3 59.3 324 15 15 1280 1195
Scfst-5 150 150 3 59.3 324 30 30 1193 925
Refst-1 180 120 3 59.3 324 0 0 1476 1517
Refst-2 180 120 3 59.3 324 36 0 1140 1020
Rcfst-3 180 120 3 59.3 324 18 12 1147 1160
Rcfst-4 180 120 3 59.3 324 36 24 939 900
X. Qu et al., 2013 [31]
PYA-1 150 100  4.065  48.75 235 10 0 750 822
PYA-2 150 100  4.065 825 235 15 0 1040 1035
PYA-3 150 100  4.065 65 235 20 0 810 850
PYA-4 200 150  4.433 65 235 20 0 1750 1670
PYA-5 200 150 4433  48.75 235 30 0 1250 1260
PYA-6 200 150  4.433 825 235 40 0 1400 1630
PYA-7 300 200 573 82.5 345 50 0 3450 3850
PYA-8 300 200 573 65 345 60 0 2650 3150
PYA-9 300 200 573 4875 345 70 0 2445 2610
PYB-1 150 100  4.065  48.75 235 8.32 5.55 980 822
PYB-2 150 100  4.065 825 235 1248  8.32 950 1039
PYB-3 150 100  4.065 65 235 16.64  11.09 980 838
PYB-4 200 150  4.433 65 235 16 12 1300 1683
PYB-5 200 150  4.433  48.75 235 24 18 1300 1275
PYB-6 200 150  4.433 825 235 32 24 1600 1588
PYB-7 300 200 573 82.5 345 3841  32.01 3600 3740
PYB-8 300 200 573 65 345 46.09  38.41 2550 3020

The average value of the Ncalc/NeXp ratio was 1.01, the maximum was 1.29, and the minimum

was 0.78. The standard deviation was 0.11, and the coefficient of variation was 11 %.

4. Conclusions

A simplified method for determining the bearing capacity of eccentrically compressed rectangular
CFST columns in the presence of axial force eccentricities in two planes has been developed. The proposed
method allows reducing the three-dimensional problem of determining the stress-strain state to a two-
dimensional one, which ensures significant savings in machine time. This allows calculation in a physically
nonlinear formulation not only for individual elements, but also for buildings that include CFST elements as
a whole.

The verification of the developed method was performed by comparison with the results of FEA of
the three-dimensional model in an elastic formulation in the ANSY'S software package using volumetric FEs
for concrete and shell FEs for a steel pipe. The maximum deviation of the results for stresses was 2.3 %.
Validation of the developed method was performed using experimental data for 38 samples presented in
three different works.

It should be noted that the proposed method does not allow for the slippage of concrete in the steel
pipe, local stability loss of the pipe wall and the separation of the concrete core from the steel shell. The
first two factors can be taken into account only when analyzing the column in a three-dimensional
formulation, which is a very labor-intensive process and is not suitable for analyzing entire buildings. The
third factor can be taken into account in the approach we propose. To implement this, the FEs of the steel
pipe must be given a third bending degree of freedom, and one-way connections must be established
between the nodes of the concrete and the steel shell that work only in compression. The development of
the proposed model in this direction is a prospect for our further research.
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