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Abstract. The object of the study is a transversely bent triangular plate made of an orthotropic material, 
fixed along the edges of the plate, under the action of a uniformly distributed load. The fourth-order 
differential equilibrium equations with variable orthotropy parameters were used. The equations were 
approximated by finite differences for a grid of scalene triangles. Such a grid describes well the boundary 
contour of triangular plates. The boundary conditions for the grid were written taking into account the 
orthotropy of the plate material. Seven typical finite difference equations were developed taking into account 
the boundary conditions along three edges of the plate and the presence of three angles of an irregular 
triangle. A finite difference matrix was obtained. The matrix structure allows calculating a triangular plate at 
different angles at the base. It is possible to vary the boundary conditions in the form of rigid or hinged 
support of the triangular plates. The calculation method takes into account the parameters of the orthotropy 
of the material in two mutually perpendicular planes. The adaptation of the numerical method to the 
calculation of orthotropic plates of arbitrary shape was described. The relationships for determining the 
rigidity characteristics of orthotropic materials were given. An algorithm for simple engineering calculation 
of triangular orthotropic plates was proposed that allowed performing accurate calculations in variant 
design. The scientific and applied results of the proposed article will find wide application in mechanics of 
deformable solids in the field of studying two-dimensional thin-walled structures, as well as in calculating 
plates of complex geometry with non-uniform mechanical characteristics of their materials. 
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1. Introduction 
In various branches of technology (construction, mechanical engineering, aircraft building, and 

shipbuilding), orthotropic plates are widely used, in which the physical and mechanical characteristics of 
materials are symmetrical about three mutually perpendicular planes (wood, plywood, reinforced concrete). 
Many designs also have orthotropic properties, for example, corrugated and ribbed plates. A lot of works 
are dealing with studying orthotropic plates. Recent works include [1–3]. 

A study [4] showed that the general anisotropic property and the variable in-plane stiffness property 
inherent in composites create significant challenges in the static and dynamic analysis of these new types 
of variable stiffness composite structures. Therefore, it is important to develop mechanical models and 
calculation methods for composite lamellar-shell structures of variable stiffness to understand their complex 
mechanical mechanisms and promote their further application in aerospace engineering. 

Publications devoted to triangular orthotropic plates appear much less frequently. In one of the first 
such publications [5], large amplitude oscillations of right triangular anisotropic plates were analyzed based 
on von Kármán governing equations. Utilizing the Bubnov–Galerkin procedure, a nonlinear second-order 
differential equation for the unknown time function was drawn. The equation was solved in terms of 
Jacobian elliptic functions. 

Vibration analysis and multi-objective optimization of stiffened triangular plate was done in [6]. The 
triangular plate included stiffeners (ribs), which were parallel to each other and parallel to one edge of the 
triangle. The governing equation of transversal deflection of the plate was obtained by considering the 
effects of orthotropic characteristics and external excitation. The ordinary differential equation for the 
system's time response was obtained using the Bubnov–Galerkin method. In the next step, a multi-objective 
optimization was carried out considering two conflicting objective functions, i.e., maximizing the system's 
nonlinearity and minimizing the amplitude of vibration. Four decision variables were considered, including 
the plate's thickness, geometry, and the distance of the stiffeners. Finally, the effects of different parameters 
on the optimal solutions and the distribution of decision variables were investigated. 

The buckling analysis of general triangular anisotropic plates with different boundary conditions 
subjected to combined in-plane loads was considered in [7, 8]. Solutions for plate buckling were obtained 
using the Rayleigh–Ritz method combined with a variational formulation. The numerical results were 
obtained for various triangular geometries with isotropic and anisotropic material properties. The effect of 
transverse-shear deformation was studied for different triangular geometries. The results confirm the 
importance of including the effect of transverse-shear deformation in the buckling analysis of composite 
plates. These results were later used in [9, 10] for optimal design of composite grid-stiffened aircraft panels 
subjected to global and local buckling constraints. The local buckling of aircraft skin segments is assessed 
with material anisotropy and transverse shear flexibility. The local buckling of stiffener segments was also 
assessed. 

An accurate and simplified solution was provided in [11] for the free vibration problem of simply 
supported thin general triangular plates. The proposed method applies to thin plates with linear boundaries 
regardless of their geometrical shapes. The results were compared with previously published data for the 
isosceles and general triangles. Good agreements were reported. Although the paper deals only with 
simple support conditions, the article claims that any combination of classical boundary conditions, with or 
without complicating factors, can be handled. 

The p-Ritz method operates with mathematically complete two-dimensional polynomial functions, 
and boundary polynomial equations raised to appropriate powers are used to approximate the 
displacements. In the [12], the p-Ritz method was used to derive the governing eigenvalue equation for the 
buckling behavior of triangular plates with both translational and rotational elastic edge constraints. The 
effect of elastic edge supports on the buckling factors for triangular plates of various vertex angles (aspect 
ratios) and boundary conditions was examined. The buckling solutions for isosceles and right-angled 
triangular plates with elastic edge constraints were presented. 

The unilateral buckling behavior of point-restrained triangular plates was studied in [13]. The 
Rayleigh–Ritz method with polynomial-based shape functions was used to study the unilateral buckling 
behavior of triangular plates with various loading combinations, aspect ratios, boundary conditions, and 
point restraint configurations. Polynomials and tensionless foundation modeled the displacement functions 
and restraining medium, respectively. The results were obtained for different boundary conditions, aspect 
ratios, and various in-plane compressive and shear loadings. Convergence and comparison studies were 
undertaken to confirm the validity and precision of the solution method. 

Free and forced multi-frequency vibrations of stiffened triangular plate with the stiffeners were studied 
in [14]. The governing motion equation for a triangular plate was developed based on the von Kármán 
theory. The nonlinear ordinary differential equation of the system using the Bubnov–Galerkin approach was 
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obtained. Closed-form expressions for the free undamped and large-amplitude vibration of an orthotropic 
triangular elastic plate were presented using two analytical methods, namely, the energy balance method 
[15] and the variation approach. It was demonstrated that those two methods were straightforward and 
reliable techniques for solving those nonlinear differential equations. 

A nonlinear vibration of a triangular shape plate with several stiffeners was studied in [16]. The 
Bubnov–Galerkin method was used to obtain the ordinary differential equation for the system time 
response. A genetic-based multi-objective optimization was performed to find the geometry and locations 
of the plate stiffeners. 

Three-dimensional structures in the form of triangular plates of thin and medium thickness with 
homogeneous and inhomogeneous characteristics of materials (isotropic and orthotropic) were considered 
in [17]. The finite difference method was applied using a grid of scalene triangles as a resolving method. 
Based on a numerical algorithm and the author's Fortran programs, the leading parameters were obtained 
from transverse and in-plane loads under various boundary conditions (in bending, buckling, and free 
oscillations). 

In [18], free vibration characteristics of moderately thick composite materials triangular plates under 
multi-points support boundary conditions were analyzed. An improved Fourier series method was used. 
Energy equations were established based on the first-order shear deformation theory. The Rayleigh–Ritz 
technique was adopted to solve unknown coefficients of energy equations with the multi-point support 
boundary conditions. This study was aimed to simulate real engineering structures with multi-point support. 
It was shown that the method has a higher accuracy than the finite element method. 

In-plane vibration of arbitrary laminated triangular plates with elastic boundary conditions was studied 
in [19] by the Chebyshev–Ritz method. The coordinate transformation mapped the arbitrarily shaped 
triangular laminated plate into a square plate to facilitate energy calculation. The displacement functions of 
the square plate after transformation were expressed as two-dimensional Chebyshev polynomials 
multiplied by coefficients. The arbitrary elastic boundary conditions of the plate were obtained by changing 
the stiffness values of each spring with artificial virtual spring technology. The in-plane free vibration 
characteristics of the triangular laminated plate under different boundary conditions were calculated. The 
accuracy of this method was verified by comparing with finite element results and experimental results. The 
comparison shows that the present method has good convergence and satisfactory actuarial accuracy. 

The bending of cantilever triangular plates at the same inclination angles of the side edges to the 
base was investigated in [20]. The finite difference method was applied. Combining the results was applied 
to solve the problem of an acute angle at the top of the plate. The results of calculating a cantilever bar of 
variable bending stiffness were combined with similar results of calculating a triangular plate supported 
along the contour using a reduction factor. This study theoretical provisions and applied results could be 
partially used to investigate the bending of orthotropic scalene triangle plates supported along the edges. 

The frequency and mode of free vibrations of thin isotropic triangular plates with a central hole for 
different boundary conditions were investigated in [21]. The finite element method was used. Some plates 
topology of vibration modes was compared to square plates with hinged and clamped edges. The numerical 
values of the natural frequencies and modes of triangular plates are in good agreement with the 
experimental results. 

The simplistic superposition method was used for analytic free vibration solutions of right triangular 
plates [22]. The problem was solved by dividing it into three subproblems that were solved by the symplectic 
techniques via imposing the variable separation on the Hamiltonian-system-based governing equation and 
symplectic eigen expansion. Then, the analytic frequency and mode shape solutions were obtained by 
requiring the equivalence between the original problem and the superposition. The comparison with the 
numerical results for the right triangular plates confirmed the approach's convergence and accuracy. 

In this case, the aim of this work is to develop and apply a rarely used and complex type of triangular 
grid of the finite difference method to plates of complex geometry, in particular for calculating the stress-
strain state of triangular orthotropic plates with unequal values of angles at their vertices that has previously 
been insufficiently studied. 

The objective of the study is to evaluate the stress-strain state of triangular orthotropic plates with 
different boundary conditions under different types of loads, to determine the dependence of the effect of 
the orthotropy coefficients of boundary conditions, the values of angles at the base on the strength 
parameters of the bearing capacity of triangular plates. 
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2. Methods 
The object of the study is a transversely bent triangular plate made of orthotropic material, fixed along 

the edges of the plate, under the action of a uniformly distributed load. Fig. 1 shows the computational 
scheme of the triangular plate. 

 
Figure 1. Computational scheme of the triangular plate. 

The plate configuration is determined by three parameters: a is the base of the triangle (plate); ,α  
β  are the angles of inclination of the side edges to the base (in the general case, α  is not equal to β ). 
The study used the well-known initial differential equation for the bending of orthotropic plates [23–25], 
which has the form: 

4 4 4

1 3 24 2 2 42 2 ,w w wD D D q
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                                                 (1) 

where ( ),w w x y=  is the sought deflection function; q  is the intensity of the stationary transverse 

distributed load in the plane of the plate; 1,D  2,D  3,D  kD  is the bending and torsional rigidity of the 
orthotropic material; ,x  y  are the Cartesian coordinates. 

The bending and torsional rigidity of the orthotropic material is determined as follows: 

( ) ( )
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Here, 1,E  2E  is the modulus of elasticity of the material in two mutually perpendicular planes; 1,ν  

2ν  are Poisson ratios in two mutually perpendicular planes; G  is the shear modulus; kD  is the torsional 
bending rigidity; t  is the thickness of the plate. 

Then, the orthotropy coefficients were introduced: 

3 2
0 0

1 1

2 , .D D
D D
⋅

α = β =                                                           (3) 

Equation (1), taking into account the accepted designations of (2) and (3), has the form: 

4 4 4

0 04 2 2 4
1

2 .w w w q
Dx x y y

∂ ∂ ∂
+ α +β =

∂ ∂ ∂ ∂
                                              (4) 

Bending moments ,xM  yM  and torsional moment ,xyM  taking into account the structure material 

orthotropy, have the form: 
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The boundary conditions of plates supported at the edges are written in the same way as for bending 
isotropic plates (with hinged or rigidly fixed plate edges): 

0; 0; 0,i n i jj
w M w n= = ∂ ∂ =                                                     (6) 

where j  in the edge number, jn  is the normal direction to the corresponding plate edges, n j
M  is the 

bending moment in the normal direction. 

3. Results and Discussion 
It is known that the finite difference method can be a preferred choice for problems on a uniform grid. 

To apply equation (4) to the bending analysis of a triangular orthotropic plate (Fig. 1), the finite difference 
method with a grid of scalene triangles is used. The grid of scalene triangles fits well into the oblique contour 
of the triangular plates. Fig. 2 shows a fragment of the grid of scalene triangles. 

 
Figure 2. A grid fragment of scalene triangles. 

To the i -th node of the grid of scalene triangles, equation (4) will have the form (without taking into 
account the boundary conditions) that is presented in work [17]: 

( ) ( ) ( )
( ) ( ) ( ) ( )
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                         (7) 

Here, the grid parameters 1,ψ  2,ψ  3,ψ  4,ψ  5,ψ  6,ψ  7 ,ψ  8,ψ  9,ψ  10ψ  are determined in 
such a way: 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2 24 2 2 2
1 0 0

4 2
2 0 0

2 2 2 2
3 0 0 5 0 0

22 2 4 2
6 0 7 0 0 8 0 0

2 2
9 0 10 0

6 6 4 4 1 2 2 2 ;

4 4 2 4 1 2 ;

2 4 1 2 ; 2 ;

2 ; 2 ; ;

; .

C C AB AB AB A B

C C AB AB AB AB

C B A A AB A B C A B

AB C B AB C C AB AB

A B

 ψ = +α − + +β − + + +
 

ψ = − +α − +β − − +  
 ψ = α − +β − − ψ = α + β 

ψ = β ψ = α − β ψ = −α +β

ψ = β ψ = β

              (8) 



Magazine of Civil Engineering, 18(2), 2025 

The angles α  and β  define the parameters ,A  ,B  C  and :U  

( ) ( ) ( )
2

sin cos sin cos sin sin; ; ;
sin sin sin

.

A B C

U C AB

β α α β α β
= = =

α +β α +β α +β

= −

                                       (9) 

The equation in the particular case for an isotropic plate for the i -th grid node is also written 
according to [17] in the following form: 
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where 

( ) ( )
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                   (11) 

Thus, equations (7), (10) differ only in expressions (8), (11), respectively. 

The original equation (1) must be accompanied by the corresponding boundary conditions at the 
edges of the plate. For continuously supported sides of the plate along the perimeter (Fig. 1), the boundary 
conditions are as follows: 

2 20; 0; 0,i i j i jw w n w n= ∂ ∂ = ∂ ∂ =                                             (12) 

where wi  is the deflection at the i -th node of the plate contour; jn  are the normals to the edges of the 

plate (Fig. 1); j  =1, 2 are the numbers of the plate edges. 

Boundary conditions (11) for the i -th grid node are written in the finite differences in the group form 
as follows: 

• For the left edge of the plate (Fig. 3, a): 

( ) ( )8 0 7 1 8 70; 0.5 0.5 ;q i t p r Sw w w w w w w= = = ψ + ψ = γ ψ + ψ                     (13) 

• For the right edge of the plate (Fig. 3, b): 

( ) ( )8 5 1 8 50; 0.5 0.5 ;q i S r q o tw w w w w w w= = = ψ + ψ = δ ψ + ψ                      (14) 

• For the plate base (Fig. 3, c): 

( ) ( )7 5 1 7 50; 0.5 0.5 0.5 0.5 .o i r s t p tw w w w w w w= = = ψ + ψ = θ ψ + ψ                (15) 
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a) 

 

b) 

 

c) 

 
Figure 3. Definition of boundary conditions: a) the left edge of the plate "1-2";  

b) the right edge of the plate "1-3"; c) the base of the plate "2-3". 

The coefficients in expressions (13)–(15) took the following values: ( )1 1 1 0.1γ = δ = θ = −  for hinge-

support edges of the plate; ( )1 1 1 1.0γ = δ = θ = +  for rigid edges of the plate. 

Boundary conditions (13)–(15) modify the basic finite difference equation for orthotropic triangular 
plates (7) taking into account and takes the form of seven typical finite difference equations for seven 
characteristic grid nodes. Fig. 4 illustrates the numbering of typical grid equations. 

 
Figure 4. Numbering of typical grid equations. 

With the triangular plate discretized into N grid divisions and continuous edge support along the 
perimeter, 21 calculation (intra-contour) nodes were obtained. Fig. 5 shows the numbering of some 
calculation nodes.  

 
Figure 5. Numbering of the analysis nodes of the triangular grid. 
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The finite difference equations for all 21 computational nodes of the triangular grid (Fig. 5) constitute 
a system of linear algebraic equations of the 21st order, which in matrix form has the form: 

.u ⋅ =D w P
 

                                                                        (16) 

Here, uD  is a square matrix of the 21st order; { }1 2 21, , ,w w w=w



 is the vector of the sought 

deflections; { }1 2 21, , ,P P P=P



 is the vector of free terms, taking into account the transverse load 

acting on the surface. 

With uniform distribution of the intensity of the transverse distributed load q  over the plate, there is: 

4
1 ,i yP qh D=                                                                   (17) 

where 1D  is accepted based on expression (3); 8yh AC=  is a grid step along the y  axis (Fig. 5). 

Thus, the algorithm for calculating orthotropic plates proposed by the authors consists of applying 
expressions (2), (3), (7)–(9), (13)–(15) to implement equation (16). 

Using the SMath Studio program [26, 27], a number of research problems were solved based on 
expression (16). There was studied the effect of the following: 

− the type of boundary conditions (using the 1,γ  1,δ  1θ  coefficients); 

− the plate geometry (setting the values of angles α  and β  at the base of the plate); 

− the orthotropy coefficients 0α  and 0β  determined by formula (3), on the value of nodal 

deflections ( )1, 2, , 21 .iw =   

Figs. 6 and 7 show the graphical dependencies of the deflections at the grid nodes δ  = 1, 6, 8, 10, 

17, 21 (Fig. 5) for equilateral ( )60α = β =   triangular orthotropic plates (with 0α  = 0.66; 1; 1.5; 2.0 and  

0β  = 0.5; 1; 1.5; 2.0) with rigid and hinged edges with the number of grid divisions 8.N =  
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____ – hinged support of the plate edges, _ _ _ – rigid support of the plate edges 

Figure 6. Dependence of deflections at the nodes (i = 1, 8, 10, 17) of triangular orthotropic plates 
with changing the orthotropy coefficients α0. 

 
_____ – hinged support of the plate edges, _ _ _ – rigid support of the plate edges. 

Figure 7. Dependence of deflections at nodes (i = 1, 8, 10, 17) of triangular orthotropic plates on 
the orthotropy coefficient β0 with a constant orthotropy coefficient α0 = 1. 
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Tables 1 and 2 present the results of numerical calculations of equilateral triangular plates with 
different edge fastening methods. 

Table 1. Deflections of nodes under different boundary conditions and orthotropy coefficients. 

Support type β0 α0 
Deflections 4 1

410i
Dw

qa
 

⋅ 
 

 of nodes 

1 6 21 8 10 17 

Hinged support 
around the 
perimeter,  
α = β = 600, 

N = 8 

2 
0.66 1.537 0.97 0.97 4.97 4.29 4.29 

1 1.44 0.92 0.92 4.68 4.07 4.07 
2 1.21 0.8 0.8 4.0 3.55 3.55 

1 
0.66 1.45 1.58 1.58 6.36 6.21 6.21 

1 1.38 1.46 1.46 5.87 5.78 5.78 
1.5 1.288 1.317 1.317 5.28 5.25 5.25 

Isotropic 
material 2 1.202 1.202 1.202 4.807 4.807 4.807 

Rigid support 
around the 
perimeter, 

α = β = 600, 

N = 8 

2 
0.66 0.38 0.22 0.22 1.698 1.33 1.33 

1 0.36 0.21 0.21 1.62 1.29 1.29 
2 0.31 0.18 0.18 1.42 1.17 1.17 

1 
0.66 0.35 0.36 0.36 2.1 1.99 1.99 

1 0.33 0.34 0.34 1.98 1.9 1.9 
1.5 0.308 0.309 0.309 1.82 1.78 1.78 

Isotropic 
material 2 0.29 0.29 0.29 1.68 1.68 1.68 

 

 

 

 

Table 2. Deflections of nodes under different boundary conditions and orthotropy coefficient 
β0 and constant orthotropy coefficient α0. 

 β0 α0 
Deflections 4 1

410i
Dw

qa
 

⋅ 
 

 of nodes 

1 6 21 8 10 17 
Hinged support 

around the 
perimeter,  

α = β = 600, 
N = 8 

0.5 

1 

1.28 2.14 2.14 6.83 7.7 7.79 
1 1.38 1.46 1.46 5.87 5.78 5.78 

1.5 1.43 1.125 1.125 5.19 4.74 4.74 
2 1.44 0.92 0.92 4.68 4.07 4.07 

Rigid support 
around the 
perimeter, 

α = β = 600, 
N = 8 

0.5 

1 

0.3 0.5 0.5 2.21 2.63 2.63 
1 0.33 0.34 0.34 1.98 1.9 1.94 

1.5 0.35 0.257 0.257 1.777 1.526 4.526 

2 0.361 0.21 0.21 1.617 1.289 1.289 
 

Based on the data of Tables 1 and 2, there can be concluded the following: 

• with increasing the orthotropy coefficient 0α  (Fig. 6) for different 0β  and different boundary 
conditions, the deflections in the calculated nodes decrease monotonically; 

• with increasing the orthotropy coefficient 0β  (Fig. 7) for constant values ( )0 1 const ,α = ≈  
the deflections in the plate nodes change according to a complex relationship; 

• for an equilateral isotropic triangular plate ( )0 02, 1 ,α = β =  there are three axes of 
symmetry along its three medians. In this case, there is equality of deflections in nodes 1, 6, 
and 21; 



Magazine of Civil Engineering, 18(2), 2025 

• for equilateral orthotropic triangular plates, there is only one axis of elastic symmetry. This 
axis of symmetry is the y -axis. In this case, the deflections are equal only in nodes 6 and 
21 (Figs. 6 and 7, Tables 1 and 2). To evaluate the grid convergence, this problem was 
solved for two numbers of partitions of the plate sides – 4, 8. The results were as follows: 

• for the number of partitions 4,N =  the deflection in the middle of the median of the triangle 
is 5.96; 

• for the number of partitions 8,N =  the deflection in the middle of the median of the triangle 
is 4.97; 

• the resulting convergence graph (Fig. 8) was obtained using the Richardson extrapolation 
formula [28]. 

 
Figure 8. The grid convergence graph. 

To assess reliability of the presented results, a finite element calculation was performed for an 
equilateral triangular plate with a hinged support along the perimeter in order to determine the deflection at 
node 8 (Fig. 5), if 1E  = 1.5·1011 Pa, 2E  = 1.0·1011 Pa, 1ν  = 0.1, 2ν  = 0.2, t  = 2.5·10–3 m, q  = 1.0 kPa. 
The following value of u  = 2.584·10–3 m was obtained. When switching to dimensionless coefficients, the 
deflection at node at 0α  = 0.66, 0β  = 2, is as follows: 

41
8 4 10 5.15.D uw

q a
⋅

= ⋅ =
⋅

 

The error with the tabular value (Table 1) is ( )5.15 4.97 4.97 100% 3.6%,δ = − ⋅ =  which 
indicates the acceptable accuracy of the described calculation algorithm based on the finite difference 
method. 

It was found that when the values of the orthotropy coefficients approach the values of 0α  = 2 and 

0β  = 1, the orthotropy factor of materials can be neglected in the calculations. 

To assess the reliability of the presented results, an alternative calculation by the finite element 
method in the ANSYS program was performed for an orthotropic equilateral triangular plate with hinged 
support along the perimeter in order to determine the deflection in the vicinity of the node ( i  = 8) (Fig. 11)  

1E  = 1.5·1011 Pa, 2E  = 1.0·1011 Pa, 1ν  = 0.1, 2ν  = 0.2, t  = 2.5·10–3 m, q  = 1.0 kPa. In this case, the 
following value of u  = 2.403·10–3 m was obtained.  

To verify the reliability of the presented results, an alternative finite element analysis was performed 
in ANSYS to determine the deflection of an orthotropic equilateral triangular plate with hinged supports 
along its perimeter. The hinged support was in the vicinity of the node ( i  = 8) with 1E  = 1.5·1011 Pa, 2E  = 

1.0·1011 Pa, 1ν  = 0.1, 2ν  = 0.2, t  = 2.5·10–3 m, q  = 1.0 kPa (Fig. 11). In this case, the following value of 
u  = 2.403·10–3 m was obtained. 
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When switching to dimensionless coefficients, the deflection in the 0 0.66α =  node with 0 2,β =  is 
as follows: 

41
8 4 10 4.789.D uw

q a
⋅

= ⋅ =
⋅

 

The error with the tabular value (Table 1) is ( )4.97 4.789 4.789 100% 3.8%,δ = − ⋅ =  which 
indicates the acceptable accuracy of the calculation algorithm based on the finite difference method 
proposed by the authors of the article. 

 
Figure 8. Isolines of deflections of a triangular orthotropic plate  

under a uniformly distributed load with hinged support of the edges. 

 
Figure 9. Diagram of deflections in the directions of the median AB. 

 

 
Figure 10. Computational scheme of an orthotropic equilateral plate. 
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4. Conclusion 
The object of the study is a transversely bent triangular plate made of orthotropic material, fixed along 

the edges of the plate, under the action of a uniformly distributed load. An algorithm for a simple engineering 
calculation of triangular orthotropic plates based on the finite difference method is given, which allows 
performing manual or machine calculations with sufficient accuracy in variant (or sketch) design. At the 
same time, the technical problem of boundary conditions for the edges of triangular plates is solved in the 
form of the idea of paired exclusion of deflections of contour nodes, which occurs when using a grid of 
scalene triangles; when using a known rectangular grid, such a problem does not arise. 

In the proposed research method, the original differential equations of the 4th order with variable 
orthotropy coefficients based on finite difference approximation are replaced by grid equations using a grid 
of scalene triangles. As a result, a mathematical transition occurs to a system of linear algebraic equations, 
the solution of which results in deflections at the nodes of the applied grid, and then the corresponding 
internal forces are calculated. 

The results obtained allow drawing the following conclusions. 

1. The main and typical finite difference equations for a grid of scalene triangles (Fig. 2) are obtained, 
taking into account changes in the parameters of the plate geometry (angles α  and β ), boundary 

conditions (coefficients 1,γ  1,δ  1θ ), material orthotropy (coefficients 0,α  0β ), and the number of 
grid partitions .N  

2. The boundary conditions for a grid of scalene triangles are written in an original group (pair) form, 
which allows us to take into account the presence of oblique edges of irregular (not equilateral) 
triangular plates; 

3. Calculation of the deflection of equilateral ( )60α = β =   orthotropic triangular plates (equation 

(16)). The deflection of equilateral ( )60α = β =   orthotropic triangular plates was investigated 

with the number of grid divisions 8,N =  which ensures sufficient engineering accuracy. 

4. An alternative calculation of an orthotropic equilateral triangular plate using the finite element 
method confirmed the reliability of the numerical calculation algorithm proposed by the authors of 
this article. 

5. The results of this study expand the range of problems to be solved for triangular orthotropic plates 
with their geometric asymmetry (oblique, scalene plates), which is the basis for further theoretical 
and practical developments in the field of mechanics of thin-walled structures. 
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