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Preface

Dear Reader,

in this book you will �nd the Proceedings of the Summer School � Conference �Advanced Problems
in Mechanics (APM) 2018�. The conference had been started in 1971. The �rst Summer School
was organized by Prof. Ya.G. Panovko and his colleagues. In the early years the main focus of
the School was on nonlinear oscillations of mechanical systems with a �nite number of degrees of
freedom. Since 1994 the Institute for Problems in Mechanical Engineering of the Russian Academy
of Sciences organizes the Summer School. The traditional name of �Summer School � has been kept,
but the topics covered by the School have been much widened, and the School has been transformed
into an international conference. Now it is held under the patronage of the Russian Academy of
Sciences. The topics of the conference cover now almost all �elds of mechanics, being concentrated
around the following main scienti�c directions:

� aerospace mechanics;
� computational mechanics;
� dynamics of rigid bodies and multibody dynamics;
� �uid and gas;
� mechanical and civil engineering applications;
� mechanics of media with microstructure;
� mechanics of granular media;
� nanomechanics;
� nonlinear dynamics, chaos and vibration;
� molecular and particle dynamics;
� phase transitions;
� solids and structures;
� wave motion.

The Summer School � Conference has two main purposes: to gather specialists from di�erent
branches of mechanics to provide a platform for cross-fertilization of ideas, and to give the young
scientists a possibility to learn from their colleagues and to present their work. Thus the Scienti�c
Committee encouraged the participation of young researchers, and did its best to gather at the
conference leading scientists belonging to various scienti�c schools of the world.

We believe that the signi�cance of Mechanics as of fundamental and applied science should much
increase in the eyes of the world scienti�c community, and we hope that APM conference makes
its contribution into this process.

The Conference is organized by Institute for Problems in Mechanical Engineering of Russian
Academy of Sciences (IPME RAS) and Peter the Great St.Petersburg Polytechnic University
(SPbPU) under the patronage of Russian Academy of Sciences (RAS), St.Petersburg Scienti�c
Center, Ministry of Education and Science of Russian Federation (project indenti�cator RFMEFI
60715X0120) and the University of Seville (Universidad de Sevilla). APM 2018 is partially sup-
ported by Russian Foundation for Basic Research. Minisymposium in memoriam of Antonio
Castellanos Mata is partially sponsored by the Vicerrectorado de Investigacion de la Universi-
dad de Sevilla (Vice-Rectorate for Research, University of Seville, Spain).

We hope that you will �nd the materials of the conference interesting, and we cordially invite
you to participate in the coming APM conferences. You may �nd the information on the future
�Advanced Problems in Mechanics� Schools � Conferences at our website:

http://apm-conf.spb.ru

With kind regards,

Co-Chairmen of APM 2018

Dmitri A. Indeitsev, Anton M. Krivtsov
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On axial movement and transverse vibrations of layered thin-walled
membrane-plate structures and the problems of stability

On axial movement and transverse vibrations of
layered thin-walled membrane-plate structures and

the problems of stability

Nikolay V. Banichuk, Svetlana Yu. Ivanova, Evgeniy V. Makeev

banichuk@gmail.com

Abstract

This study concentrated on stability analysis and optimization of thermoe-
lastic web travelling between two rollers. It is presented a model for a layered
travelling web (continuous layered panel composed from isotropic materials)
restricting the consideration on one open draw. The web is mechanically
simply supported at the in�ow and out�ow ends of the span with the rest
boundaries of the span unsupported. The considered part of the layered web
is e�ectively isotropic, homogeneous and occupies the domain having a rect-
angular shape in plan. The web is symmetrically composed with respect to a
middle plane and it is consisted of thermoelastic layers characterized by some
important parameters (mass per unit area, Young modulus, Poisson ratio and
distances from the middle plane). The movement of layered membrane-plate
structure with constant axial velocity is considered [1]. Various mechanical
and temperature actions and characteristic properties of the moving media
are taken into account [2], [8]. Transverse vibrations arising in the process of
axial movement are supposed to be small. The loss of stability of thin-walled
thermoelastic plate-like moving structures is studied in the static form (diver-
gence) and the stability domain is determined in the space of basic considered
parameters.

1 Introduction

In this paper we present mechanical models for a homogeneous (continuous,
isotropic) and for a layered (e�ectively isotropic and homogeneous) travelling webs,
restricting the consideration to one open draw. The webs are mechanically simply.
supported at the in�ow (x = 0) and out�ow (x = l) ends of the span. The webs
are travelling at a constant velocity V0 in the x-direction of the rectangular global
coordinate system xz and are loaded by axial tension T0 and thermal loads. The
length l and the total thickness H are supposed to be given, while 0 < x < l and
−H/2 < z < H/2. For given problem parameters we study stability problems and
derive the expressions for critical temperature and critical web velocity. As a result
we �nd safety domain of stability.
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2 Homogeneous thermoelastic web

Free transverse vibrations of homogeneous web axially moving with constant velocity
and loaded by axial tension and heated by some temperature are described by the
following equation for transverse displacement w and simply supported boundary
conditions

m

(
∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0

∂2w

∂x2

)
=

(
T − EH

1− ν
εθ

)
∂2w

∂x2
−D∂

4w

∂x4
, (1)

(w)x=0 = 0,

(
∂2w

∂x2

)
x=0

= 0, (w)x=l = 0,

(
∂2w

∂x2

)
x=l

= 0, (2)

wherem, E, ν, D are, respectively, the mass per unit area, Young's modular, Poisson
ratio, bending rigidity (D = EH3/12(1− ν2)) and the deformation εθ is de�ned as

εθ = αθθ, θ = θa − θ0. (3)

Here αθ is the linear expansion coe�cient, θ is the temperature discrepancy, θ0 is
the temperature of zero deformation, θa is the actual temperature.
In the stationary case, when

∂w

∂t
=
∂2w

∂t2
= 0, (4)

the transverse displacement w = w(x) satis�es the equation

d4w

dx4
+ λ

d2w

dx2
= 0, (5)

where parameter λ (eigenvalue) is given by the expression

λ =
1

D

(
mV 2

0 +
EH

1− ν
αθθ − T0

)
≡ f

(
V 2
0 , θ
)
. (6)

If we introduce new unknown variable ψ(x) as

ψ(x) =
d2w

dx2
, 0 ≤ x ≤ l, (7)

we obtain the following spectral problem

d2ψ

dx2
+ λψ = 0, (8)

ψ(0) = 0, ψ(l) = 0. (9)

Here the value λ plays the role of an eigenvalue. Nontrivial solution of the formulated
eigenvalue problem can be represented as

ψ(x) = C1 sin
(√

λx
)

+ C2 cos
(√

λx
)

(10)
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with two arbitrary coe�cients C1, C2 and unknown value λ. Taking into account
(9), (10) we will have C2 = 0 and

λ =

(
jπ

l

)2

, j = 1, 2, ..., (11)

ψ(x) = C1sin

(
jπx

l

)
(12)

with arbitrary constant C1.
Thus, for given problem parameters D, E, ν, H, l, T0, m, V0, αθ we obtain the
critical temperature θdiv of instability (divergence or buckling)

θdiv =
1− ν
EHαθ

[
D
(π
l

)2
+ T0 −mV 2

0

]
(13)

and

λmin =
(π
l

)2
(14)

corresponding the minimal j = 1 in (11). Analogously we �nd the critical instability
velocity (squared) (V 2

0 )
div as

(
V 2
0

)div
=

1

m

[
D
(π
l

)2
+ T0 −mV 2

0

]
, (15)

where D, E, ν, H, l, T0, m, θ, αθ are considered as a given positive parameters.
Safety domain for stability in the values (θ, V 2

0 ) is de�ned by the inequality

f
(
V 2
0 , θ
)
< λmin =

(π
l

)2
(16)

that is reduced to the condition

F
(
V 2
0 , θ
)
≡ 1

D

(
l

π

)2

f
(
V 2
0 , θ
)

= CV V
2
0 + Cθθ − C0 < 0, (17)

where

CV =
m

D

(
l

π

)2

, Cθ =
EHαθ
D(1− ν)

(
l

π

)2

, C0 =
T0
D

(
l

π

)2

+ 1.

Safety domain of the values V 2
0 , θ has a triangular shape OAB shown in Fig. 1

3 Layered thermoelastic web

Consider the layered web that is symmetrically composed with respect to a middle
plane (Fig. 2) and consisted of 2n+ 1 (odd number) thermoelastic layers character-
ized by mass per unit area mi, Young's modulus Ei, Poisson's ratio νi, coe�cient

9
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Figure 1: Safety domain OAB

Figure 2: Layered web

(αθ)i, and distances hi from the middle plane. We will take into account the sym-
metry of internal web structure, i.e.

E(z) = E(−z), ν(z) = ν(−z), αθ(z) = αθ(−z) (18)

and derive the expressions for e�ective moduli Def , νef , εefθ and mef . To this end we
apply the formulas for stresses and strains and the expression for bending moment∫ H/2

−H/2
σxzdz =

[
2

∫ H/2

0

z2E(z)dz

1− (ν(z))2

]
d2w

dx2
= Def d

2w

dx2
. (19)
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Thus we �nd the expression for e�ective bending rigidity in the form

Def = 2

∫ H/2

0

z2E(z)dz

1− (ν(z))2
. (20)

Using mechanical and geometric characteristics of the web layers Ei, νi, hi we eval-
uate the integral in (20). We will have the following formula

Def =
2

3

En+1

1− ν2n=1

h3n+1 +
2

3

n∑
i=1

Ei
1− ν2i

(
h3i − h3i+1

)
. (21)

In analogous manner we derive the formulas for e�ective Poisson's ratio νef and
for e�ective thermal deformation εefθ of nonhomogeneous isotropic layered web. We
have

νef =
2

Def

∫ H/2

0

z2ν(z)E(z)

1− (ν(z))2
dz =

2

3Def

[
νn+1En+1h

3
n+1

1− ν2n+1

+
n∑
i=1

Eiνi
1− ν2i

(
h3i − h3i+1

)]
,

(22)

εefθ =
2

H

∫ H/2

0

αθ(z)θdz =
2

H

[
(αθ)n+1θn+1hn+1 +

n∑
i=1

(αθ)iθi(hi − hi+1)

]
, (23)

if θ1 = θ2 = ... = θn+1 = θ then

εefθ =
2θ

H

[
(αθ)n+1hn+1 +

n∑
i=1

(αθ)i(hi − hi+1)

]
, (24)

mef = mn+1 + 2
n∑
i=1

mi. (25)

If we de�ne

a =
EH

1− ν
εθ, a = a(z) =

E(z)H

1− ν(z)
εθ(z) =

HE(z)

1− ν(z)
αθ(z)θ(z),

then

aef = 2

∫ H/2

0

E(z)αθ(z)θ(z)

1− ν(z)
dz = 2

[
(αθ)n+1En+1θn+1

1− νn+1

hn+1 +
n∑
i=1

(αθ)iEiθi
1− νi

(hi − hi+1)

]
.

(26)

If the temperature of each layer are the same, then

aef = 2θ

[
(αθ)n+1En+1hn+1

1− νn+1

+
n∑
i=1

(αθ)iEi(hi − hi+1)

1− νi

]
. (27)

In this case the domain for stability in the values (θ, V 2
0 ) is de�ned analogy (17)

F
(
V 2
0 , θ
)
≡ 1

Def

(
l

π

)2

f
(
V 2
0 , θ
)

= Cef
V V

2
0 + Cef

θ θ − C
ef
0 < 0,
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where

Cef
V =

mef

D

(
l

π

)2

, Cef
0 =

T0
Def

(
l

π

)2

+ 1.

Cef
θ =

2

Def

(
l

π

)2
[

(αθ)n+1En+1hn+1

1− νn+1

+
n∑
i=1

(αθ)iEi(hi − hi+1)

1− νi

]
.
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Mechanical characterization of polymer-based composite materials at micro- and
nanoscale using AFM

Mechanical characterization of polymer-based
composite materials at micro- and nanoscale using

AFM

Eduard S. Batyrshin, Yuriy S. Zamula, Svyatoslav S. Chugunov, Ivan

V. Sergeichev, Iskander S. Akhatov

batyrshine@mail.ru

Abstract

The mechanical characterization of �ber-reinforced polymer composites at
micro- and nanoscale is an essential experimental approach for the develop-
ment of multi-scale mechanical representation of macroscopic composite parts.
The study of elastic moduli variation within �ber and matrix phases, as well
as properties of the �ber-matrix interface, is of particular importance. In this
paper, we present the results of studying of the mechanical properties of �ber-
reinforced polymer composite materials, using atomic force microscopy (AFM)
based force modulation technique. The force modulation AFM operates in a
contact mode with the tested material surface. It uses low frequency excitation
of the probe, exploiting the fact that the amplitude of excited probe oscillation
is sensitive to the elasticity of the sample surface. As the result of composite
material characterization with AFM technique, the surface elastic moduli was
quantitatively mapped. We additionally studied the e�ect of AFM operating
parameters and probe characteristics on the resulting maps.

1 Introduction

Fiber reinforced polymer composite materials are the key components in mod-
ern technological applications. Due to their low speci�c gravity, high mechanical
strength and resistance to external impacts, they are being applied in aeronautics,
automotive industry, energy applicaitons, and other industrial �elds. Predicting
behaviour of a part, made of composite material, under the action of a complex
mechanical load is an important task. Despite the considerable progress achieved
to the date in general understanding of deformation processes in composite mate-
rials, exact mechanisms a�ecting composite behavior at microscale have not been
thoroughly studied yet. Destruction of the composite material, under the action of
mechanical loads, is a complex multi-stage process [1] that involves destruction of
the polymer matrix, �bers and matrix-�ber interface. Such multiphase nature of
composite failure, indicates the importance of studying the mechanical properties of

13
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composites at micro- and nanoscale, which corresponds to the typical spatial scale
of �bers and the interface between the �bers and the matrix.
AFM based techniques provide solid advantage in studying mechanical properties
of polymer composites at micro- and nanoscale. In particular, AFM implements
a few variants of nanoindentation technique, which is direct and easy to interpret
method for determining local elastic properties of the studied material. The well
developed models of AFM tip contact mechanics help in estimation of e�ective
Young modulus of the sample in the contact region of AFM tip and sample surface.
For instance, sequential nanoindentation with AFM allows construction of 2D maps
of elastic moduli over a selected region of interest. Despite the relative simplicity of
the method, the construction of a two-dimensional map of the mechanical properties
of the surface takes considerable time when traditional nanoindentation technique
is utilized. AFM based force modulation methods of material characterization are
more e�cient than the traditional technique; additionally, they provide better spatial
resolution [2, 3]. During the use of AFM force modulation mode, the scanning probe
remains in permanent contact with the surface of the sample. The force that presses
the tip of AFM probe to sample's surface has two components: the �rst component
is represented with a small constant loading force which presses probe's tip into
sample's surface for only a few nanometers, so that interaction between the probe
and the material remains elastic; the second component is represented with harmonic
osciallations (tens to hundreds of kHz) imposed on the constant loading force. As a
result of the scaning procedure, the surface topography, the amplitude and the phase
of the probe oscillations are recorded. These properties are correlated to mechanical
properties of the studied material at the next steps of the analysis.

2 Experimental details

The samples of a glass �ber/epoxy unidirectional composite material were used in
this work. The �ber glass roving contained approximately 800 elementary �laments
with an average diameter of 10µm each. A bundle of roving threads was tightly
packed into a polyurethane tube and impregnated with a compound, consisting of
epoxy resin ED-20 and TETA hardener, taken at 10:1 mass ratio. The sample was
polymerized at room temperature for 24 hours and heated in an oven for 4 hours
at 60◦C. The cured sample was fragmented by circular diamond saw in a direction
perpendicular to the �bers. The obtained cylindrical samples, 3 mm high and 4
mm in diameter, were glued onto a 1.5cm×1.5cm glass substrate with a hot melt
adhesive. The samples were polished with sandpaper with a gradual decrease of grit
size from 500 to 7000 grit. The grinding direction was altered by 90◦ after every
change of grit. After the grinding, the sample surface was additionally polished with
a suspension containing colloidal nano-silica particles, approximately 30 nm in size.
Surface quality was controlled with an optical microscope. After polishing, the sam-
ples were cleaned in an ultrasonic bath for 5 minutes, washed with deionized water
and dried at 60◦C for 1 hour. Scanning of the samples was carried out on an atomic
force microscope Agilent 5500AFM (Agilent, USA) using the force modulation mode
(FMM). Three cantilevers with di�erent force constants were used. The character-
istics of the cantilevers are provided in Table 1. All tested AFM probe cantilevers
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had diamond coated tips with radius R=100nm (according to manufacturers).

Table 1: Characteristics of AFM probes

#No. Probe Manufacturer Force constant, N/m

1 HA_HR_DCP-B NT-MDT, Russia 17
2 HA_HR_DCP-A NT-MDT, Russia 34
3 HA_HR_DCP-A TipsNano, Estonia 85

3 Results and discussions

The modulation of the force on AFM probe is performed with a piezo element
(Fig.1a). The oscillations are transmitted to AFM probe through the probe holder,
probe substrate, cantilever beam, and other components of AFM system. A signal
proportional to the de�ection of the cantilever D(t) is recorded (Fig.1b) during AFM
scanning. The tip deforms the surface of the sample and partially penetrates into
it, to a depth of δ(t). If the tip deformation is neglected, the probe position, the
cantilever de�ection, and the indentation depth are interrelated z(t) = D(t) + δ(t).
The AFM keeps constant drive of the piezo element during the scan, so that the
alternating amplitude of the z(t) is also constant. As a result, for sti�er sample
areas, where the deformation of the material is relatively low, the FM amplitude
D(t) increases, and for softer areas of the surface the FM amplitude decreases. A
2D map of the oscillation amplitude of the cantilever implicitly characterizes the
sti�ness of the material over the entire scaned area.

Figure 1: Schematics of force modulation mode (FMM) of AFM (a) and a typical
pro�le of the signal obtained during FMM scanning (b)

It should be noted that, in addition to the contact of AFM probe and sample
surface, AFM system contains a number of other mechanical contacts (AFM probe
to probe holder, etc.) that a�ect the response of the system. To minimize this
e�ect, the scanning frequency is selected far from the resonant peaks of the system;
in this study, it was set at 60kHz, 85kHz and 20kHz for cantilevers #1, #2 and #3,
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respectively. The amplitude of the piezo element oscillation is determined by the
amplitude of the voltage Upiezo., applied to the piezo element. With each cantilever,
the sample surface was scanned at Upiezo = 1, 2 and 4 Vpp.
Typical results of material characterization with AFM are shown in Fig.2. On the
image of topography (Fig.2a) there can be clearly seen some scratches, which result
from mechanical polishing of sample surface, and defects of epoxy matrix (dark
areas), which, apparently, are the voids formed during fabrication of the sample.
The �ber surface, although not everywhere, is located somewhat higher than the
surface of the polymer matrix - by tens of nanometers (Fig.2b) - which is also a
result of mechanical polishing of sample surface. During polishing operations, softer
materials, such as epoxy, are removed in excess to harder materials, such as glass
�bers. The height di�erence between the highest and the lowest point at the studied
sample surface, not accounting for voids, is less than 100 nm.

(a) (b)

Figure 2: AFM image of the surface topography (a) and a surface pro�le along a
dark line (b) (probe #2, Upiezo = 2 Vpp)

The two-dimensional map of the amplitude of the cantilever oscillations (Fig.3a)
shows correlation between sti�ness of the surface and FM amplitude level - on glass
�bers, that are sti�er than the epoxy matrix, FM amplitude increases. The his-
togram of the FM amplitude values (Fig.3b), collected over the scanned area, clearly
demonstrates two narrow peaks corresponding to the �bers and the matrix. The
analysis of FM amplitude and FM phase maps results in quantitative estimates of
viscoelastic parameters of the sample [4, 5].
The elasticity map is constructed from FM amplitude values, using a technique based
on results of [6, 7]. The main assumption is based on the fact that the typical values
of Youngâ��s modulus for epoxy resins (several GPa) are signi�cantly smaller than
those for glass �bers (70 GPa). Hence, the deformation of the glass �bers during
contact with the AFM tip can be neglected. In this case, an analytical expression
that relates the sti�ness of the tip-matrix contact to the values of FM amplitude of
glass �bers and epoxy matrix can be obtained:

km =
kc

< Af > /Am − 1
, (1)
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(a) (b)

Figure 3: A 2D map of the FM Amplitude (a) and a histogram of FM Amplitude
values collected from map (b) (probe #2, Upiezo = 2 Vpp)

here < Af > is the average FM amplitude over the �bers surface, Am is the FM
amplitude over the polymer matrix. Alternatively, the contact sti�ness can be cal-
culated in the framework of the Hertz contact mechanics [6, 8], with the correction
for adhesion force, that provides the following relation:

km = 61/3E∗2/3R1/3(F0 + Fad)
1/3, (2)

where R is the tip radius, F0 is the constant component of the indentation force
(set point), Fad is the adhesion force, E∗ is the reduced Young's modulus of the
epoxy matrix, which can be expressed as E∗ = Em/(1− ν2m) if the tip deformation
is negligible. Em and νm are the Young's modulus and the Poisson's ratio of the
matrix. The constant force F0 is a prede�ned scanning parameter, and Fad was
determined from the standard AFM force-distance curves. The values of the tip
radius used for calculations is R=100nm. The relations (1) and (2) are employed to
calculate the elasticity modulus of the epoxy matrix of the samples.
Elasticity map is obtained using AFM probes characterized with di�erent force
constants; there are three di�erent driving voltages used for piezo element Upiezo =
1Vpp, 2Vpp and 4Vpp. Figure 4a shows the map of the e�ective modulus of elasticity of
the epoxy matrix. Due to the assumption of abscence of �ber deformation, the �ber
part remain uncomputed in the map. The histogram of the modulus of elasticity
(Fig.4b) shows the average value of E∗ ≈ 5GPa which is typical for epoxy resins [9].
Considering in�uence of piezo element driving voltage and cantilever sti�ness on the
estimation of elastic modulus (Fig.5), the estimates obtained for probes #1 and #2
provide quite high values. There may be several reasons for this, including variations
of the true radius of AFM tip, degradation of the tip during the scan, irregularity
of amplitude-frequency response of the measuring mechanical system (Fig.1), which
contains a lot of peaks of resonant frequencies. Under such circumstances, selecting
a scanning frequency far from the resonant peaks of the system does not guarantee
a constant amplitude of the probe during the scan. Thus, quantitative estimates
of the elastic moduli should be done with care. The estimates of elastic moduli,
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(a) (b)

Figure 4: Map of the e�ective modulus of elasticity of the epoxy matrix (a) and the
histogram of these data(b) (probe #2, Upiezo = 2 Vpp)

Figure 5: E�ective Young's modulus of the epoxy matrix estimations obtained using
various AFM probes and piezo driving voltage

obtained with sti�er probes #2 and #3, remain unchanged when the driving voltage
of piezo element, Upiezo, changes. In the case of softer probe #1, the estimation of
E∗ decreases with increase of modulation amplitude. The use of sti�er cantilevers
increases stability of the obtained results.

Despite the described di�culties, the AFM force modulation technique can be very
e�cient in the study of relative changes in surface elasticity, in characterizing the
degree of polymer matrix spatial homogeneity, in detecting the change of elasticity
under the action of external forces, and in studies of the properties of the �ber-matrix
interface.
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4 Conclusions

The application of AFM in the force modulation mode for characterizing mechan-
ical properties of materials at micro and nano scales is demonstrated. The AFM
o�ers several scanning modes for evaluating elastic moduli of a material. The force
modulation approach seems to be better suitable for studying elastic moduli of the
material, than traditional nanoindentation approaches. The use of AFM probes with
a sti�er cantilever beam increases stability of the obtained signal and eads to over-
ally better results. The applied method of AFM-based nanoindentation allows 2D
mapping of surface elasticity, even in the case of multicomponent materials, where
mechanical properties of components di�er by orders of magnitude. This method,
owing to the high accuracy (up to nanometers) of AFM probe positioning and to
the high contrast of the resulting image, is an excellent tool for investigating me-
chanical characteristics of thin elements of the material, including sample matrix
and reinforcing �bers.
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Abstract

Accumulation of hydrogen inside metals leads to hydrogen embrittlement.
Examination of the hydrogen in�uence on the mechanical properties of ma-
terials, as well as explanation of the mechanisms of its transport, especially
di�usion, is one of the most actual problems in mechanics of materials. Within
the framework of this paper we review existing models of hydrogen di�usion
and describe the phenomenon of localization of plastic deformations. Ac-
cording to the retrospective of the models development, the most well-known
and universally recognized mathematical description of hydrogen transport is
based on the elementary di�usion equation and a number of equations for the
chemical reactions of hydrogen trap �lling. Moreover, the main experimen-
tal method for studying the hydrogen motion in a solid generally does not
take into account di�usion. Another important fact is that most of the exist-
ing results have been obtained by studying specimens charged with hydrogen.
According to our analysis this approach can not be used for investigation of
the hydrogen in�uence on the mechanical properties of materials. In this re-
gard we developed the model of multichannel di�usion of hydrogen. On the
basis of this model, we also developed an experimental-calculation method for
measuring the binding energies of hydrogen. In this study we also observe
modern approaches for modeling of localization of plastic deformation, con-
sidering it as a process of loss of stability of motion. We underline that all
problems of localization of plastic deformation intersect with the problems of
formation of local areas of hydrogen embrittlement. The dynamic instability
caused by hydrogen is associated with its di�usion. One can conclude that it
is necessary to consider dynamic unstable processes when solving problems of
mechanics of materials. Finally, it is necessary to take into account the spatial
inhomogeneity of both plastic deformations and the distribution of hydrogen
when calculating the strength.

1 Introduction

Modern problems in mechanics are closely related to the special properties of ma-
terials due to technology development. Exploitation of most of the metal structural
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components is realized with minimal stock factor and under stress levels equal or
even exceeding the yield stress. The mass fraction of special high-strength steels
in the modern car body is 70 %. Highly alloyed high-strength steels are the only
ones that are used in construction of pipelines. Forged titanium is widely used in
aviation. Details of modern building constructions are connected by high-strength
hardware instead of rivets. Nowadays superhigh-strength steels and nanostructured
materials with tensile strength three to four times higher than that of common ones
are developed and used.
Elastic modules are fundamental values underlines the binding energy in a metal
matrix. Metals with extreme properties are generally obtained by changing the
internal structure. It means that the yield line of the original matrix is used to
increase strength. In this case, the maximum plastic deformations substantially
decrease down to zero in some nanocrystalline metals.
Under these conditions, the in�uence of relatively small imperfections and local
defects becomes determinative. One of these factors is dissolved hydrogen. Unlike
other components of alloys, it has a large di�use mobility and can enter the metal
from the external medium, both directly in the gaseous state, and due to various
corrosive processes. Therefore, one can say that in nature there are no metals
completely hydrogen free.

2 Mechanics of materials containing hydrogen

The signi�cant e�ect of dissolved hydrogen on the metal properties was �rst dis-
covered by M.Fremy in 1861 in his investigation of the e�ect of gases on the steels
properties. He studied the meteorite iron specimens and found that steel can be
obtained from these specimens only if hydrogen is removed. Since then, any new
technology for the metals production and production of many other materials is
faced with the problem of the destructive e�ect of hydrogen at an increasingly low
level of its concentrations in the solid material.
At the beginning of the 20th century, one had to contend with the Kruppovaya dis-
ease, or in other words, discontinuities of rolled metal due to the mass production
of rolled steel. The relative mass concentrations of hydrogen that cause these devi-
ations are of the order of 4 · 10−6 in steels. Later, the problem of the brittleness of
aluminum alloys wasappeared. The corresponding level of hydrogen concentrations
was of the order of 4 · 10−7. "Hydrogen problems" appeared in the production of
titanium, zirconium, heat-resistant nickel alloys.
There is a vast amount of reference devoted to the examination and investigation
of �hydrogen problems�. The number of scienti�c publications related to the inves-
tigation of hydrogen in�uence on the materials structure and properties represents
between 20 and 30 thousand over the last 150 years.
Nowadays elimination of the negative e�ect of hydrogen on strength, plasticity, cold-
brittle strength, fatigue strength, impact strength and other physical and mechanical
properties of materials can be considered as one of the main research direction for
mechanics.
The accumulation of hydrogen inside metals always leads to hydrogen embrittlement.
Hydrogen transport occurs mainly due to its di�usion in a solid. Therefore, both
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explanation of the hydrogen in�uence on the mechanical properties of materials, and
explanation of the mechanisms of its transport are important in terms of mechanics.

Initially, the process of hydrogen transport in a solid was considered as a di�usion
process described by the Fick equation with a di�usion coe�cient depending on tem-
perature according to the Arrhenius law. The parameter of this law is the di�usion
activation energy. Moreover, in 1930s Gorsky established that the deformation of
the material matrix changes its concentration gradient and thus can lead to di�usion
induced by mechanical stresses.

Experimental studies have shown that the application of the Fick equation for the
data approximation leads to a huge scatter in the values of the di�usion coe�cients
and the activation energy for the same materials. Danken and Smith [7] explained
this variation by the fact that there is a threshold value of the concentration depend-
ing on the method and temperature regime of the sample treatment when hydrogen
saturation of metals. Therefore, they introduced the concept of bound hydrogen and
distributed in the material hydrogen traps in the explanation of hydrogen transport
in a solid. Traps were understood as boundaries of multicrystalline grains, foreign
inclusions, internal defects (dislocations, microcrack vacancies, etc.) [22, 36, 37]. As
the �traps theory� for description of the hydrogen transport developed, more and
more complex mathematical models were used, from McNabb and Foster [28] to the
Oriani model [30]. At hte same time, the equation of the hydrogen di�usion did not
change, only additional equations for �lling and emptying the distributed hydrogen
traps were introduced. In case of presence of a large number of parameters, such
as concentration, di�usion activation energy, the capacity of traps, di�erent activa-
tion energies for the collection and desorption of hydrogen from traps, they can be
selected to approximate almost any experimental result. Generalization of all mod-
els and a comparison of the experimental results with the results of mathematical
modeling are carried out in [16, 19]. In [19], in addition to the values â��â��of
activation energies and di�usion constants, di�erent activation energies of hydrogen
capture and release fro, traps were introduced.

The Oriani model is supported by an experimental technique for measuring the
binding energies of hydrogen, which is called the �thermal desorption spectra (TDS)
method�. The justi�cation of this method was given 60 years ago by Kissinger
[20]. According to this paper, the energy state changing and the hydrogen di�usion
process in a solid are described as �rst-order chemical reactions. Therefore, di�usion
is considered as a fast process in relation to the process of hydrogen releasing from
the traps. In this regard, the experimental procedure for interpreting the obtained
experimental data neglects the di�usion equations in the transport model. Hydrogen
di�usion was taken into account in one paper [32], but in the framework of the Oriani
model [30].

Thus, the most well-known and universally recognized mathematical description of
hydrogen transport is based on the most elementary di�usion equation and the set
of equations of chemical reactions of trap �lling. The main experimental method for
examination the hydrogen movement in a solid generally does not take into account
di�usion. It leads to the fact that in the fundamental physical handbook [14] it
is written that the values of the hydrogen di�usion coe�cient and its activation
energy, which are given in the tables of the handbook, are the result of averaging of
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numerous experimental data and are fair �at best, only for magnitude order�.
This situation can be explained by the great importance of the hydrogen problem.
According to the long history of the technology development, all scienti�c research
in this area has been repeatedly checked up experimentally. Therefore, despite the
great importance of speci�c data, signi�cant technological failures has been avoided
due to large-scale tests.
Several basic approaches for the modeling of the in�uence of hydrogen on the
strength of materials can be identi�ed, such as taking into account the in�uence
of hydrogen on the nucleation and motion of dislocations, taking into account the
in�uence of hydrogen on the development of cracks, taking into account the inter-
nal pressure of hydrogen in the metal and, �nally, �physical approaches�, based on
taking into account the potential energy of hydrogen-material matrix interaction.
The motion and formation of dislocations and their e�ect on local plasticity near
the peaks of cracks lead to local plasticity because of the very high concentration
of dislocations. The mechanism of hydrogenenhanced local plasticity (HELP) was
�rst described by Birnbaum H.K., Sofronis P. [6]. The constitutive equations for the
material taking into account local changes in material properties at the mouth of the
microcrack were proposed later in [40] and [9, 10]. These equations were obtained on
the basis of physical considerations on the interaction potentials between hydrogen
and dislocations.
At the same time, according to calculations performed by the authors of the model
presented in [40], signi�cant changes in mechanical properties in HELP occur at
local relative mass concentrations of hydrogen of the order of 10−2. For most metals
it is an unattainable high concentration. Steels, as well as more aluminum alloys,
crack themselves up to complete destruction without any external load even at much
lower concentrations.
Calculation of local plasticity in the framework of the theoretical examination of
a crack with a spherical tip shows that the local hydrogen concentrations at the
tip of the crack are only 100 times higher than the average ones [42]. Given that
the average values are usually about 10−6, the local concentrations do not exceed
10−4. Thus, the veri�cation calculation does not con�rm that local accumulation of
hydrogen necessary for triggering physical mechanisms of local plasticity is possible
under the in�uence of external mechanical loads.
There are still many uncertainties surrounding the model noticed by the authors. In
particular, there is a nonlinear dependence of the internal potential on the stresses
magnitude and hydrogen concentration. Since huge local concentrations many times
greater than observed in practice are considered, all nonlinearities are of signi�cant
importance.
It was noted in [17] that the HELP model requires enormous computational resources
in solving any applied problem, therefore, the only way out is to use the continuum
model of dislocation development, however, this replacement is often inadequate
and the authors propose to use the growth criterion for submicrocrack, ie, reduce
all hydrogen problems to Modeling the development of a crack with a manually
adjustable reduction in fracture toughness.
In [17] it was noted that the HELP model requires enormous computational resources
in solving any applied problem. Therefore, the only way out is to use the continuum
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model of dislocation development. However, this replacement is often inadequate
and as a result authors propose to use the growth criterion for submicrocrack, i.e.,
to reduce all hydrogen problems to modeling the development of a crack with a
manually adjustable crack resistance reduction.
The hydrogenenhanced decohesion model (HEDE) is similar to HELP [43]. The
di�erence is that HEDE takes into account the decrease in the formation energies
of free fracture surfaces with increasing local hydrogen concentration.
It should be noted that the HELP and HEDE models have become generally rec-
ognized in state-of-art science. Explicit discrepancies, including mentioned above
discrepancies with experimental data, are ignored. The latest scienti�c discussions
are reduced to using these models simultaneously to describe the same material
[11, 12]. This is very di�cult to realize because of the computational complexity.
Therefore, only quasistatic problems considering uniaxial stretching of cylindrical
samples are solved.
Standard modeling of the hydrogen-induced cracks development, taking into account
the reduction in crack resistance, is also a common approach. At the same time,
the model does not relate to real physical mechanisms of hydrogen in�uence. In
addition, it turns out that the consideration of the same model within the framework
of problems with di�erent scales yields signi�cantly di�erent results [1, 2].
The stress tensor changing based on the internal pressure created by hydrogen pen-
etrating into the crystal structure of metal also does not allow to examine the e�ect
of low hydrogen concentrations. Within the framework of this approach, the visible
e�ect of hydrogen is detected only at average concentrations above 10−5 [15], which
are about ten times greater than the real threshold for steels.
Molecular dynamics is also used to model hydrogen embrittlement [41, 44]. Nev-
ertheless, it allows to describe only micromechanisms at the apex of a microcrack
or dislocation because of the smallness of the modeled ensembles. The same disad-
vantage is possessed by the quantum mechanical approach [8, 39]. It can be used
only to describe the behavior of cracks in ideal crystals or to model the behavior
of individual microcracks and dislocations because of the large heterogeneity of real
metals.

3 New approaches to description of hydrogen de-
struction

It is necessary to underline one more discrepancy of modern approaches to hydrogen
research. Almost all results and models were obtained by investigation of specimens
charged with hydrogen. Initially, the saturation was carried out in gaseous hydrogen
under pressure. Nowadays, 99% of the results are obtained by hydrogen saturation
in salts solutions or in an electrolyte under the action of an electrical potential.
We detected experimentally the skin e�ect when saturating the metal samples with
hydrogen in a solution of salts according to the NACE Standard TM0284-2003. Af-
ter saturation of the samples, hydrogen is concentrated in a thin surface layer less
than 50 µm thick. Our results in combination with the latest data from other stud-
ies devoted to the uneven distribution of hydrogen concentrations during cathodic
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hydrogenation [26, 45] actually put an end to the technology of charging samples
with hydrogen to study the e�ect of hydrogen on the properties of metals.
Developed by us model of multichannel di�usion of hydrogen has been veri�ed by
using various materials. It is also con�rmed by the experiments of other scientists.
We suppose this model to be promising for describing the transport of small con-
centrations of hydrogen in a solid. On the basis of this model, we constructed an
experimental-calculation method for measuring the binding energies of hydrogen.
We have established that the limitations of the quasistatic approaches, as well as
the methods of separation of motions, do not allow us to obtain certain predictive
results in the case of complex systems involving several contacting details, which
is important for practical applications [5]. Also, it is not possible to describe the
process of loss of stability of deformation, which is characteristic for hydrogen em-
brittlement of steels, when zones of local hydrogen saturation and associated zones
of local plastic deformations are formed.
This problem is especially important in terms of the fact that zones of plastic de-
formations localization are sources for the microcracks initiation, their formation
triggers the destruction process.

4 Localization of plastic deformations

The inhomogeneity of the plastic deformation of metals and the "stress dropping"
accompanying its formation in case of uniform deformation are the main manifes-
tations of the Portevin-Le Chatelier e�ect [35]. Later detailed studies of plastic
deformation �elds made it possible to establish that during plastic deformation,
plastic deformation bands are formed. The characteristic distance between these
bands depends, in particular, on the grain size [46].
A lot of references are devoted to the explanation and modeling of the Portevin-Le
Chatelier e�ect, see the review [38]. The main mechanism is the motion or even
�jumping� of dislocations inside the metal during plastic deformation and their in-
teraction with vacancies, foreign inclusions and other structural imperfections that
contribute to the unstable motion of dislocations and the formation of plastic defor-
mation bands. Moreover, the e�ect itself is often used for testing various models of
displacement of dislocations and their interaction with the metal structure [46].
This dislocation approach has a signi�cant drawback. The mechanical characteris-
tics calculated on the base of this approach highly depend on the dislocation density
on the grain surface (for example, see [31]). This value can not be directly measured.
Simulation of the behavior of a large number of dislocations requires the speci�ca-
tion of the generalized energy characteristics of this ensemble, which requires the
building of additional physical microparameters. The presence of a large number
of parameters in the material characteristics makes it possible to approximate any
experimental dependences and ensure fully correspondence between results of the
dislocation modeling and the experimental data [46]. It is di�cult and sometimes
impossible to measure these parameters even in case of complete destruction of the
test specimen (for example, in case of beam irradiation in an electron microscope).
In other words, the dislocation model does not allow us to obtaine a quantitative
prediction without preliminary adjusting of the parameters based on the the results
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of testing the material with the same initial dislocation density.
These problems led to the emergence of generalized models of the localization of
plastic deformation, considering it as a process of loss of stability of motion. In this
regard, deformation with a small constant velocity is considered. Elements cause
instability of solutions are introduced into the equations of a continuum.
There are three main approaches:

1. Determination of the dependence of the speed of change of stresses on the
speed of change of deformations, which has a site with a negative slope, see
for example [21, 34].

2. Introduction of non-linear dependencies based on simulation of the di�usion
of vacancies and associated dislocations and non-linear constitutive equations
of the material in the equations of continuum, for example [18, 27].

3. Description of the dislocations formation as a random process developing in
time, transition to stochastic dynamic equations of continuum[23]. In this
case, the nonuniformity of the deformation process is described as stochastic
instability.

Thus, the loss of stability of a uniform uniaxial deformation of material is modeled
either by direct violation of the energy conservation law (by specifying an unsta-
ble part of its characteristic or by instability in a stochastic system describing the
behavior of dislocations) or by complicating the continuum model by introducing
moment stresses, grains rotations and plastic shears, or by means of a bifurcation
point arising from the introduction of additional nonlinear relations in the consti-
tutive equations [24]. These nonlinear relationships are often obtained from consid-
eration of the processes of nucleation and migration of dislocations. The process of
localization of plastic deformations is considered as dynamic and wave process.
These assumptions contradict some experimental data and the initial statement
of the problem, as underlined by the authors of the models described above. For
example, in [3], the interaction of dislocations with structural inhomogeneities is
considered as the main physical mechanism for localization of plastic deformation.
In [46] an experimental dependence of the geometric characteristics of local bands
on grain sizes was obtained.
One way or another, the authors of all the above-mentioned articles agree that
the original natural heterogeneity of the material can play an essential role in the
occurrence of localization of plastic deformation.
At the same time, except for [4], in all the papers known to us such an inhomogeneity
is taken into account binary. For example, in [13] it is given as a soft metal model
containing more rigid grains of another metal. In [25], the inhomogeneity is given
as a separate deformation model for grain boundaries.
An important manifestation of the e�ect of localization of plastic deformation is
the formation of a system of intersecting bands on the surface of a material such
as a �chessboard�. For the �rst time this term was proposed by V.E. Panin in
[33]. According to his research, the e�ect of the �chess� distribution of normal
and tangential stresses on interfaces was experimentally discovered and theoretically

27



Proceedings of XLVI International Summer School�Conference APM 2018

con�rmed. Also conclusion about the important role of the observed e�ect in various
phenomena of nature was made.
An alternative explanation for the formation of the �chess� surface character is given
in Morozov [29]. The authors considered the compression of di�erent elastic bodies.
Within the framework of a geometrically linear formulation, both isotropic elastic
bodies in a two-dimensional formulation (plates, plates on an elastic base) and trans-
versely isotropic elastic half-spaces and layers were investigated. It was shown that
exceeding of the critical value of the compressive load lead to yield of material from
the loading plane. In this case, wave formation occurs in the material, which leads
to the appearance of a regular structure on the surface, which also resembles the
�chessboard�.

5 Localization of plastic deformations and hydro-
gen embrittlement as a single problem of modern
mechanics of solids

All problems of localization of plastic deformation intersect with the problems of
formation of local zones of hydrogen embrittlement. They are a manifestation of
the dynamic instability of the material. The only di�erence is that the dynamic
instability caused by hydrogen is associated with its di�usion, whereas in the case
of plastic �ow it is associated with the migration of dislocations. That is, additional
degrees of freedom, which can give energy for the development of instability, appear.
It is di�cult to model an unstable process related to localization, since all approx-
imate approaches have an approximation error that increases in time and can not
be estimated from above.
Many continuum material makes it possible to describe the emerging instability as
a structural transition. Nevertheless, recent data indicate failure of a homogeneous
material model, since localization of plastic deformations leads to volumetric het-
erogeneity of mechanical properties. The surface e�ect, both in redistribution of
hydrogen concentrations and in plasticity, leads to talk about new approaches to
modeling the behavior of materials outside the elastic region.
These new approaches shall take into account the redistribution of di�usely mobile
components and the special role of the solid surface during plastic deformation and
material destruction.

6 Conclusion

Accounting of dynamic unstable processes in the framework of solution of mechanics
problems is necessary due to the logic of research development and the problems of
state-of-art technology. The main problem is that the accuracy of any approxima-
tions falls with time, since the error is also an unstable process.
When calculating the strength, it is necessary to take into account the spatial inho-
mogeneity of both plastic deformations and the distribution of hydrogen, since they
directly a�ect the mechanical properties of materials.
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Plastic waves are accompanied by the transfer of di�usely mobile hydrogen. The
presence of a boundary surface layer makes the in�uence of the boundary conditions
on these processes not essential.
Under these circumstances, it is natural to use the wave approximation when study-
ing the processes of redistribution of natural small hydrogen concentrations in struc-
tural materials under the in�uence of external loads, taking into account the mutual
in�uence of hydrogen di�usion, hydrogen accumulation in critical areas, heterogene-
ity of plastic deformations and changes in the mechanical properties of the material
associated with the accumulation of hydrogen.
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Abstract

This paper presents methods of obtaining of functionally-invariant solu-
tions U(x, y, z, t) of nonautonomous nonlinear Klein-Fock-Gordon equation.
Solutions U(x, y, z, t) are obtained in the form of an arbitrary function which
depends on one τ(x, y, z, t) or two α(x, y, z, t), β(x, y, z, t) specially constructed
functions. These functions are called ansatzes. Ansatzes (τ, α, β) are de�ned
as solutions of separate equations (algebraic or mixed forms � algebraic and
partial di�erential equations). Equations de�ning ansatzes contain arbitrary
functions depending on (τ, α, β). Proposed methods allow to �nd U(x, y, z, t)
for the special class of nonautonomous nonlinear Klein-Fock-Gordon equations.
General methods of solution are illustrated by examples of �nding particular
exact analytical solutions of nonautonomous Liouville equation.

1 Introduction

Nonlinear Klein-Fock-Gordon equation (NKFG)

Uxx + Uyy + Uzz −
Utt
v2

= F (U), (1)

where F (U) is an arbitrary nonlinear function U and lower symbolic index denotes
partial derivative by the corresponding variable, plays a fundamental role in the
modern natural sciences.
Equations (1) for particular forms of function F (U) are well known in the math-
ematical physics. Eq. (1) with F (U) = expU �rst came in the theory of surfaces
with constant negative curvature. It was solved by Liouville [1]. Eq. (1) with F (U)
which equals to the sum of exponents describes oscillations of chain of nonlinear
pendulums [2], and with F (U) in the form of truncated series by functions sinhnU ,
coshnU (n = 1, 2, . . .) modells orientational structure of ferromagnetic media in the
magnec �eld [3]. Many papers in mathematics, applied and theoretical physics are
devoted to the analysis of nonlinear equations [4] including the equation (1) with
F (U) in the form of truncated Fourier series (sine-Gordon, double sine-Gordon etc.)
and truncated Taylor series (Ginzburg-Landau equation). Outlined equations de-
scribe various physical phenomena and model numerous technological procecces [5].
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Though it is necessary to idealize both physical phenomena and technological pro-
cecces making assumptions about uniformity of media and �elds of external actions.
Various physical phenomena and technological procecces are described by nonau-
tonomous nonlinear Klein-Fock-Gordon equation

Uxx + Uyy + Uzz −
Utt
v2

= p(x, y, z, t)F (U). (2)

Here p(x, y, z, t) is some function.
Analytical methods of solving equation (2) are practically absent in the literature.
This paper presents an approach to �nding of exact analytical solutions of nonau-
tonomous NKFG equation based on the methods of building of functionally-invariant
solutions of partial di�erential equations.

2 Methods of obtaining of analytical solutions of
nonautonomous Klein-Fock-Gordon equation

Solution of the di�erential equation is called functionally-invariant if it is in the
form of an arbitrary function U = f(W ) depending on another de�nite function W
called ansatz. The ansatz is a solution of one or several equations. Equations can be
algebraic or di�erential or a mixed type. There are functionally invariant solutions
depending on two or more ansatzes.
The idea of the existence of functionally invariant solutions was suggested by
C.Jacobi [6]. A.Forsyth [7] found functionally invariant solutions of the Laplace
equation, wave equation, and of the Helmholtz equation. In studying electromag-
netic waves, Bateman [8] fundamentally and consistently developed the Jacobi idea
as applied to the wave equation. S.L.Sobolev and V.I.Smirnov [9]�[12] success-
fully used the method to construct functionally invariant solutions to solve prob-
lems of di�raction and sound wave propagation in uniform and layered solid media.
N.P.Erugin [13] made a large contribution to developing the theory of this method.
Functionally-invariant solutions of both autonomous and nonautonomous NKFG
equation in particular sine-Gordon equation were obtained by authors of [14]�[18].
We will �nd solutions of nonautonomous NKFG equation (2) in the form of com-
posite function U = f(W ). Then Eq. (2) is as follows

f ′′
[
W 2
x +W 2

y +W 2
z −

W 2
t

v2

]
+ f ′

[
Wxx +Wyy +Wzz −

Wtt

v2

]
= pF [f(W )]. (3)

Here and elsewhere prime denotes ordinary derivative with respect to the argument.
Two obvious propositions could be made on the basis of (3).
Proposition 1. If function W satis�es to equations

W 2
x +W 2

y +W 2
z −

W 2
t

v2
= 0, Wxx +Wyy +Wzz −

Wtt

v2
= p(x, y, z, t), (4)

then solution of equation (2) is given by inversion of the integral∫
df

F (f)
= W (x, y, z, t). (5)
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Proposition 2. If function W satis�es to equations

W 2
x +W 2

y +W 2
z −

W 2
t

v2
= p(x, y, z, t), Wxx +Wyy +Wzz −

Wtt

v2
= 0, (6)

then solution of equation (2) is given by inversion of the integral∫
df√
E + V

= ±
√

2W (x, y, z, t). (7)

Here F (U) = V ′(U) and E is constant of integration.
For analytical expressions F (U) listed in the Introduction integral (5) by correspond-
ing substitution of variable reduces to the integration of rational fraction. Function f
de�ned by (7) is obtained by inversion of elliptical or hyperelliptical integral with
genre de�ned by number of summands in the function F (U). Because problem of
�nding function f from equations (5) and (7) is solved in literature the key problem
of solving nonautonomous NKFG equation reduces to �nding ansatz W satisfying
to equations (4) and (6). This problem could be solved by application of methods
of building functinally-invariant solutions of partial di�erential equations.
First method. We will seek the soutions of equations (4) in the form

W = ϕ(τ). (8)

Here ϕ(τ) is arbitrary function τ and τ(x, y, z, t) is root of algebraic equation

x ξ(τ) + y η(τ) + z ζ(τ)− v2tτ =
s2 + q2

2
, (9)

s2 = x2 + y2 + z2 − v2t2, q2 = ξ2(τ) + η2(τ) + ζ2(τ)− v2τ 2,

and ξ(τ), η(τ), ζ(τ) are arbitrary functions τ .
Equation (9) implicitly de�nes dependence τ from time and space coordinates.
Therefrom using rules of implicit functions di�erentiation we obtain partial deriva-
tives τ of �rst and second order and make sure that τ satis�es to equations

τ 2x + τ 2y + τ 2z −
τ 2t
v2

= 0, τxx + τyy + τzz −
τtt
v2

=
2

ν
, (10)

ν = ξτ (x− ξ) + ητ (y − η) + ζτ (z − ζ)− v2(t− τ). (11)

In deriving equations (10) the following relations were taken into account

ξττx + ηττy + ζττz + τt = 1, (12)

νxτx + νyτy + νzτz −
νtτt
v2

= 1. (13)

On the basis of the Proposition 1 and equations (10) we obtain that (8) is the
solution of equation (2) if function f(W ) is obtained from equation (5) and

p(x, y, z, t) =
2

ν
ϕτ . (14)
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We note that in spite of the simplicity of the analytic dependence (14) computed
solution of nonautunomous NKFG equation is su�ciently general. Note �rst that
ϕ(τ) is arbitrary function τ and as well we seek anzats τ from the equation (9) which
contains three arbitrary functions ξ(τ), η(τ), ζ(τ).
We seek function W in the form

W = Ψ(ν, τ). (15)

For this anzats equations (4), (6) takes the form

W 2
x +W 2

y +W 2
z −

W 2
t

v2
= Ψ2

ν(2σ − q2) + 2ΨνΨτ + Ψτ
2

ν
, (16)

Wxx +Wyy +Wzz −
Wtt

v2
=

1

ν
(2σ − q21)(νΨν + Ψ)ν +

2

ν
Ψν(νΨν + Ψ). (17)

Here

σ = ξττ (x− ξ) + ηττ (y − η) + ζττ (z − ζ), (18)

q21 = ξ2τ + η2τ + ζ2τ − v2. (19)

In deriving equations (16), (17) account must be taken of (13) and equations which
are satis�ed by function ν(x, y, z, t)

ν2x + ν2y + ν2z −
ν2t
v2

= 2σ − q21, (20)

νxx + νyy + νzz −
νtt
v2

=
2

ν
(2σ − q21). (21)

From (17) it is seen that Ψ(ν, τ) is the solution of the second equation (6) i.e. wave
function if

νΨν + Ψ = 0, Ψ(ν, τ) =
ϕ(τ)

ν
. (22)

For this solution

W 2
x +W 2

y +W 2
z −

W 2
t

v2
=
ϕ2

ν4

[
2σ − q21 − 2ν

ϕτ
ϕ

]
. (23)

On the basis of Proposition 2 we arrive at conclusion that (22) is solution of the
equation (2) if

p(x, y, z, t) =
ϕ2

ν4

[
2σ − q21 − 2ν

ϕτ
ϕ

]
. (24)

More general solution of nonautonomous NKFG equation could be obtained assum-
ing that

W = Ψ(τ, λ, ν), (25)
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where

λ = l(τ)(x− ξ) +m(τ)(y − η) + n(τ)(z − ζ)− v2w(τ)(t− τ). (26)

Here l(τ),m(τ), n(τ), w(τ) are arbitrary functions. We impose on them the following
relationships

lξτ +mητ + nζτ − v2w = 0, (27)

l2 +m2 + n2 = v2w2. (28)

For anzats W de�ned by (25), equations (4), (6) are reduced to the form

W 2
x+W 2

y +W 2
z−

W 2
t

v2
=

2

ν
(Ψτ + ωΨλ + σΨν) (λΨλ+νΨν)−

q21
ν

Ψν(2λ
2Ψλ+νΨν), (29)

Wxx +Wyy +Wzz −
Wtt

v2
=

=
2

ν

(
∂

∂τ
+ ω

∂

∂λ
+ σ

∂

∂ν

)
(λΨλ + νΨν + Ψ)− q21

ν
(4λΨλν + νΨνν) . (30)

From (29) it is seen that Ψ(τ, λ, ν) will be a solution of equations (4) if

q21 = ξ2τ + η2τ + ζ2τ − v2 = 0, (31)

λΨλ + νΨν = 0. (32)

General solution of the equation (32) has the form

Ψ(τ, λ, ν) = g

(
λ

ν

)
ϕ(τ). (33)

Here g(λ/ν) is arbitrary homogenous function of zero order. For the solution (33)

p(x, y, z, t) = − 2

ν2
g2ϕ2

[
ϕτ
ϕ
− σ

ν
+
g′

νg
(ω + σλ)

]
. (34)

Hence (25), (33) will be solutions of the equation (2) if f(W ) is the inversion of
integral (5) and function p is given by (34).
It follows from (30) that W = Ψ(τ, λ, ν) will be a wave function if condition (31) is
satis�ed and function Ψ(τ, λ, ν) satis�es the equation

λΨλ + νΨν + Ψ = 0. (35)

Solution of equation (35) will be arbitrary homogeneous function of negative �rst
order

Ψ(τ, λ, ν) =
1

ν
g

(
λ

ν

)
ϕ(τ). (36)

According to the Proposition 2 anzatsW = Ψ(τ, λ, ν) given by (36) will be a solution
of nonautonomous NKFG equation (2) if

p(x, y, z, t) = −2

ν
Ψ(Ψτ + ωΨλ + σΨν). (37)
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3 Examples of construction of analytic solutions of
nonautonomous Liouville equation

Proposed method of solutions of NKFG equation is applicable for obtaining of exact
analytic solutions of nonautonomous Liouville wave equation

Uxx + Uyy + Uzz −
Utt
v2

= p(x, y, z, t) eU . (38)

However we will not attempt to �nd general solutions. Contrary having the aim to
illustrate general methods we will represent simple particular solutions.
According to (5) solution of thq equation (38) is given by

U = ln
1

C −W
, (39)

if function W (x, y, z, t) satis�es to equations (4). In the case then W (x, y, z, t)
satis�es equations (6) solution of (38) according to (7) will be

U = −2 ln sinh
W + C√

2
. (40)

In solutions (39), (40) C is contant of integration. Function W (x, y, z, t) as is ex-
plained above could be constructed in a variety of ways. If to �nd the solution
of equation (38) according to the �rst method then W (x, y, z, t) it is an arbitrary
function of anzats τ(x, y, z, t) and anzats is a root of an algebraic equation (9). In
order to �nd particular solutions it is necessary to de�ne arbitrary functions ξ(τ),
η(τ), ζ(τ). Assume that

ξ = 0, η = 0, ζ = 0. (41)

Then

τ = t± R

v
, R =

√
x2 + y2 + z2, (42)

p(x, y, z, t) =
2

ν
Wτ , ν = ±vR. (43)

Therefore for the case (41) solution of the Liouville equation (38) is given by for-
mula (39) in which W is an arbitrary function τ and τ(x, y, z, t) and p(x, y, z, t) are
given by (42), (43).
Let

ξ = a1vτ, η = a2vτ, ζ = a3vτ, a21 + a22 + a23 = 1. (44)

For this selection of functions ξ, η, ζ solution of (38) is (39) if

τ =
s2

2ν
, s2 = x2 + y2 + z2 − v2t2, (45)

p(x, y, z, t) =
2

ν
Wτ , ν = v(a1x+ a2y + a3z − vt), (46)
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and W as in the case (41) is an arbitrary function τ .
New solutions of the equation (38) could be constructed if to introduce a function λ.
According to the de�nition (26) it depends on functions ξ(τ), η(τ), ζ(τ) which
determine an anzats τ(x, y, z, t) and other arbitrary functions l(τ), m(τ), n(τ), and
w(τ). Last functions are related to the �rst equations (27), (28). We �nd from them

l =
v w(τ)√
q21 + v2

{
v cosA+

√
q21 [cos δ cos f(τ)− sin δ cosB sin f(τ)]

}
,

m =
v w(τ)√
q21 + v2

{
v cosB +

√
q21 sinC sin f(τ)

}
, (47)

n =
v w(τ)√
q21 + v2

{
v cosC −

√
q21 [sin δ cos f(τ) + cos δ cosB sin f(τ)]

}
.

Here

cosA =
ξτ√
q21 + v2

, cosB =
ητ√
q21 + v2

, cosC =
ζτ√
q21 + v2

, sin δ =
ξτ√
ξ2τ + ζ2τ

, (48)

and f(τ) is an arbitrary function τ .
If to de�ne functions ξ(τ), η(τ), ζ(τ) then from the equation (9) anzats could be
�nd τ(x, y, z, t) and formula (26) helps with (47) compute the function λ.
Let

ξ = avτ, η = 0, ζ = 0. (49)

Then

l =
v

a
w(τ), m =

√
a2 − 1

a
v w(τ) sin f(τ), n = −

√
a2 − 1

a
v w(τ) cos f(τ). (50)

On the basis of (49) and (50) we obtain

τ =
1

v(a2 − 1)

[
ax− vt±

√
(x− avt)2 − (a2 − 1)(y2 + z2)

]
,

ν = ∓v
√

(x− avt)2 − (a2 − 1)(y2 + z2), (51)

λ =
v w(τ)

a

[
x− avt+

√
a2 − 1(y sin f − z cos f

]
.

Determinig functions τ, ν, λ by formulas (15), (22) we obtain an anzats W and by
formula (40) obtain the solution of nonautonomous Liouviville equation (38). We
note that for the case (49) formulas (33) and (36) will not give the solution of the
equation (38) because condition (31) is not satis�ed for it. It will be satis�ed if
a = 1. In this case

τ =
s2

2ν
, ν = v(x− vt), λ = νw(τ). (52)

Function ϕ(τ) satis�es the system of equations (4) and ϕ(τ)/ν � system of equa-
tions (6). Threfore using functions (τ, ν, λ) (52) solution of nonautonomous Liouville
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equation (38) could be constructed using formulas obtained above. Therefore solu-
tion of (38) will be (40) if

W =
1

x2 + y2 + z2 − v2t2
, p(x, y, z, t) =

4

(x2 + y2 + z2 − v2t2)3
. (53)

This Lorentz invariant solution is obtained if τ and ν de�ned by (52) and

W =
ϕ(τ)

ν
, ϕ(τ) =

1

2τ
.

Examples of particular solutions of the equation (38) are given below. They are
de�ned by the formula (39) in which W is an arbitrary function of an anzats τ and
τ and function p(x, y, z, t) are de�ned by a particular form of functions (ξ, η, ζ, θ).

1. ξ = vτ cosα cos β, η = vτ cosα sin β, ζ = vτ sinα, θ = τ,

τ = t± R

v
, p(x, y, z, t) = ± 2

vR
Wτ ,

2. ξ = vτ cosα, η = vτ sinα, ζ = 0, θ = τ,

τ =
s2√

x2 + y2 − vt
, p(x, y, z, t) =

1√
x2 + y2 − vt

[
4− τ√

x2 + y2

]
Wτ ,

3. ξ = τ cosα, η = τ sinα, ζ = τ sinh β, θ =
τ

v
cosh β,

τ =
√
x2 + y2 −

√
v2t2 − z2, p(x, y, z, t) =

[
1√

x2 + y2
+

1√
v2t2 − z2

]
Wτ ,

4. ξ = τ cosα sinh β, η = τ sinα sinh β, ζ = τ, θ =
τ

v
cosh β,

τ = z +
√
v2t2 − x2 − y2, p(x, y, z, t) = − 2√

v2t2 − x2 − y2
Wτ .

In Fig. 1. spatial image of the solution 3 is given for the case W (τ) = sin τ .
Solutions of two-dimensional nonautonomous Liouville equations for some particular
cases of function p(x, y, t) have been obtained in papers [19, 20].

4 Conclusion

Methods of obtaining exact analytic solutions of nonautonomous NKFG equation
are divised. They are based on the ideas and methods of construction of functionally-
invariant solutions of partial di�erential equations. Proposed methods allow to con-
struct solutions of NKFG equation in the form of an arbitrary function depending
on one or several anzatses. Equations for determining of anzatses are given and
methods of their solution are discussed. Developped methods allow to �nd analytic
solutions of the equation (2) for functions p(x, y, z, t) of the special form. Distinc-
tive feature consists in simultaneous obtaining of solutions and analytic form of the
function p(x, y, z, t). Solutions are particular but the have su�ciently general form
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Figure 1: Function p and solution 3 for z = 0, t = 1 (left) and t = 3 (right).

because the include arbitrary functions. Untill now the problem of their selection
in order to get given beforehand function p(x, y, z, t) is not solved. This task needs
further studies.

General methods of construction of functionally-invariant solutions of NKFG equa-
tion are illustrated by examples of �nding particular exact analytical solutions of
nonautonomous Liuoville equation.

Methods of solution of nonautonomous NKFG equation are described for the three-
dimesional space. However they could be easily extended for the space of any di-
mension. We expect that proposed methods could be useful for the realization of
nonlinear models which describe real physical phenomena and technological pro-
cesses more adequately.
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Abstract

The model of the synthesis of a composite based on a Ni-Al system with re-
fractory carbide (TiC) particles is suggested. The various multiscale processes
are considered in the model. The model takes into account an interaction of
mechanical and thermal processes. The change in the structure of the compos-
ite is considered in the two-level approach: an evaluation of the stress-strain
state of the system, calculation of thermal and concentration �elds during
the synthesis are conducted at the macrolevel; the e�ective properties of the
composite are determined at the microlevel. The heat release from chemi-
cal reactions is determined by solving the problem of the reaction cell. The
algorithm for the numerical solution of the problem is proposed.

1 Introduction

Synthesis of composites in the combustion regime [1-3] or in the thermal explosion
mode [4-6] has attracted the attention of researchers [7-9]. The external electric and
magnetic �elds, as well as various types of mechanical loading are usually used to
control the synthesis process. However, the exothermic synthesis process is poorly
controlled. Therefore, the predictions of the composition and properties of compos-
ites, depending on the conditions of synthesis, use mathematical modeling.
The present work represents the evolution of previous investigations [10-13]. In
this paper, we propose a model of the synthesis of a multiphase composite from a
mixture of metal powders (Ni and Al), including those with additives of refractory
inclusions such as titanium carbide TiC under heating conditions combined with
loading. Since a change in the structure of the reaction system is possible during
the synthesis process, and the macroscopic model is unable to describe the local
structural inhomogeneities of the reaction medium, in this work, in order to take
into account the in�uence of the particle size of the reagents, their distribution,
formation of the reaction product layer at the particle level and their correlation
with the characteristics of the synthesis process is used the two-level approach. The
microstructural model of the reaction cell is considered at the microlevel (the level
of individual powder particles) to determine the e�ective properties of the composite
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and the heat release from chemical reactions. The methods of continuous medium
mechanics, the dynamics of multiphase media, the theory of structural macrokinetics
and thermodynamics are used at the macro level to determine the characteristics of
the solid-phase synthesis process (the �eld of temperature, component concentration,
stress and deformation).

2 PROBLEM FORMULATION

A �at layer of reagent that can be subjected to external thermal heating and mechan-
ical loading is considered to describe the process of synthesis of composite material.
In the model we use the following assumptions:
- in the investigated sample a �at layer of the regent of length Lx, width Ly, thickness
Lz is considered. The conditions Lz << Ly, Lz << Lx are satis�ed, which allows
us to use the hypothesis of the plane-stressed state of the plate to estimate the
mechanical stresses arising in the system; i.e. σzz = 0 (rotations are also not taken
into account);
- in the energy equation we take into account the work of dissipative forces and
interaction of thermal and mechanical processes
- the properties of the composite are e�ective ones and the properties are calculated
based on the sintering theory and dynamics of multiphase media
-the heat release from chemical reactions is determined from the solution of the
problem of chemical reaction in the reaction cell.
- To take into account the melting of the components of the system, we use an
abrupt speci�c heat changing in the vicinity of the melting point

cερ =

{
(cερ)S + Lmδ (T − Tm) , T <= Tm
(cερ)L + Lmδ (T − Tm) , T > Tm

,

where subscripts �s� and �L� refer to the properties of the solid and liquid (molten)
material, respectively; Tm is the melting point, Lm is the heat of the phase transition,
and δ is the Dirac delta function.
The mathematical formulation of the problem includes the heat conduction equation
associated with deformations and containing two types of heat sources - due to a
chemical reaction and due to viscous dissipation.

σij
dεij
dt

+ cερ
dT

dt
= ∇ · λT∇T +

n∑
i=1

Qiφi (η, T )− 3K TαT
dεkk
dt

(1)

where cε, ρ and λT are the e�ective heat capacity, density and thermal conductivity
coe�cient, respectively; T is the temperature, x and y are spatial coordinates, εkk =
εxx + εyy + εzz is the �rst invariant of strain tensor, αT is the thermal expansion
coe�cient, K is the isothermal bulk modulus, σij , εij are the components of stress
and strains tensors, η is the conversion level or the fraction of the reaction product,
Q is the heat of the total reaction, φi(η,T ) is the chemical reaction rate,

∂...

∂t
+ V · ∇... (2)
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To determine the stressed-strain state of plane layer, we consider the problem of
the mechanical equilibrium of the plate in the approximation of generalized plane
stress state. Therefore, the problem involves the equilibrium equations, rheological
relations and boundary conditions corresponding [14].

∂σxx
∂x

+
∂σxy
∂y

= 0;
∂σyx
∂x

+
∂σyy
∂y

= 0 (3)

We use the Cauchy equations [14]

εxx =
∂ux
∂x

; εyy =
∂uy
∂y

; εxy =
1

2

(
∂uy
∂x

+
∂ux
∂y

)
(4)

We assume that the stress tensor is the sum of the elastic and viscous components:

σij = σeij + σVij .

We use the Duhamel-Neumann relations for "elastic" stresses

σeij = 2µ · εij + δij [λεkk −Kω ] ,

where

ω = 3

[
αT (T − T0) +

n∑
k=1

αkηk

]
,

n is the number of components involved in the reactions; αk are the coe�cients of
concentration expansion.
Elastic stress increments are linearly related to the increments of any deformations.
Viscous - linearly related to the rates of deformation. By analogy with the previous
one, for viscous stresses we have

σVij = 2µV · ε̇ij + δij

[
λε̇kk − 3K

(
αT Ṫ +

n∑
k=1

αkη̇k

)]
,

where µV is the coe�cient of viscosity; δij is Kronecker symbol.
For the total reaction, we obtain the expression

σij = 2µεij + 2µvε̇ij + δij [λεkk + λε̇kk − 3K {(αp − αr)η + (αp − αr)η̇}] (5)

The boundary conditions correspond to the character layer loading (tension, com-
pression, shear) and to the conditions of external heating.

t = 0 : T = T0, σij = 0; εij = 0

x = 0 : −λ ∂T
∂x

=

{
q0, t ≤ ti
α (T − T0) , t > ti

, x = Lx :
∂T

∂x
= 0;

y = 0 :
∂T

∂y
= 0, y = Ly :

∂T

∂y
= 0,

(6)
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where ti is the heat �ux time; q0 is the heat �ow power; and α is the external heat
exchange coe�cient.
For the case of uniaxial extension, the boundary conditions have the form

x = 0, x = Lx : σxx = P, σyy = 0, σxy = 0;

y = 0, y = Ly : σxx = 0, σyy = 0, σxy = 0.x
(7)

For the case of uniaxial compression, the load was taken with a negative sign. For
the pure shear condition we have

x = 0, x = Lx : σxx = P1, σyy = 0, σxy = 0

y = 0, y = Ly : σxx = 0, σyy = P2, σxy = 0
(8)

where P1 = P ·cos(α), P2 = P ·sin(α), tg(α) = Lx/Ly.

Algorithm of numerical solution

The algorithm for the numerical solution of the problem under investigation was
as follows. For the numerical solution of the heat equation (1) �nite-di�erence
approximation using the four-point pattern and the splitting scheme by coordinates
were used. The �nite-di�erence scheme for (1) has the form

cijρij
T̃ij−

∨
T ij

dt
=

1

dx

[
λi+1j + λij

2

T̃i+1j − T̃ij
dx

− λij + +λi−1j
2

T̃ij − T̃i−1j
dx

]

cijρij
Tij − T̃ij

dt
=

1

dy

[
λij+1 + λij

2

Tij+1 − Tij
dy

− λij + λij−1
2

Tij − Tij−1
dy

]
+

+
∨
W
ij
−
∨
Uij +

n∑
i=1

Qiφ

(
∨
ηij,

∨
T ij

) (9)

where

W = σij
∂εij
∂t

, U = 3K TαT
∂εkk
∂t

.

The parameters denoted by the symbol "∨" are the values on the previous time
layer. Further, the resulting system of linear algebraic equations was solved by a
sweep method with initial and boundary conditions (6). The temperature value for
each k time layer (Tk

ij(x,y)) was used in kinetic equations and rheological relations.
To determine the kinetic function of φ(η,T) and the total heat release from chemical
reactions, a special problem of chemical reaction is solved at the level of the repre-
sentative volume (reaction cell). The method used to solve the system of di�erential
equations in the model of the reaction cell is analogous to the solution method for
the energy equation presented above.
To �nd the components of the stress tensor σij and deformation εij we use the
Cauchy equation and the deformation rate relations.

Vx =
∂ux
∂t

;Vy =
∂uy
∂t

;
∂εxx
∂t

=
∂Vx
∂x

;
∂εyy
∂t

=
∂Vy
∂y

;
∂εxy
∂t

=
1

2

(
∂Vy
∂x

+
∂Vx
∂y

)
(10)
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a

b

Fig.1. Spatial distributions of the plate temperature (a) and component of strain
tensor (b) q0 = 107W/m2, P = 1GPa

The relations (10) were substituted into the rheological relations (5) and the equi-
librium equations (3).Then the di�erential equations were replaced by di�erence
equations, and the resulting system was solved by the relaxation method. In view of
the cumbersomeness, we not represent the founded expressions in the article. The
results of calculations based on the proposed algorithm for the viscoelastic Maxwell's
body and the case of pure shear are shown in Fig. 1.
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Abstract

The planar steady-state �ow of non-Newtonian incompressible �uid in a
T-shaped channel is considered. The motion of the �uid is caused by a given
pressure di�erence between inlet/outlet boundaries. The �ow is described
by momentum and continuity equations written in dimensionless variables.
On the solid walls, no slip boundary conditions are assigned. The viscosity
of non-Newtonian �uid is determined by the Ostwald-de Waele power law.
The problem is solved numerically using the �nite di�erence method based
on the SIMPLE procedure. The parametric studies of the �ow kinematics
depending on the pressure values given at the inlet/outlet boundaries have
been performed. The typical �ow regimes characterized by redistribution and
reversal of the �uid �ow have been found. The e�ect of main parameters on
the kinematic and dynamic characteristics has been estimated.

1 Introduction

Pipelines networks using for transportation of �uids and gases consist of branched
or connected elements. One such element is a T-shaped channel. The �uid �ow
in a T-channel is characterized by separation of the �ow into two parts. In engi-
neering practice, it is essential to understand the main characteristics of the �ow in
separating and reattaching �ows [1, 2].
Nowadays, a large number of investigations of the �ows of both Newtonian [3, 4, 5,
6, 7] and non-Newtonian [1, 2, 8, 9, 10] �uids with given �ow rate at the boundaries
of a T-shaped channel were carried out. There are a few works in which values of the
pressure are given at the boundaries of a T-shaped channel. Among these results
we �nd the works [11, 12] where numerical simulation of the �ow of a Newtonian
incompressible �uid in channels of complex geometry including �uid �ow in a T-
channel was performed.
The primary purpose of this work is to investigate characteristics of the �ow of a
power-law �uid in a T-shaped channel under the given pressure di�erence between
boundary sections.
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2 Problem Formulation

The planar steady-state �ow of a non-Newtonian incompressible �uid in a T-channel
is investigated. The �ow region is limited by solid walls MKF, EDC, AB (Fig.1).
The �uid �ow is driven by pressure di�erence between boundary sections AM, FE,
BC of the T-shaped channel. Mathematical problem statement includes momentum
and continuity equations which in dimensionless vector form are written as follows:

(U · ∇) U = −∇p +∇ · (2ηE) , (1)

∇ ·U = 0. (2)

Here, U is dimensionless velocity vector with components (u,v) in the Cartesian
coordinate system (x, y), p is dimensionless pressure, E is the strain rate tensor.

Figure 1: Flow region

The viscosity of non-Newtonian �uid is determined by the Ostwald-de Waele power
law [13]:

η = (A)n−1 , (3)

where A =

√
2
(
∂u
∂x

)2
+
(
∂u
∂y

+ ∂v
∂x

)2
+ 2
(
∂v
∂y

)2
is dimensionless intensity of the strain

rate tensor, n is the power-law index. Needless to say that the model describes the
rheology of Newtonian �uids at n=1.
To scale the length and the velocity, L (the width of the boundary section AM)

and U0 =
(

k
ρLn

) 1
2−n

are used, respectively. Dimensionless pressure is prescribed by

following expression:

p = (P − PFE ) /

(
k 2

ρnL2n

) 1
2−n

,

where k is the power-law consistency index, ρ is the �uid density, P is dimension
pressure, PFE is dimension pressure in the cross-section FE.
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In the through-�ow sections AM, FE, and BC, zero tangential components of the
velocity vector and values of the pressure are speci�ed

v = 0, pAM = p1, x = 0, 0 ≤ y ≤ 1

u = 0, pFE = 0, L1 ≤ x ≤ L1 + 1, y = L3 + 1 (4)

v = 0, pBC = p3, x = L1 + L2 + 1, 0 ≤ y ≤ 1

On the solid walls, the no slip boundary conditions hold

U = 0. (5)

The problem solution is reduced to �nding both the velocity and pressure �elds
which satisfy Eqs. (1)-(3) with given boundary conditions (4)-(5).

3 Numerical Method and Validation

The problem is solved numerically. An asymptotic time solution of the unsteady
�ow equation is used to obtain steady-state velocity and pressure �elds [20]. Such
method of solution assumes the addition of time derivative of the function U in
Eq.(1). The obtained system is discretized by the �nite di�erence method based on
the SIMPLE procedure [15]; rectangular staggered grid is used.
The rheological model for shear-thinning �uid (n < 1) has peculiarity of "in�nite"
viscosity, as A → 0. To ensure the stability and accuracy of calculations in the
regions of small values of A, the modi�ed model of the rheological equation is used
[16-17]. According to this model, the viscosity is determined by expression

η = (A + ε)n−1,

where ε is the regularization parameter. The approximate convergence of the method
of calculating with using regularized rheological model is presented in [16, 5].

4 Results and Discussion

The �ow characteristics of the problem are depending on geometric sizes of the
channel and three parameters: the power-law index (n) and values of the pressure
given at boundaries AM and BC, respectively, (p1 and p3). In present work, all
calculations have been performed in the T-shaped channel with branches of the
same width equal to one dimensionless unit and the same length L1=L2=L3=3 (Fig.
1). Investigation of the �ow characteristics depending on the parameters p1 and p3

at n=0.8 has been carried out.
In Fig. 2, distribution of the �ow characteristics at p1=-300 and p3=-400 are pre-
sented. The �uid �ow enters through the boundary section FE. The inlet �ow
divides into two parts in the vicinity of the junction of the branches and leaves
the channel through the boundary sections AM and BC. The planar-parallel �ow
of the non-Newtonian �uid with the fully developed velocity pro�le occurs near the
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Figure 2: Distribution of the �ow characteristics at n=0.8, p1=-300 and p3=-400 (a
� the stream function contours, b � the pressure �eld, c � the �eld of velocity u, d
� the �eld of velocity v)

through-�ow sections AM, FE, and BC. Transient regions of the �ow appear in the
vicinity of the sections with corner points K and D.
The Reynolds Number is imposed to analyse the results and use the similarity theory
as follows:

Re =
ρUavg

2−nLn

k
.

Here, Uavg is the average velocity in the cross section of the channel which is char-
acterized by maximum �ow rate. For case plotted in Fig. 2, Re = |QFE |2−n =
24.1.
The research has been carried out over the range of values of the pressure -2000≤
p1, p3 ≤2000. Four characteristic �ow regimes have been determined for this range of
main parameters. Regime I (Fig. 3a) corresponds to the case describing above. The
�uid �ow enters through the boundary section FE and leaves the channel through the
boundary sections AM and BC. This regime is observed when values of the pressure
given in the boundary sections AM and BC are less than the value of the pressure in
the section FE. The increase of the pressure in the through-�ow section AM, (p1 >0),
leads to reversal of the �ow in the branch containing the through-�ow section AM if
all other parameters remaining equal (Regime II). The �uid �ow enters through two
boundary sections AM and FE. After con�uence of entering �ows, the �uid leaves
the channel through the boundary section BC (Fig. 3b). As the parameter p1 is
further increased, the �uid �ow changes the direction in the branch containing the
through-�ow section FE (Regime III). The �uid �ow entering through the boundary
section AM divides into two parts in the vicinity of the junction of the branches and
leaves the channel through the boundary sections FE and BC (Fig. 3c). Regime
IV (Fig. 3d) corresponds to the case when two �uid �ows entering through the
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Figure 3: Flow regimes at n=0.8 (a � p1=-160 and p3=-400, b � p1=250 and
p3=-400, c � p1=320 and p3=-400, c � p1=400 and p3=280)

boundary sections AM and BC merge into one in the vicinity of the the junction of
the branches and run out through the boundary sections FE. This regime is observed
for positive values of p1 and p3.

Figure 4: Distribution of the streamlines (a,b,c) and the viscosity (d) at di�erent
values of p1 (n=0.8, p3=-1000, a � p1=-230, b,d � p1=-214.95, c � p1=-200)

Fig. 4 demonstrates change of the �ow kinematics during transition from regime I to
regime II at critical pressure p1 = pcrit and �xed value p3 =-1000. Regime I without
recirculation zone in the �ow of the �uid is observed at p1 � pcrit . The recirculation
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zone in the vicinity of the corner point K appears with increasing parameter p1

(Fig. 4a). As the pressure p1 is further enhanced, sizes of formed recirculation zone
become larger and, subsequently, reach its maximum at p1 = pcrit =-214.95 (Fig.
4b). Thus, the recirculation zone closes the cross-section, and the �ow rate through
the boundary section AM attains zero. The viscosity �eld for this case is plotted in
Fig. 4d. It can be seen that the apparent viscosity of the �uid is maximum in the
branch containing the cross section AM. Regime II is observed at p1 > pcrit (Fig.
4c). The recirculation zone turns around, decreases and shifts to the solid wall AB
with further increase of the parameter p1. Similarly, the change of other regimes
occurs; and the recirculation zone appears in the branch of the T-shaped channel in
which the reorientation of the �ow happens.

5 Conclusions

The planar �ow of the power-law incompressible �uid in the T-channel has been
studied. The �uid �ow is driven by pressure di�erence between boundary sections
AM, FE, and BC of the T-shaped channel. On the solid walls, the no slip boundary
conditions have been used.
Investigation of the �ow characteristics depending on values of the pressure given in
the through-�ow sections AM and BC (-2000≤ p1, p3 ≤2000) has been carried out.
The range of change of these parameters has been chosen so that the planar-parallel
�ow of the non-Newtonian �uid with the fully developed velocity pro�le has been
realized in the vicinity of the through-�ow sections AM, FE, and BC.
As a result of the parametric studies, four regimes of the �ow have been determined
for this range of parameters p1 and p3. Estimation of the in�uence of main param-
eters on the �ow pattern has been performed. Characteristics of the �ow for these
regimes have been presented. The results describing transition from one regime to
another have been demonstrated.
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Abstract

We present applications of our multiresolution approach to various popu-
lar models of accelerated physics. Mostly we are interested in the description
of complex beam motions with the internal collective behaviour generated
by background electromagnetic �elds: Vlasov-Maxwell-Poisson systems, en-
velope/momentum RMS approximation, a beam-beam interaction model. We
obtain the representation for all dynamical variables as multiresolution expan-
sion via high-localized nonlinear eigenmodes in the base of various compactly
supported wavelet-like functions. Numerical modelling demonstrates the cre-
ation of coherent structures, generated by internal hidden symmetry on the
level of the underlying functional spaces and appearance of (meta)stable pat-
terns.

1 Introduction

In this paper we consider the applications of a new numerical-analytical technique
which is based on the methods of local nonlinear harmonic analysis (LNHA) a.k.a.
wavelet analysis in the case of a�ne group as a group of internal symmetries, to three
(nonlinear) beam/accelerator physics problems which can be characterized by the
collective type behaviour: some forms of Vlasov-Maxwell-Poisson equations[1], RMS
envelope dynamics[2], the model of beam-beam interactions [3]. Such an approach
may be useful in all models in which it is possible and reasonable to reduce all
complicated problems related with statistical distributions to the problems described
by systems of nonlinear ordinary/partial di�erential equations with or without some
(functional)constraints. LHNA is a relatively novel set of mathematical methods,
which gives us the possibility to work with well-localized bases in functional spaces
and gives the maximum sparse forms for the general type of operators (di�erential,
integral, pseudodi�erential) in such bases. Our approach is based on the variational-
multiscale approach developed by us [4]-[15] and allows to consider the polynomial
and rational type of nonlinearities. Multiscale representation for the solutions has
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the following multiresolution decomposition via nonlinear high-localized eigenmodes

u(t, x) =
∑

(i,j)∈Z2

aijU
i(x)V j(t), (1)

V k(t) = V k,slow
N (t) +

∑
i≥N

V k
i (ω1

i t), ω1
i ∼ 2i (2)

Uk(x) = Uk,slow
M (x) +

∑
j≥M

Uk
j (ω2

jx), ω2
j ∼ 2j, (3)

which corresponds to the full multiresolution expansion in all underlying time/space
scales (x are the generalized space coordinates or phase space coordinates, t is time
coordinate). The representation (1) provides the expansion into the slow part uslowN,M

and fast oscillating parts for arbitrary N, M. So, we may move from coarse scales
of resolution to the �nest one for obtaining more detailed information about our
dynamical process. The �rst terms in the RHS of formulas (1)-(3) correspond,
on the global level of function space decomposition, to the resolution space and the
second ones to detail space. In this way we give contribution to our full solution from
each scale of resolution or each time/space scale or from each high-localized nonlinear
eigenmode (Fig.1). The same is correct for the contribution to power spectral density
(energy spectrum): we can take into account contributions from each level/scale of
resolution. In all these models, numerical modelling demonstrates the appearance of
coherent high-localized structures and (meta)stable patterns formation. In part 2 we
start from the description of Vlasov-Maxwell-Poisson equations, root-mean-square
(RMS) envelope dynamics and beam-beam interaction model, after that in part 3
we consider our generic approach based on variational-multiresolution formulation.
We give explicit representation for all dynamical variables in the base of compactly
supported wavelets or nonlinear eigenmodes. Our solutions are parametrized by
solutions of a number of reduced algebraical problems, one from which is nonlinear
with the same degree of nonlinearity and the rest are the linear problems which
correspond to a particular method of calculation of scalar products of functions
from wavelet bases and their derivatives. In part 4, we consider numerical modelling
based on our analytical approach.
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Figure 1: Multiscale/high-localized eigenmodes decomposition.
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2 Collective models

2.1 Vlasov-Maxwell-Poisson equations

Analysis based on the full form of nonlinear Vlasov-Maxwell-Poisson equations leads
to more clear understanding of the collective e�ects and nonlinear beam dynamics
of high intensity beam propagation in the periodic-focusing and uniform-focusing
transport systems. We consider the following form of equations ([1],[2] for setup
and designation):{ ∂

∂s
+ px

∂

∂x
+ py

∂

∂y
−
[
kx(s)x+

∂ψ

∂x

] ∂

∂px
−[

ky(s)y +
∂ψ

∂y

] ∂

∂py

}
fb(x, y, px, py, s) = 0, (4)( ∂2

∂x2
+

∂2

∂y2

)
ψ = −2πKb

Nb

∫
dpxdpyfb, (5)∫

dxdydpxdpyfb = Nb (6)

The corresponding Hamiltonian for transverse single-particle motion is given by

H(x, y, px, py, s) =
1

2
(p2x + p2y) +

1

2
[kx(s)x

2 (7)

+ky(s)y
2] +H1(x, y, px, py, s) + ψ(x, y, s),

where H1 is nonlinear (polynomial/rational) part of the full Hamiltonian. In case
of Vlasov-Maxwell-Poisson system we may transform (4) into invariant form

∂fb
∂s

+ [f,H] = 0. (8)

2.2 RMS equations

We consider an approach based on the second moments of distribution functions
for calculation of the evolution of RMS envelope of a beam. The RMS enve-
lope equations are the most useful for analysis of the beam self�forces (space�
charge) e�ects and also allow to consider both transverse and longitudinal dynam-
ics of space-charge-dominated relativistic high�brightness axisymmetric/asymmetric
beams, which under short laser pulse�driven radio-frequency photoinjectors have fast
transition from nonrelativistic to relativistic regime [2]. Analysis of halo growth in
beams, appeared as result of bunch oscillations in the particle-core model, is also
based on three-dimensional envelope equations [2]. We can consider the di�erent
forms of RMS envelope equations, which are not more than nonlinear di�erential
equations with rational nonlinearities and variable coe�cients from the formal point
of view. Let f(x1, x2) be the distribution function which gives full information
about noninteracting ensemble of beam particles regarding to trace space or trans-
verse phase coordinates (x1, x2). Then we may extract the �rst nontrivial e�ects of
collective dynamics from the second moments

σ2
xixj

= < xixj >=

∫ ∫
xixjf(xi, xj)dxidxj. (9)
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RMS emittance ellipse is given by ε2x,rms =< x2i >< x2j > − < xixj >
2 (i 6= j).

Expressions for twiss parameters are also based on the second moments. We will
consider the following particular cases of RMS envelope equations, which describe
the evolution of moments (9) ([2] for full designation): for asymmetric beams we
have the system of two envelope equations of the second order for σx1 and σx2 :

σ
′′

x1
+ σ

′

x1

γ′

γ
+ Ω2

x1

(
γ′

γ

)2

σx1 = I/(I0(σx1 + σx2)γ
3) + ε2nx1/σ

3
x1
γ2, (10)

σ
′′

x2
+ σ

′

x2

γ′

γ
+ Ω2

x2

(
γ′

γ

)2

σx2 = I/(I0(σx1 + σx2)γ
3) + ε2nx2/σ

3
x2
γ2.

The envelope equation for an axisymmetric beam is a particular case of preceding
equations. Also we have the related Lawson equation for evolution of RMS envelope
in the paraxial limit, which governs evolution of cylindrical symmetric envelope
under external linear focusing channel of strenght Kr:

σ
′′

+ σ
′
(
γ′

β2γ

)
+Krσ =

ks
σβ3γ3

+
ε2n

σ3β2γ2
, (11)

where Kr ≡ −Fr/rβ2γmc2, β ≡ νb/c =
√

1− γ−2. According to [2] we have
the following form for envelope equations in the model of halo formation by bunch
oscillations:

Ẍ + k2x(s)X −
3K

8

ξx
Y Z
− ε2x
X3

= 0,

Ÿ + k2y(s)Y −
3K

8

ξy
XZ
−
ε2y
Y 3

= 0, (12)

Z̈ + k2z(s)Z − γ2
3K

8

ξz
XY
− ε2z
Z3

= 0,

where X(s), Y(s), Z(s) are bunch envelopes, ξx, ξy, ξz = F (X, Y, Z).
After transformations to the Cauchy form we can see that all these equations from
the formal point of view are not more than ordinary di�erential equations with
rational nonlinearities and variable coe�cients Also, we may consider regimes in
which γ, γ′ are not �xed functions/constants but satisfy some additional di�erential
constraints/equations, but this case does not change our general approach of the
next part.

2.3 Beam-beam modelling

In A. Chao e.a. model [3] for simulation of beam-beam interaction, the initial
collective description for distribution function f(s, x, p)

∂f

∂s
+ p

∂f

∂x
− (k(s)x− F (x, s))

∂f

∂p
= 0 (13)

is reduced to Fockker-Planck (FP) equations on the �rst stage and after that to a
very nontrivial dynamical system with complex behaviour:

d2σk
ds2

+ Γk
dσk
ds

+ Fkσk =
1

β2
ka

2
kσ

3
k

,

dan
ds

= Γkak(1− a2kσ2
k). (14)
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The solutions of dynamical system (14) provides the parameters of enveloping gaus-
sian anzatz for solution of initial FP equations on the second stage of this global
reduction which encodes stochastic collective motion into the data describing be-
haviour of nonlinear dynamic system.

3 Rational dynamics

After some anzatzes ([4]-[15]) all problems above may be reduced to the dynamical
systems (cases 2.2 and 2.3 (system (14)) above):

Qi(x)
dxi
dt

= Pi(x, t), x = (x1, ..., xn), (15)

i = 1, ..., n, max
i
deg Pi = p, max

i
deg Qi = q

or a set of such systems (cases 2.1, 2.3 (full equation (13)) above) corresponding
to each independent coordinate in phase space. They have the �xed initial (or
boundary) conditions xi(0), where Pi, Qi are not more than polynomial functions
of dynamical variables xj and have arbitrary dependence of time. Because of time
dilation we can consider only next time interval: 0 ≤ t ≤ 1. Let us consider a set of
functions

Φi(t) = xi
d

dt
(Qiyi) + Piyi (16)

and a set of functionals

Fi(x) =

∫ 1

0

Φi(t)dt−Qixiyi |10, (17)

where yi(t) (yi(0) = 0) are dual (variational) variables. It is obvious that the initial
system and the system

Fi(x) = 0 (18)

are equivalent. Of course, we consider regular Qi(x) at t = 0 or t = 1, i.e.
Qi(x(0)), Qi(x(1)) 6=∞. Now we consider formal expansions for xi, yi:

xi(t) = xi(0) +
∑
k

λkiϕk(t) yj(t) =
∑
r

ηrjϕr(t), (19)

where ϕk(t) are basis functions for proper functional space (L2, Lp, Sobolev, etc.),
which corresponds to concrete particular problem. It should be noted that initial
conditions demand only ϕk(0) = 0 and for r = 1, ..., N, i = 1, ..., n, we collect the
"generalized Fourier coe�cients" in the following data set:

λ = {λi} = {λri} = (λ1i , λ
2
i , ..., λ

N
i ), (20)

where the lower index i corresponds to expansion of dynamical variable with index
i, i.e. xi and the upper index r correspond to the numbers of terms in the expansion
of dynamical variables in the formal series. Then we put (19) into the functional
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equations (18) and as a result we have the following reduced algebraical system of
equations on the set of unknown coe�cients λki of expansions (19):

L(Qij, λ, αI) = M(Pij, λ, βJ), (21)

where operators L and M are algebraization of RHS and LHS of initial problem (15)
and the data set λ (20) are unknowns of Reduced System of Algebraical Equations
(RSAE)(21). Here Qij are the coe�cients (with possible time dependence) of LHS
of initial system of di�erential equations (15) and as a consequence the coe�cients
of RSAE, while Pij are coe�cients (with possible time dependence) of RHS of initial
system of di�erential equations (15) and as a consequence the coe�cients of reduced
RSAE too. I = (i1, ..., iq+2), J = (j1, ..., jp+1) are multiindexes by which are labelled
αI and βI , which are the other coe�cients of RSAE (21). So, we have:

βJ = {βj1...jp+1} =

∫ ∏
1≤jk≤p+1

ϕjk , (22)

where p is the degree of polinomial operator P (15)

αI = {αi1 ...αiq+2} =
∑

i1,...,iq+2

∫
ϕi1 ...ϕ̇is ...ϕiq+2 , (23)

where q is the degree of polynomial operator Q (15), i` = (1, ..., q+2), ϕ̇is = dϕis/dt.
Now we can solve RSAE (21) and determine unknown coe�cients of the formal
expansion (19), therefore we can obtain the solution for our initial problem (15). It
should be noted that during modelling we consider only the truncated expansions
(19) with N terms, so we have, from (21), the system of N ×n algebraical equations
with degree ` = max{p, q} and the degree of this algebraical system coincides with
the degree of initial di�erential system. Finally, we have the solution of the initial
nonlinear (rational) problem in the following form (it is a particular form of our
general multiscale representation (1)-(3)):

xi(t) = xi(0) +
N∑
k=1

λkiXk(t), (24)

where coe�cients λki are roots of the corresponding reduced algebraical (polynomial)
problem RSAE (21). Consequently, we have a parametrization of solution of initial
problem by solution of reduced algebraical problem (21). The �rst main problem
is a problem of computations of the coe�cients αI (23), βJ (22) of the reduced
algebraical system. These problems may be explicitly solved inside multiresolution
approach [4]-[15]. The obtained solutions are given in the form (24), where Xk(t)
are basis functions and λik are roots of reduced system of equations. In our case
Xk(t) are obtained via multiresolution expansions and represented by compactly
supported wavelets and λik are roots of the corresponding general polynomial system
(21). Because a�ne group of translation and dilations is inside the approach, this
method resembles the action of a microscope. We have contribution to �nal result
from each scale of resolution from the whole in�nite scale of spaces. More exactly,
the closed subspace Vj(j ∈ Z) corresponds to level j of resolution, or to scale j.
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We consider multiresolution analysis on L2(Rn) [16] (of course, we may consider
any di�erent and proper functional space), which is a sequence of increasing closed
subspaces Vj: ...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... satisfying the following properties:
let Wj be the orthonormal complement of Vj with respect to Vj+1 : Vj+1 = Vj

⊕
Wj,

then

L2(R) = V0

∞⊕
j=0

Wj. (25)

Such a functional space decomposition corresponds to the exact nonlinear (max-
imally) localized eigenmode decomposition (1)-(3). It should be noted that such
representations give the best possible localization properties in the corresponding
(phase)space/time coordinates. In contrast with di�erent approaches formulas (1)-
(3), (24) or, in general, (25) do not use perturbation technique or linearization pro-
cedures and represent exact dynamical evolution via generalized nonlinear localized
eigenmodes. Finally, by using multiresolution decomposition which provides best
localization in the underlying functional space, we can construct high-localized co-
herent structures in spatially�extended stochastic systems with collective behaviour.
De�nitely, coherence is a consequence of action of internal hidden symmetry which
is a generic property of mutiresolution decomposition.

4 Modelling

Resulting multiresolution/multiscale representations for solutions of equations from
part 2 in the high-localized bases/eigenmodes are demonstrated on Fig. 2�Fig. 7.
Multiscale modelling [17] demonstrates the appearance of (meta)stable patterns for-
mation from high-localized coherent structures. Fig. 2, Fig. 3 present contribution
to the full expansion (1)-(3) from level 1 and level 4 of decomposition (25). Figures
4, 5 show the representations for full solutions, constructed from the �rst 6 eigen-
modes (6 levels in formula (25)). Figures 6, 7 show (meta)stable patterns formation
based on high-localized coherent structures.
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Figure 2: Base localized eigenmode
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Figure 3: Four-eigenmodes decomposition
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Figure 4: Appearence of coherent structure
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Figure 5: Six-eigenmodes decomposition
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Abstract

We consider dynamics of high-energy beams in storage rings in the pres-
ence of external insertion devices like wigglers and undulator magnets which
provide: (a) an additional damping of betatron and synchrotron oscillations
to create a smart beam storage system, (b) the generation of high-power syn-
chrotron radiation, very important as for a lot of applications as well for the
understanding of a number of (astrophysical) phenomena, e.g. the evolu-
tion of pulsar wind nebulae. Our machinery is based on applications of our
variational�multiscale approach for the analytical/numerical treatment of the
e�ects of insertion devices on beam dynamics. We consider the dynamical
models which have polynomial nonlinearities and variable coe�cients. Our
approach provides all dynamical variables by exact multiscale decomposition
on the whole tower of the underlying scales starting with coarse one. The
generalized dispersion relations provide, in principle, the possibility for the
control of dynamics on the pure algebraical level. It is very important that
the description of natural nonlinearities are considered on each scale of the
whole multiscale decomposition separately in the framework of the general
paraproducts technique.

1 Introduction

In this paper, we consider the applications of our numerical-analytical technique [1]-
[12] which is based on the methods of Local Nonlinear Harmonic Analysis (LNHA)
(or wavelet analysis in the simplest case), to the treatment of e�ects of insertion
devices on beam dynamics. Our approach is based on a generalization of the
variational-multiscale approach that allows to consider both the polynomial and
rational type of nonlinearities. We present the solution via full multiresolution ex-
pansion in all time/space/phase space scales, which gives us the expansion into a
slow (coarse) part and fast oscillating parts. So, we may decompose our dynam-
ical process into coarse scales of resolution and the �nest one for obtaining more
detailed (full, in principle) information about our dynamical process. In this way
we give contribution to our exact solution from each scale of resolution. The same
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is correct for the contribution to power spectral density (energy spectrum): we can
take into account contributions from all underlying high-localized modes. In Part
2 we consider initial set-up for generic dynamical problem: how we may take into
the account the e�ects of insertion external devices, like bending magnets, wigglers,
undulators, on complex beam dynamics. In Part 3 we consider general framework
for construction of the explicit representation for all dynamical variables in the base
of maximally high localized eigenmodes (compactly supported wavelets or wavelet
packets). Then, in Part 4, we consider further extension of our previous results to
the case of variable coe�cients. Part 5 is devoted to very important facilities that
allow to consider the natural nonlinearities on each scale of the whole multiscale
decomposition separately in the framework of the general paraproducts technique.
These last chapters are very important for the description of Free Electron Laser
and general Synchrotron Radiation considered in details in separate publications.
Finally, in Part 6 we consider some numerical experiments and perspectives based
on our machinery here.

2 E�ects of insertion devices on beam dynamics

Assuming a sinusoidal �eld variation, we may consider according to [13] the analyti-
cal treatment of the e�ects of insertion devices on beam dynamics. One of the major
harmful aspects of the installation of insertion devices is the resulting reduction of
dynamic aperture. The introduction of non-linearities leads to enhancement of the
amplitude-dependent tune shifts and distortion of phase space. The nonlinear �elds
will produce signi�cant e�ects at large betatron amplitudes such as excitation of
n�order resonances. The components of the insertion device vector potential used
for the derivation of equations of motion are as follows:

Ax = cosh(kxx) cosh(kyy) sin(ks)/(kρ) (1)

Ay = kx sinh(kxx) sinh(kyy) sin(ks)/(kykρ)

with k2x + k2y = k2 = (2π/λ)2, where λ is the period length of the insertion device,
ρ is the radius of the curvature in the �eld B0. After a canonical transformation
to betatron variables, the Hamiltonian is averaged over the period of the insertion
device and hyperbolic functions are expanded to the fourth order in x and y (or
arbitrary order). Then we have the following Hamiltonian:

H =
1

2
[p2x + p2y] +

1

4k2ρ2
[k2xx

2 + k2yy
2]

+
1

12k2ρ2
[k4xx

4 + k4yy
4 + 3k2xk

2x2y2] (2)

− sin(ks)

2kρ
[px(k

2
xx

2 + k2yy
2)− 2k2xpyxy]

We have in this case also the nonlinear (polynomial with degree 3) dynamical sys-
tem with variable (periodic) coe�cients. After averaging motion over the magnetic
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period we have the following generic dynamical system:

ẍ = − k2x
2k2ρ2

[
x+

2

3
k2xx

3
]
− k2xxy

2

2ρ2
(3)

ÿ = −
k2y

2k2ρ2

[
y +

2

3
k2yy

3
]
− k2xx

2y

2ρ2

3 Wavelet framework

The �rst main part of our consideration is some variational approach to this problem,
which reduces the initial problem to the problem of solution of functional equations
at the �rst stage and some algebraical problems at the second stage. Multiresolution
expansion is the second main part of our construction. Because a�ne group of
translation and dilations is inside the approach, this method resembles the action
of a microscope. We have contribution to �nal result from each scale of resolution
from the whole in�nite scale of the increasing closed subspaces Vj: ...V−2 ⊂ V−1 ⊂
V0 ⊂ V1 ⊂ V2 ⊂ .... The solution is parameterized by solutions of several reduced
algebraical problems, one is nonlinear and the rest ones are some linear problems,
which are obtained by the method of Connection Coe�cients (CC) [14]. We use
here the generic compactly supported wavelet basis. Let our multiscale wavelet
expansion be:

f(x) =
∑
`∈Z

c`ϕ`(x) +
∞∑
j=0

∑
k∈Z

cjkψjk(x) (4)

If cjk = 0 for j ≥ J , then f(x) has an alternative expansion in terms of dilated
scaling functions only: f(x) =

∑̀
∈Z
cJ`ϕJ`(x). This is a �nite wavelet expansion, it

can be written solely in terms of translated scaling functions. To solve our second
associated linear problem we need to evaluate derivatives of f(x) in terms of ϕ(x).
Let ϕn` = dnϕ`(x)/dxn. We consider computation of the wavelet - Galerkin integrals.
Let fd(x) be d-derivative of function f(x), then we have fd(x) =

∑
` clϕ

d
` (x), and

values ϕd` (x) can be expanded in terms of ϕ(x):

ϕd` (x) =
∑
m

λmϕm(x) (5)

λm =

∞∫
−∞

ϕd` (x)ϕm(x)dx

where λm are wavelet-Galerkin integrals. The coe�cients λm are 2-term connection
coe�cients. In general we need to �nd (di ≥ 0):

Λd1d2...dn
`1`2...`n

=

∞∫
−∞

∏
ϕdi`i (x)dx (6)
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For the case of degree three we need to evaluate two and three connection coe�cients

Λd1d2
` =

∫ ∞
−∞

ϕd1(x)ϕd2` (x)dx, (7)

Λd1d2d3 =

∞∫
−∞

ϕd1(x)ϕd2` (x)ϕd3m (x)dx

According to CC method [14] we use the next construction. When N in scaling
equation is a �nite even positive integer, the function ϕ(x) has compact support
contained in [0, N − 1]. For a �xed triple (d1, d2, d3) only some Λd1d2d3

`m are nonzero:
2 − N ≤ ` ≤ N − 2, 2 − N ≤ m ≤ N − 2, |` − m| ≤ N − 2. There are
M = 3N2− 9N + 7 such pairs (`,m). Let Λd1d2d3 be a M-vector, whose components
are numbers Λd1d2d3

`m . Then we have the �rst reduced algebraical system, where Λ
satisfy the following system of equations (d = d1 + d2 + d3):

AΛd1d2d3 = 21−dΛd1d2d3 (8)

A`,m;q,r =
∑
p

apaq−2`+par−2m+p

By moment equations we have created a system of M + d + 1 equations in M
unknowns. It has rank M and we can obtain unique solution by combination of LU
decomposition and QR algorithm. The second reduced algebraical system gives us
the 2-term connection coe�cients (d = d1 + d2):

AΛd1d2 = 21−dΛd1d2 , A`,q =
∑
p

apaq−2`+p (9)

For degree more than three we have analogous additional linear problems for generic
objects (6). Solving these linear problems we obtain the coe�cients of the reduced
nonlinear algebraical system and after that we obtain the coe�cients of wavelet
expansion (4). As a result we obtain the explicit exact solution of our problem in
the base of compactly supported wavelets. On Fig. 1 we present an example of the
base wavelet function which satis�es some boundary conditions. In the following we
consider extension of this approach to the case of arbitrary variable coe�cients.

4 Variable coe�cients

To cover the general treatment of possible insertion device, in addition to the model
described by the nonlinear (rational) di�erential equations, we need to consider the
extension of the previous approach to the case when we take into account any type of
variable coe�cients (periodic, regular or singular). We can do that rather simple: we
add to our construction above an additional re�nement equation, which encoded all
information about variable coe�cients [15]. According to our variational approach
we need to compute only additional integrals of the form:∫

D

bij(t)(ϕ1)
d1(2mt− k1)(ϕ2)

d2(2mt− k2)dx, (10)
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where bij(t) are arbitrary functions of time and trial functions ϕ1, ϕ2 satisfy the
re�nement equations:

ϕi(t) =
∑
k∈Z

aikϕi(2t− k) (11)

If we consider all computations in the class of compactly supported wavelets, then
only a �nite number of coe�cients do not vanish. To approximate the non-constant
coe�cients, we need to choose a di�erent re�nable function ϕ3 along with some local
approximation scheme:

(B`f)(x) :=
∑
α∈Z

F`,k(f)ϕ3(2
`t− k), (12)

where F`,k are suitable functionals supported in a small neighborhood of 2−`k and
then replace bij in (10) by B`bij(t). In the particular case one can take a characteristic
function and thus approximate non-smooth coe�cients locally. To guarantee the
su�cient accuracy of the resulting approximation of (10) it is important to have the
�exibility of choosing ϕ3 di�erent from ϕ1, ϕ2. In the case when D is some domain,
we can write

bij(t) |D=
∑

0≤k≤2`
bij(t)χD(2`t− k), (13)

where χD is the characteristic function of D. So, if we take ϕ4 = χD, which is again
a re�nable function, then the problem of computation of (10) is reduced to the
problem of calculation of the integrals:

H(k1, k2, k3, k4) = H(k) =

∫
Rs

ϕ4(2
jt− k1) ·

ϕ3(2
`t− k2)ϕd11 (2rt− k3)ϕd22 (2st− k4)dx (14)

The key point is that these integrals also satisfy some sort of re�nement equation
[15]:

2−|µ|H(k) =
∑
`∈Z

b2k−`H(`), µ = d1 + d2 (15)

This equation can be interpreted as the problem of computing an eigenvector. Thus,
after all that, we reduced the problem of extension of our method to the case of
variable coe�cients to the same standard algebraical problem as in the preceding
sections. So, the general scheme is the same one and we have only one more addi-
tional linear algebraic problem by which we can parameterize the solutions of the
corresponding problem in the same way.
On Fig. 2 we present, as a sample, a toy model for insertion device and on Fig. 3
the corresponding multiscale representation via localized eigenmodes according to
formula (4).
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Figure 1: Base wavelet with �xed boundary conditions

Figure 2: Sample insertion

5 Evaluation of Nonlinearities Scale by Scale

Here we present the modi�cation of our variational�multiscale approach to the case
that allows to consider separately di�erent scales of general multiresolution. For
this reason we need to compute the errors of approximations. The main problems
come of course from nonlinear terms. We follow the approach from [15].
Let Pj be projection operators on the subspaces Vj, j ∈ Z:

Pj : L2(R)→ Vj (16)

(Pjf)(x) =
∑
k

< f, ϕj,k > ϕj,k(x)

and Qj are projection operators on the subspaces Wj:

Qj = Pj−1 − Pj (17)

So, for u ∈ L2(R) we have uj = Pju and uj ∈ Vj, where {Vj}, j ∈ Z is a
multiresolution decomposition of L2(R). It is obviously that we can represent u20 in
the following form:

u20 = 2
n∑
j=1

(Pju)(Qju) +
n∑
j=1

(Qju)(Qju) + u2n (18)

In this formula there is no interaction between di�erent scales. We may consider
each term of (18) as the bilinear mappings:

M j
V W : Vj ×Wj → L2(R) = Vj⊕j′≥jWj′ (19)

74



Wigglers: nonlinearities in multiscales. From smart storage rings to synchrotron
radiation in pulsar wind nebulae

Figure 3: Multiscale representation via localized eigemodes

M j
WW : Wj ×Wj → L2(R) = Vj ⊕j′≥j Wj′ (20)

For numerical purposes we need decomposition like (18) with a �nite number of
scales, but when we consider limits j →∞ we will have:

u2 =
∑
j∈Z

(2Pju+Qju)(Qju), (21)

which is para-product of Bony, Coifman and Meyer [15].
Now we need to expand (18) into the wavelet basis. To expand each term in (18)
into such a wavelet basis, we need to consider the integrals of the products of the
basis functions, e.g.:

M j,j′

WWW (k, k′, `) =

∫ ∞
−∞

ψjk(x)ψjk′(x)ψj
′

` (x)dx, (22)

where j′ > j and

ψjk(x) = 2−j/2ψ(2−jx− k) (23)

are the basis functions. If we consider compactly supported wavelets then

M j,j′

WWW (k, k′, `) ≡ 0 for |k − k′| > k0, (24)

where k0 depends on the overlap of the supports of the basis functions and

|M r
WWW (k − k′, 2rk − `)| ≤ C · 2−rλM (25)

Let us de�ne j0 as the distance between scales such that for a given ε all the coe�-
cients in (25) with labels r = j− j′, r > j0 have absolute values less than ε. For the
purposes of computing with accuracy ε we replace the mappings in (19), (20) by

M j
V W : Vj ×Wj → Vj ⊕j≤j′≤j0 Wj′ (26)

M j
WW : Wj ×Wj → Vj ⊕J≤j′≤j0 Wj′ (27)
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Since

Vj ⊕j≤j′≤j0 Wj′ = Vj0−1 (28)

and

Vj ⊂ Vj0−1, Wj ⊂ Vj0−1 (29)

we may consider bilinear mappings (26), (27) on Vj0−1×Vj0−1. For the evaluation of
(26), (27) as mappings Vj0−1×Vj0−1 → Vj0−1 we need signi�cantly fewer coe�cients
than for mappings (26), (27). It is enough to consider only the coe�cients

M(k, k′, `) = 2−j/2
∫ ∞
∞

ϕ(x− k)ϕ(x− k′)ϕ(x− `)dx, (30)

where ϕ(x) is scale function. Also we have

M(k, k′, `) = 2−j/2M0(k − `, k′ − `), (31)

where

M0(p, q) =

∫
ϕ(x− p)ϕ(x− q)ϕ(x)dx (32)

Now, by the ideology of Part 3, we may derive and solve a system of linear equations
to �nd M0(p, q) and as a result obtain the explicit representation for the solution at
each scale separately.

6 Vista

We concentrated here on the general computation/analytical set-up and postponed
applications to a separate paper but we need to mention that all applications, we
are interested in, are covered by such a machinery. Our goals in this direction are
two-fold. First of all we are interested in precise dynamics of high-energy beams
in storage rings in the presence of external insertion devices like bending magnets,
wigglers and undulators, which provide an additional damping of betatron and syn-
chrotron oscillations and promise the smart beam storage systems in accelerator
physics. Secondly, we hope to describe correctly the generation of high-power syn-
chrotron radiation (including Free Electron Laser radiation), which is very important
as for a lot of practical applications as well for the understanding of a number of (as-
trophysical) phenomena, e.g. the evolution of Crab Nebula (important experiment
for understanding Lorentz violation and possible experimental signs of Quantum
Gravity). In any case, the full zoo of possible patterns and coherent structures gen-
erated by hidden internal high localized modes via multiresolution representation
was described by us in a companion paper in this Volume [16]. So, on the quali-
tative level, Figures 3 �7 [16] present all possible dynamical features, that we hope
to characterize by our approach in present context: isolated high localized modes
(Fig. 2 [16]), chaotic, coherent and (meta)stable localized patterns/waveletons (Fig-
ures 3�7 [16]).
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Abstract

Dispersion of elastic waves in an in�nite circular cylindrical shell is studied
with special attention to backwards waves. Two types of boundary conditions
on the surfaces of the shell are considered: free faces and the spring-type
boundary condition on the outer surface, analogous to Winkler foundation
for a plate. For each �xed wavenumber in the circumferential direction three
lowest modes are investigated both on the basis of 3D theory of elasticity and
on the basis of 2D approximate shell theories. For the shell with spring-type
boundary condition the results of analytical and numerical investigations of
backwards waves are presented. The limits of applicability of 2D theories are
illustrated by comparison with the 3D solution. For the shell with free faces
it is shown that there are no backwards waves in the range of applicability of
long-wave asymptotic approximations.

1 Introduction

Dispersion of elastic waves in a cylindrical shell has been investigated in numerous
publications. The three-dimensional theory of elasticity [1] and approximate shell
theories [2] were used to govern the motion of the shell. A number of papers are
concerned with analysis of the accuracy of the classical Kirchho��Love theory of
shells and its re�nements [3, 4]. But in such a rich system as a shell the peculiar
phenomena may occur which require a special study. In this paper the accuracy of
approximate shell theories in the case of an anomalous dispersion characterized by
opposite signs of the phase and group velocities (backwards waves) is investigated.
For a shell with free faces, it is shown that this phenomenon does not occur in
the range of applicability of 2D theories. The existing of a backward wave in the
framework of the classical Kirchho��Love theory is not con�rmed by 3D theory of
elasticity. But it suggest that this wave can exist in a shell with some other material
properties or under other boundary conditions on the faces, if the changes lead to
increasing of the �exural sti�ness of the shell. As an example of such a situation we
consider a shell with spring-type boundary condition on the outer surface.
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2 Statement of the problem

Consider an in�nite cylindrical shell occupying in cylindrical coordinate system
(r, θ, z) the domain {R− h/2 < r < R + h/2, 0 6 θ < 2π,−∞ < z <∞}, where R
is the radius of the midsurface, h is the thickness of the shell. Let us assume that
the action of environment can be modeled as a normal load proportional to the
transverse displacement with the coe�cient K0 (this model can be considered as
an analogue of a plate on the Winkler foundation [5]). The harmonic vibrations
with the circular frequency ω0 are considered, the factor exp(−iω0t) is omitted ev-
erywhere. Let us introduce curvilinear coordinates (θ, z) on the midsurface r = R.
The equations of motion according to the Kirchho��Love-type theory of shells [6]
can be written in the form[

α1

(
∂θ

2+ν−∂̃
2
z

)
+ ω2

]
u1 + ν+∂̃z∂θu2 + ∂θ

(
1 + 2α2[1− ∂2θ − ∂̃2z ]

)
un = 0,

ν+∂̃z∂θu1 +
(
ν−∂

2
θ + ∂̃2z + ω2

)
u2 + ν∂̃zun = 0,

−∂θ(1 + 2α2[1− ∂2θ − ∂̃2z ])u1 − ν∂̃zu2
+
[
α2(2∂2θ − 1 + 2ν∂̃2z − [∂2θ + ∂̃2z ]

2)−1 + ω2 − 4ν+ν−h
−1
∗ K

]
un = 0,

(1)

where u1, u2, un are components of the midsurface displacement in the circumfer-
ential, longitudinal and radial directions, respectively, ∂̃z = R∂z, α2 = 1

12

(
h
R

)2
,

α1 = 1 + 4α2, ν± = (1 ± ν)/2, h∗ = h/R is the relative thickness of the shell,
K = K0R/E, ω = ω0R/cs is the dimensionless frequency, cs =

√
E/((1− ν2)ρ), E,

ν, ρ are Young's modulus, Poisson's ratio and the density of the material.
In paper [7] the classical theory with modi�ed inertia is proposed, which is con-
structed as higher order long-wave asymptotic approximation of 3D equations of
elasticity. Let us present the equations of this theory in the form[

∂θ
2
(
1 + α2

)
+ν−∂̃

2
z

(
1 + 4α2

)]
u1 + ν+∂̃z∂θu2

+∂θ

(
1− α2[∂2θ + (2− ν)∂̃2z ]

)
un + (Itgutg)1 = 0,

ν+∂̃z∂θu1 +
(
ν−∂

2
θ + ∂̃2z

)
u2 + ν∂̃zun + (Itgutg)2 = 0,

−∂θ(1− α2[∂2θ + (2− ν)∂̃2z ])u1 − ν∂̃zu2
+
[
−α2[∂2θ + ∂̃2z ]

2−1 + Itr − 4ν+ν−h
−1
∗ K

]
un = 0

(2)

with operators of modi�ed inertia

Itgutg = ω2

[
utg + η2ω2

3∑
k=1

dk
(
−ν−1− η2ω2

)k−1
gradtg

(
∂θu1 + ∂̃zu2

)]
,

Itr = ω2

1∑
k=0

(
−ν−1− η2ω2

)k [
ak + η2bk

(
∂2θ + ∂̃2z

)]
,

where utg = (u1, u2)
T, η = h/(2R), gradtg = (∂θ, ∂̃z)

T, a0 = 1, a1, bk, dk are coe�-
cients depending on ν, which can be found in [7]. The term 4ν+ν−h

−1
∗ K should also
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be re�ned in order to retain the asymptotic error of equations (2), but it requires
an additional asymptotic analysis of the corresponding 3D equations. In this paper
we restrict ourselves with re�nements in describing the motion of the shell, which
are expressed through operators of modi�ed inertia.
To analyze the accuracy of equations (1) and (2) we use three-dimensional theory
of elasticity. Let us introduce dimensionless variables

r = Rr̃, z = Rz̃, {ur, uθ, uz} = R { ũr, ũθ, ũz} , ω̃ = Rωc−12 = ω/
√
ν− ,

{σrr, σθθ, σzz, σrθ, σrz, σθz} = E [2(1 + ν)]−1 { σ̃rr, σ̃θθ, σ̃zz, σ̃rθ, σ̃rz, σ̃θz} ,
(3)

where u = (ur, uθ, uz)
T is the displacement vector, σrr, σθθ, σzz, σrθ, σrz, σθz are

components of the stress tensor, c2 =
√
E/(2(1 + ν)ρ) is transverse wave speed.

The displacement vector can be presented in the terms of wave potentials ϕ, ψ as

ũ = gradϕ+ rotψ (4)

with additional condition divψ = 0. After introducing the dimensionless variables
(3) the equations for the potentials take the form

∆ϕ+ κ2ω̃2ϕ = 0, ∆ψ + ω̃2ψ = 0 (5)

with κ =
√

(1− 2ν)(2 (1− ν))−1. The expressions of the stresses in terms of ϕ, ψ
can be found in [8]. Boundary conditions on the faces of the shell r̃ = 1± η are

σ̃rr|r̃=1+η = −K ũr|r̃=1+η , σ̃rr|r̃=1−η = 0, σ̃rθ|r̃=1±η = σ̃rz|r̃=1±η = 0. (6)

Further we will investigate the normal modes that propagate along the z-axis. The
dependence on z is assumed to be in the form exp(iλz/R), where λ is the dimension-
less wavenumber. The dispersion equations corresponding to approximate theories
(1) and (2) can be derived by the method described in [9]. In the case of 3D problem
(4)�(6) we use approach proposed in [8]. The variable θ is separated by assuming
the law sin(mθ) for functions u1, uθ and cos(mθ) for u2, un, uz, ur (m = 0, 1, 2, . . .).
In the case of 3D theory the in�nite series of modes exists for each m, but only the
lowest three of them can be described on the basis of equations (1) and (2). The real
branches of dispersion curves ω(λ) start from cut-o� frequencies ωk (k = 1, 2, . . .).
We are interested in the backwards waves arising in the vicinity of a cut-o� fre-
quency, when it coincides with some other one. For the sake of convenience we will
refer this point as coincidence frequency.

3 Shell with free surfaces

In the case of free faces (K = 0) the asymptotic behavior of cut-o� frequencies in
the framework of the Kirchho��Love theory can be presented as [10]

ω1 =
ηm(m2 − 1)√

3(m2 + 1)

(
1 +O

(
η2
))
, ω2 = m

√
ν−, ω3 =

√
m2 + 1

(
1 +O

(
η2
))
. (7)

It can be easily veri�ed that the frequencies ω2 and ω3 cannot coincide. The coinci-
dence of frequencies ω1 and ω2 requires m ∼ η−1 or q = 1, where q is the variability
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Figure 1: Numerical results for cut-o� frequencies: ν = 0.3, h/R = 0.05 (a), ν =
0.3, h/R = 0.2 (b), ν = 0.3 (c), h/R = 0.05 (d)

index in terms of [7]. The range of applicability of Kirchho��Love theory was de�ned
in [7] as q < 1, thus the coincidence frequency does not belong to it. But this reason
does not exclude the existence of the coincidence frequency and, consequently, the
backwards waves by large values of m or in a thick shell. To investigate this matter a
series of numerical experiments was performed, in which the cut-o� frequency were
calculated on the basis of each of the three theories formulated in Sec. 2. The most
interesting results are shown in Fig. 1. As one can see, the coincidence of ω1 and ω2

predicted by Kirchho��Love theory is not con�rmed by 3D theory of elasticity. The
theory with modi�ed inertia has much greater range of applicability and predicts
the behavior of cut-o� frequencies ω1 and ω2 with a good accuracy (see Fig. 1,a,b).
The investigation on the basis of 3D theory for di�erent values of h/R and ν has
shown that apparently the coincidence of ω1 and ω2 is not possible (see Fig. 1,c,d).
But for some not very great values of h/R there is a coincidence frequency ω2 = ω3.
For example, in Fig. 1,c we can see it at h/R = 0.05 (red lines) but cannot see it at
h/R = 0.2, 0.4 (blue and green lines). Since parameter m for this point corresponds
to q > 1, it cannot be described by 2D theories of shells. Calculations show that the
backward wave arises in the vicinity of ω2, but the domain of its existence on the
axis ω is very narrow (. 10−5 for the dimensionless frequency introduced as in (1)).
The investigation of that backward wave in more detail does not match the goal of
this paper.
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Figure 2: Comparison of three theories for coincidence parameter Kc (a); relative
errors of 2D theories for h/R = 0.01 (b)

The numerical results presented in Fig. 1 show that the curves for ω1 and ω2 have
a tendency of drawing closer to one another. In the next section we consider a shell
model in which these curves intersect.

4 Shell with spring-type boundary conditions on
the outer surface

In the case K 6= 0 there is one additional parameter of the problem. An analysis of
the dispersion equations corresponding to the problems formulated in Sec. 2 shows
that at λ = 0 all three of them are separated into two independent equations. One of
the pair is an equation for the cut-o� frequency ω2, which is independent on K and
is equal to that in the case of free surface. Substituting ω2 in the second equation
we obtain an explicit expression for the value of K = Kc, at which ω1 coincides with
ω2. For the Kirchho��Love theory (1) the coincidence parameter Kc = KKL is

KKL =
4ν+ν−h∗

2ν+ + 8α2

[
2(ν− − ν+α2) +

(
2ν+ν− + 2α2(5− 3ν)

)
m2 − 2α2ν+m

4
]
,

for the other theories the expressions are too cumbersome to be presented here.
Further we denote them as KMI for the theory with modi�ed inertia and K3D for
the 3D theory of elasticity. The asymptotic behavior of KKL at m ∼ 1

KKL = 4ν+ν−h∗

[
1− ν
1 + ν

+
1− ν

2
m2 +O

(
α2
)]

shows that at the small values of m the coincidence parameter nearly proportional
to relative thickness.
In Fig. 2,a the dependence Kc(m), calculated on the basis of each of the three
theories, is shown for the di�erent values of h/R. Here the Kirchho��Love-type
theory can give qualitatively correct results, but only for small m. As in the case
of free faces, the range of applicability of the theory with modi�ed inertia is much
greater (see also the relative errors on Fig. 2,b).
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Figure 3: Dispersion curves for ν = 0.3, h/R = 0.01, K = K3D: m = 1, 5 (a),
m = 20, 25 (b), and the same as (b) for K = KKL (c). Solid lines: 3D theory,
dashed lines: KL theory, dash-dotted lines: theory with MI

In Fig. 3 the comparison of dispersion curves in the vicinity of the coincidence
frequency ωc = ω1 = ω2 is presented. Here the numbers of modes are indicated
by pairs (m, k) with k = 1, 2. Because of the di�erence between parameters Kc

calculated on the basis of 3D theory of elasticity and 2D shell theories there is no
coincidence of cut-o� frequencies for the latter. The error of Kirchho��Love theory
at m = 25 leads to a qualitatively incorrect result: according to it, the backwards
wave does not exist at K = K3D, although the calculations on the basis of 3D
theory of elasticity shows its existence (see Fig. 3,b, blue lines). On the other hand,
at K = KKL there is the backwards wave according to Kirchho��Love theory (see
Fig. 3,c). Notice, that at n = 25 the relative error of KKL is less than 2% (see
Fig. 2,b). But it reveals itself to be essential in the problem under consideration.
The theory with modi�ed inertia gives the qualitative correct results in both cases.
In Fig. 4 the behavior of eigenfunctions calculated on the basis of 3D and Kirchho��
Love theories is investigated near the coincidence frequency ω2 atm = 5, h/R = 0.01
and the values of K indicated on the graphs. Since the dependence of displacements
along the thickness coordinate is very close to linear one at these values of parame-
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Figure 4: Evolution of normalized tangential displacements for modes (5, 1) (a) and
(5.2) (b) for ν = 0.3, h/R = 0.01 and indicated values of K. Solid lines: 3D theory,
dotted lines: KL theory

ters, it can be characterized by quantities vθ, vz representing normalized amplitudes
of displacements Re(uθ/ ur|r=R+h/2), Im(uz/ ur|r=R+h/2) averaged in respect to the
coordinate r ∈ [R − h/2, R + h/2]. When using the Kirchho��Love theory, we put
vθ = Re(u1/un), vz = Im(u2/un). In the case of 3D theory, for both modes (5, 1)
and (5, 2) the displacement ur is distributed nearly uniformly along the thickness
coordinate in the whole domain shown in Fig. 4, so the normalized and averaged
displacement ur is nearly equal to unity for any λ. Taking this into account, we can
see from Fig. 4 that mode (5, 1) becomes a �exural one (|uθ| , |uz| � |ur| ) when the
wavenumber grows, while mode (5, 2) tends to torsional one (|uz| , |ur| � |uθ| ). In
the domain of the backwards wave (cf. Fig. 3,a) both modes have mixed character.
The Kirchho��Love theory describes the behavior of displacements with good accu-
racy except the displacement vz in the vicinity of λ = 0. This e�ect is apparently
caused by the coupling between the tangential and �exural motions of the shell,
which is absent at λ = 0 if there is no coincidence of the cut-o� frequencies. The
accuracy of Kirchho��Love theory seems to be improved after setting K = KKL,
but is still has a great error comparing with the solution of 3D problem calculated
at the same value of K.

5 Conclusion

The investigation presented above shows that the using of 2D shell theories requires a
careful analysis of their range of applicability, when some special e�ects are studied.
The classical theory with modi�ed inertia proposed in [7] can be e�ectively used in
such an analysis. It was also noticed that the errors of approximate shell theories
increase in the domains characterized by presence of backwards waves. For an
isotropic shell with free faces it was shown that there are no backwards waves which
could be described by long-wave approximations of the 3D equations of elasticity.
But such an e�ect is still possible in some anisotropic or laminated shell.
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Abstract

Strength and viscoelastic properties of nanocomposites based on butadiene-
styrene rubber (SBR-1500) with dispersed mineral �ller (micro-shungite) were
studied experimentally. In its structure shungites represent natural composite
with a uniform distribution of �nely crystalline silicate particles in the carbon
matrix. These minerals su�ciently disperse readily into particles globular
(spherical) form, with appropriate processing. The mineral is characterized
by high density, chemical resistance and electrical conductivity. Currently,
shungite is being used in the tire industry to produce active and semi-active
�llers of a new generation. The tests were carried out on samples with various
volumetric concentrations. The average particle size of the micro-shungite
�ller was about 500 nm. Experiments on uniaxial tensile at break showed that
micro-shungite input leads to a signi�cant increase in the material strength.
At the same time, its deformability grew, but not so much. Thus, it can
be said that the good chemical a�nity of the �ller and matrix contributes
to improving the material's ultimate characteristics. Studies of the thermo-
visco-elastic properties of these materials on a dynamo-mechanical analyzer
(DMA) were also carried out. As a result, the dynamic and viscous modulus
dependences on the frequency (at 20 ◦C) and their temperature dependences
(from −50 to +100 ◦C) were constructed.

1 Introduction

The use of various mineral �llers in the production of elastomeric composites with
improved performance properties (in particular automobile tires) is a relatively new
and very promising perspective direction of material science development. These ma-
terials are characterized by a combination of such important properties as increased
thermal stability, resistance to burning, low di�usion permeability, ecological purity
and relative cheapness of production [1, 2]. At its core, they represent a complex
structural heterogeneous systems consisting of a low-modulus highly elastic matrix,
which embedded by a much more rigid and durable particles of the particulate
�ller. Such materials are characterized by a complex mechanical behavior (�nite
deformations, nonlinear elasticity, viscoelasticity), which is caused by a di�erent
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nature reversible and irreversible structural changes occurring under deformation
[3, 4, 5]. Currently, elastomer composites with various mineral �llers are the subject
of intensive research, both experimental and theoretical [6, 7, 8, 9, 10, 11, 12].
One of the most promising areas of use of elastomers with mineral �llers are
automobile tires. Rubbers with such �lling are cheaper and have higher wear resis-
tance [13, 14].

2 The object of study

The main object of research was elastomeric nanocomposites based on SBR-1500
synthetic butadiene rubber, �lled with micro-shungite (granular particles with a
typical average size of about 500 nm). This is a relatively new (for elastomers) type
of �ller. Shungite represent natural mineral composite with a uniform distribution
of highly disperse silicate particles in the carbon matrix [15, 16, 17]. Depending on
the deposit, the composition of shungite rocks can vary within fairly wide limits.
On average, these materials contain about 60�70%-wt. of silicates and 30%-wt. of
shungite carbon with an admixture of other inorganic substances (<4%-wt., Al2O3,
FeO, MgO, CaO, etc.). Reliably established that the shungite carbon in the rock is
lined up by globules connected together, that is, particles of approximately spherical
shape. The diameter of the shungite globules is about 10 nm (which is unique for
materials of natural origin). There is a strong bond between the carbon and silicate
components. The rock is characterized by high density (1.9�2.4 g/cm3), chemical
resistance and electrical conductivity [18, 19]. Such a structure and composition
give shungite materials several unusual physical-chemical and technological proper-
ties. The particles of shungite powder, even micron-sized, contain phases di�erent
in polarity. Due to bipolarity, powders of shungite rocks mix well with most known
substances (aqueous suspensions and �uoroplastics, rubbers, resins and cements,
etc.). Therefore, they are one of the promising modern �llers. Currently, shungite
is being used in the tire industry to produce active and semi-active �llers of a new
generation. In general, the experimental testing of shungite in rubber compounds
revealed the following main e�ects [13, 14, 20]:
1) Improving the ability of rubber compounds to process (in comparison with carbon
black and white soot).
2) Shungiton-�lled rubber has improved dynamic properties: resistance to growth of
cracks in bending with puncture, reduced heat generation under alternating bend-
ing, dynamic endurance under angular rotation.
3) Filling rubber with shungite signi�cantly increases their thermal and �re resis-
tance.
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3 Experiment and results discussion

All experiments were performed on samples prepared in IAPM RAS. The volume
micro-shungite concentration ϕ was 0% (pure rubber), 10%, 18%, and 27%. The
studies consisted of two stages: 1) uniaxial stretching up to rupture rupture; 2) tests
on a dynamo-mechanical analyzer (DMA). Experimental studies were carried out
on the universal tensile testing machine Testometric FS100kN CT. Samples were
manufactured in accordance with the standard ISO 527-25A with working part 2 on
2 by 10 mm. During the test, each sample was monotonically stretched to a break at
a rate of 25%/min. 9�12 samples were tested for each �lling. The averaged results
of the experiments are shown in Fig. 1.

Figure 1: Nominal stresses σ0 versus extension ratio λ at stretching of elastomers �lled

by micro-schungite particles; ϕ = 0% (1 ), 10% (2 ), 18% (3 ), 27% (4 )

It was found that the addition of micro-shungite �ller leads to a signi�cant increase
in the strength of the elastomer. For example: for ϕ = 27% it was more than
3 times. At the same time, its deformability grew, but not so much (from 10 to
30%). Thus, it can be said that the good chemical a�nity of the �ller and matrix
contributes to improving the ultimate characteristics of the material. In the near
future, it is planned to carry out the similar experiments with nano-shugite �ller.
There, we think, these e�ects should appear even stronger.
The thermo-visco-elastic properties of these composite materials were investigated
in the second stage. The experiments were held on a dynamo-mechanical analyzer
DMA/STDA861e (METTLER TOLEDO STARe). This device allows to obtain in-
formation about the change in the viscoelastic characteristics of the material under
the action of a dynamic cyclical load (linear viscoelasticity model) for given tem-
perature values from −150 to +500 ◦C. Rectangular samples were used for the tests:
base (working part) 10 mm, width 3 mm, thickness 2 mm. One-point loading scheme
was applied: cyclic uniaxial stretching�compression of a pre-stretched sample with
dynamic load applied according to a harmonic law.
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The frequency range f varied from 1 to 20 Hz, which corresponds to the rolling speed
of a standard automotive wheel (landing diameter 15 inches) in the range from 6
to 136 km/h, respectively. The amplitude of deformations ε0 was set at 3% in all
cases.
As a result, the dependences of the dynamic (E ′) and viscous (E ′′) modules on the
loading frequency f were plotted. Their temperature dependences (−50 to +100◦C)
at a constant frequency of 13 Hz (which corresponds to approximately 90 km/h)
were built too. The corresponding graphs are shown in Figures 2�4.
The analysis of results obtained by DMA showed the following.
Frequency tests:
The addition of micro-shungite �ller to rubber promoted an increase in both E ′ and
E ′′, and with concentration growth this e�ect intensi�ed. It was also found that in
this frequency range the dynamic and viscous modules retained almost constant val-
ues. Thus, we can assume that these composites have su�ciently stable viscoelastic
characteristics in this frequency range of tire rotation.

Figure 2: Frequency dependences of dynamic (E ′) and viscous (E ′′) modules for

microchungite �ller concentrations of ϕ = 0% (1 ), 10% (2 ), 18% (3 ), 27% (4 )

Temperature tests:
At temperatures below −30 ◦C there was a sharp increase in E ′ and E ′′, while for
shungite-�lled rubbers the values increased by several orders of magnitude. The
pure elastomer changed its properties considerably less. From the analysis of the
temperature dependences of the loss tangent (tanδ = E ′′/E ′), it is seen that when a
micro-shungite is added, the characteristic peak corresponding to the glass transition
temperature shifts from −45◦C (pure elastomer) to −25◦C (27%). Consequently,
the use of tires with only such �llers in such low temperatures is quite problematic
� some special additives are needed in the tire compound. At higher temperatures,
all samples demonstrated the stability of their mechanical properties.
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Figure 3: Temperature dependences of dynamic (E ′) and viscous (E ′′) modules for

microchungite �ller concentrations of ϕ = 0% (1 ), 10% (2 ), 18% (3 ), 27% (4 )

Figure 4: Temperature dependences of loss tangent (tanδ = E ′′/E ′) for microchungite

�ller concentrations of ϕ = 0% (1 ), 10% (2 ), 18% (3 ), 27% (4 )
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Abstract

Mechanical tests under biaxial cyclic loading of elastomeric nanocomposites
with various types of �ller under biaxial cyclic loading were carried out. The
object of research were elastomeric composites based on synthetic butadiene-
styrene rubber SBR-1500 (matrix) and the following �llers: nanoshungite;
silicic acid (fumed silica), carbon black, carbon nano�bers.

The biaxial tests were carried out on a four-vector test rig Zwick/Roell (the
only one in Russia), which allows to de�ne complex deformation trajectories
in two mutually perpendicular directions. Original cross-shaped specimens
were used. Their form and dimensions were established on the basis of special
theoretical studies held in ICMM UB RAS (Perm).

The experiments carried out made it possible to study the e�ects of soft-
ening and the appearance of induced anisotropy in �lled elastomers under the
action of a biaxial load. It is established that the nature of their manifestation
depends on the type of �ller. It is also shown that in the case of pure rubber
they are practically absent.

In samples �lled with nanoshungite particles or carbon black, cyclic defor-
mation along one axis causes a corresponding softening along the same axis,
but does not a�ect the mechanical behavior of the material in the perpendic-
ular direction.

When using the �ller as a mixture of carbon black and carbon nano�bers
cyclic deformation along one axis causes similar softening the other axis. In
elastomers �lled with silica particles (fumed silica), this e�ect is also present,
but it is much weaker than in case of carbon nano�bers.

Thus, one can say, that it is possible to change the mechanical properties of
the composite to the desired side, making the system more or less anisotropic,
due to the variation in the �ller composition.

1 Introduction

Disperse-�lled elastomeric composites are systems consisting of a highly elastic low
modulus rubber matrix (continuous phase) into which solid particulate �ller particles
(dispersed phase) are embedded. Their industrial analogs can be considered rub-
bers for various purposes (from automobile tires to current-conducting high-elastic

94



Biaxial tests of elastomeric nanocompositeswith various types of dispersed �llers

gaskets), solid rocket fuels, etc. At present they are the object of intensive research
both theoretical and experimental [1, 2]. Such materials have complex mechanical
behavior (�nite deformations, nonlinear elasticity, viscoelasticity), which is due to
various reversible and irreversible structural changes occurring during deformation
[3 �11]. In particular, they are characterized by a phenomenon such as "softening"
during repeated deformation (the Patrikeev-Mullins e�ect) [12, 13, 14, 15], which
causes certain problems in their operation.

2 The object of study

The main object of research was the synthetic butadiene-styrene rubber SBR-1500,
in which various �llers di�erent in their mechanical and physicochemical proper-
ties were added: 1) nano-shugite; 2) technical carbon (carbon black); 3) carbon
nano�bers with technical carbon; 4) silicic acid (white soot). In addition, similar
tests were carried out for the pure elastomer without �ller. Shungite is a clay min-
eral consisting mainly of fullerene-like carbon (30%) and silicon dioxide SiO 2 (60%)
[16, 17, 18]. It is fairly widely distributed in nature, inexpensive and character-
ized by high ecological safety. Nanoparticles of the globular type are formed when
shungite is dispersed. Rubbers �lled with shungite nanoparticles are characterized
by increased wear resistance. Currently, they are used in the tire industry [19, 20].
In our case, the composite samples contained 65 parts by weight (phr) of shungite
nanoparticles with an average size of 60�80 nm. Carbon black grade N220 (ASTM
standard) was taken: the average particle size was about 30 nm, the mass concentra-
tion was 60 phr. Carbon nano�bers VGCF [21, 22] were of length from 10 to 20 µm
and a diameter of 150�200 nm. Their concentration was 5 phr. This concentration
is rather signi�cant for �bers, because, these particles (by their shape and size) "ex-
tend their in�uence" to much larger distances than granular inclusions. The �ller of
silicic acid BS-120 (white soot) was a particulate hydrated silicon dioxide with an
average size of 20�30 nm [23]. Its concentration was also 65 phr.

3 Experiment and results discussion

The biaxial tests were carried out using the four-vector test rig Zwick/Roell (the
only one in Russia), which allows to de�ne complex deformation trajectories in
two mutually perpendicular directions (Fig. 1). The original cross-shaped samples
were used (Fig. 2). Their shape and dimensions were set on the basis of special
theoretical studies carried out in ICMM UB RAS. These samples are optimal from
the viewpoint of obtaining uniform stress �elds at the working part of the specimen
and minimizing the size of the non-working part [24].
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Figure 1: The four-vector test rig Zwick/Roell

Figure 2: General view of cross-shaped specimens used in biaxial tests

Tests for pure elastomer and composites �lled with nanoshungite and silicic acid were
performed according to a program of 4 cycles (Program I). Each cycle consisted of
the following steps: Stretching along one axis (direction X ) to a given deformation,
stopping for stress relaxation, compressing to the initial state and again stopping
for relaxation. The rate of deformation was 25%/min, the stop for relaxation was
30 min. In the �rst and second cycles, the sample was stretched along the X axis
to a deformation of 25% and 50%, respectively. In the third and fourth cycles, the
same procedure was repeated along the Y axis.
For samples �lled with carbon black, as well as carbon �bers with technical carbon,
the Program II was applied (deformation rate 25%/min, stop time for relaxation
20 min.):
1) Stretching along the X axis to a deformation of 150% and stopping for relaxation.
2) Compression along the X axis to the initial state and stopping for relaxation.
Procedures 1) and 2) were repeated 3 times.
3) Stretching along the Y axis to a deformation of 150% and stopping for relaxation.
4) Compression along the Y axis to the initial state and stopping for relaxation.
Procedures 3) and 4) were also repeated 3 times.
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Testing of pure rubber SBR-1500 according to Program I established (Fig. 3) that
uniaxial cyclic deformation practically does not a�ect its properties in other direc-
tions. The hysteresis loops in the "load-unload" mode are also very weakly ex-
pressed. That is, such material can be considered as a high degree of reliability to
be elastic and isotropic.

Figure 3: Biaxial tests of pure elastomer; solid lines � tensile curves along the X axis,

dashed lines � along the Y axis (σ � nominal stress, ε � stretching deformation)

A di�erent picture is observed for samples with nanoshungite (Fig. 4). The graphs
show that the addition of this �ller enhances the viscosity properties of the compos-
ite � hysteresis loops appear. At the same time softening of the material under re-
peated loading does not occur. Dependences of stresses on deformation, constructed
under loading along the X and Y axes, practically coincide, i.e. the appearance of
anisotropy induced by the deformation is not observed.

Figure 4: Biaxial testing of an elastomer �lled by shungite nanoparticles; solid lines �

tensile curves along the X axis, dashed lines � along the Y axis

Fig. 5 shows the results of tests of composites with white soot as a �ller. In this case,
the hysteresis curves turned out to be larger than in the previous experiment which
indicates an increase in the viscosity properties of the composite. The sti�ness de-
creases with repeated loading (the Patrikeev-Mullins e�ect) for curves corresponding
to deformation along the same axis. Also, the appearance of an induced anisotropy
of properties is observed for these samples. The curves σ(ε) obtained under loading
along the Y axis lie lower than those constructed for the X axis.
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Figure 5: Biaxial testing of an elastomer �lled by white soot nanoparticles; solid lines �

tensile curves along the X axis, dashed lines � along the Y axis

Experiments for composites �lled by carbon black and nano�bers with carbon black
(program II) are represented in Fig. 6 and Fig. 7. Fig. 6 presents the dependences of
σ on ε for the composite with the carbon black �ller only. These plots show that the
material as a result of cyclic loading along the �rst axis (X ) undergoes considerable
softening after the �rst cycle, in the second and third cycles the situation stabilizes.
The hysteresis loop on the �rst cycle is also much larger than in the second and
third ones. Most interestingly, almost exactly the same curves were obtained for
subsequent loading in the perpendicular direction (Y -axis), that is, for a given
composite, the load history for X has no e�ect on the Y loading history.
The addition of just 5 phr of carbon nano�bers to this composite signi�cantly
changes the behavior of the material. Fig. 7a shows the results of the �rst three
cyclic loads along the X axis, and in Fig. 7b � the three subsequent cycles along
the Y axis. When loaded along X , the plot is qualitatively the same as in the case
of a only carbon black �ller: the �rst cycle is characterized by the largest area of
hysteresis and the greatest softening of the material. The curves corresponding to
the second and third cycles lie nearby. In the subsequent deforming along Y , the
material behaves quite di�erently. The previous deformation in the perpendicular
direction led to the fact that all three cycles in Y coincide with the second and third
cycles in X , that is, the uniaxial "training" of this composite causes its isotropic
softening.

Figure 6: Biaxial testing of an elastomer �lled by carbon black nanoparticles; solid

lines � tensile curves along the X axis, dashed lines � along the Y axis
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a

b

Figure 7: Biaxial testing of an elastomer �lled by nano�bers and carbon black; (a) �

deformation along the X axis, (b) � deformation along the Y axis. 1, 2 è 3 � cycle

numbers

4 Summary

Experimental studies showed that the mechanical behavior of dispersed �lled elas-
tomers (induced anisotropy of the module and viscoelastic properties) at biaxial
tests depends on what materials are used as �ller. Pure rubber remains practically
elastic and isotropic material, regardless of the type of applied load. For samples
with shungite or technical carbon as �ller, cyclic deformation along one axis causes
a corresponding softening along the same axis, but does not a�ect the mechanical
behavior of the material in the perpendicular direction. In the case of �ller made of
carbon black with nano�bers, cyclic deformation along one axis causes similar soft-
ening along another axis (isotropic softening). This e�ect can also be observed for
the �ller of silicic acid particles, but it is much weaker than for carbon nano�bers.
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Abstract

Non-destructive evaluation of samples made from brittle and ductile mate-
rials with various structures with residual stresses was performed by the laser
thermoelastic method with piezoelectric signal registration. Main attention
was paid to experimental investigations of thermoelastic e�ect near specially
made defects like indentation or holes under external loading. The stress dis-
tribution was studied near crack tips, small shallow holes, Vickers indentations
and 3D-printed steel samples. It is shown that the laser ultrasonic signal is
very sensitive to residual stresses especially in metals. The possible reasons
for this signal behavior are discussed and an e�ect of residual stress on the
thermoelastic signal is estimated.

1 Introduction

Laser generation of sound is an important area of modern mechanics and physics of
solids [1, 2]. Laser ultrasonic methods also play an increasingly important role in
solving problems of non-destructive testing of solids and structures [3, 4, 3, 6]. The
basic mechanisms of laser generation of sound in solids are based on thermoelastic-
ity. Important details of laser thermoelasticity depend on the radiation power, the
time range of the laser exposure, the type of material [7]. The characteristic times of
modern laser sound generation methods ranges from femtoseconds to milliseconds.
Materials of various types are being actively studied at present by means of laser
thermoelastic methods. Both the time scale and the type of material can impose
signi�cant features on thermoelastic processes. Of particular interest are studies
that establish speci�c features of the e�ects of laser thermoelasticity in materials
with a complex rheological structure and containing defects of various types. At-
tention to these issues is strongly stimulated by the need to develop new methods
of nondestructive testing [8, 9].
In this paper, thermoelasticity problems are considered in brittle and ductile mate-
rials. The speci�c feature of this article is that when considering thermoelasticity,
pre-stressed state of the material and the presence of plastic deformations in it
are taken into account [10]. The main results on laser thermoelasticity were ob-
tained for ceramics as a brittle material [10, 11], and for metals as a plastic material
[12, 13, 14]. Near-surface defects in samples is modeled by Vickers and Rockwell
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indentations and hole drilling. The laser thermoelastic (TE) signal was measured
by a piezoelectric detector. The behavior of laser thermoelastic signals under the
action of external unidirectional compressive stress in these materials was studied in
details. For ceramics such investigations were carried out for regions near the tips
of vertical cracks.

2 Theoretical part

Classical thermoelastic theory is based on two coupled equations, namely, the heat
conduction and motion equations. However, for many cases the coupling is small and
may be omitted. Then the system of thermoelastic equations may be represented
as [15].

∇2T − 1

κ
Ṫ = − Q

λT
, (1)

ρ~̈u = µ∇2~u+ (λ+ µ)graddiv~u−KεgradT , (2)

where T is the change of the temperature of the body comparing to the environ-
mental temperature, ~u denotes deformations of the body, Q is the heat produced
in the body by external sources, λ and µ are Lamé elastic constants, λT and κ are
the thermal conductivity and di�usivity, Kε is the thermoelastic parameter of the
material.
The �rst equation may be solved independently and the solution is inserted in the
equation of motion. The thermoelastic parameter takes place at the equation of mo-
tion as well as at the boundary conditions for stresses through the Duhamel-Neiman
relation. Because the main aim of the paper is to reveal the relations between the
TE signal and the residual stress, we studied a possible stress dependence of elastic
parameters.
First of all we will be interested in the dependence of laser ultrasonic signals on
mechanical stresses. For this purpose we compare the degree of in�uence of stresses
on the coe�cient of thermal expansion and on the mechanical parameters of the
material. Let us �rst consider such dependence for the coe�cient of thermoelastic
coe�cient.
It was shown by thermodynamic methods [16] that in adiabatic conditions and at
the independence of Poissons ratio on the temperature the thermoelastic parameter
is related to the �rst stress invariant as follows

Kε = K(0)
ε +K(1)

ε = 3K

(
αT −

1

E2

∂E

∂T
σ

)
, (3)

where αT is the coe�cient of linear thermal expansion, E is Young's modulus, σ = σii
is the �rst stress invariant, K is the bulk modulus, K(0)

ε = 3KαT is the thermoelastic
parameter of a body in the unstressed state.
To get the stress dependence of other elastic parameters one needs to use non-linear
elastic theory. Expression for the pressure dependence of the bulk modulus K and
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shear modulus µ were obtained in [17]. Coe�cients dK
dσ

and dµ
dσ

were derived on the
base of non-linear Murnaghans model:

K(σ) = λ+
2

3
µ− 18l + 2n

9λ+ 6µ
σ, (4)

µ(σ) = µ− 6m− n+ 6λ+ 6µ

6λ+ 4µ
σ, (5)

here λ and µ are Lamé constants for the unstressed state, l, m and n are Murnaghan
constants. Experiments on the measurement of various sound velocities made it
possible to determine the numerical values of dK/dσ and dµ

dσ
for some materials, and

in particular for steel they amounted to dK
dσ

= 2.7±1.6 and dµ
dσ
= 6.3±1.0. Note that

for other materials these coe�cients may be negative.
Scholz and Frankel [18] based on the above approach have estimated the dependence
of the Young's modulus and the Poisson's ratio on the uniaxial pressure σ11 for steel
grade 4340, and obtained the following expressions

E = 206.2× 10−9(1− 2.56× 10−11σ11)(Pa),

ν = 0.29(1− 4.89× 109σ11),

where σ11 is expressed in Pa. Numerical data are obtained on the basis of mea-
surements of sound velocities and subsequent determination of elastic constants
of the second and third order (λ=11.04, µ=7.99, l=-38.8±3.6, m=-62.4±2.4, n=-
74.7±1.6). That is, these values vary by a few percent near the yield point.
To estimate the in�uence of the obtained dependences on the TE signal, we con-
sider a simple model of signal generation, which assumes its proportionality to the
displacement speed of the sample surface attached to the piezoelectric detector. Let
the in�nite sample of thickness L be uniformly illuminated by laser radiation, mod-
ulated in time according to the harmonic law I(t) = I0 exp(iωt). Then the time
dependent functions will have the form T (t) = T exp(iωt), uxx(t) = uxx exp(iωt),
Q(t) = Q exp(iωt), where Q is the thermal �ow on the sample surface x = 0.
Then, for surface absorption, the temperature is determined from the heat equation

∂2T

∂x2
=
iω

κ
T (6)

with the boundary conditions

KT
∂T

∂x

∣∣
x=0

= −Q,T
∣∣
x=L

= 0. (7)

The motion equation

−ρω2uxx = (λ+ µ)
∂2uxx
∂x2

−Kε
∂T

∂x
(8)

with the boundary conditions, for instance, for the free surfaces

σxx(x = 0) = σxx(x = L) = 0 (9)
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allows us to calculate uxx. For a thermally thick sample with L
√

ω
2κ
>> 1,

uxx(L) = 2QKε

(
c(σ)(K + 4µ/3) sin(c(σ)L)KT

√
iω/κ

)−1
, (10)

where c(σ) = ω
√
ρ/(K + 4µ/3). Substituting the above values we get the 4%

increase of uxx at σ=1 GPa.

3 Experimental part

3.1 Experimental set-up

All TE images were obtained by scanning laser TE microscope. Thermal and acous-
tic waves in samples were excited by a solid-state laser radiation at the wavelength
532 nm. The DC laser radiation intensity was periodically temporal modulated by
an acousto-optic modulator and focused on the sample surface into a spot of 5 Âµm
in diameter. Acoustic waves in a sample were excited at one of the resonant fre-
quencies of a piezoelectric transducer attached to its rear unilluminated side. The
PZT detector size was 32 × 14 × 7 mm3. The operating resonant frequency of the
used piezoelectric transducer was near 140 kHz. The voltage from the detector was
applied to an input of an ampli�er for a piezoelectric signal and then to a lock-in
ampli�er. The block-schema of the experimental set-up is presented in Fig. 1. Laser
TE images were obtained by scanning the sample surface by the laser beam over
two coordinates with a 2.5 Âµm step. The known uni-axial compressive mechani-
cal stress was applied during the measurements to the side surfaces of the samples
parallel to the illuminated surface.

3.2 Thermoelastic study of cracks in brittle materials

Experimental and theoretical studies of laser TE signals in ceramics near the ends
of radial cracks showed the presence of strong peculiarities in their behavior in these
regions [10, 11]. Experiments with the external uni-axial stress have demonstrated
a strong e�ect of these stresses on the behavior of laser TE signals near the tips of
cracks. By laser photoacoustic microscopy methods the distribution of these features
was investigated near the ends of cracks. The analysis of the results obtained in the
frequency domain showed that signal formation is primarily due to laser excitation
of thermal and thermoelastic waves, and not due to the subsequent generation of
acoustic waves.
Experiments with a di�erent orientation of the Vickers indentations in ceramics
relative to the direction of the external stress action allowed us to estimate the
degree of in�uence of normal and tangential components of stress on laser TE signals
near the tips of radial cracks [19]. It was shown that their behavior corresponds well
to the theoretical distribution of normal and tangential stresses near the ends of the
surface cracks. Up to a certain magnitude of the indentation load, an increase in
the amplitude of the laser signals was observed near the ends of the cracks, which,
after reaching it, was saturated. Our experiments on ceramics of silicon nitride and
ceramics based on aluminum oxides showed very similar results
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Figure 1: Experimental set-up.

Various ceramics were investigated as brittle materials. The system of cracks was
created in the samples by the method of indentation by Vickers. This method
allows the reproduction of cracks of a certain length, depending on the load on the
indenter. Fig. 2 presents the TE images of the region around the print. On the
TE image in the ends of the cracks, a signi�cant increase in the signal is observed.
The application of an external uniaxial load at di�erent angles to the cracks made
it possible to determine the intensity coe�cients.
The stress intensity factors of the crack in general case are determined by the total
action of residual stresses and stresses produced by external loading. In linear crack
mechanics mechanics the normal and shear components of the total stress intensity
factors of a crack can be represented in the form [20]

KI = K
(0)
I +K

(1)
I sin2 φ, KII = K

(0)
II +K

(1)
II cosφ sinφ, (11)

where K(0)
I and K

(0)
II are the stress intensity factors which are related to residual

stresses, K(1)
I and K

(1)
II are the stress intensity factors that characterize the crack

behavior under external loading, φ is the angle between the crack and direction of
the external loading.
For small strains near the surface, the change of the TE signal due to the stress may
be estimated as

∆S = AS0(σxx + σyy), (12)

where S0 is the TE signal from the unstrained sample, constant A depends on the
thermoelastic parameters including third-order elastic constants.
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Figure 2: The TE image of Vickers indentation in Al2O3-SiC-TiC ceramic a - without
external load, b - under the external load of 170 MPa. The indentation load is 98 N,
the area is 480×500 µ m2.

According to [Sedov], the stress tensor components near a crack tip accounting an
external loading are

σxx + σyy =

√
2

πr

(
KI cos

θ

2
−KII sin

θ

2

)
, (13)

where we used the polar coordinate system with the center at the crack tip.
For residual stress near the tips of radial cracks produced by Vickers indentation
with a load P, the stress intensity factors are given by [21]

K
(0)
I = χP/L(3/2), K(0)

II = 0, (14)

where χ is a dimensionless factor depending on the cracks shape and L is the length
of the crack.
Then the TE signal near the radial crack tips can be expressed in the form [11]

∆S = AS0

√
2

πr

[(
K

(0)
I +K

(1)
I sin2 φ

)
cos

θ

2
−K(1)

II sinφ cosφsin
θ

2

]
, (15)

The detailed analysis of experimental data given in Fig. 2 allows us to estimate ratio
K

(1)
I /K

(1)
II . For example, the ratio is about 1.4 for crack 1. This result correlates

well with a theory of vertical cracks in thick plates [Sedov]. In this case, the theory
predicts K(1)

I = K
(1)
II .

3.3 Thermoelastic studies of plastic materials

As a rule, there are no cracks in plastic materials, but many di�erent structures
with complex rheology can be formed that contain stress concentrators of various
shapes and intensities that can lead to a strong dependence of the TE signal on both
internal and external stresses.
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Figure 3: The behavior of the PA signal across the tips of radial cracks. a - for crack
1, b - for crack 2. + denotes the experimental data for the sample without external
loading, • denotes the experimental data for the sample under the external loading
of 170 MPa, solid line is a theoretical curve.

3.3.1 Method of drilling holes.

The method of drilling holes for the determination of internal stresses is well devel-
oped in combination with strain gauges or holographic interferometry [22, 23]. This
is primarily determined by the fact that the problem of stress distribution around a
small hole in a pre-stressed object was solved quite a long time [8].
The radial and tangential stresses are written as follows

σr =
P

2

(
1− a2

r2

)
+
P

2

(
1 +

3a4

r4
− 4a2

r2

)
cos 2ϑ, (16)

σϑ =
P

2

(
1 +

a2

r2

)
− P

2

(
1 +

3a4

r4

)
cosϑ, (17)

where P is the pressure along the axis from which the angle ϑ is measured, a is the
radius of the hole, and r is the polar radius. In the case of the formation of the TE
signal, we will be interested in the total stress, which in the plane of the surface is
equal to

σ = σr + σϑ = P − P 2a2

r2
cos 2ϑ. (18)

Fig.4 demonstrates the graph corresponding to this formula. In mechanics, tensile
stresses are positive. However, in our thermoelastic experiments, the TE signal
usually increases with compressive stresses, which correlates, for example, with the
formula for the coe�cient of thermal expansion. When using modulation frequencies
in the region of hundreds of kilohertz, the thermal wave length in metallic alloys is
of the order of a dozen microns, so even with relatively shallow holes this formula
can be considered a good approximation.
A sample for such research was made of a duralumin alloy D16 measuring 6 × 3 ×
3.6 mm3, in the center of which a drill hole of 0.2 mm diameter was drilled at a depth
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Figure 4: Distribution of stresses around the hole under uniaxial tension P=1.

Figure 5: (A) The TE image of a sample from alloy D16 around a small hole. The
image size is 1.1×1.1 mm2. (B) is the cross-section of the TE of the image along
the line of the hole through the center at an angle of 90◦ to the horizontal axis x.
The dash curves are the theoretical �tting.

of 0.25 mm. The surface of the sample was previously polished. The TE image of a
part of the surface around the hole is shown in Fig. 5. First of all, it should be noted
that the length of the thermal wave in the alloy at the used modulation frequency
was 15 µm, the e�ect of the hole on the temperature change did not extend beyond
this distance from its edge.
To analyze the behavior of the signal, we have made cross-sections of this image in
two perpendicular directions passing through the center of the hole and two circles
with a radius of 195 and 225 µm passing in the region of homogeneous heating. A
trajectory of the section is shown in Fig. 5 by the dashed line. Minor changes in
the signal relative to the trend are reproducible and are determined by the granu-
lar structure of the alloy. In accordance with our experimental data, compressive
stresses lead to an increase in the signal, and tensile stresses lead to a decrease. In
Fig.6 theoretical dependences are also shown in accordance with the Eq.17 for P
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= 0.7 and 0.647 for the left and right branches, respectively. It can be seen that
although the experimental curves do not have strict symmetry, on the whole they
correspond to the theoretical model of stress distribution and, apparently, the TE
signal is determined by them entirely. Particular attention should be paid to the
strong dependence of the TE signal on internal stresses.
Our further work suggests the study of samples with a calibrated external load.

3.4 Additive technologies

Non-destructive testing of the properties and quality of products obtained with the
help of additive technologies becomes more and more relevant in connection with the
avalanche expansion of the �eld of applications and materials. Extremely promising
is the use of metal microgranules, which are layer-by-layer sintered. Currently, it
is believed that laser ultrasound diagnostics is the most informative and convenient
method for these purposes [25].
We used our approach to study samples obtained by 3D printing a steel pro�le on the
surface of a steel plate. As a starting material for printing, a powder from stainless
steel 316L was used. The diameter of the initial microgranules was 15/40 µm, and
the total thickness of the layer was 3 mm. The general view of the sample is shown in
Fig.6a: a homogeneous substrate layer is on the left, a layer obtained by 3D printing
is on the right. The image size is 1.5×2 mm2. The TE image (Fig.6b) demonstrates
a strong di�erence between the signals from the two halves of the sample. In contrast
to the substrate, where a su�ciently uniform signal is observed, the change in the
normalized signal for the "printed" layer is from 0 to 17. A particularly strong signal
increase is observed along the substrate-deposited material boundary. In addition,
zones of increased signal around individual grains are observed. In Fig. 6 various
images of the border region of the sample are given. Black spots on the optical
image are visible open cavities in the material obtained by additive technology. In
other places, the heterogeneous structure of the regions seeming to be uniform under
the microscope is seen. These inhomogeneities of the TE signal can be caused both
by inhomogeneous heating due to the presence of cavities and by the presence of
stresses, similar to the distribution of internal stresses arising near the apertures, as
was demonstrated in the previous section. When an external load is applied to the
TE, the image changes. A characteristic feature of these changes is the decrease in
the signal (black regions), mainly around the inhomogeneities elongated along the
boundary. This indicates that the residual stresses in these regions were directed
across the boundary and, when squeezed in this direction, the total stress decreased.
This is consistent with the results of our studies of TE signals around cracks in brittle
materials.
For clarity of signal distribution Fig.7 presents a cross section of the TE image along
the lines shown in Fig. 6 by the dotted lines. The cross section demonstrates homo-
geneous behavior at x < 0 and very strong signal changes on the right side. Near
the border, there are places where the TE signal in 17 times more than that for the
homogeneous part. This signal may be reduced by applying pressure perpendicular
to the border. Other places, e.g., at x=800 µm, demonstrate strong enhance of the
signal, which corresponds to a defect concentrating stress.
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Figure 6: Images of the border region of the sample made of steel with a size of
1.5× 2 mm2. (A) is the optical image, (b) is the TE image, (c) is the TE image of
the sample at the uniaxial compression 35 MPa.

Thus, laser thermoelastic diagnostics makes it possible to reveal not only the struc-
ture of materials obtained by additive technology, but also the distribution of internal
stresses, and this can be done in the production process.

3.5 Indentations in metals

As in the case of ceramics, the indentation method is used in plastic materials for
hardness testing. However, in this case, the indenter produces only plastic defor-
mations without cracking. At the same time, however, a system of residual stresses
is formed, which is stably reproduced. For the interpretation of the behavior of
laser TE signals from indents by Vickers and Rockwell, theoretical models were pro-
posed that take into account their complex rheological structure. Investigation of
laser dynamic processes involving thermal, thermoelastic and mechanical processes
in such structures are of great interest [26, 27]. Experimentally we found that laser
signals have signi�cantly more pronounced features for Vickers indents. We showed
by the TE microscopy method that the stress distribution after removing the load
on the indenter depends on the state of the sample before indenting [12, 13, 14].
Moreover, the external load can signi�cantly change the stress distribution in the
imprint area. Depending on the orientation of the print with respect to the direction
of action of the external load, the change in the stress distribution can be reversible
or irreversible with the same load. As an example, Fig.8 presents the TE images
of Vickers prints in steel in the initial state and under the in�uence of an external
load. The TE signal changes strongly under the load 24 MPa and returns mainly to
the initial state after the load relief. This shows that the load has produced elastic
e�ect on the sample and the signal changes were due to the stresses rather than
plastic deformation. Again we see that the signal increase was more than 2 times.
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Figure 7: A cross-section of the TE image along the dash line shown in Fig. 7b.
Solid blue line is the TE signal for the sample in the initial state, red dash line is the
TE signal for the sample under the uniaxial external compressive pressure 35 MPa.

4 Discussion

The study of strained samples from various materials and various inhomogeneities
showed a strong dependence on stresses, which is not explained completely by the
known dependence of the elastic parameters. At the same time, in brittle materials,
the e�ect of stress on the TE signal was less than in metals. For example, the
maximum increase in the TE signal at compressive stresses was about 40% compared
to the unstressed state. In metal samples, the excess of the signal from the stressed
regions was hundreds of percent. The in�uence of tensile stresses could suppress the
signal practically to zero. The behavior of the signal in cases with a known stress
distribution con�rms the proportionality of the signal to the �rst invariant of the
stress tensor.

The reasons for an additional increase in the signal in metals can be several. The
main reason may be that a two-component model should be used for metals. The
main part of the laser radiation is absorbed by the electrons and then is given to the
lattice as a result of the electron-phonon interaction. In the general case, to describe
such a process, it is necessary to use a two-temperature model that takes into account
the electron and lattice temperature di�erence [28]. Taking into account, however,
that the electron-lattice relaxation processes are carried out over times of the order of
a few tens of ps, when modulating laser radiation with frequencies in the megahertz
range, this di�erence can be neglected. The classical equations of thermoelasticity
take into account the e�ect of laser excitation of elastic waves only through thermal
and thermoelastic phenomena in the crystal lattice. For metals, the contribution of
the electronic system to mechanical processes should also be taken into account. As
is known, the presence of an electron gas in metals leads to the appearance of a new
thermoelastic constant, which takes into account the e�ect of electrons on lattice
deformation. In addition to the dynamic processes in the lattice, conductors in
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Figure 8: The TE images of Vickers prints in steel grade U8. The load on the
indentor is 98N, the image size is 430×430 µm2. (A) is the sample in the initial state,
(b) is the sample under load of 24 MPa, (c) is the TE signal along an indentation
diagonal shown as a dash line in (a). The solid, dashed, and dotted curves correspond
to the initial sample state, the sample under load, and the sample after load relief,
respectively.

parallel have kinematic processes in the electron gas [29, 30]. In the pico-femtosecond
range, the interaction of electrons and lattices leads to the e�ect of an electron shock
wave [31]. In the low-frequency range, the absorption of energy by electrons leads
to an additional pressure on the lattice, which can lead to an increase in the TE
signal.

In the study of imprints from di�erent indenters, a strong change in the TE signal
is observed at places of sharp changes in the surface geometry, namely, at the edges
of prints and diagonals. These elements are stress concentrators and can lead to an
increase in stresses [32] We estimated the stress increase at the diagonals of Vickers
indentation up to two orders [13].

In addition, the entire region under the indenter is subject to strong plastic defor-
mation, in which the thermoelastic e�ect can di�er signi�cantly from such an e�ect
in an initial material. First, Young's modulus in the zone of plastic deformation
decreases, which, according to Eq. 2, leads to an increase in the in�uence of stresses
on the termoelastic parameter. Secondly, we can talk about nonlinear kinking elas-
ticity observed in solids with plastic anisotropy. These include materials with a
layered microstructure and regions with a large number of dislocations. The impor-
tant mechanical feature of these materials consists in the formation of the stable
closed hysteretic loops on their load-displacement curves under cycle loading and
unloading. Such a stabilization of the hysteretic loops occurs after several cycles
(usually less than 10). It is explained by the formation of reproducible and com-
pletely reversible dislocation motion appear in them after several cycles [33, 34, 35].
This circumstance can explain the formation of stable TE signals from the plastically
deformed zones of materials during their cyclic laser illumination.

When a certain threshold load is exceeded, reproducible and completely reversible
dislocation motion appear in them [33]. These hysteretic loadâ��displacement loops
can additionally transmit thermal energy into acoustic vibrations.
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5 Conclusion

The presented experimental and theoretical results exhibit a strong e�ect of me-
chanical stress on the laser TE signals near the tips of cracks in ceramics and from
Vickers indented areas in metals. The registered characteristic features of the pho-
toacoustic e�ect are common for various ceramics and metals subjected to external
stress, which goes to show its general nature. The performed analysis has revealed
the di�culties of internal and external stress registration by a conventional pho-
toacoustic method that does not use the indentation. In this case, even signi�cant
internal or external stresses cause weak changes in the photoacoustic signals gener-
ated in metal samples. The presence of stress concentrators signi�cantly enhances
the stress in�uence on the laser TE ultrasonic signal.
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Abstract

We consider a walking robot with m legs that ensure the desired motion
of the robot body. Each of the robot legs contacts the surface in a single
foothold. We describe the robot motion within the framework of general dy-
namics theory, with six di�erential equations for the robot motion derived
from the momentum and angular momentum theorems. In the case of two-
legged robot, n = 2, we reduce the problem of the existence of the solution to
a system of algebraic inequalities. We present the classi�cation of footholds
positions for di�erent values of the friction coe�cient k.

We show an analogy of the problem of the equilibrium of a two-legged robot
on an inclined rough cylinder for the problem of transfer by a manipulator with
a two-�nger grasp of a rough cylinder.

1 A cylinder grasping problem

In this paper, we discuss the problem of walking robot dynamics on one-side con-
straint. While the general walking robot motion on a plane was analyzed in detail
in Ref. [1] the case of the dynamics on a curved surface is far more complicated.
Model dynamics and control problems was considered in [2]. Equilibrium conditions
for a solid on a rough plane was considered in [3]. Walking robot parameters opti-
mization for the motion in tubes was considered in [4]. The special case of a robot
with eight legs whose up porting points are restricted to the inner surface of a tube
was considered in [5]. In the present work, we consider the more general case of
a robot with two arbitrary supporting points on a rough cylinder and on a curved
surface.
Then we consider the problem of curved object grasping by the �ngers of the robot-
manipulator. For example we discussed monkey-robot with 10 arms and 10 legs
�ngers or two legged human-robot with 10 arms �ngers. The robot can hold the
object by one and grasp by two-�ngers. An object grasping problem is equivalent
to the problem of the walking robot with n legs [6], [7]. Consider a grasp with m
�ngers. Each �nger contacts an object in one foothold.
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Let the point O is an origin �xed in absolute space. Suppose that robot arms
�ngers accomplish the desired motion with respect to the body of the robot. Using
general dynamics theorems to describe the cylinder motion, we obtain six di�erent
equations for the cylinder dynamics from the momentum and angular momentum
theorems. Among them there are three equations of the body translation with
point A and another three describe body rotation about point A. For prescribed
motion be realized then reaction in m footholds should satisfy following kinetostatic
equations [8], [9]:∑m

i=1
R̃i = −Φ̃,

∑m

i=1
r̃i × R̃i = −M̃, (1)

where R̃i is reaction component, r̃i corresponds to the i-th �nger supporting point
vector, Φ̃ is the sum of the external active forces plus time derivative of desired mo-
mentum, and M̃ is the sum of external active forces momentum and time derivative
of desired angular momentum with respect to the point O. In two vector equations
in (1), the former corresponds to the momentum of the object (and is equivalent
to three scalar equations when projected onto the basis vectors), while the latter
de�nes the desired change of the angular momentum.
Assuming that Φ̃ is orthogonal to M̃, we obtain [10] that the system {Φ̃, M̃} can
be also used at the point C

r̃C × Φ̃ = M̃, r̃C = −M̃× Φ̃

Φ̃
2 , Φ̃ = |Φ̃|,

where r̃C is the vector OC, and C corresponds to the point at which the resultant
of the reactions is acting.
Further problem of reactions distribution R̃i in some �xed point of time is investi-
gated by the proposal that force Φ̃ is acting at the point r̃C and force moment there
is zero. Motion equations (1) for �nding reactions of �ngers prescribed motion can
be transformed [11]:∑m

i=1
R̃i = Φ̃,

∑m

i=1
r̃i × R̃i = r̃C × Φ̃. (2)

For example point C can be the grasping object center of mass.
Assuming that the robot footholds are on the surface of a rough cylinder of radius
ρ with a friction coe�cient k, we introduce the coordinate system Oxyz such that
the axis Ox is directed along the cylinder axis (so that the projection of Φ̃ on the
axis Ox is negative � see Fig. 1.), the axis Oz is parallel to the vector Φ̃, and the
angle between the cylinder axis and the vector Φ̃ is α.
The problem of �nding the reaction forces (2) is similar to the foothold reactions
distribution problem for walking robot, when the footholds are on the external
surface of a rough inclined cylinder where the axis has an angle α with respect to
the vector Φ̃. It has been considered in Ref. [9] the problem of searching of the
reactions components along the cylinder axis when α = 0.
In the coordinates Oxyz we de�ne R̃i = (R̃

x

i , R̃
y

i , R̃
z

i ), r̃C = (x̃C , ỹC , z̃C), and
Φ̃ = (−Φ̃ sinα, 0, −Φ̃ cosα), i = 1, · · · ,m. In case of a one-sided surface, and the
grasp inside the cylinder, we have additional restrictions on normal reactions Ñ i [13]:

Ñ i = R̃i · eiν ≥ 0, (3)
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Figure 1: Cylinder.

where eiν is an external normal to i-th supporting point on the cylinder, while the
tangential components are given by F̃i = R̃i − Ñ ie

i
ν .

For the reactions to be in the friction cones (2), we have following inequalities:

|F̃i| ≤ kÑ i, (4)

i.e. the tangential reactions F̃i are restricted by Coulomb limiting friction value.
When F̃i exceeds this limiting value, the robot legs and arms begin to slide along a
surface.
The reaction distribution problem then reduces to the solution of equations (2), and
inequalities (3), (4), for reactions limited to the friction cones. The restricted motion
can only be realized if the solution of Eqns. (2)-(4) does exist.
The same inequalities are for walking robot on the cylinder [9]. If the grasp is out
the cylinder this inequalities (3) have opposite sign.
For example if m is even. And one of each par of the supporting points is on and
another is in the thin surface such that we consider them like one geometrical point.
Then we need only inequalities (4).
For ri = r̃i/ρ = (xi, yi, zi), in the cylinder coordinate: ri = (xi,− sinϕi, cosϕi),
eνi = (0,− sinϕi, cosϕi), Ni = Ñi/Φ̃ = (0,−Ni sinϕi, Ni cosϕi), where ϕi is the
angles between axis Oz and cylinder normal eνi . We de�ne ex as the unitary vector
in the Ox axis, while eτi = (0, cosϕi, sinϕi) as the tangential to the cylinder. Then
the tangential reaction: Fi = (F x

i , F
yz
i cosϕi, F

yz
i sinϕi), where F x

i = Fi · ex, F yz
i =

Fi · eτi , Ri = R̃i/Φ̃ = (Rx
i , R

y
i , R

z
i ), rC = r̃C/ρ = (xC , yC , zC).

Let p = Rx
1 − Rx

2 . We further de�ne the coordinate di�erences, and the supporting
points di�erence of angles of axis Oz are ∆x = x2−x1, ∆y = y2− y1, ∆z = z2− z1,
∆ϕ = ϕ2 − ϕ1, and s21 = sinϕ2 − sinϕ1, c21 = cosϕ2 − cosϕ1. We then project
system (2) onto the axes Oxyz. For arbitrary surface we �nd that the second
equation of (2) (corresponding to the moment) has the skew-symmetric matrix with
respect to the component Rx

i [9]. These are 2 independent equation, while the third
equation corresponds to the restriction of the point C to the plane containing the
two footholds. As a result, the system (2) yields 5 independent equation and a
restriction.

2 A Two-�nger Grasp

During the robot motion one-supporting and two-supporting points phases are
changed. First, we consider the one-supporting phase of the grasp. Let m = 1,
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then the motion existing condition is reaction is equal to force Φ and supporting
point and the point C are on the line along Φ, while the angle between Φ and the
normal do not exceed the friction angle.
If the grasp inside the surface then point C is under the surface. In opposite case
the grasp is under the surface. Then point C is inside the surface.
If m is even. And one of each par of the supporting points is on and another is in
the thin surface such that we consider them like one geometrical point. Then it does
not matter where the point C is on the line.
Let n = 2, and x1 6= x2. Then p = F x

2 − F x
1 , and from (2):

F x
1 = (sinα + p)/2, F x

2 = (sinα− p)/2,

N1 =
−p sin2 ∆ϕ

2
+ (x2 − xC) cosϕ1 cosα

∆x
+Nα

1 ,

N2 =
−p sin2 ∆ϕ

2
+ (xC − x1) cosϕ2 cosα

∆x
+Nα

2 ,

F yz
1 =

−p sin ∆ϕ+ 2(x2 − xC) sinϕ1 cosα

2∆x
+ F

(yz)α
1 ,

F yz
2 =

p sin ∆ϕ+ 2(xC − x1) sinϕ2 cosα

2∆x
+ F

(yz)α
2 ,

tanα =
∆x(sinϕ2 + yc) + (xC − x2)s21

yCc21 + zCs21 − sin ∆ϕ
,

(5)

where Nα
i and F yz

i are the functions of xi, ϕi, yC and zC .
From the conditions (3)

p ≤ (x2 − xC) cosϕ1 cosα +Nα
1 ∆x

sin2 ∆ϕ/2
, p ≤ (xC − x1) cosϕ2 cosα +Nα

2 ∆x

sin2 ∆ϕ/2
. (6)

Figure 2: The analytical and the numerical parameter diagrams.

The conditions (4) can be displayed in the form

Ep2 +B1p+ C1 ≤ 0, Ep2 +B2p+ C2 ≤ 0, (7)
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where

E = (∆x)2 + sin2 ∆ϕ− 4k2 sin4

(
∆ϕ

2

)
,

Bi, Ci are the functions of xi, ϕi, xC , yC and zC .
The boundaries between di�erent regimes can be determined analytically. For exam-
ple, in the case of E < 0, the solution exists, and can be obtained analytically [9],
as shown in Fig. 2, on the left. Note that in this case it's limited to the range
∆x ≤ 2kρ. In contract to this behavior, for E ≥ 0 there is no such restriction and
an additional step is required to address the question of the existence of the solution.
At the point (0, 0) we �nd E = 0, which means that two footholds are orthogonal
to the cylinder axis. Here, two possible solution are either identical, or limited to
a single diameter. In the latter case, point C and the reaction have to be in one
plane, parallel to force Φ, and the problem has a solution.
For the desired legs or �ngers con�gurations and given point C, the problem can be
solved numerically. In Fig. 2, on the right, we present the numerical solution for the
example when x2 = −x1 = ρ = k = 1. Note that in this case E > 0.
In the numerical simulations, we use a 300 × 300 array for the points (ϕ1, ϕ2), in
the interval [−π, π], and for each point verify the conditions (6), (7). Speci�cally,
the condition (7) was analyzed in two cases, when E = 0 and E > 0, and when the
solution of the problem does exist, the solutions were shown in the plot.
When E = 0, the reaction distribution problem reduces to the linear inequali-
ties (6), (7) for the parameter p.

Figure 3: For α = π/4; x2 = −x1, ϕ2 = −ϕ1.

For E > 0, we need to consider two conditions. First is the restriction on the
determinants D ≥ 0, while the second is the requirement of a non-empty intersection
of the set of point of the intervals between the roots of quadratic equations. From this
plot we see that, if two points are on one diameter, then the solution of the reaction
distribution problem exists. The two lines in the plot, correspond to ϕ1 = ϕ2 + π
or ϕ1 = ϕ2− π. The rhombus form represents the requirement on the determinants
Di ≥ 0, while additional conditions further restrict the range [11].
In Fig. 3 we present the results for E > 0 and E ≤ 0, when x2 = −x1, ϕ2 = −ϕ1

and shows the case of α = π/4. The �gures for α = 0 and increased to π/2 are
shown in [12]. Note that when α = π/2, the solutions exists only for diametrical
footholds.
For two-�nger robot when E is negative, the solution exists, and obtained analyti-
cally [13]. Using numerical simulations we explain the reaction distribution problem
existing and build this problem solution existing �elds for given footholds and point
C position. For example, for two-foothold phase, we consider symmetric, about
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Figure 4: Admissible area for α = π/3; ∆x = 1, 1.

point C, along and orthogonal cylinder axis, robot con�gurations. For �rst of these
con�gurations examined three cases with nonnegative E coe�cient, for distance x,
between point C and footholds: 0, 9; 1 and 1, 1 at ρ and k equal 1, α from 0 to π (in
all 13 di�erent values cylinder inclination angles). Reactions distribution problem
solution existing �elds constructed on the two angles plane, correspond to footholds
projections on the cylinder base and three dimensional �elds which supplement this
plane by point C z-coordinate altitude. When α equals to 0, x equals to 1, the �eld
consist of three separate situated subregions. On the angle plane each of pair parallel
lines corresponds to support on the cylinder diameter plane section contained point
C [14]. There is connected �eld between these lines. It contains the line segment
corresponding to the angles equality, robot supported above on the line which is
parallel to cylinder axis and satisfy force direction deviation restriction. The indi-
cated segment on the plot disappear when x equals to 0, 9 for α equals π/4, and at
increasing x, later, for 4π/9. It corresponds to the robot beginning sliding down the
cylinder. When x equals to 1, 1 for α equals π/3 in three-dimensional �elds observed
bundles of separate points, Fig. 4. That means that the point C altitude position
more harsh change while changing the angles [15].

3 Conclusion

During the robot motion, one-supporting point and two-supporting point phases are
changed. The reaction distribution problem have a solution in following cases.
1. One-supporting point phase. So the motion existing condition is reaction is equal
to force Φ and supporting point and the point C are on the line along Φ. And the
angle between Φ and the normal not exceed friction angle.
1.1 If the grasp inside the surface then point C is under the surface. In opposite
case the grasp is under the surface. Then point C is inside the surface.
1.2 If m is even. And one of each par of the supporting points is on and another is
in the thin surface such that we consider them like one geometrical point. Then it
does not matter where the point C is on the line.
2. Two-supporting point phases. In case when the grasp is inside the cylinder. The
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point C and the reactions have to be in the plane parallel to force Φ.
2.1 If supporting points are on one diameter.
2.2 When coe�cient E < 0. And in some �elds with connected set of points, when
E ≥ 0.
So the robot can transfer the cylinder by one or two �ngers.
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Abstract

The �ight dynamics mathematical model for a small tube-deployable un-
manned aerial vehicle (UAV) and its �ight trajectory optimization is presented
in this paper. The optimal sti�ness of torsion spring which mechanically de-
ploys the wings of a UAV is found from the optimization. The �ight of a
UAV consists of several steps. At �rst step, the UAV is launched from the
tube with folded wings. After launching, UAV is deploying the wings over the
period of 0.5 � 1 sec, which depends on the torsion spring sti�ness. Due to the
wings mass-inertial characteristics, the speed of wings deployment and hence
spring sti�ness has to be constrained in order to minimize negative in�uence
of the inertia forces on the UAV �ight trajectory. This multiphysics problem
includes ballistics, �ight dynamics, aerodynamics, control system simulation,
deployment mechanism sti�ness identi�cation and the optimal trajectory de-
termination. This paper is devoted to the approach which allows solving such a
complex task with di�erent physical phenomena using the combination of soft-
ware packages for numerical simulation (LMS Imagine.Lab Amesim, Matlab)
and optimization tools (Optimus). The described approach could be extended
to di�erent applications in aerospace industry.

1 Introduction

A deployable wing UAVs are becoming more widespread due to their packing ca-
pabilities and they �nd their application in civil and military �elds [1]. Despite
the simplicity of the deployable wing concept, the developing and modelling of this
concept is enough complicated task. At �rst, there are a lot of opportunities how
to realize the deployable wings: with mechanical tools, such as rotational or linear
spring, with stepper motor or with usual motor and reducer and others. Detailed
review and classi�cation of various deploying mechanism implementations is pre-
sented in paper [1]. But this ongoing research doesn't focus on the system modeling
or selecting appropriate technology for implementation of the deploying mechanism,
but focuses on multiphysical simulation modeling of the already selected concept of
a small UAV and mechanism of deploying. A multiphysical simulation for a small
UAV in the general includes �ight dynamics equations of motion which are well
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Figure 1: Concept of launch system and tube deployable small UAV

known for �xed-wing aircraft [2, 3, 4], aerodynamics [4], strength and vibration cal-
culations [5]. This paper presents a solution of a rather non-trivial optimization
task: at what time should the UAV open its wings after launch from the tube, since
in the initial state of the UAV the wings are folded and the UAV is located inside
the pneumatic tube. Together with that some constraints arise because of speci�c
structure of a small UAV.
This article describes stages of solving of presented problem. These stages include
modelling of �ight dynamics, the approach to consider deployable wings instead of
�xed wings, some results of aerodynamics calculations to understand lift and drop
coe�cients of a UAV in the �ight.

2 The design of a tube-deployable UAV

This article considers tube-deployable small UAV which �ies out of the pneumatic
tube at �rst stage, then the wings open and �nally the UAV �ies with �xed wing.
The concept of a pneumatic tube and some views of UAV is presented in Figure 1.
The deployable mechanism is designed with the rotational pair and the rotational
spring unfolds the wings. The cruising speed of a UAV is about 100 km/h. Altitude
is up to 200 m. The critical speed of a UAV at which it capable to �y is 54 km/h.
At a lower speed, the required lift force will not be achieved. During launch, this
required speed is achieved by a pneumatic tube with high pressure inside. But it is
not obvious without a preliminary calculation in what time it needs to start open the
wings. Also, the spring sti�ness directly in�uences on the wings deployment time,
and speci�c spring and its sti�ness must be correctly selected. All these challenges
were solved by mathematical modeling and optimization performed in LMS Amesim
and Noesis Optimus software.

3 Flight dynamics of a small UAV

It is proposed to consider two stages of a �ight: the �rst stage is only �ight out
from a tube with subsequent opening of the wings and the second stage is the �ight
with unfolded wings. Also at the �rst stage, the problem of determining the wings
opening time is solved, depending on the sti�ness of the spring. The following
assumption is introduced: the dynamics of a UAV �ight for the intermediate state
are not considered when the wings are opening. This is due to the changing mass-
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Figure 2: Stages of a �ight for mathematical modelling

inertial characteristics in this state. At the second stage, the wings have already
fully opened. The outline of a considered problem is presented in Figure 2.
As mentioned above, the mathematical model for �ight dynamics of UAV with �xed
unfolded wings is fairly well known. The body-axes equation of motion are as follows
[2]:
Force equations:

U̇ = rV − qW − g cos θ + (XA +XT )/m

V̇ = −rU + pW + g sinψ cos θ + (YA + YT )/m

Ẇ = qU + pV + g cosψ sin θ + (ZA + ZT )/m

Moment equations:

Jxṗ− Jxz(ṙ + pq) + (Jz − Jy)qr = ~L

Jy q̇ + (Jx − Jz)pr + Jxy(p
2 + r2) = M

Jz ṙ + Jyz(ṗ− qr) + (Jy − Jx) = N

Moment equations:

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = p cosφ− r sinφ
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Figure 3: Mathematical model for UAV �ight in LMS Amesim

ψ̇ = (q sinφ− r cosφ)/ cos θ

Navigation equations:

ṗN = Ucθcψ + V (−cφsψ + sφsθcψ) +W (cφsψ + cφsθcψ)

ṗE = Ucθsψ + V (cφcψ + sφsθsψ) +W (−sφcψ + cφsθsψ)

ṗD = −Usθ + V sφcθ +Wcφcθ

The de�nition of each variable in equations is found in Ref. [2].
The equations for two stages was solved in LMS Amesim software [6]. This software
includes validated library of components for many engineering applications including
�ight dynamics library. The circuit visualization of the mathematical model for
considered UAV is presented in Figure 3.
The distinctive feature of creating models in LMS Amesim is that engineer do not
need to create equations and next to translate them into hundreds of code lines. It
decreases number of errors during modelling. There are some initial parameters in
each element of a mathematical model. The �ight dynamics element contains the
most signi�cant initial parameters, such as: mass, components of the inertia matrix,
initial speed, altitude, pitch, roll and yaw angles, lift and drag coe�cients, wing
span, wing area. Since at the �rst step the wings are folded, the wing span of for
analysis is taken about zero: 0.001 m. The wing span and wing area are taken as
actual: 1.6 m and 0.24 m2 for the second stage.
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Figure 4: Results of CFD analysis for two stages of a �ight. Pressure acting on the
UAV

4 Determination of lift and drag coe�cients

The lift and drag coe�cients were obtained by CFD analysis by means of Ansys
CFX. The results of calculations are presented in Figure 4.
Numerical results are summarized in the table 2.

Table 2: Lift and drug coe�cients

Deployed wing Folded wing
Cyo 0.18 0
Cα
y 0.0677 1 deg 0.0117 1/deg

Cxo 0.0575 0.04
Cα
x 0.0031 1 deg 0.002 1/deg

Numerical results of CFD analysis were the initial data for �ight dynamics calcula-
tions.

5 Mathematical model for the wings opening

Mathematical model for time determination of a wing deployment takes into consid-
eration inertia of a wings, wind speed and the UAV speed. The equation of motion
for this problem is as follows [7].

Jϕ̈+Bϕ̇+Kϕ = M(t)

,
where J is moment of inertia, Ï� is the rotational angle,B is damping coe�cient,K
is sti�ness coe�cient, M(t) is applied external moment acting on the wings.
External forces, speci�cally the moments from wind speed and the UAV speed are
taken from the �ight dynamics calculation. The problem was solved in LMS Amesim
software and some results of calculations are presented below. The dependency of
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Figure 5: Results of calculations obtained from mathematical model of the wing
opening: a) Angle over time; b) Opening time depending on the time delay and
sti�ness

angle over time is presented in Figure 5a and the opening time of a wing depending
on time delay and sti�ness is presented in Figure 5b. Time delay is the time when
the wings begin to open (Figure 2).

The results of calculations shown in 5 pointed on the nonlinear dependency of open-
ing time from time delay and sti�ness. This is explained by the non-constant moment
applied to wings. This moment strongly depends on the delay time.

6 Flight dynamic calculation results

In order to clarify the described problem, the �ight trajectory of a UAV on the �rst
and on the second stage are presented separately. The trajectories of a �ight are
presented below in Figure 6.

It is obvious that, the UAV should fall with folded wings at the �rst stage. But
not clearly in what exactly time it should the wings should be deployed and what
sti�ness of a spring should be chosen to achieve maximum altitude at the second
stage. It is proposed to solve these problems by means of optimization.

Important point is to understand limits for the initial parameters when optimization
is applied. For the considered problem, there are two initial parameters: the sti�ness
of a spring and the time delay before starting to deploy the wings. Limits for the
rotational spring sti�ness are taken from the required dimensions and 3D calculations
of a spring: 0.001�0.0025 Nm/deg. The low limit for the delay time is determined
by physical restriction: the UAV cannot deploy the wing inside the tube, therefore
the low limit is the time when UAV already has �own out from the tube (Figure 2).
The value for that time was calculated for the tube length 2 m and is 0.1 s. The
upper bound is determined by the time when the altitude of a UAV becomes less
than zero (Figure 6) and this time is equal 5 s.
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Figure 6: Trajectories of stage 1 and 2 separately

7 Statement of the optimization problem

Considering all the above, optimization problem is proposed as follows: to �nd the
best combination of time delay and sti�ness of a rotational spring which will lead to
the maximum of altitude at the end of stage 2. To solve this problem, the calculation
chain was created which involved three mathematical models: time opening and two
stages of a �ight dynamics. The calculation chain was created in Noesis Optimus
Software and the outline of this chain is presented in Figure 7.
The results of the optimization problem are presented as a set of �gures and also the
speci�c recommendations on the choice for sti�ness of a spring and the delay time.
The goal altitude, which is at the end time of stage 2 depending on the sti�ness
at the speci�c time delay and depending on time delay at the speci�c sti�ness are
presented in Figure 8 a) and b).
The results presented in Figure 8 show dependencies which describe the optimal
solution slices. The results summarize the multiphysics simulations and allow to
obtain the best combination of initial parameters to achieve higher altitude. For
example, one could choose time delay about 0.4 sec and achieve 70 m altitude with
sti�ness of a spring about 0.0015 Nm/deg.
The important result is nonlinear dependency between altitude and time delay (Fig-
ure 8b). From there it's shown that there is speci�c time delay from 0.8 up to 1.2
s which leads to low altitude almost with all values of sti�ness. In this case, the
optimization results did not lead to a speci�c optimal pair of the values but the
range of poor initial points which leads to low altitude was calculated.
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Figure 7: Outline of the calculation chain

Figure 8: Results of optimization: a) Altitude depending on sti�ness changing, b)
Altitude depending on time delay changing
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Although UAV considered in this paper is not the industrial case but this approach
of multiphysics simulations and optimization can be extended to the real product
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Abstract

A numerical investigation has been carried out for studying the fracture
mechanics and the ballistic response of ceramic target. The ceramic considered
was Alumina 95, the backing plate was Aluminium alloy 2024-T3 and the
projectile was made up of Steel 4340. The diameter to length ratio of conical
and blunt nosed projectiles has been varied as 0.25, 0.5 and 1.1 keeping the
mass constant in order to study the e�ect of diameter of projectile. The
Johnson-Holmquist (JH2) constitutive model has been used for ceramic and
the Johnson-Cook (JC) model has been used for the metallic backing material
and the projectile. The thickness of target plate and backing plate was 6
mm both, and the size of the plates considered was 150 mm × 150 mm. A
range of velocity has been considered to explore the e�ect on higher as well
as lower velocities. The residual velocities being compared and presented
here for di�erent diameters. The ballistic limit velocity (BLV) was also found
for di�erent projectile diameter. The BLV was found to be higher with the
increase in the projectile diameter. Three dimensional numerical simulation
have been performed using ABAQUS/explicit �nite element. The simulations
were validated with the experimental data.

1 Introduction

Ceramic is used as an armor material due to its high compressive strength, hardness
and low density. Ceramic possesses low fracture toughness and less tensile strength
that cannot be overlooked as these properties are equally important for proper func-
tion of armor. Metallic plates or composite layers are used with the ceramic to
impart ductility and tensile strength to the protective system. With ceramics as
front layer, metals or composites are used as a backing material. Bi-layer armors
are found to be e�cient in protection as well as being lightweight in comparison to
monolithic armors. If ceramic is used with no backing plate or cover, under high im-
pact load it will break instantaneously due to very little toughness it possesses. The
function of ceramic layer is to shatter and blunt the projectile, during this process,
the ceramic is also fractured but the backing layer keeps the ceramic in its place and
absorbs the energy of the projectile by deforming.
The use of bi-layer armor systems, comprising a hard ceramic front face and an
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energy absorbing metal backing layer, results in a lighter design compared to mono-
lithic metallic armor providing the same ballistic protection level, against armor-
piercing (AP) projectiles. A negligible proportion of the projectile's kinetic energy
( 0.2 %) dissipates into fracture of the ceramic. The major energy dissipating mech-
anisms were identi�ed as plastic deformation of both the backing plate (20-40 %)
and the penetrator (10-15 %), and the kinetic energy picked up by the ceramic de-
bris (45-70 %) [1990, Woodward].
During high velocity impact a compressive shock wave travels through the thickness
of the target, which result in radial cracks in front of the projectile head. A tensile
wave came back from the interface and it originates circumferential cracks in the
rear face and ceramic conoid is formed. The projectile pushes the comminuted ce-
ramic which is restrained by the backing plate, the backing plate is deformed and
bent, it provides space for the comminuted ceramic to move. New fracture conoid
with smaller diameter is formed and segregated from the adjoining material and
the procedure kept on repeating up to when the diameter of the conoid is closer to
the diameter of the deformed projectile. The backing plate reaches its strength and
plugs are ejected from the plates having diameter same as the diameter of deformed
projectile.
The high velocity impact is a complex process which is a�ected by many factors.
Thickness of the plates, constrained conditions, angle of impact and properties of
the materials are few of the factors that a�ects the fracture mechanics.
Many researchers studied various factors and conditions a�ecting the ballistic prop-
erties in case of bi-layer ceramic-metal armor. Woodward (1990) [1] develops a
simple set of models for the perforation of ceramic composite armour, illustrating
the relation and e�ects of various physical properties and impact parameters on the
ballistic resistance of the armor. Various aspects like the inertial response of the
system components, cone crack formation and projectile erosion and backing defor-
mation were modelled realistically. Woodward (1994) [2] concluded that ballistic
performance may be in�uenced by the nature and thickness of the ceramic, the con-
�ning and backing layers and the geometry of the impacting projectile. Zaera and
Galvez (1998) [3] presented a new analytical model for simulation of impact problem
in case of bi-layer ceramic-metal armor. The model was based on Tate and Alek-
seevskiiâ��s equation for projectile penetration and on the ideas of Woodwardâ��s
and den Reijerâ��s models for metallic backing and was validated by comparing
experimental and analytical results. Some of the experimental works involve Wang
and Lu [4]. Based on an existing model, a design criterion has been developed by
Wang and Lu (1994), which gives the optimum thickness ratio that gives the best
ballistic limit performance of two-component ceramic armour under a given total
thickness. The ceramic was used 94 % purity alumina and for backing plate alu-
minium 6061 T6 and the projectile was NATO 7.62 AP, 0.5 (12.7 mm) calibre. The
model used was given by Florence (1969). The model assumes a short cylindrical rod
striking normally into the ceramic, and forcing it to break progressively into a cone
of fractured material, which distributes all the impact energy to the backing plate
over a larger area than the projectile's diameter. The backing plate will deform as
a uniform membrane under constant tension. As the energy dissipated in ceramic
fracture and projectile erosion is ignored, the failure mechanisms of the backing plate
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are simpli�ed signi�cantly. Based on the above assumption, Florence managed to
obtain a fairly simple expression for the ballistic limit for two-component armour.
To provide a speci�ed level of protection at minimum weight Hetherington (1992)
[5] developed an equation for obtaining the optimum thickness ratio. The model was
developed under a given aerial density with the total thickness of the armour not
being constant. Programme of trials with 7.62AP ammunition against alumina/alu-
minium combinations con�rmed the usefulness of the model. Hetherington observed
that for a given areal density, better performance can be obtained with ratios of ce-
ramic to the backing plate as one, or more, and that ratios of less than one can lead
to greatly reduced performance. For a normal impact on ceramic target with thin
metallic backing plate a model was proposed by Cortes et al. [6] that was based on
�nite di�erence Lagrangian formulation. No front con�nement was considered there
and penetrator considered was made up of steel, and target was constituted of Alu-
mina front plate and aluminium backing plate. The macroscopic material behaviour
in the zone of ï¬�nely pulverized ceramic ahead of the penetrator was modelled by
means of a constitutive relation taking into account internal friction and volumetric
expansion. When the ceramic is pulverized in front of projectile head, the projectile
starts to push it rather than penetration. Lee and Yoo (2001) [7] done experimen-
tal and simulation work to �nd optimum ratio of thicknesses of ceramic and back
plate in bi-layer armor as it can also a�ect the penetration process. Experimental
works involve ballistic limit velocity determination of di�erent thickness ratios and
the results were used for veri�cation of numerical approach. The armor was consti-
tuted of alumina ceramic (3380 kg/m3) front plate and 5083 aluminium back plate
and the projectile used was made up of steel (7850 kg/m3). The Mohrâ��Coulomb
(MC) strength model and linear equation of state (EOS) were used for simulation
in AUTODYN hydrocode by using SPH (Smoothed particle hydrodynamics).
Using available experimental data Chi et al. (2013) [8] validated numerical sim-
ulation model and proposed a semi-analytic ballistic limit velocity model. Using
numerical simulations they concluded that for a particular bi-layer armor under
same geometric ratios the residual velocity remains same. Serjouei et al. (2015) [9]
validated numerical simulation model by using the data of experiments they per-
formed. The numerical simulations then used for validating the model proposed by
chi et al. (2012). Numerical simulation was used for �nding optimum thickness
ratios of ceramic and metal plates. For lower velocities they suggested monolithic
metallic armor and for higher velocities ratios of 0.5 and 0.6 was found to be op-
timum. Venkatesan et al. (2017) [10] studied the behaviour of di�erent aluminum
alloys backing plate against ogive nose projectile by using numerical simulation.
Venkatesan et al. (2017)[11] compared the ballistic performance of Alumina and
Silicon Carbide ceramic using numerical simulation and found Silicon Carbide per-
formance better in a bi-layer armor.
In the present study, numerical simulation model was validated by using experi-
mental data of serjouei et al. (2015). The e�ect of diameter on residual velocities
was studied by comparing the residual velocities for di�erent length to diameter
ratios, with mass being constant. Blunt and ogival nose shape has been considered.
The ballistic limit velocity was found to be higher in lower length to diameter ratios.
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2 Numerical Simulation

The ballistic experiments are tedious and also too expensive to perform large number
of experiments to gain a full insight of the complex phenomenon. Numerical simula-
tion helps in by giving many detailed observations if proper model and parameters
are used. There are many models available, among which Johnson-Holmquist mod-
els is widely used for ceramic under high velocity impact, high strain rate and large
deformation. The Johnson and Holmquist â�� 2 [12] model was used for ceramic
and Johnson- Cook model was used for metallic projectile and backing plate. The
parameters taken from Serjouei et al. (2015) are presented in table 1 and 2.
Johnson and Holmquist-2 Model
The normalized equivalent stress is

σ∗ = σ∗iD(σ∗i − σ∗f ) (1)

Where σ∗i is the normalized intact equivalent stress, and σ
∗
f the normalized fracture

stress, and D is the damage (0 ≤ D ≤ 1.0).
The normalized equivalent stresses (σ∗, σ∗i , σ

∗
i ) have the general form

σ∗ =
σ

σHEL
(2)

Where σ is the actual equivalent stress and σHEL is the equivalent stress at the HEL.
The normalized intact strength is given by

σ∗i = A(P ∗ + T ∗)N(1 + C ln ε̇∗) (3)

and the normalized fracture strength is given by

σ∗f = B(P ∗)M(1 + C ln ε̇∗) (4)

The material constants are A, B, C, M, N, and SFMAX.
The normalized pressure is

P ∗ =
P

PHEL
(5)

Where, P is the actual pressure and PHEL is the pressure at the HEL. The normal-
ized maximum tensile hydrostatic pressure is

T ∗ =
T

PHEL
(6)

Where, T is the maximum tensile hydrostatic pressure the material can withstand.
The dimensionless strain rate is

ε∗ =
ε̇

ε̇0
(7)

where Îµ Ì� is the actual strain rate and
ε̇ = 1.0 sI is the reference strain rate.
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The damage for fracture is accumulated in a manner similar to that used in the
JH-1 model and the Johnson-Cook fracture model. It is expressed as

D = Σ
∆εp

∆εpf
(8)

Where, ∆εp is the plastic strain during a cycle of integration and εpf = f(P ) is the
plastic strain to fracture under a constant pressure, P. The speci�c expression is

εpf = D1(P
∗ + T ∗)(D2) (9)

Where D1 and D2 are constants.
The hydrostatic pressure before fracture begins (D = 0) is simply

P = K1µ+K2µ
2 +K3µ

3 (10)

Where, K1, K2 and K3 are constants ( K1 is the bulk modulus); and

µ =
ρ

ρ0
− 1 (11)

For current density ρ and initial density ρ0. After damage begins to accumulate (D
> 0), bulking (pressure increase and/or volumetric strain increase) can occur. Now
an additional incremental pressure, ∆P , is added, such that

P = K1µ+K2µ
2 +K3µ

3 + ∆P (12)

Johnson-Cook Model
The Johnson-Cook (JC) constitutive model describes the strength of engineering
alloys at large strains, high strain rates and high temperatures. The ï¬�ow stress
is expressed as an explicit function of strain, strain rate and temperature as follows
[13]:
The equivalent stress of the model is deï¬�ned as

σ0 = [A+B(ε̄pl)n][1 + C(
˙̄εpl

ε̇0
)][1− Tm] (13)

Where, ε̄pl is equivalent plastic strain, A, B, n and m are material parameters mea-
sured at or below the transition temperature, T0. The non-dimensional temperature
T̂ is de�ned as:

T̂ =


0, forT < T0
T−T0

Tmelt−T0
, for T0 ≤ T ≤ Tmelt

1, forT > Tmelt

Where, T is the current temperature, Tmelt is the melting point temperature and
T0 is the transition temperature de�ned as the one at or below which there is no
temperature dependence on the expression of the yield stress.
When T > Tmelt the material melts down and behaves like �uid and hence does not
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Table 3: Parameters for Alumina 95%

S.No. Parameter Values
1. Density(Kg/m3) 3741
2. EOS Polynomial
3. Bulk Modulus K1 (GPa) 184.56
4. Pressure Constant, K2 (GPa) 185.87
5. Pressure Constant, K3 (GPa) 157.54
6. Strength Model JH-2
7. Shear Modulus G (GPa) 120.34
8. Hugoniot,elastic limit (HEL) (GPa) 6
9. Intact strength constant, A 0.889
10. Intact strength exponent, N 0.764
11. Strain rate constant, C 0.0045
12. Fracture strength constant, B 0.29
13. Fracture strength exponent, M 0.53
14. Normalized maximum fractured strength 1
15. Failure model JH-2
16. Normalized hydrostatic tensile limit, T ∗ (GPa) -0.3
17. Damage constant, d1 0.005
18. Damage constant, d2 1
19. Bulking factor, β 1

o�er shear resistance.

The projectile of nominal diameter 7.56 mm and a nominal length of 30.54 mm was
used. The target was a bi-layer with a front plate of size 100 mm × 100 mm and
back layer size was 160 mm × 160 mm. The materials of projectile, front layer and
back layer of target were hardened steel 4340, Alumina 95% and Aluminium alloy
2024-T3 respectively.
Three dimensional �nite element model of the bi-layer armor and projectile was
made in ABAQUS/CAE. The projectile and target plates both were modelled as
deformable bodies with Lagrangian elements. The four peripheral boundaries of
the target was restrained against all degree of freedom. The size of the mesh for
target plates was kept constant in all cases i.e. 0.6 mm in the inner part of 60 mm
and increasing gradually towards the peripheral boundaries. The mesh of size 0.65
mm was kept for projectile. Eight node brick element (C3D8R) were considered for
plates. The numerical simulation was found to be in good agreement with the ex-
periments and found to be suitable for predicting the failure behaviour of concerned
bi-layer ceramic armor.
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Table 4: Parameters for Aluminium and Steel.

S.
No.

Parameters Al-2024-T3
Steel
4340

1. Density 2785 7770
2. EOS Shock Linear
3. Bulk Modulus, K1 (GPa) 159
4. Gruneisen constant 2
5. Parameter C1 (m/s) 5328
6. Parameter S1 1.338
7. Speci�c heat, Cr (J/kg.K) 874.9 477
8. Strength Model JC JC
9. Shear Modulus, G (GPa) 26.92 77
10. Static yield strength, A (GPa) 0.167 0.950
11. Strain hardening constant, B (GPa) 0.596 0.725
12. Strain hardening exponent, n 0.551 0.375
13. Strain rate constant 0.001 0.015
14. Thermal softening exponent, m 0.859 0.625
15. Melting temperature, (K) 893 1793
16. Reference strain rate 1 1
17. Failure model JC JC
18. Damage constant, d1 0.112 -0.8
19. Damage constant, d2 0.123 2.1
20. Damage constant, d3 1.5 -0.5
21. Damage constant, d4 0.007 0.002
22. Damage constant, d5 0 0.61

3 Results and Discussion

3.1 Validation

The experimental data of Serjouei et al. (2015) was used. The size of the ceramic
front layer and metallic backplate target plates was kept 150 mm × 150 mm. The
thickness of the plates was considered to be 6 mm. During the experiments, an
obliquity was experienced, the impact was not perfectly normal to the target sur-
faced. That inherited yaw angle was considered in the numerical simulation model
also as shown in �g. 1.
A comparison was made in residual velocity and residual length of the projectile.
After perforation of the target plates, the hole created in the plates was measured at
the rear side of the backing plate in two mutually perpendicular directions namely
a1 and a2. The errors in residual velocity, residual length, a1 and a2 was found to
be very less, and reported in table 3. The numerical simulation was found to be in
good agreement with the experiments and found to be suitable for predicting the
failure behaviour of concerned bi-layer ceramic armor.
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Numerical study of fracture mechanism in ceramic armor under impact load

Table 5: My caption

Parameter Experiment Simulation %Error
Residual Length 23.4 mm 25.2 mm 7.6
Residual Velocity 351 m/s 355 m/s 1.1
a1 14 mm 12.9 7.8
a2 16 mm 15.1 5.6

Figure 1: Angel of yaw.

3.2 E�ect of diameter variation

The nominal diameter of the projectile in study of Serjouei et al. (2015) was 7.56
mm with a nominal length of 30.54 mm. The ballistic limit was worked out by using
numerical simulation and was found to be 435 m/s. The diameter of the projectile
here taken as 10 mm and 12.5 mm. The length of projectile was changed accordingly
as 17.45 mm and 11.17 mm to maintain the mass of the projectile to be constant.
In both the cases of blunt head and ogival nose head the residual velocity was found
to be increasing with decreasing diameter to length ratios. The comparison for blunt
nose head projectile have been shown in �g. 3.

Table 6: BLV for di�erent D/L ratios.

S.No. D/L Ratio BLV (m/s)
1. 0.25 435
2. 0.5 565
3. 1.1 615
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Figure 2: Damage in terms of size of the hole at rear face of baking plate.

The comparison of ogival nose head projectile have been shown in �g. 4.
The residual velocity was found to decreasing with the increase in the diameter of
the projectile. The phenomenon can be attributed to the more interaction of the
deformed projectile with the comminuted ceramic.
The ballistic limit velocity was found for the blunt projectiles. It was found to be
increased with the increased diameter to length ratios for all cases. The ballastic
velocities are mentioned in table 4.

Figure 3: Residual velocity for blunt projectile.
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Figure 4: Residual velocity for Ogive nose projectile.

4 Conclusions

Numerical simulation was validated by using experimental data available in open
literature. E�ect of diameter to length ratios was studied by using 3D numerical
simulation. The residual velocities was found to be decreasing with the increase
in diameter of the projectile. The ballastic limit velocity was increased with the
increased diameter. This can be attributed to the increased interaction between
comminuted ceramic and projectile.
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Abstract

Term “gravitational constant” was for the first time introduced more than
200 years ago, and since that time attempts have been made to refine its
value. As per the materials of Committee on Data for Science and Technology

(CODATA), all indirect measurements of the “gravitational constant” ob-
tained by various research groups exhibit in the SI system equality of two first
decimals and spread in subsequent decimals. We have analyzed this situa-
tion by using the torsion balance mathematical model. This paper shows that
this situation might be explained by solving the direct metrological problem,
namely, calculation of the necessary measurement accuracies of each of the
torsion balance parameters from the preset accuracy of the “gravitational con-
stant” value. Decimal-by-decimal analysis of the torsion balance sensitivity,
jointly with the CODATA data, has lead us to the assumption that all the
variety of the “gravitational constant” values was obtained at experimental
setups without appropriately planning the final result accuracy.

1 Problem definition

In his work “Traitè de mècanique” (1809), Simèon Denis Poisson introduced into
the law of gravitational interaction between two material bodies factor G named
“gravitational constant”1. The law states that the force of gravitational interaction
between two homogeneous spheres (material points) is directly proportional to their
gravitating2 masses and inversely proportional to the squared distance between their

1The history of the “gravitational constant” is presented in detail in the K. F. Tomilin’s book
“Fundamental physical constants in the historical and methodological aspects” [1, pp. 106–126]

2

m is a function of density of its material environment.
The gravitating mass functional expression looks as follows:

m̃ = m (1− ρ0/ρ) , m > 0 ,

Decimal-by-decimal analysis of the gravitational

constant value as exemplified by torsion balance
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The concept of the material body gravitating mass is considered in papers [2, 3]. Briefly
speaking, the material body gravitating mass ˜
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centers of symmetry. Later a scale-dimension factor was introduced into the law of
gravitation, which was titled “gravitational constant”.

Let us consider two homogeneous spheres m∗ and m in masses in the Cartesian
coordinate system Oxyz (Fig. 1). Positions of the spheres are defined by radius-

m

m∗

r∗ r

f

x

y

z

O

Figure 1: Gravitational force f acting upon a homogeneous sphere with mass m from a
homogeneous sphere with mass m∗.

vectors r∗ and r, respectively. In this case, the law of gravitational interaction (i.e.,
the expression for gravitational force f acting upon mass m from mass m∗) obtains
the following form:

f = E(m∗, r∗− r) m , E(m∗, r∗− r) =

(
G

m∗

|r∗− r|2

)
r∗− r

|r∗− r|
. (1)

Here E is intensity of the gravitational field generated by mass m∗. Certainly,
mass m is also a source of the gravitational field and attracts mass m∗ with exactly
the same force as mass m∗ attracts mass m.

At present, international committee CODATA3 recommends the following value
of the “gravitational constant” [4]:

G = 6.67384(80)× 10−11 m3/(kg ·s2) . (2)

At the same time, the CODATA data [4] given in Tab. 1 demonstrate that all
the “gravitational constant” values coincide only in two first decimals.

General experience in purposeful and conscious instrumental observation of
planet orbits, galaxies dynamics [5], tides on land and sea, and the Earth’s gravita-
tional field strength allows us to state that gravitational interaction between material
bodies depends exclusively on their masses, geometry and distance between them.

where ρ0 is the medium density, ρ is the averaged density of the material body, m is the gravitating
mass of the body at ρ0 = 0 (i.e., in the absence of the material medium). Hereinafter term
“gravitating” is omitted for brevity, however, it is necessary to keep in mind that the medium
factor always exists and needs proper attitude from researchers.

3Committee on Data for Science and Technology & The CODATA Task Group on Fundamental
Constants. http://www.codata.org

Decimal-by-decimal analysis of the gravitational constant value as exemplified by
torsion balance
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Table 1: Values of the “gravitational constant” obtained by different research groups [4].

In other words, the observed gravitational interaction is defined only by the character

of the physical-spatial distribution of the material medium as a whole.

With the passage of time the method of refining the “gravitational constant”
became a separate challenge. The more than 200-year history of improving the
techniques an increasing the instrumental sensitivity has not resulted in at least the
naturally expected asymptotic refining of constant G. In the SI system, only two
first decimals of the G values obtained by each research group are equal. As an
example of a commonly accepted approach to indirect measurement of the “gravita-
tional constant”, paper “Measurement of Newton’s Constant Using a Torsion Balance

with Angular Acceleration Feedback” [6] may be considered.

What is the practical meaning of the difference in the third and subsequent
decimals? What is the reason for this almost two-century epic of the fruitless search
for the precise value of “gravitational constant” G by indirect measurements? Let us
consider the current situation from the point of view of both our main goal (refining
of the “gravitational constant”) and the available capabilities. For this purpose, let
us solve the direct metrological problem.

2 The torsion balance schematic model

As a basic model, we have taken the simplest torsion balance design that allows the
mass-to-mass gravitational interaction to be detected via the static torsion angle of
the quartz fiber. Transient oscillation processes are neglected. We will not analyze
other structural and methodological versions of indirect “gravitational constant”
measurements since, as shown further, they have the same disadvantages as the
classical measurement scheme based on measuring the fiber torsion angle.

Fig. 2 presents the torsion balance schematic model in the Cartesian coordinate
system Oxyz. Axis Oz is perpendicular to the picture plane and directed toward the

Proceedings of XLVI International Summer School�Conference APM 2018
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reader. Weightless and rigid beam A1A2 with two equal masses mA at the ends is
suspended at point O by using a weightless and tensionless quartz fiber L in length
and d in diameter. The beam arms are equal to each other: |OA1| = |OA2| = h.
The plane of the beam A1A2 rotation about point O is perpendicular to the vector
of the Earth’s gravitational field intensity E Terra.

x

y

O

h
A1

mA

A2

mA

α

f
A1C

f
A1B1

f
A1B2

f
A2C

f
A2B2

f
A2B1

B1

mB

B2

mB

β

C
mC

ϕ

Figure 2: The torsion balance schematic model.

The controllable gravitational action on the torsion balance masses is realized
through two motionless masses mB located at points B1 and B2 on the circle of
radius h. Orientation of the motionless masses mB is defined by angle β between
axis Ox and the line connecting points B1 and B2. As the positive direction, the
counterclockwise rotation is taken. In addition, let us take into account the effect
of gravitational anomaly mC located outside the torsion balance at the distance hC

from point O with azimuth ϕ that is the angle between axis Ox and straight line OC.

Decimal-by-decimal analysis of the gravitational constant value as exemplified by
torsion balance
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To prevent displacement of the point where the quartz fiber is connected to the beam
with respect to motionless masses mB, let us forbid the point O motion within
plane Oxy. This will cause an appropriate response at point O, but it will not
affect the static equilibrium of the system.

Static equilibrium of beam A1A2 is characterized by angle α, therefore, positions
of moving masses mA at points A1 and A2 may be defined by the following radius-
vectors:

rA1
= h




cos(π+ α)

sin(π+ α)

0



 , rA2
= h




cos(α)
sin(α)

0



 . (3)

Positions of the motionless masses at points B1 and B2 are defined in the similar
way:

rB1
= h




cos(π+ β)

sin(π+ β)

0



 , rB2
= h




cos(β)
sin(β)

0



 , (4)

as well as the radius-vector of gravitational anomaly mC:

r = hC



cos(ϕ)

sin(ϕ)

0


 . (5)

When the system is in equilibrium, this means that the sum of all the torsional
moments acting on the quartz suspension fiber is equal to zero.

The beam suspension fiber response to torsion manifests itself through the elastic
force moment Mα and may be expressed as follows:

Mα =

(
0 0 −α

YτJp

L

)T

, where Jp =
πd4

32
. (6)

Here α is the suspension fiber torsion angle, Yτ is the shear modulus of the fiber
material [7], Jp is the polar moment of inertia of the round fiber cross-section, and
L, d are the suspension fiber length and diameter, respectively.

The moments of gravitational forces twisting the suspension fiber may be sub-
divided into two components: the moment of gravitational action from motionless
masse Mβ and moment from gravitational anomaly Mϕ.

Taking into account axial symmetry of the masses (Fig. 2), let us consider grav-
itational interaction between mass mA with radius-vector rA1

and two motionless
masses mB with radius-vectors rB1

and rB2
, and then double the moment:

Mβ(α) = 2 · rA1
× (fA1B1

+ fA1B2
) , (7)

where

fA1B1
= E(mB, rB1

− rA1
)mA ,

fA1B2
= E(mB, rB2

− rA1
)mA .

(8)
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Now let us introduce the effect of gravitational anomaly mC on the masses located
at the ends of the A1A2 beam:

fA1
= E(mC, r − rA1

)mA ,

fA2
= E(mC, r − rA2

)mA .
(9)

Due to geometrical asymmetry, forces fA1
and fA2

cause additional rotation of the
beam and its displacement in the Oxy plane. Within our task, only the additional
contribution of gravitational anomaly mC to the suspension fiber torsion angle is of
interest. Therefore, displacement of point O, i.e., of the point where the beam is
suspended, is forbidden (|rO| = 0).

Thus the torsional moment induced by gravitational anomaly mC with radius-
vector rC takes the following form:

Mϕ(α) = rA1
× fA1C + rA2

× fA2C . (10)

The torsion balance is in the static equilibrium, which means that the sum of
gravitational moments Mβ eq. (7), Mϕ eq. (10) and elastic force moment Mα eq. (6)
is zero:

Mα(α) +Mβ(α) +Mϕ(α) = 0 . (11)

This transcendental equation gives us the static torsion angle α and thus es-
tablishes the interrelation between the beam rotation angle α and torsion balance
parameters. Angle α is bounded from above, the limiting value being dependent
on the schematic model geometry (Fig. 2). The maximum permissible angle of the
beam A1A2 rotation may be defined as

αmax = β− arccos

(
1−

1

2

(
RA + RB

h

)2
)

, (12)

where αmax is the maximum permissible rotation angle of the beam, RA, RB are the
radii of the moving and motionless spheres, respectively.

To continue analyzing the accuracy of the preset torsion balance parameters, let
us deduce “gravitational constant” G from (11):

G = α
Yτ

L

πd4

32

2h

mAmB

(
cos ξ

sin2 ξ
−

sin ξ

cos2 ξ

)−1

, ξ =
β− α

2
. (13)

This relation enables determination of the necessary accuracy of each of the tor-
sion balance key parameters which ensures the required accuracy of the “gravita-
tional constant” value. Since we are interested in the accuracy characteristics of
just the torsion balance with calibrated masses mA and mB, we have neglected the
anomaly mC gravitational effect on masses mA in deducing relation (13). The effect
of gravitational anomaly on the suspension fiber torsion angle will be considered
later, after solving the main problem.

Decimal-by-decimal analysis of the gravitational constant value as exemplified by
torsion balance
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Let us set the required calculation accuracy of the “gravitational constant” value
and calculate the necessary measurement error in the beam rotation angle and also
in key design and physical/mechanical parameters of the torsion balance.

As the required calculation accuracy of the “gravitational constant” in the SI

system, we regard the number of significant decimals. Thus we assign increment ∆G
to each decimal in the “gravitational constant” value:

∆G = [ 0.1; 0.01; 0.001; 0.0001; . . . ]× 10−11 m3/(kg ·s2) . (14)

Being under the action of the gravitational forces induced by masses mB, the
initially weightless beam with masses mA at the ends is in static equilibrium at the
angle α to the Ox axis. Angle α can be found from equation (13) by using the
unperturbed “gravitational constant”.

After setting the “gravitational constant” increment ∆G by selecting it from se-
quence (14), we can find a corresponding correction to the chosen torsion balance
parameter which will completely compensate the effect of the preset G perturba-
tion, namely, preserve the initial static equilibrium characterized by angle α. This
compensative correction will be just the maximum permissible absolute error in the
chosen parameter of the system.

First let us estimate the necessary measurement accuracy of torsion angle α.
Let us vary “gravitational constant” G in (6) by ∆G and find a new torsion angle
different from the initial one. Designate this difference as ∆α. This means that to
calculate the “gravitational constant” with the preset accuracy ∆G it is necessary to
have instruments able to measure the suspension fiber torsion angle4 with absolute
accuracy ∆α.

After that, maintaining the static equilibrium characterized by invariable tor-
sion angle α eq. (13), let us find the interrelation between the preset “gravitational
constant” increment ∆G and corresponding compensative corrections to the basic
torsion balance parameters, namely, mB, L, d and Yτ. Tab. 2 shows the torsion bal-
ance parameters used in the schematic model (Fig. 2). Calculations of the necessary
measurement accuracy of the torsion balance parameters are listed in Tab. 3. The
results obtained are shown in Figs. 3,4 that clearly demonstrate a significant increase
in the required measurement accuracy of the torsion balance basic parameters with
increasing number of decimals in the “gravitational constant” value. The maximal

4In case the interacting material bodies mA and mB are homogeneous spheres, the beam sus-
pension torsion angle is essentially a strict angular equivalent of the distance between geometric
centers of the spheres and hence it is quite reasonable to use relation (1) to calculate the “gravita-
tional constant”.

When the pair of masses consists of bodies with the shape different from spherical (e.g., cylin-
ders), there arises a problem with applying the law of universal gravitation (1) since in this case the
gravitational interaction force does not correlate with the distance between the cylinder’s centers
of mass. In this case correction factors should be used which arise from an approximate solution
of the problem of gravitational interaction between cylindrical material bodies, which, in its turn,
contributes additional uncertainty in the “gravitational constant” calculations.

3 Calculation of the necessary accuracy of the sys-

tem parameters
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Table 2: Basic parameters of the torsion balance.

L = 0.7m — length of the beam suspension fiber;

d = 50µm — suspension fiber diameter;

h = 100mm — beam arm length;

Yτ = 31.1966GPa — shear modulus of the suspension fiber (material: SiO2);

RA = 10mm — radius of the spheres (moving masses) at the beam ends;

mA = 0.0821 kg — moving sphere mass (material: W);

RB = 70mm — radius of the spheres (motionless masses);

mB = 28.1604 kg — motionless sphere mass (material: W);

β = 57◦ — angle determining location of motionless masses mB;

Table 3: Maximum permissible absolute measurement errors of the torsion balance param-
eters for various values of the “gravitational constant” absolute accuracy.

∆G×10−11 ∆α, arcsec ∆mB, g ∆L,mm ∆d,µm ∆Yτ,GPa

0.1 662.654 415.696 10.333 0.18624 0.46741

0.01 65.541 42.129 1.047 0.01872 0.04674

0.001 6.547 4.219 0.105 0.00187 0.00467

0.0001 0.655 0.422 0.010 0.00019 0.00047

0.00001 0.065 0.042 0.001 0.00002 0.00005

0.000010.00010.0010.010.1

0

0.5

1

2

1

2

3

4

5

6

G = 6 .6 7 3 8 4 (8 0)× 10−11 m3/(kg ·s2)

∆G× 10−11, m3/(kg ·s2)

δ,
%

1. α — torsion angle of the suspension thread

2. mB — motionless mass

3. L— suspension thread length

4. d — suspension thread diameter

5. Yτ — shear modulus of the suspension thread

6. G— "gravitational constant"

Figure 3: Relative accuracy of the schematic model parameters versus the number of deci-
mals in the “gravitational constant” value.

error of the “gravitational constant” indirect measurement is graphically represented
in Figs. 3,4. The error was calculated via the following formula:

δG =
1

G

5∑

i=1

∣∣∣∣
∂G

∂qi

∣∣∣∣∆qi , where qi = { α, mB, L, d, Yτ } . (15)

Based on the data of Tab. 3, Figs. 3,4 and also on the fact that errors are ac-

Decimal-by-decimal analysis of the gravitational constant value as exemplified by
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Figure 4: A Figure 3 fragment presented in a larger scale.

cumulative as relation (15) shows, it is possible to define an empiric rule stat-
ing that when the “gravitational constant” is found with the accuracy of, e.g.,
∆G = 0.001 × 10−11 m3/(kg ·s2), the maximum permissible absolute measurement
error of each torsion balance parameter should be calculated based on the ∆G value
lower by an order of magnitude.

It is possible to reject direct measurement of parameters L, d, Yτ and replace
them with only one parameter, i.e., torsional stiffness factor. For this purpose it
is necessary to conduct an additional experiment in which masses mB are removed
in-situ without violating the experimental setup integrity. In the course of this
experiment the actual suspension fiber torsional stiffness was determined via the
fixed period of the beam torsion motion. However, in this case the measurement
accuracy of such parameters as mass, torsion angle, linear dimensions and time (the
torsion oscillation period) still remains problematic.

The effect of gravitational anomaly mC on the torsion angle α. Now let
us estimate the effect of gravitational anomaly mC on the experimentally mea-
sured torsion angle of the beam A1A2 suspension fiber (Fig. 2). Assume that when
anomaly mC was absent, the torsion balance beam was turned by angle α. Using the
torsional moment balance equation (11), calculate the new static torsion angle αC

allowing for the presence of gravitational anomaly mC at point C defined by radius-
vector rC. The asymmetric location of mass mC gives rise to an additional torsional
moment and response at point O. Here we consider only the torsional moment since
within our task beam A1A2 can rotate only in plane Oxy about point O. Tab. 4 lists
the calculations reflecting the effect of the gravitational anomaly on the torsion an-
gle of the beam suspension fiber. Analysis of the Tab. 4 data unambiguously shows
that it is necessary to ensure local axial symmetry of the gravitational field within a
radius of minimum 5 meters from the suspension fiber of the torsion balance beam.
As for celestial bodies, in the framework of our schematic model such gravitational
anomalies as e.g. Moon (in perigee) produce extremely minor (instrumentally non-
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Table 4: The effect of gravitational anomaly (mC = 100 kg , azimuth ϕ = 90◦) on the
suspension fiber torsion angle.

|rC|,m (αC − α), arcsec δα,%

2 6.4526091 0.0236213

3 1.9179015 0.0070209

5 0.4149482 0.0015190

10 0.0519051 0.0001900

30 0.0019228 0.0000070

Moon 0.0008894 0.0000033

50 0.0004153 0.0000015

measureable) effect on the suspension fiber torsion angle. Thus celestial bodies may
be excluded from consideration.

4 Conclusions

Solving of the direct metrological problem by using the torsion balance mathematical
model indeed gives an answer on the question why there has been no progress in
refining the “gravitational constant” value during so many years and why it can
hardly be expected in the foreseeable future. The decimal-by-decimal analysis has
shown that the current problems with the accuracy of determining the “gravitational
constant” are caused by a quite real and ordinary fact, i.e., by limited metrological
capacity of experimental setups in combination with methodological stereotypes.

To reach the preset accuracy of the “gravitational constant”, the experimentalist
should artificially increase it by an order of magnitude and then find the maxi-
mum permissible measurement errors of the system key parameters corresponding
to this increased accuracy. Just these measurement errors will enable calculation
of the “gravitational constant” with that preset accuracy provided the laboratory
metrological capability is sufficiently high.

In addition, note that the gravitational effect of celestial bodies may be ignored
due its insignificance but only under the condition of the gravitational field axial
symmetry with respect to the suspension fiber of the torsion balance beam.

To summarize the above, we can state that at present the “gravitational constant”
has been calculated accurately to the second decimal, and the spread in subsequent
decimals (see Tab. 1) is caused by specific features of particular experimental setups
and metrological capabilities of laboratories, experimental techniques, external fac-
tors, etc. Thus the process of refining the “gravitational constant” has turned into
senseless waste of time and resources though the search for еxperimentum crucis5

for indirect measurement of the “gravitational constant” seems to be important and
useful from the metrological and engineering point of view.

5Crucial experiment — an experiment held to decide with certainty between two rival hypotheses
about some matter. (http://philosophy.enacademic.com/588/crucial_experiment)

Decimal-by-decimal analysis of the gravitational constant value as exemplified by
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Abstract

Electromagnetic interaction between stator and rotor �elds, mechanical
motor vibrations and air �uctuations from ventilation motor impeller com-
pose the basic components of electric motor noise in a wide frequency range.
Magnetostrictive forces causing radial deformation of the stator core rings un-
der alternate �eld action bring the special addition in motor noise in basic
100 Hz frequency. The compensation method consists on reduction 100 Hz
frequency and its harmonics as an interference interaction between two an-
tiphase sources is considered. The air volume formed by the winding stator
and several rotor core elements is �uctuated. External side of stator magnetic
core is appeared as �rst source and internal side of stator magnetic core is
applied as second source in�uencing �uctuations through the hole drilled in
bearing motor side with an allowance for adding the short pipe used as res-
onant cavity. The most compensation e�ect in 100 Hz frequency as close as
possible to resonant frequency of resonator is �xed. The asynchronous electric
motor into the small volume chamber SVC with rubber damping construc-
tion is installed. The greatest linear size SVC less than half of wave length
of the longest eighen frequency is used. Interaction between external side of
stator magnetic core and resonant source into SVC is modeled on the fore-
pole system with coe�cient taking into account the di�erence between areas
of both sources by transformation coe�cient. The dependence of the sound
noise pressure from electromagnetic vibrations inside of the SVC with and
without compensation e�ect is considered. The spectrograms illustrating of
magnetic motor noise decrease are shown and the adjustment for decrease of
magnetic motor noise is supported.

1 Formulation of the problem of the motor noise
reduction

The increase quantity and power of electric machines and aspiration to facilitate
designs cause increased requirements to noise machine characteristics which in the
list of the basic parameters of quality are included. First of all it is caused by
harmful in�uence of noise on a person.
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Not expensive but most applied asynchronous electric motors with such basic noise
components as magnetic, mechanical and aerodynamic with typical ventilation sys-
tems are used. The stator core �uctuations by the magnetostrictive forces are ex-
cited. During each half of a cycle of alternative electrical �eld the stator core has
one compression-stretching cycle. The doubling network frequency corresponding of
mechanical �uctuations 100 Hz is prevailed.
The main idea is to reduce of electric motor noise by negative correlation of a pier
of sound harmonic sources: stator core 100 Hz �uctuations and resonator with an-
tiphase 100 Hz �uctuations. Therefore the motor installed into the small volume
box (SVB) having the maximum size not more than half of air wave length cor-
responded the double frequency network 100 Hz are investigated. Thus acoustical
�eld as statistical is considered when the level of sound pressure is the same in all
points of the SVB and does not depend on coordinates. It is exact restriction for
low frequencies while eighen frequencies of the SVB considerably above frequencies
investigated are excited [1].
The e�ect of acoustic short circuit is well known especially for developing of a
loudspeaker enclosure. The corresponding sound pressure excited by alternative
cycles of air compression-stretch of the opposite loudspeaker diaphragm surfaces are
created. If loudspeaker acoustic ba�e is absent the e�ect of acoustic short circuit in
low frequencies is happened because of the di�raction of sound waves. In this way
the sound pressure in surrounding space is decreased.
The similar acoustic e�ect to reduce of low frequency electric motor noise is applied.
The reduction of the basic magnetic noise component with carrying frequency 100
Hz in broadband spectrum of pressure is examined [2].

2 Acoustic - mechanical system

Some air capacity inside of the electric motor formed by winding stator and rotor
elements is considered. The aperture S2 through a motor beating side for passing
out internal stator core �uctuations was drilled. The internal stator core �uctuations
with external stator core �uctuations being antiphase each other are summarized.
Then motor noise pressure into SVB as result of the interference of such �uctuations
is decreased (Fig.1).
The aperture with the piece of a pipe installed as a resonator throat is supplemented.
The construction on rubber shock-absorber into SVB was �xed.
The installation for analysis of magnetic noise reduction including the SVB with
the linear sizes 0,4m 0,5m 0,6m and the asynchronous electric motors 800 Wt was
developed.
Application of the resonator system allows forcing sound radiation in the resonant
frequency 100 Hz by ratio determined as

f@ =
1

√
m2 · ca

(1)

Herem2 is the sum of air weight in the resonator throat and the air weight of
environment;ña is air �exibility in the SVB divided to apertureS2, S1 is the �uctu-
ation surface of the stator core.
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Figure 1: Installation for analysis of magnetic noise reduction: M is the microphone
with the ampli�er; SLV is the sound level meter; PC is the computer; d is distance
between centers of sources

Figure 2: Equivalent electric scheme showing interactions of four contours between
stator core and resonator with the aperture S2 into SVB

The internal stator core �uctuations by �exibilityña to air weightm2 are transferred.
So m2 serves as the second radiator. On the resonant frequency of the resonator
with aperture S2 f =fres or frequencies as close as fres the �uctuations of weightm2
achieve the highest amplitudes.
The equivalent electric scheme acoustic-electrical system on Fig.1 is considered and
allowing to estimate quantitatively the interaction of �uctuations between stator
core and resonator into SVB.
The contour 1 in Fig.2 is the basic source of excitation (external stator core �uctu-
ations) with oscillatory speed ξ̇1,m1,c1,r1.
By contour 2 in Fig.2 the �uctuations with the oscillatory speed ξ̇2 between equiv-
alent air weight inside electric motor and air weight in the resonator throat are
considered.
By contour 3 in Fig.2 the interaction with the oscillatory speed ξ̇3 between external
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stator core radiations and air resistance into SVB is considered.
By contour 4 in Fig.2 the �uctuations with the oscillatory speed ξ̇4of air weight in
SVB oscillating in common with air weight of resonator throat are considered.

3 Interpretation of the interaction between stator
core and resonator �uctuations

Interaction between stator core and resonator �uctuations by two-port network b21
(Fig.2) with transfer coe�cient is modeled

b21 =
ξ̇3

ξ̇4
=
S2

S1

e−jkd = n21e
−jkd. (2)

The di�erence between of the areas stator core S1 and the aperture S2 of the res-
onator by transfer coe�cient n21 and the delay of a stream ξ̇2S2 from the aperture
on a way d with a phase member e−jkd is considered.
The main parameter explaining the interaction between stator core and resonator
in Fig.2 is the common radiation resistance rf. Then the rf can be determined as
the sound radiating power W in common �uctuations of the stator core and the
resonator with aperture S2by two ways: with oscillatory speed ξ̇1 stator core ore as
the di�erence ξ̇1 − ξ̇3. Then

W =
∣∣∣ξ̇1∣∣∣2 · rf =

∣∣∣ξ̇1 − ξ̇3∣∣∣2 · rf1, (3)

thus

rf = rf1

∣∣∣∣∣1− ξ̇3

ξ̇1

∣∣∣∣∣
2

. (4)

In these expressionsrf1 is the resistance of �uctuation of stator core radiation with-
out an aperture in motor but rf is with an aperture. For �ndingrf from (3) the
scheme on Fig.2 is used.
The following features of the scheme in Fig.2 are taken into account. The
resistancerf1 and the target resistance of the two-port network b21 parallel con-
nected with rf1 between points 2-2 are summarized as the resistancerf.
The entrance resistance between points 1-1 of the two-port network b21is the same
as target resistance but in n2

21 time increased. At recalculation in the contour 2
with oscillatory speed ξ̇2 the active resistance isrf and the reactive resistance is
ωm2 = ωm4n

2
12. Here ξ̇2is the speed determined to apertureS2.

Considered from this point of view the expression is found

ξ̇2

ξ̇1
=

1

jωca (rf + jωm2 + 1/jωca)
=

1

jωcaZ
, (5)

were Z = rf + jωm2 + 1/jωca.
In the other side according (2) and taking a form as e−jkd ≈ 1− jkd the expression
ξ̇4 ≈ ξ̇3/ (1− jkd) is found.
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Thereby

1− ξ̇3

ξ̇1
=
rf + jωm4 + kd/ωca

Z
. (6)

The numerical kd
ωca

= d
c0ca

= ρ0c0
d·S2

1

V
� rf being of value in (7) is used.

Here V is the air volume into electric motor, ño is the sound speed in air, ñà is the
air �exibility into electric motor (Fig.1).
Neglecting rf and substituting the module (5) in (4) the common radiation resistance
rf is received

rf = rf1
(d/c0ca)

2 + (ωm4)
2

r2f + (ωm4 − 1/ωca)
2 . (7)

To �nd out numerical value rf du to three frequency ranges ω � ωres, ω � ωres, ω =
ωresthe expression (7) is investigated. Here ωres is the resonant frequency of the
resonator.
If the �rst frequency range is ω � ωresthen ωm2 � 1

ωca
, ωm2 � d

c0ca
and after some

simpli�cations the expression (7) is transformed

rf ≈ rf1. (8)

If the second frequency range is ω � ωres then ωm2 � 1
ωca
, ωm2 � d

c0ca
and after

simpli�cations the expression (7) is transformed

rf ≈
ρ0

4πc30
d2S2

1ω
4
res. (9)

The third expression ω = ωres is more important. Then ωresm2 >
d

c0ca
and after

simpli�cations the expression (7) is transformed

rf ≈ 3

√
rf1 · ω2

resm
2
2. (10)

4 The results of measurements of the acoustic short
circuit e�ect for motor noise reduction

For discussion about acoustic short circuit e�ect there are two motor noise pressure
spectrograms into SVB: without the resonator (Fig.3) and having the resonator with
aperture S2 in motor side (Fig.4).
The frequency on abscissa (Hz) and the relative acoustic noise pressure (dB) on
ordinate axis are constructed. The integrate level noise pressure 89 dB measured by
sound level meter RFT0024 was �xed (Fig.3). The maximum noise pressure value
is corresponding of the basic magnetic motor noise frequency 100 Hz.
The frequency on abscissa (Hz) and the relative acoustic pressure (dB) on ordinate
axis are constructed. The acoustic short circuit e�ect for motor noise reduction used
in the frequency 100 Hz and the �rst harmonics in Fig.4 is shown. The integrate
level noise pressure 82 dB measured by the sound level meter was �xed.
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Figure 3: Noise pressure spectrogram for motor without resonator

Figure 4: Noise pressure spectrogram for motor having the resonator with aperture
S2 in motor side

Comparing spectrograms in Fig.3 and in Fig.4 the integrate level pressure from 89
dB (without resonator) to 82 dB (with resonator) in wide strip is decreased.
As follows from stated the e�ective method developed making quieter electric motors
for person protection in low frequencies and increasing functions of power electronics
on transport is provided.
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Abstract

Elastomers are viscoelastic materials and their properties signi�cantly de-
pend on the loading rate. The actual stress experienced by these materials is
the sum of equilibrium and dissipative (inelastic) terms. At very low loading
rates we can eliminate the signi�cant in�uence of time e�ects and model the
material as hyperelastic. In this paper, the features of the experimental de-
termination and subsequent mathematical description of equilibrium stresses
are considered. Veri�cation of the proposed equations has been carried out for
a series of experiments - cyclic uniaxial tests of samples of materials on the
basis of the same matrix, but with di�erent �ller contents and under di�erent
maximum degrees of deformation.

1 Introduction

Rubber products are widely used in di�erent �elds of modern world due to their
physical and mechanical properties. However, the complex nature of their behavior
(�nite deformations, dependence of polymer properties on strain rate, hysteresis
losses, stress relaxation, softening e�ect, etc.) causes di�culties with creation of a
system of constitutive equations for this class of materials. In order to take into
account the e�ect of loading rate on the elastomers behavior, two approaches are
usually used: integral and di�erential [1, 2]. Despite the di�erences in the methods of
constructing equations, both approaches have one similar feature. In each approach
we can directly determine equilibrium (elastic) stresses, which are independent of
time processes.
As a rule, most researchers do not pay special attention to the description of the
elastic component and de�ne it with the help of "simple" elastic potentials. Such
simpli�cation is not correct when modeling the properties of high-�lled rubbers
under conditions of large deformations. In addition, it has been long established
that the material softens (stresses fall) under reloading � the Mullins e�ect [3]. This
feature should also be taken into account when describing the experimental data.
In this article, the peculiarities of the experimental procedure aimed to determine
the equilibrium component of stresses are considered and equations describing the
elastic component of the stress tensor are proposed
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2 Elastic properties. Formulation of the elastic po-
tential

As it has been mentioned before, the viscoelastic behavior of the elastic material
is described by the models of integral and di�erential forms [1, 2], of which the
di�erential models are most frequently used. This is due to the simplicity and
clarity of the tensor functions used in the equations, which re�ect the physics of the
processes occurring during deformation. It is proposed to consider the free energy
in the form of a sum of equilibrium and nonequilibrium (dissipative) parts [4]:

T = Te + Td , (1)

where Te is the actual equilibrium stress at given deformation after the completion
of all transient processes, and Td is the dissipative stress (di�erence between real T
and equilibrium Te stresses).
Let us consider the construction of the constitutive equations for the equilibrium
component only. Usually, this component of the stress tensor is determined by speci-
fying an elastic potential, the form of which can be chosen from the enormous variety
of potentials already proposed [3, 5]. The presence of a large number of represen-
tations for describing the elastic deformation energy can be attributed to attempts
to specify an optimal form providing a reliable description of the experimental data
regardless of the material and the way of its loading. Furthermore, this potential
should include a small number of constants to be determined.

Figure 1: Uniaxial loading of the sample made of the material �lled with 50 phr
carbon black N220. From one sample, it is possible to obtain the data on the
viscoelastic behavior of the material, residual strains, the Mullins softening e�ect,
and equilibrium points at di�erent degrees of the sample elongation. F � acting
force, S0 � initial cross section of the sample, λ � sample stretch ratio.

Before choosing the shape of the potential for describing the elastic properties of
elastomers, it is necessary to determine the method of �nding elastic (equilibrium)
stresses. To this end, we have performed the experiments, in which the samples
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were subjected to uniaxial cyclic loading according to the loading scheme described
in patent [6] and illustrated in Figure 1. After each loading and unloading of the
sample, a 20-minute delay was set for the �rst deformation cycle and a 10-minute
delay for the subsequent cycles. After 20- or 10-minute "rest" of the material, the
curve breakpoints (equilibrium points) were formed at each of the unloading and
loading sections (Figure 1). In our opinion, these points characterize adequately the
state of the material under equilibrium (quasistatic) tension.
This type of the test was performed for the samples based on the same matrix with
di�erent �ller concentration. As an elastomeric base, we have used styrene-butadiene
rubber SBR-1502, which has found wide application in the tire, rubber, cable and
footwear industries. The �ller was carbon black ISAF N220 with spherical particles
of low density ρ = 1.8 g/cm3. The �ller content was as follows: 1) 10 parts by
weight of carbon black per 100 parts by weight of rubber, i.e. 10 phr, 2) 30 phr, 3)
50 phr. Accordingly, the volume fraction occupied by the �ller in the composite for
each case was: 1) φ ≈ 4.8%, 2) φ ≈ 13.3% and 3) φ ≈ 20.4% .
Since the material behavior depends on the degree of loading, in order to determine
the universal shape of the potential and to more accurately specify the values of
the constants of this potential, we performed a series of tests on cyclic loading of
samples at di�erent maximum stretch ratios: a) λ = l/l0 = 2, b) λ = 2.5, c) λ = 3.5,
d) λ = 4.
By analyzing the obtained experimental data, we have de�ned the potential describ-
ing the elastic strain energy density as follows:

ω = aCln(I1)− Cln(1− I1
I∗

) + const, (2)

where a,C is the material constants, I1 = λ21 +λ22 +λ23, λ = l/l0 is the stretch ratio,
and I∗ is the limiting value for I1. The material is assumed to be incompressible
(λ1λ2λ3 = 1). The proposed potential is a combination of two parts: the �rst
term for the initial loading segment and the second term for the sudden increase in
stresses with increasing strains. The second component is the variation of the Ghent
potential [5], where I∗ characterizes the limiting extensibility of the rubber network
so that the value of this parameter depends on the degree of the sample elongation.
The use of this potential in calculating the equilibrium component of the stress
tensor requires determination of two material constants and one parameter char-
acterizing the behavior of elastomers. For this purpose, we have minimized the
sum of squares of normalized deviations of the model data from the experimental
results. Normalization of the di�erences between the numerical and experimental
results is given via dividing by the value of the experimental data. Being subjected
to loading, the material accumulates residual strains; the higher is the loading force,
the larger are the residual strains. In order that the error of the model does not
exceed 5% it is necessary to shift the curve along the X-axis by the value equal to
the residual strain. Since the model has been developed under the assumption of a
multiplicative decomposition of the deformation gradient into elastic and inelastic
parts, the following condition is valid: λ = λeλp , where λ is the total stretch ratio,
λe is the elastic (equilibrium) stretch ratio and λp is the inelastic (plastic) stretch
ratio. Therefore, the displacement of the curve along the X-axis with the aim to
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describe the equilibrium curve of the stress-softened material behavior is stated as:

λe =
λ

λp
(3)

In further equations and calculations, instead of λ, we use λe and λei (i = 1, 2, 3)
correspond to the elastic components of the stretch ratio found from (3).
For constructing theoretical â��stress-stretch ratioâ�� curves, elastic stresses are
calculated based on the formula:

σe
1 =

Fe

S0

= λe1
∂ωe
∂λe1
− p = 2λe1C

(
λe1 −

1

(λe1)
2

)(
α

Ie1
+

I∗
(I∗ − Ie1 )

)
(4)

where p is the Lagrange parameter de�ned by the condition (σe
2 = σe

3 = 0). Thus,
according to equation (3), the constants α,C and the parameter I∗ determine the
stretching of the curve along the Y-axis, and only I∗ speci�es the stretching along
the X-axis. We assume that the constant α is invariable for all materials to ex-
clude the mutual in�uence of α and C on each other. We also assume that α = 5,
then, minimizing the sum of squares of the deviations between the numerical and
experimental results, we arrive at the conclusion that the constant C varies insignif-
icantly within the framework of one material. Let this constant C be the same in
the calculations and have a certain value for each material.
Changes in the model constants (α,C ) and the parameter I∗ for the examined
elastomer samples is given in Table 1.

Material Total stretch ratio λ Constant α Constant C Parameter I∗

�ller volume
2

5

0.93
16.857

fraction 2.5 18.71

φ ≈ 4.8%
3.5 23.805
4 - -

�ller volume
2

0.106

9.534
faction 2.5 11.134

φ ≈ 13.3%
3.5 15.684
4 19.557

�ller volume
2

0.125

7.324
faction 2.5 8.857

φ ≈ 20.4%
3.5 12.828
4 16.406

Table 7: The constants and parameters of the developed model for di�erent materials

Figure 2 presents examples showing how the experimental results can be approxi-
mated by the proposed model in accordance to the values from Table 1. It is seen
that the theoretical curves approximate the experimental data well.
Based on the obtained constitutive equations (2) and the calculated results (Table
1), we put forward some assumptions. Firstly, for all materials the constant α is
regarded as an invariable value and, therefore, characterizes the properties of the
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Figure 2: Plots of the experimental data (points) and the theoretical curves (lines)
for materials with �ller content: a) 10 phr; b) 30 phr; c) 50 phr

material matrix. The constant C increases with increasing �ller concentration in the
elastomer and, in fact, shows the degree of reinforcement depending on the degree of
�ller concentration. Secondly, the parameter I∗, as already mentioned, re�ects the
limiting value of the network extensibility. In the case of the material with a �ller
content of 10 phr, the value of this constant has exceeded the maximum permitted
value and because of this the results for the sample stretched to 300% are absent; a
break occurs.
Using the results obtained in our investigation, we have derived an elastic potential
(2) that involves constants, which are able to characterize the elastomer properties.
With this potential, we can provide a relative evaluation of the reinforcement degree
of elastomers (the smaller is the constant value, the less is the active �ller concen-
tration in the material). The parameter I∗ allows one to determine the elongation
degree of the sample (the higher is its value, the higher is the stretch ratio and the
greater is the probability of a break).

3 Analysis of the relations between the model con-
stants. The Mullins softening e�ect.

Let us consider the dependence of the constant C and the parameter I∗ of the elastic
potential on the choice of the material (the degree of its �lling) and the peculiarities
of the testing procedure (di�erent maximum strain levels).
The calculations of the model constant C (Table 1) have shown that its value in-
creases with higher concentration of active �ller particles in the material. Com-
parison of the obtained calculations with the experimental data indicates that the
relationship between the constant C and the �ller concentration φ is linear (Figure
3) and can be determined as:

C = C1 + C2φ = 0.082 + 0.2φ (5)
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where C1 and C2 are the constants, and φ is the volume fraction of �ller in the
material.

Figure 3: Linear relationship between the material constant C and the �ller volume
fraction φ of the composite

Besides, it has been found that the parameter I∗ depends on the stretch ratio, and
the parameter increases as the prescribed maximum strain grows (Figure 4). For
each of the materials, this relationship is inherently linear:

I∗ = C∗3 + C∗4max(I e
1 ) =


11.4 + max(I e

1 ), φ ≈ 0.048

3.8 + max(I e
1 ), φ ≈ 0.133.

1.9 + max(I e
1 ), φ ≈ 0.204

(6)

Figure 4: Linear relationship between the model parameter I∗ and the stretch ratio

It follows from the previous calculations of the parameter I∗ that the constant C∗4 =
1, and therefore it is not further considered for the term max(I1 ) in equations (6),
but C∗3 depends on the variable φ (Figure 5):

C∗3 = C3φ
−C4 = 0.2φ−1.4 (7)

Taking into account equations (5), (6) and (7), potential (2) can be written in the
generalized form as

ωe = (C1 + C2φ)

(
α ln(Ie1) + ln

(
1− Ie1

C3φ−C4 + max(I e
1 )

))
+ const (8)
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Figure 5: Power-law dependence of the constant C3 on the �ller volume fraction φ
of the material

Thus, equation (8) allows us to �nd and describe the entire spectrum of the equi-
librium curves of the behavior of stress-softened materials, regardless of their �ller
concentration in them and the maximum stretch ratio given in the experiment.
The equilibrium strain curves received from the experiments show that the material
has softened after being subjected to loading, and this reduces the material sti�ness
during the repeated loading cycles (the Mullins e�ect) [7, 8]. From the practical
point of view and modeling the softening of elastomers under deformations is an
undesirable e�ect. If the material is able to soften completely, then there is no need
to take this e�ect into account in calculations, but in practice the material is able
to recover its properties with time partially or almost completely, especially during
"rest" at high temperatures [9]. Furthermore, in real conditions rubber products
experience nonuniform loads and, consequently, the material exhibits the nonuniform
softening e�ect. Therefore, within the framework of numerical and �nite-element
calculations it is necessary to take into account the Mullins e�ect and to determine
the behavior of the non-softened material.
In our case, the relationship represented by equation (8) with consideration of (4)
permits us to determine the equilibrium stress-strain curves of the non-softened
material. Figure 6 shows the equilibrium tensile curves of the material deformed
for the �rst time (blue lines) and the set of equilibrium curves of the stress-softened
material (red lines). These lines are the stain-stress curves of the material that
experienced a total stretch of 100%, 150%, 250% and 300%, respectively. It is
worthy to note that the current deviations between the equilibrium tensile curves
of the stress-softened and non-softened materials with the test data indicate only
possible experimental and computational errors.
As a result, we have derived the constitutive equation (8) for describing and �nding
the elastic properties of materials.

Conclusions

A possible way of determining and describing the elastic component of the stress
tensor, which is needed for modeling the viscoelastic behavior of elastomers, is con-
sidered. We have developed a �ve-constant elastic potential that involves the con-
stants characterizing the properties of elastomers depending on their structure (the
amount of the �ller introduced) and the peculiarities of the testing procedure (the
degree of loading). The e�ciency of the proposed model has been validated by com-
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Figure 6: Curves of the elastic behavior of the material deformed for the �rst time
(blue lines) and the stress-softened material (red lines) with �ller concentrations: a)
10 phr; b) 30 phr; c) 50 phr

parison with the experimental data for materials based on the same matrix with
di�erent �ller contents.
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Abstract 
 

   As examples, we specify the Poincaré-Chetaev equations. The review article of 
V.V. Rumyantsev can be supplement with data on works devoted to other forms of 
equations of motion of nonholonomic systems.  
   The original source of this idea, the work of Poincaré published in 1901, actually 
introduced the expansion of the vector of generalized velocities with respect to a moving 
frame (although the term appeared later at E. Cartan) composed from vector fields 
forming the Lie algebra (in modern terminology), that is, their Lie brackets have constant 
(“structural”) coefficients in the same fields. Thus, Poincaré has already used the idea of 
pseudo velocities, although this idea was clearly introduced by Boltzmann in 1902. It is 
interesting that the constancy of structural coefficients is not necessary for Poincaré 
equations in reality. The work of Hamel in 1904 has no reference to Poincaré, but clearly 
operates with vector fields. The Hamel equations are different from the Poincaré 
equations only terminologically. Hamel clearly point out that the constancy of structural 
coefficients is not required; he generalizes his “Euler-Lagrange equations” to 
nonholonomic systems.  
   It is interesting that, often, parallel works are also historically simultaneous. The 
next burst of activity in the field of equations of motion of nonholonomic systems was in 
1926 and during next five years. On the one hand, N.G. Chetaev published the 
Hamiltonian version of the Poincaré equations and anticipates the Dirac approach to 
exposition of Hamiltonian mechanics. On the other hand, in 1926-31 Vranceanu, Singh 
and Shouten introduced and developed the notion of nonholonomic connection, due to 
which they tie a nonholonomic mechanics to Riemannian geometry. At the same time, 
they relied on the work of Ricci and Levi-Civita published in 1900!  
   There are a number of different forms of equations of motion of nonholonomic 
systems. We will consider the main of them and show that they can be obtained from the 
Maggi’s equations. We will derive the most commonly used forms for noting the 
equations of motion of nonholonomic systems from the Maggi’s equations.  

 
 

1   Introduction  
 

 
Earlier [1-3], the direct calculations showed the equivalence of the Poincaré equations of motion of 
nonholonomic systems to the Chaplygin, Appell, Hamel, Volterra, and Ferres equations and some 
other equations. The equivalence of the equations of motion in quasicoordinates to the Appell 
equations, as well as Chaplygin’s equations, was proved [6] by derivation of these sets of equations 
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from the d'Alembert-Lagrange principle. The Voronets equations were derived from the Poincaré 
equations (5.6) in [4].  
   We will show that the Poincaré equations are equivalent to some other forms of equations 
of motion of nonholonomic systems. 
 
 

2   The equations of Volterra, Appell, Kane 
 

 
   Maggi [5] showed that the Appell and Volterra equations follow from the equations 

established by him. Maggi considered a mechanical system with coordinates ),...,1( nixi  , subject 

to linear constraints, which can be both holonomic and nonholonomic, explicitly dependent or 

independent on time. When solving the constraint equations in relation to ix  , he presented the 

latter in the following form  

,)( sisi xbx            ,,...,1,0 ni         ,,...,1,0 ls              00 iib  , 

the quantities s ( he denoted by se ), are called motion characteristics of the system under 

consideration, where  
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   Proceeding to the derivation of Volterra equations, Maggi converted his equations of the 
form  
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(in which the kinetic energy T  occurs instead of L , while iQ  denotes all the active forces applied 

to the system) to the form  
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   Volterra [7] considered a system with N  point masses, the velocities of which in a 
Cartesian system of coordinates are related to the motion characteristics of the form  

,sisi bx               ,3,...,1 Ni             ,,...,1 ls   

where ).,...,( 31 Nisis xxbb   In this case, the Maggi’s equations (1) take the form of Volterra 

equations 
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where ),...,,,...,( 131 lNxxT   is the kinetic energy.  

   Without giving Maggi’s derivation of Appell equations from equations  
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         ks ,...,1 , 

here, we note that they are simpler to derive directly from the following equations  

  ,0  rFrm           .,...,1 N  

Differentiating equations  

,)( sisi xbx            ,,...,1,0 ni         ,,...,1,0 ls              00 iib   
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with respect to time, we have ..., sisi bx   where three dots denote the members not containing 

.s  

Hence, we find that is

s

i b
x









, as a result of which, we obtain from   ,0  rFrm       

N,...,1  the  Appell equations  

                                                   ,s

s

S







         ,,...,1 ls                                                      (2) 

where  2

2

1
 rmS   is the energy of accelerations,   ss bF  is the generalized force referred 

to the quasicoordinate s [6]. 

   Finally, we will show that Kane's equations [8] are equivalent to the Poincaré equations. 
According to the relations  

,fXf rr      ,,...,1 kr       ,fdtXdf ss     ,,...,1,0 ks   

 .,...,1,,...,1 lsNrXr ss     

   Substitution of these expressions into   ,0  rFrm  N,...,1  leads to equations of 

motion of the form  

                                            , rXFrXrm ss            .,...,1 ls                                        (3) 

   For a system with Lagrangian coordinates ,iq  subject to nonintegrable constraints  

),,(),( qtbqqtbq jsjsj            ,,...,1 nlj            ,,...,1 ls   

and operators ,
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iss
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bfX




   ,,...,1,0 ks      2)( Cxf   of the form  
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q

f
fX









  

equations (3) coincide with Kane’s equations (19) [8] 

,0' 
ss qq KK      ,,...,1 ls   

which, consequently, are equivalent to the Poincaré equations.  
 

 

3   The equations of Chaplygin and Voronets  
 

 
   Let us suppose that stationary linear nonholonomic constraints are imposed on the system 
under consideration, which equations can be represented in the form  

                           ,)( 
 qqq klkl            ;,...,2,1 k         .,...,2,1 l                                  (4) 

Then, assuming  

,*
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From these expressions it follows that for nonholonomic constraints given in the form (4), the 
Maggi’s equations  

,0)(
*















q

QM


            .,...,2,1 l  

can be written in the form:  
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l QQMM                                          (5) 

;,...,2,1 l         .,...,2,1 k  

   Let us suppose that kinetic energy T does not depend on the generalized coordinates and 
lq  и 0lQ    ).,...,2,1( k  Then equations (5) can be represented in the form  

                                  ,
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Let us transform equations (6). Let us eliminate all the velocities lq  from the expression for the 

kinetic energy T  using the constraint equations (4), and denote the resulting expression for the 

kinetic energy by .*T  

   In this case, the following equalities are correct  
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Let us suppose that the coefficients 
 l  do not depend on ,lq  .,...,2,1 k  Then, differentiating 

the expression (7) with respect to time, we obtain  
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Computing the quantities )/(/ qTdtd  and qT  /  by formulas (9) and (8) and substituting 

them into equations (6), we get  
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.,...,2,1;,...,2,1, kl    

These equations were obtained by S.A. Chaplygin [10].  

   If in the equations (10) we eliminate the dependent velocities ,,...,, 21  lll qqq   in the 

expressions  lqT /  using the constraint equations (4), then we obtain a system of l  equations 

with respect to unknown functions .,...,, 21 lqqq  Thus, Chaplygin’s equations allow us 

independently of the constraints (4) to find ),(),...,(),( 21 tqtqtq l  then to define the remainder 

)(),...,(),( 21 tqtqtq klll   from equations (4).  

   The Chaplygin’s equations are transformed into ordinary Lagrange’s equations of the 

second kind, if the constraints (4) are integrable, that is, the coefficients 
 l  satisfy the following 

conditions: 
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Let us suppose, for example, at 1  we have  
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Let us derive the functions ),...,,( 21 sll qqquu     as follows:  
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where 0,1q  - is an arbitrary constant value. Using conditions (12), we obtain  
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Hence and from expressions  
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u l
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it follows that equation (10) by the coordinate 1q  will have the form of Lagrange’s equation of the 

second kind in the case when the constraint equations (4) can be reduced to the form  

,),...,,( 20,1 


  qqqquq slll         .,...,2,1;...,3,2 kl    

   Now we derive the equations of motion in the form obtained by P.V. Voronets [11]. We 
consider a mechanical system with constraints given in the form (4) without making those 
additional assumptions that lead to the Chaplygin’s equations. In the case, when the kinetic energy 
T  depends on all the coordinates, the Maggi’s equations (5) will be written in the form  
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   In order to bring these equations to the Voronets equations, we proceed similarly to the 
previous case. Relations (8) save their form, and expressions (9), taking into account that now the 

coefficients 
 l  depend on all q , take the form  
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   In this case, along with relations (8) and (14), we should take into account the following 
equalities  
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   This expression, as well as relations (8) and (14) allows us to represent the equations (13) in 
the form  
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   The equations (15) are called the Voronets equations. Joining the constraint equations (15) 
with the equations of motion (4), we will obtain a system of differential equations for obtaining the 

functions .,...,2,1),( stq    

   In the case of motion of a constrained system under action of forces, which have a potential, 
the equations (15) take the form  
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   In the particular case when the coordinates ,,...,, 21 klll qqq   corresponding to the 

eliminated velocities is not explicitly included into the relations for kinetic and potential energy, as 
well as into the constraint equations, the Voronets equations (15) coincide with the Chaplygin’s 
equations (10).  

 
 

4   The equations of motion in quasicoordinates (Hamel-Novoselov, 
Voronets-Hamel, Poincaré – Chetaev equations)  
 
 
   In the case of rotation of a rigid body around a fixed point, it was shown that the projections 
of the vector of instantaneous angular velocity   on the fixed axes cannot be considered as 
derivatives with respect to the new angles that uniquely determine the position of rigid body. 

Similarly, it may turn out that quantities * , which are one-to-one connected with generalized 

velocities by the relations  

),,,(** qqt          ,,...,2,1 s  

and  
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*  qtqq          ),,...,,( *

2
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1
**
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cannot be considered as derivatives with respect to the certain new coordinates 
*q , that is, cannot 

be supposed that  ** q . In this case, the quantities *  are called the quasivelocities, and the 

variables *
~ , given by formulas  


t
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dt
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 are called quasicoordinates.  

   In the expression for the kinetic energy T , the generalized velocities q  are replaced by 

quasivelocities * . We denote the resulting function by *T . We find out, which form can have the 

Maggi’s equations ,0)(
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when using the function *T . 
   Taking into account the relations  
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we have  
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   In the right-hand side of expression (18) in the double sum, we exchange the indices of 
summing   and  . As a result, we have  
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   Let us consider the operator  
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which, under assumption ,~
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  q   passes into the operator of partial derivative with respect 

to the new coordinate 
*q , since we have  
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The relation (19), taking into account expression (20), can be written in the form  
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Hence and from expression (17) it follows that the Maggi’s equations (16) can be represented in the 
form  
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Here  
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Equations (21) are sometimes called the equations of Chaplygin’s type [12]. 

   Let us consider the particular case when the generalized velocities q  are related to 

quasivelocities *  by linear, homogeneous, stationary relations:  
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and the constraint equations are the following:  
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   In this case, using expressions (23) and operator (20), and also taking into account that after 

performing the operations of differentiation it can be assumed that 0*  l   ),,...,2,1( k  we 
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   Consequently, equations (21) take the form  
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   These equations are usually called the Chaplygin’s equations in quasicoordinates [6]. Let 
us note that the equations (21) and (25) should be considered together with the equations of 
nonholonomic constraints given respectively in the form  

,0),,( qqt         ,,...,2,1 k  

and (24). 

   Equations (21) include both the function *T  and the function T . Now, we reduce the 

Maggi’s equations (16) to the form that involves the function *T only.  
   The following relation  
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we have  
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   Taking into account the expressions  
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and operator (20), we obtain  
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Then from the above and from formulas (22) and (26), it follows that the Maggi’s equations (16) 
can be represented in the form  

                                    ,~
***

**

*

*

*

*

*


















Q

qqdt

dqTTT

dt

d








































                          (27) 

.,...,2,1,;,...,2,1 sl    

   The equations (21) and (27) can be applied to both holonomic and nonholonomic systems, 
with either the linear or nonlinear with respect to velocities ideal constraints. In the case when the 
time does not enter into the kinetic energy and the constraint equations in explicit form, the 
equations (21) and (27) were obtained by G. Hamel [14] and in the general case by V.S. Novoselov. 
Therefore, these equations should be called the Hamel-Novoselov equations. 
   In the case when the quasivelocities are defined by formulas (23) and the constraints are 
given by equations (24), we have  

,*
*

*












































 q
q

qdt

d

qdt

dq























 

   ,*
*

*




































 q
q

qq

q























 

.,...,2,1,,;,...,2,1, sl    

Consequently, in this case, equations (27) take the form  
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   In  the case of sl   these equations, as well as the expressions for the coefficients 
c  were 

obtained first by P.V. Voronets in 1901. In 1904 for sl   these results were obtained once more by 
G. Hamel [15]. Therefore, these equations are usually called the Voronets-Hamel equations, but 
Hamel himself called them the Euler-Lagrange equations. We remark that in the literature they are 
also called the Hamel-Boltzmann equations. 
   A little before the work of P.V. Voronets, it was appeared an article by H. Poincaré [16], 
who obtained equations highly close to equations (28). Poincaré equations correspond to the case 

when in equations (28) for sl   the coefficients 
c  are constant and the forces are expressed via 

the forcing function U : 
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In this case, equations (28) can be written in the form proposed by H. Poincaré:  
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   On derivation of equations of motion, H. Poincaré used the group theory. The Poincaré 
approach was subsequently developed in the works of N.G. Chetaev, L.M. Markhashov, V.V. 
Rumyantsev, Fam Guen. They generalized the Poincaré equations to the case when the coefficients 

of 
c  are not constant and the motion occurs under the action of both potential and non-potential 

forces. The equations derived by them describing the motion of nonholonomic systems are called 
Poincaré-Chetaev equations [4], [13]. 
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Abstract

Short turbine blades with comparable height and length are often used in
turbine construction. In service, the blades are subject to various periodical
impacts, and to prevent the fatigue failures, resonance vibrations should be
avoided. Therefore, determination of natural frequencies and normal modes
are of crucial importance. We consider free vibrations of a blade modeled
by a helicoidal Kirchho� shell. In the paper we use the variational approach
based on the Lagrange mechanics in which the generalized coordinates play the
role of factors for the displacement approximation. The displacement approx-
imation are taken from the beam theory for the naturally twisted beam with
an additional component taking into account the in-plane deformation of the
cross-section. The algorithm of calculations by means of computer mathemat-
ics is proposed and an example of modal analysis of the helicoidal shell with
variable section is presented. An example of modal analysis of the helicoidal
shell with variable cross-section is provided, too. A three-dimensional com-
puter model of the blade is developed and analyzed by ANSYS. Comparison of
calculation results for shell and the three-dimensional model is demonstrated.

1 Introduction

The impacts of gas or �uid jets on a blade of the power plant is of the periodical
character. Therefore, the blades are a�ected by the forced oscillations [1, 2, 3]. Some
frequencies of these pulsating loads can be close to one of the normal frequencies of
the blade, and resonance vibrations can cause the fatigue failure of the blade. In
this regard, at the design should take into account the anticipated operating regimes
and frequencies of alternating impacts, so that the blade could be "detuned" from
the resonance frequencies by changing the mechanical and geometrical parameters
of the blade. For this reason, the vibration analysis is an important part of the
turbine design.
In power engineering, the engineers often use blades which have comparable length
and width, therefore, from a mechanical perspective the blades can be considered
shells.
In this work we propose to consider a short twisted blade as the helicoidal shell
and apply the classical theory of thin shells [4, 5]. Based on the tensor equation of
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Figure 1: Shell surface

the shell theory, the scalar equations are derived and the energy relationships are
obtained. Then the Lagrange equations, in which coe�cients of the displacement
approximation play the role of generalized coordinates, are used for construction
of the global inertia and sti�ness matrices for the further modal analysis. This
approach was tested on the helicoidal blade in [6] in the present paper we give more
attention to detailed consideration of the method. Natural frequencies and normal
modes are to be calculated in the Wolfram Mathematica system [7]. It is reasonable
to compare them with the results of the 3D-model �nite element analysis by ANSYS
[8], so that we judge the applicability of the approximations used.

2 Brief information from the theory of Kirchhof-
fâ��s shells

According to the approach of the Lagrange analytical mechanics one must �rst de-
termine the degrees of freedom of the examined object and introduce the generalized
coordinates and then apply the principle of virtual work for determination of the
generalized forces.
A classical shell can be presented as a deformable surface with material normal unit
vectors which have three translational degrees of freedom and two rotational ones.
It is assumed that the shell does not resist the rotation of the normal around its
axis and therefore no corresponding degree of freedom is needed. The movement of
the shell is then de�ned by the small displacement vector u and the small rotation
vector θ in the tangent plane [9].
It is convenient to use the vector of change of the normal n to the shell as a gener-
alized coordinate: ϕ ≡ θ × n = ñ. The sign of tilde implies a small increment with
deformation.
Any surface is known to be de�ned by the dependence of the radius vector on the
curvilinear coordinates r (γ1,γ2).
Thus, each point of this surface is the point of intersection of two coordinate curves
(Fig. 1). Vectors of derivatives of the radius vector are tangential to these curves
and form the basis:

rβ = ∂r/∂γβ = ∂βr. (1)
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The unit normal vector to the surface formed by these two vectors is

n =
r1 × r2

H
, H ≡ |r1 × r2| . (2)

Any vector is known to be decomposed into components in both covariant and
contravariant bases as follows: χ = χβr

β+χnn = χβrβ+χnn. Here the components
χβ of the vector χ are called "covariant" and χβ are called "contravariant".
The contravariant basis is constructed according to the condition rα · rβ = δβα where
δβα is the Kronecker symbol.
It is necessary to introduce both bases to obtain the sought-for equations. Firstly,
we can �nd the expression for the Hamilton operator:

∇ = rβ∂β. (3)

Then we compose expressions for the �rst and second metric tensors

a = ∇r, b = −∇n. (4)

It is known that the surface form is completely de�ned by covariant components of
these metric tensors [10]. Therefore, the surface deformation is quite de�ned by the
small increments of these components and can be determined by two symmetrical
tensors in the tangent plane:

ε ≡ 1
2

ãαβr
αrβ, κ ≡ b̃αβr

αrβ, aαβ = rα · rβ, bαβ = −∂αn · rβ. (5)

The �rst of these tensors de�nes the change of lengths and angles on the surface
whereas the second one de�nes the change of its curvature. Accounting for u ≡ r̃
and eq. (5) we obtain

ε = (∇u)S⊥ , κ = − (∇u)⊥ + b · ∇uT. (6)

Here (. . .)⊥ denotes the part of the tensor in the tangential plane, the signs (. . .)S

and (. . .)T denote symmetrization and transposition, respectively.
It follows from Kirchho�â��s kinematic hypothesis that the rotation is related with
the displacement by the orthogonality condition:

r · n = 0 V ϕ = −∇u · n. (7)

The strain energy and the kinetic energy of the shell are integrals over the surface
area:

Π =

∫
Π̂do, K =

∫
ρh |u̇|2 do, (8)

where ρ is the mass density, do = Hdγ1dγ2 is the surface element, (. . .)· denotes
di�erentiation with respect to time t, Π̂ is the speci�c strain energy of the isotropic
shell, which is the function of both strain tensors ε, κ:

Π̂ (ε,κ) =
Eh

2 (1− ν2)

[
νε2 +

(
1− ν2

)
ε · ·ε+

h2

12

(
νκ2 + (1− ν)κ · ·κ

)]
, (9)

where E is the Young modulus, ν is the Poisson ratio, and ε, κ are the traces of
respective strain tensors.
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Figure 2: Helicoid model

3 Geometry and deformation of the blade

Helicoid blade is formed by helical motion of a thin strip with the thickness h and
width 2a(z ) (Fig. 2) rotating about axis z by angle per unit length Ω. Axis z is
passing through the center of mass of all cross-sections. Cartesian axes x ′, y ′ (with
unit vectors i0, j0) are �xed, while axes x , y (with the unit vectors i, j) are rotating
together with the section (Fig. 2). The unit vectors of both coordinate systems are
related by the following relations:

i0 = cos (Ωz ) i− sin (Ωz ) j, j0 = sin (Ωz ) i + cos (Ωz ) j. (10)

The radius vector is de�ned as

r (z,x) = zk + x i (z ) , − a (z) ≤ x ≤ a (z) . (11)

Accounting for the following formulas for di�erentiating the unit vectors i′ = Ωj,
j′ = −Ωi, we can form the basis in the tangent plane:

r1 = ∂zr = k + Ωx j ≡ H e, r2 = ∂xr = i, (12)

where H = |r1 × r2| =
√
1 + Ω2x 2. Therefore, the unit normal vector is

n =
1

H
(j− Ωxk) . (13)

Now we can construct the contravariant basis:

r1 =
1
H
e =

1

H 2
(k + Ωx j) , r2 = i, (14)

and obtain the Hamilton operator afterward:

∇ = rβ∂β =
1

H
e∂z + i∂x . (15)

Now we can derive the relations between the unit vectors:{
Hn = j− Ωxk,

H e = Ωx j + k,
V


k =

1
H

(e− Ωxn) ,

j =
1
H

(n + Ωxe) .
(16)
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One obtains

k⊥ =
1
H
e, j⊥ =

Ωx

H
e (17)

from (16) to separate the tangential components of ∇u and ∇ϕ when constructing
the strain tensors (6). Hence the �rst and second metric tensors are

a = ∇r = rβrβ = ee + ii, b = −∇n =
Ω

H 2
(ei + ie) . (18)

We de�ne the displacement vector as

u = ux i + uyj + uzk, (19)

after what, in accordance with (7), we can introduce the rotation vector of the
normal:

ϕ = −∇u · n = ϕx i + ϕyj + ϕzk. (20)

Taking (13) and (15) into account we obtain the components of ϕ:

ϕx =
1
H

(Ωx∂xuz − ∂xuy) ,

ϕy =
Ωx

H 3

(
Ωxu ′z − u ′y − Ωux

)
, (21)

ϕz =
1

H 3

(
Ωxu ′z − u ′y − Ωux

)
.

Hereafter (. . .)′ denotes the di�erentiation with respect to coordinate z.
It is convenient to introduce the strain tensors ε and κ as follows:

ε = εx ii + ε1ee + ε1x (ei + ie) ,

κ = κx ii + κ1ee + κ1x (ei + ie) ,

εx = i · ε · i = ∂xux ,

ε1 = e · ε · e =
1

H 2

[
Ωx
(
Ωux + u ′y

)
+ u ′z

]
,

(22)

εx1 = i · ε · e = ε1x =
1
2H

[u ′x − Ωuy + Ωx∂xuy + ∂xuz ] ,

κx = i · κ · i = −∂xϕx +
Ω

H 3
[Ωx∂xuy + ∂xuz ] ,

κ1 = e · κ · e = − 1
H 2

[
Ωx
(
Ωϕx + ϕ′y

)
+ ϕ′z

]
+

Ω

H 3
(u ′x − Ωuy) ,

κx1 = i · κ · e = κ1x =
1

H
[−ϕ′x + Ωϕy ] +

Ω

H 2
∂xux .
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4 Displacement approximations and vibration anal-
ysis

Following the approach proposed in [6, 12], we use the Lagrange equations for vi-
bration analysis of the shell. Having applied the Lagrange equations(

∂K

∂q̇i

)·
− ∂K

∂qi
= −∂Π

∂qi
+ Qi , (23)

we obtain the system of equation in terms of generalized coordinates qi . However
we have to choose the displacement approximation �rst. In this paper we derive the
bending vibrations of the shell by taking the displacement vector as

u = U (z,t)−U′ (z,t) · x ik + S (z,t)
[
x 2 − a2 (z )

]
j. (24)

The two �rst terms in (24) correspond to the elementary beam theory where de�ec-
tion vector U is

U (z,t) = Ux (z,t) i0 + Uy (z,t) j0, (25)

cf. [11]. The third term in (24) determines the deformation of the cross-section in
its plane. We supposed that the deformed cross-section takes a parabolic shape.
The components of u according to the relations (10) are

ux = Ux (z,t) cos (Ωz ) + Uy (z,t) sin (Ωz ) ,

uy = Uy (z,t) cos (Ωz )− Ux (z,t) sin (Ωz ) + S (z,t)
[
x 2 − a2 (z )

]
, (26)

uz = −x
[
U ′x (z,t) cos (Ωz ) + U ′y (z,t) sin (Ωz )

]
.

Now we can proceed to the discrete model by approximating the introduced functions
Ux , Uy , S in accordance with the Ritz method:

Ux (z,t) =
N∑
i=1

UxiΦi (z ) = Ux
TΦ,

Uy (z,t) =
N∑
i=1

UyiΦi (z ) = Uy
TΦ, (27)

S (z,t) =
N∑
i=1

SiΨi (z ) = STΨ .

We have thus presented the generalized coordinates whose roles are played by func-
tions Uxi , Uyi , Si . Then Φ and Ψ in (28) are columns of the coordinate functions
satisfying the boundary conditions. The "rigid support" in the root cross-section
z = 0 corresponds to the following condition

Φ (0) = Φ′ (0) = Ψ (0) = 0. (28)

For instance, the power functions satisfy these conditions:

Φ1 = z 2, Φ2 = z 3, Ψ1 = z , Ψ2 = z 2, . . . (29)
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The number of the coordinate functions is denoted by N in (24).
Now we can obtain the potential and kinetic energy. The area element is
do = r1 × r2 = Hdzdx ; then according to (8)

Π = 2

L∫
0

a(z)∫
0

Π̂Hdzdx , K = 2

L∫
0

a(z)∫
0

ρh
(
u̇x

2 + u̇y
2 + u̇z

2
)

Hdzdx , (30)

where L is the blade length.
The �nal equations for energies expressed in terms of the generalized coordinates
are obtained by means of the Wolfram Mathematica. They are too cumbersome to
be presented in the paper.
Now the Lagrange equations (23) are given by:

M Ü + CU = Q(t), (31)

in which the block columns and matrices are used.

M ≡

Mxx Mxy Mxs

Mxy Myy Mys

Mxs Mys Mss

 , U ≡

Ux

Uy

S

 ,

C ≡

Cxx Cxy Cxs

Cxy Cyy Cys

Cxs Cys Css

 , Q(t) ≡

Qx

Qy

Qs

 .

(32)

Here M and C are the global matrices of the inertia and sti�ness, U and Q are the
global columns of the unknowns and the generalized forces, respectively. The latter
can be found from the expression for the virtual work of the external load.
In the case of the free harmonic oscillations we have a zero column in the right
part of (31) and can replace Ü by −ω2U . The result is the generalized eigenvalue
problem:(

C − ω2M
)

U = 0 (33)

When the global matrices of inertia and sti�ness are constructed we can use such
special commands as Eigenvalues and Eigenvectors for solving (33) in the Wolfram
Mathematica. In the result we can compute values of the �rst N normal frequencies.
We have analyzed the blade with the following parameters: Ω ≈ 1.745 (the
tip cross-section is turned by a 30◦ angle against the root section), h = 0.01 m,
L = 0.3 m, the width ranging from 0.4 m to 0.2 m. The material characteristics are:
ρ = 7800 kg/m3, ν = 0.3, E = 2 · 1011 Pa.
For our calculation we took N = 5.
The results of the �nite element analysis for the two �rst normal modes are shown
in Fig. 3.
Values of the two �rst natural frequencies (Hz) are as follows:

3D-model shell model
f1 109.2 101.5
f2 552.5 498.3

The di�erence between the results of the two approaches is less than ≈ 10 %.
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Figure 3: The �rst and second normal modes and their natural frequencies calculated
by ANSYS

5 Conclusion

In this paper we presented a brief review of formalism of the Kirchho� shells. The
geometry of a blade is described as a helicoidal shell. The translational and rota-
tional displacements were found from the tensor equations of the shell theory. The
approximation for the displacement was considered as for the twisted beam with
an additional term that takes into account the in-plane deformation of the cross-
section. The displacement was approximated in terms of the chosen functions and
the Ritz method was applied. It should be noted that the number of the coordinate
functions N, as well as the type of these functions should be a subject for tests. For
example, the results of the authors' analyses of the long blades' vibrations [12, 13]
performed by using several di�erent techniques showed that the increase in N may
not necessarily lead to a more accurate result.

Having approximated the displacement functions, we proceeded to the discrete
model and introduced the generalized coordinates. After that we derived the expres-
sion of potential and kinetic energies and then obtain the system of the Lagrange
equations. The formulated generalized eigenvalue problem allows one to carry out
the modal analysis for the blade. The problem was solved by means of special
functions embedded in the Wolfram Mathematica.

We compared the results of our approach with the ANSYS �nite element analysis
of a 3D-model. The certain di�erence between these results could be explained by
the properties of the coordinate functions. However, the actual choice of the type
and number of coordinate functions is a topic of separate study which the authors
intend to perform in the nearest future.

The presented algorithm allows us to analyze forced vibrations: the generalized
forces can be derived from the expression for the virtual work. One can also consider
the transient oscillations in the manner suggested in [12] for the long blades handled
as rods.
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Abstract

The main purpose of this work is development and investigation of power-
e�cient actuator for transforming an applied force into translatory motion. An
elastic element (which has the functioning principle based on the phenomenon
of loss of stability) is used as an operating element of this device. In addition,
there is made the analysis of the analogues of the proposed mechanism. In
this paper we propose the actuator design and demonstrate the main compo-
nents of the mechanism. Moreover, we have described the calculation of the
mechanical properties and conditions for the applicability of a working link of
the mechanism (an elastic element). Also this research is focused on the study
of recuperation mechanisms which is used in actuators for partially restore of
the spent energy.

1 Introduction

In the modern world one of the main functions of technology is the partial or com-
plete replacement of a person production functions. Thus, the use of high-tech
mechatronic devices allows to save a person from heavy physical activity (labouring
job), routine and monotonous work, to eliminate the impact on personnel of harmful
factors, and to liquidate the in�uence of the human factor during work that requires
high accuracy, productivity and quality of tasks.
Currently, there are a large number of di�erent types of actuators which are used
in virtually all areas of robotics for energy transfer from the controlling object to
the controlled object. Along with the most common types of actuators, such as me-
chanical, electrical, hydraulic and pneumatic, there are complex and "exotic" types
of actuators, for example, pneumatic muscle, actuators based on electroactive poly-
mers and metals with memory e�ect. However, these actuators are not always able
to meet the demands for the design of complex mechatronic devices and sometimes
designers have to solve the task of developing a new type of execution units. Thus,
the main purpose of this work is development and investigation of power-e�cient
actuator for transforming an applied force into translatory motion.
Like any high-tech mechanisms, the actuator based on an elastic element is energy-
dependent. For this reason, one of the central tasks to solve the problems of e�ciency
and productivity of such machines remains energy performance (energy e�ciency).
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As one of the solutions to this problem, it is possible to use the introduction of
recuperation mechanisms that are aimed at partial restoration of the spent energy
with the help of various actuating elements. The elements can be made in the form
of elastic elements (for example, springs or elastic rods)[1].

2 Dynamics of recuperation mechanisms

Undoubtedly, a decrease in power consumption increases the time of autonomous
operation of various mechanisms and actuators. Therefore, at the moment, various
recuperation mechanisms are becoming widely used. The purpose of these mecha-
nisms is partially restore of the spent energy (not only thermal and electrical but
also mechanical) for reuse or its accumulation.
The present work is devoted to the investigation of recuperation mechanisms used
to restore mechanical energy. We know two types of these devices.
The �rst type is recuperation mechanism of the executive device designed to convert
the applied force into translational motion, where partial energy regeneration occurs
due to the elastic properties of the working link in the process of restoring the initial
form (further we will consider this mechanism in more detail).
The second type of recuperation mechanisms is a spring accumulator with an output
rotary link used for rotational motion [2, 3]. The scheme of this device is shown in
Fig. 1

Figure 1: Scheme of the cyclic rotation mechanism with spring accumulator: l �
length of the rotating crank; M � engine torque; Felast and F ′elast � spring force; c
� spring sti�ness.

Consider the second device in more detail.
The mechanism is a rotating crank, to the free end of which are attached two springs
of equal constant (spring force). The opposite ends of the spring are attached to the
base, and are located on the same line and at the same distance from the axis of
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the crank rotation. The initial length of these springs is assumed to be 0.1 m, also
during the functioning of the mechanism, each of them is in a deformed (stretched)
state and reaches the initial length only at the time when the other spring has the
largest value of stretching. The described scheme allows the most e�ective use of a
spring accumulator for energy recovery.
The working cycle of turning the mechanism, i.e. the complete turn of the work-
ing link about the rotation axis can be mentally divided into four parts (see Fig.
1). Unshaded areas correspond to the stage of "charging" the spring accumulator.
Under the action of the drive torque, here takes place the rotational movement of
the working link, which acts on the springs, shifts them from the balanced state,
compressing one and stretching the other. In this part we should make some ex-
planation: according to the theory of catastrophes and the theory of stability, this
mechanism with a spring accumulator (consisting of two identical springs) has two
stability positions, i.e. such conditions under which no vibrations of the working link
are made, and the state and position of the springs do not change arbitrarily long.
In our case at the initial moment of time the mechanism is in the �rst stable state
equal to the zero deviation of the working link relative to the rotation axis. The
second stable position is symmetric to it, i.e. it is located at the point of deviation
equal to 180 deg. These two states are a kind of attractor for the right and left
semicircles of the trajectory of movement of the worker, respectively.
The shaded areas of the trajectory of the working link correspond to the operation
cycle of the spring accumulator. Here, the drive is disconnected and the motion is
made only by the accumulated springs energy.

3 Modeling of recuperation mechanism

At the next stage of the work, a model of this mechanism was built using the
SimMechanics/MATLAB environment (Fig. 2).
The Machine Environment and Ground (1,2) blocks specify the gravitational forces
for the model and the mounting and positioning conditions of the machine parts,
respectively. Revolute, Body - form the geometry of the rotating working link.
Joint Actuator1 is a kinematic drive providing rotational motion. Joint Sensor is
designed to obtain output characteristics of the working (actuating) link. Body
Spring & Damper (1) perform the roles of non-linear springs. The Subsystem block
speci�es the input signal which is passed to the Joint Actuator1 drive. The Coulomb
& Viscous Friction block is used to account for the e�ect of friction in the Revolute
joint.
Let's talk in more detail about the modeling of friction in this mechanism.
If we take into account all theories of friction, it can be concluded that under friction
processes it can be observed the following main e�ects: elastic deformation of sur-
faces, plastic deformation of surfaces, ploughing e�ect, shear of adhesion junctions
[4].
This means that under modeling of the friction process, it is necessary to take into
account both elastic and viscosity characteristics of friction surfaces.
In our model (Fig. 2) the input of the Coulomb & Viscous Friction block has a value
of the body speed, the output has a value of the frictional force. The work basis of
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Figure 2: Model of recuperation mechanism with spring accumulator in SimMechan-
ics.

the block is a well-known equation:

f = sign(v)(µ|v |+ η) (1)

where f � friction coe�cient; sign � function of variable sign determination; v �
velocity; µ � coe�cient of viscous friction; η � coe�cient of dry friction.
At the next stage, experiments for evaluation of the recuperation properties of the
resulting mechanism were conducted. As the initial (ideal) device, the mechanism
was considered without the use of a spring accumulator. To compare the properties
of the two devices, the same signal (corresponding to one complete turn of the
actuator) was applied to their inputs of the drive blocks. After that, the data which
are characterizing the angle of rotation of the actuator (Angle, deg.), the angular
velocity of rotation (Angular velocity, degree/s) and the drive torque (Torque, N*m)
were recorded. The obtained graphical results are shown in Fig. 3.
Analyzing the results obtained, it can be noticed that the use of a spring accumulator
can signi�cantly reduce the operating time of the drive. This accordingly leads to a
reduction of power consumption (this can be seen when comparing the Torque/Time
graphs). However, on the other hand, the use of elastic elements increases the
frequency of vibrations of the working link, thereby increasing the runtime of the
working cycle.
At conclusion, during the work with the application of the MATLAB application
package and the SimMechanics library we were able to build a model of the re-
cuperation mechanism and, on its example, show the expediency of using spring
accumulators in cyclic rotational mechanisms for energy recovery.

194



Investigation and development of an actuator based on an elastic element

Figure 3: The obtained results for the ideal mechanism (left) and the mechanism
with spring accumulator (right).

4 Design and investigation of the actuator based on
an elastic element

4.1 Analogues

We know the next analogues. The �rst one is Mobile mechanism for converting the
applied force into translational motion (Fig. 4).
The invention relates to a manpower walking mechanism. A travel mechanism is
provided with a foreleg mechanism and a rear leg mechanism which are respectively
hinged with a machine frame, the foreleg mechanism and the rear leg mechanism
are of L-shaped cranks, unidirectional wheels are arranged at the bottom end of
the cranks, the horizontal end heads of the cranks of the foreleg mechanism and
the rear leg mechanism are respectively hinged and connected with a connected
plate. The structure of the invention is simple and reasonable, the foreleg mech-
anism is designed into the L-shaped crank, through the hinging with the machine
frame and the horizontal end head of the crank, only two point hinge is utilized
to realize that the foreleg mechanism moves back and forth under the functions of
the upper part pressure and the lower part pressure, thus a large quantity of parts
are decreased, and the assembly and the regulation are convenient. Simultaneously,
two connecting rod type cradle mechanisms are arranged at the upper parts of the
foreleg mechanism and the rear leg mechanism, the power is directly exerted on the
foreleg mechanism and the rear leg mechanism through a cradle to lead the mecha-
nism to move smoothly, a pedal mechanism is connected with a drive mechanism, in
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Figure 4: Mobile mechanism.

particular a gear drive mechanism or a lever drive mechanism, the guidance quality
is good, and the connecting rod is arranged in a pressure spring frame, thus the
position limit is accurate. The disadvantages of this device include the complexity
of design and energy loss due to frictional resistance in kinematic nodes [5].
The second one is Bionic mechanical walking animal (Fig. 5).
The utility model provides a bionic mechanical walking animal, comprising a
quadruped imitated outer shell, forelimbs with single direction rotating wheels, hind
limbs with two-way rotating wheels, a cradle, pedals and a limb driving mechanism
in the outer shell. The bionic mechanical walking animal is characterized in that
the forelimbs and the hind limbs are respectively connected with the front and back
ends of a cross beam through a rotation shaft, and the limb driving mechanism is
hinged by the middle part of a front upper connecting rod and the middle part of
the cross beam; the upper end of the front upper connecting rod is provided with
the cradle, and the lower end of the front upper connecting rod is hinged with the
connection shafts of the two forelimbs; a back upper connecting rod is also hinged
with the middle part of the cross beam, and the other end of the back upper con-
necting rod is hinged with the connection shafts of the two hind limbs; one end
of a front lower connecting rod is hinged together with one end of a back lower
connecting rod, and the other end of the front lower connecting rod is hinged with
the lower part of the front upper connecting rod; the other end of the back lower
connecting rod is hinged with the lower part of the back upper connecting rod; the
two pedals are respectively arranged at both ends of a horizontal connecting rod,
and the middle part of the horizontal connecting rod is connected with the lower
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Figure 5: Bionic mechanical walking animal.

part of the front lower connecting rod or the back lower connecting rod via a verti-
cal connecting rod. The bionic mechanical walking animal has simple structure, low
cost, portable operation, safety and reliability. As the shortcomings of the above
mechanism, we can distinguish: the complexity of the design, numerous connection
joints that introduce signi�cant friction resistance of the mechanism, as well as the
dependence of the speed and distance of movement on the time and impulse of the
applied force [6].

4.2 Modeling and operating peculiarities of the device

To eliminate the shortcomings of analogues and to solve the aforementioned problem,
the mechanism was proposed and constructed (the scheme is shown in Fig. 6) [7].
The proposed device is a new type of energy-e�cient actuators, where an elastic
element is used as a working link. Its operation is based on the phenomenon of
loss of stability under the action of the applied external force. The purpose of this
mechanism is to demonstrate the properties and behavior of an elastic element whose
design features can be used in the modeling of bionic systems.
It should be noted that the movable base (including frame 1 and mobile supports 3
in Fig. 6) is used only to demonstrate the force action that occurs under the process
of buckling failure (loss of stability) of elastic element.
The principle of operation of the proposed mechanism is as follows: at the initial
moment of time a force P (which is directed vertically downwards) is applied on the
area of the conjugation of the motion platform for transferring the loading force 4
and the elastic element 5. When the applied force reaches a critical value, a loss
of stability of the elastic element occurs, in other words the rectilinear shape of
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Figure 6: Proposed scheme of the actuator based on an elastic element: 1 � base;
2 � joint hinge; 3 � mobile supports (equipped with a ratchet mechanism); 4 �
motion platform for transfer of the applied loading force P ; 5 � elastic element; 6
� semicircular support tip; Pcr � the critical loading force; Pfr � the friction force;
Pr � the support reaction force; Pb � the bending force; x � device displacement.

the elastic element changes under the action of the bending moment. Due to this
phenomenon, the free end of the elastic element (in the present case, we consider
that the free end is the lower edge of the elastic element with the semicircular
support tip) will begin to deviate from the rectilinear steady state. However, under
the condition of the appearance of frictional force Pfr (it is directed opposite to
action of the bending force Pb) the entire energy of the elastic element (which was
accumulated under process of loss of stability) is redistributed and reverses direction
toward translational motion of the base of the actuator. When the applied force P
is removed, an inverse process is occurring. The elastic element recovers an initial
rectilinear shape, but the movable base (like the whole mechanism) will not change
its position due to reaction of the ratchet mechanisms of the movable supports
[8, 9, 10].
The whole process of moving the actuator can be divided into two cycles. The
�rst cycle is a "loading cycle". Under the in�uence of the applied force, here is
occurring the loading of elastic element that causes a change in the rectilinear shape,
which in turn ensures the movement of the entire mechanism. The second cycle is
"recuperation cycle". Here, on the condition that the value of the applied force is
less than the critical value, the process of restoring the original shape of the elastic
element takes place by virtue of the stored energy in the process of loss of stability.

4.3 Selection of the device working link and the way of func-
tions

In the next step, an elastic element is selected. The selection of a suitable working
link is expedient to begin with the calculation of elastic properties, the selection of
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suitable materials and forms.
In general, the proposed device can be designed in a wide range of the size range �
from millimeters to several tens of centimeters. The overall dimensions of the device
(in particular, the linear dimensions of the elastic element) directly a�ect on the
properties of the operating link and, consequently, on the technical characteristics
of the entire mechanism. This feature allows us to expand an application area of
the proposed actuator.
When making a selection of a material for the elastic element, attention should
be paid to the following parameters: high elastic properties, durability, endurance
range, and also its mechanical characteristics have to be stability over time.
In this work, as an example of parameters calculation of elastic element were used
solid rods of rectangular cross section with dimensions of 5x10 and 7x10 mm,
and 70 mm length. As materials for manufacturing, the following were selected:
high-quality carbon steel (65), manganese steel (65G), silicium steel (60S2) and
chromium-vanadium steel (50HFA).
To determine the mechanical properties of an elastic element, let us consider it as
a rectilinear rod which is �xed one end and being under the in�uence of pressure
force, that directed along the longitudinal axis of the rod and acting on its free end
(see Fig. 7) [4].

Figure 7: The process of changing a shape of the rod under action of force: P �
load force, Pcr � critical force, M � bending moment, ∆ � deviation of the rod
end, l � length of the elastic rod.

For P < Pcr only the central compression of the rod occurs. For P > Pcr the rod
operates on the joint action of compression and bending. Even with a small excess
of the critical load, the de�ections of the rod end and the occurred �exural stress
are quite signi�cant. To determine Pcr, we used the following expression:

Pcr =
π2EJ

µl2
(2)

where EJ � �exural sti�ness, which is determined as a product of the Young's
modulus of material elasticity E and the moment of inertia of the cross-sectional
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J ; µ � factor depending on the end conditions of the rod (in our case µ = 2); l �
length of the elastic rod [11].
The loss of stability of the rod occurs until the critical longitudinal compressive
stress of the rod is reached which is equal to a yield stress or a proof strength for
ductile materials, or ultimate compressive strength for brittle materials [12].
The peculiarity of the loss of stability lies in the fact that it occurs suddenly and at
low stress values, when the strength of the material is nowhere near exhausted [13].
From the foregoing, it can be concluded that for deviation of the free end of the
rod (as a consequence, the displacement of the movable base of the actuator), it is
necessary to apply a force which is greater than the critical value, but the magnitude
of this applied force should be less than the value at which the rod reaches the
critical longitudinal compressive stress. Therefore, in this paper, only the rods of
great �exibility are considered, i.e. those for which Euler's formula is valid.
Thus, it is possible to compose a system of equations describing the application
condition of an elastic element:

Pcr =
π2EJ

(µl)2
≤ P (3)

σcr =
π2E

λ2
=
π2EJmin

(µl)2A
< σT (4)

λ =
µl

imin

≥ λs =

√
π2E

σp
(5)

where P � the applied force; σcr � the critical longitudinal compressive stress; λ �
the slenderness ratio of a rod; Ð� � the cross-section area; σT � the yield stress;
imin � the minimum cross section radius of inertia; λs � the limit slenderness ratio
of a rod; σp � the proportional elastic limit.
Using the conditions of application of the elastic element that were described above,
we can complete a table in which all the mechanical properties and features of the
elastic rods for some materials are displayed (see Table 1). The materials, which for
their properties are most suitable in the manufacture of elastic elements, were listed
in this table as examples.

5 Conclusions

In conclusion we have researched recuperation mechanisms which is used in actuators
for partially restore of the spent energy. In the course of the work, we have designed
the recuperation mechanism of an energy-e�cient actuator based on an elastic el-
ement and have selected and calculated parameters of the working link which was
made in the form of an elastic solid steel rod of rectangular cross-section. This
mechanism has a simpler construction in comparison with the studied analogues
due to reducing of connecting nodes and kinematic pairs number. The proposed
device can �nd its application in many areas of mechanical engineering, especially
under designing of various actuated parts of machines and mechanisms which have
a purpose to convert an applied force into translational motion. Also, this actuator
can be used in robotechnics area as a new type of energy e�cient mechanism.
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Table 8: The calculated parameters of the elastic rod.

Material Cross-
section
dimen-
sion, mm
x mm

Length
of elas-
tic rod,
mm

Critical
force
Pcr, N

Applied
(loading)
force Ð ,
N

De�ection
of the rod
end, mm

Bending
force, N

1.2 43.1 0.006
5 x 1 70 4 43.01 44 0.019

Steel 6.9 46.15 0.033
65 1.4 60.3 0.005

7 x 1 70 5.8 60.21 61.7 0.02
6.9 62.4 0.024
1.2 45.2 0.006

5 x 1 70 4.9 45.12 46.7 0.023
Steel 6.7 48.2 0.032
65G 1 63.2 0.004

7 x 1 70 5.4 63.15 64.5 0.018
7.7 66 0.026
0.59 44.5 0.003

5 x 1 70 5.1 44.48 46.2 0.024
Steel 7.2 48 0.034
60S2 0.59 62.3 0.003

7 x 1 70 2.9 62.27 63 0.014
6.6 66.4 0.031
0.98 45.8 0.005

5 x 1 70 3.4 45.74 46.5 0.016
Steel 5.7 48 0.027
50HFA 0.87 64.1 0.004

7 x 1 70 4.6 64.03 66 0.022
6.4 68 0.03
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Abstract

Small amount of hydrogen concentration impact appears signi�cantly in
material fatigue and cracks propagation. Resonant e�ect is observed at fa-
tigue. This e�ect was described by a model of bicontinuous medium containing
hydrogen [1], [2] and was detected experimentally later [3].

Signi�cant impact of small di�usion - mobile hydrogen concentration to
metal fatigue was observed in non-cyclic static and dynamic loading. Hydro-
gen embrittlement areas were localized. Hydrogen embrittlement sites were
formed during metal fracture. Model HELP (Hydrogen-enhanced localized
plasticity) is generally used to describe the observed phenomena [4]. The base
physical mechanism couldn't be represented in the critical hydrogen concen-
tration, which could be observed experimentally. This and calculation com-
plication are major weak points of the model.

During the testing it had been found that hydrogen was concentrated in a
thin boundary layer at the surface of a metal specimen [8]. The result makes
it possible to describe new models of hydrogen e�ect to material mechanical
properties.

A boundary layer mechanical properties degradation e�ect due to accumu-
lation of di�usion - mobile hydrogen was modeled by �nite element method.

The cylindrical corset samples with the annular crack were examined be-
cause extensive experimental data exist for such cases.

The results of hydrogen concentration from [8] were applied in the model.
The bicontinuous model of a boundary layer was chosen as a base model for
material properties examination.

A boundary layer thickness and mechanical properties degradation e�ect on
tensile strength, which mostly used in previous studies, was analyzed. Tensile
strength dependence on deteriorated layer thickness and level of the properties
degradation was plotted.

Degradation of mechanical properties at a depth of the grain size of poly-
crystalline metal doesn't lead to signi�cant tensile strength change. Only a
model of bicontinuous material for the entire specimen could explain experi-
mentally observed e�ects.
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1 Introduction

Hydrogen e�ect on high strength steel is well known problem due to the degradation
of mechanical properties caused by hydrogen accumulation. Moreover, small amount
of hydrogen concentration impact appears signi�cantly in material fatigue and cracks
propagation.
Resonant e�ect is observed at fatigue. This e�ect was described by a model of
bicontinuous medium containing hydrogen [1], [2] and was detected experimentally
later [3].
Signi�cant in�uence of small di�usion � mobile hydrogen concentration was ob-
served during the non-cyclic static and dynamic loading. Hydrogen embrittlement
areas were localized. Hydrogen embrittlement sites were formed during metal frac-
ture. Model HELP (Hydrogen-enhanced localized plasticity) is generally used for
description of the observed phenomena [4]. But the base HELP physical mechanism
couldn't be represented, because it is possible only with the hydrogen concentration,
which couldn't be observed experimentally. This and calculation complication are
major weak points of the model. Model HEDE (hydrogen-enhanced decohesion) [5]
doesn't correlate with experimental data about the critical concentrations of hydro-
gen too. As a result, last articles [6] propose to synergy between HELP and HEDE
models. This approach looks universal. However both models consider nonlinear
equations and simple linear combination is impossible. Model HELP proposed for
description of cracks propagation and it's localized model. HEDE describes grains
cohesion and shift. Most likely, they are couldn't be combined in one material
without prior linearizing of de�ning equations [7].
During the testing it had been found that hydrogen was concentrated in a thin
boundary layer at the surface of a metal specimen [8]. Testing was performed to
observe di�erent specimens fracture under various mechanical loadings. There are a
number of studies to describe hydrogen e�ect in various materials consider condition
with or without concentrator, as example [9].
New models are required to describe hydrogen e�ect to material mechanical proper-
ties. And existing independent experimental data create base for models veri�cation.

2 Material and methods

2.1 Hydrogen distribution

The plane corset samples of steel 14HGNDC were examined. Sample size is
900 × 120 × 17 mm3. Width of the working portion of the sample was 70 mm.
Series of tests were performed to study tensile strength, low-cycle and multicycle
fatigue. Samples were cutting on pieces with size 6 × 6 × 17 mm3 after failure for
measurement of the hydrogen concentration. Hydrogen analyzer AV-1 was used for
measurements.
The half of specimens analyzed without additional polishing. The another half was
polished manually in the depth of 0.1 mm layer. Upper and lower specimen edge's
had been polished only. Therefore, rolled boundary layer was deleted, which contacts
with the environment air during mechanical testing. Specimens were cut also from
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unloaded part of sample, as well as from loaded.
Average hydrogen concentration in specimens with removed boundary layer is 0.25
ppm. Unloaded part of corset samples with boundary layer consider 0.42 ppm
hydrogen concentration.
Loaded part of samples with boundary layer consider hydrogen concentration in
range of 0.42 ppm to 0.95 ppm. Maximum values observed in the main crack, which
lead to samples fracture.
Hydrogen concentration could be calculated by subtraction method, considering
thickness of boundary layer. Initially boundary layer accumulates approximately 10
ppm hydrogen during rolling stage. Hydrogen are redistributed and accumulated
additionally, during tensile phase. Boundary layer around main crack consider up
to 60 ppm hydrogen. This means that there is the hydrogen induced fracture during
mechanical testing under normal environment conditions.
Nonetheless, this phenomenon should be further analyzed. It would be feasible to
use the model for this purpose.

2.2 Hydrogen-induced fracture model

The purpose of this study is the modeling of fracture in cylindrical steel samples,
caused by mechanical properties degradation created by di�usion � mobile hydrogen
accumulation in the boundary layer.
The simple model of material heterogeneity examined to study impact of mechanical
properties degradation. Plasticity is simulated by bilinear material model.
The cylindrical corset samples with the annular crack examined because extensive
experimental data exist for such cases (see Fig. 1). ANSYS/LS-DYNA is used for
fracture simulation.
The explicit dynamic structural analysis method used for modelling. Axisymmetric
2D model used assumes that a 3D model and its loading can be generated by re-
volving a 2D section 360◦ about the y-axis. It reduces number of elements in the
model, increases solving time and allows to plot section strain-stress result without
additional tools. The geometry has to lie on the positive x-axis of the x-y plane due
to symmetry with dimensions shown in the �gure 1. Boundary layer thickness is in
range of 0..50 Âµm.
2D model are meshed by 2D Solid 162 axisymmetric elements. The Fig. 2 are show
3D revolving a section in 270◦ with speci�c mesh in stress concentrations area.
Boundary conditions (loads and constraints) are:

y = 0 : uy = 0,

y = L : uy = vy · t,

x = R : n · σ = 0.

The lowest edge of section is �xed. The upper edge is moved with constant velocity
vy = 3 mm/c. Material properties are based on data from cf. [8] about hydrogen
concentration and from cf. [10] about high strength steel AISI 4135 (see table 9).
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Figure 1: Cylindrical model with
concentrator

Figure 2: Finite element model
revolved in 3/4

Table 9: Material properties

Steel AISI 4135

E 200 GPa
ν 0.32
σy 1 350 MPa
ET 763 MPa
ρ 7 865 kg/m3

εfailure 0.003

Boundary layer

σy H concentration I 500 MPa
εfailure H concentration I 0.00065
σy H concentration II 400 MPa

εfailure H concentration II 0.0005

3 Results and discussion

Boundary layer thickness and mechanical properties degradation e�ects on the max-
imum of the �rst principal stress were analyzed. The maximum of the �rst principal
stress measured in the point, shown in the Fig. 3. Relation between the maximum
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stress and boundary layer thickness is plotted in the Fig. 4.

Figure 3: The �rst principal
stress point

Figure 4: Maximum stress vs
boundary layer thickness depen-
dence

The maximum stress decrease is 19 MPa as shown in the graph and it is not more
than 4% from decreasing of the initial value. Consequently, degradation of mechan-
ical properties at a depth of the grain size of polycrystalline metal does not lead to
signi�cant tensile strength change.
However, e�ect of the hydrogen accumulation into the boundary layer and hydrogen-
induced fracture, which we detected in case of mechanical fracture, was explained
in the research [11] for other cases. It may be assumed that surface sorption of
hydrogen from environmental is one of the main fracture mechanisms. The model
of bicontinuous material, which was developed in [12], has not consider this e�ect
of boundary layer.

4 Conclusions

Experimental data is collected for single-axis tensile loading of corset samples. It
shows that leading mechanisms of fracture is hydrogen accumulation in the thin
boundary layer with further creation and propagation of cracks.
Hydrogen-induced mechanical properties degradation analyzed on cylindrical corset
samples from high strength steel. Degradation of mechanical properties at a depth
of the grain size of polycrystalline metal does not lead to signi�cant tensile strength
change.
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Only a model of bicontinuous material for the entire specimen could explain exper-
imentally observed e�ects.
This phenomenon should be further analyzed by the model, which explain degrada-
tion of boundary layer with high hydrogen concentration during fracture.
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Abstract

In this work, the laminar steady power-law �uid �ow in a pipe with sudden
contraction is considered taking into account viscous dissipation, dependence
of the rheological characteristics on the temperature, and constant tempera-
ture on the rigid wall. The �ow is described by the motion, continuity, and
energy equations using stream function, vorticity, and temperature variables.
This system of equations is enclosed by the Ostwald de Waele power law with
a temperature dependence of the consistency coe�cient de�ned by exponential
law. For numerical solving, the �nite-di�erence method based on the alter-
native directions scheme is used. The di�erence equations are solved by the
sweep method.

As a result of parametrical calculations, the �ow kinematic characteristics
were studied depending on the power-law index and dimensionless criteria.
The e�ect of viscous dissipation on the �ow structure was determined, and
the temperature �eld was obtained in a wide range of basic parameters. The
calculated results were veri�ed and compared with available data.

1 Introduction

Laminar �uid �ows in pipes with sudden contraction are frequently encountered in
various technical applications. In particular, these same �ows are realized in the
industrial equipment applied for a polymer processing by casting method. Arrang-
ing of e�cient manufacturing procedures requires both a detailed investigation of
the �ow structure, head and rate determining, and estimation of hydraulic resis-
tance provided by processing line components. In general, polymeric �uid �ows
are characterized by non-Newtonian rheological behavior and non-isothermal prop-
erties caused by mechanical energy dissipation, chemical heat sources, and various
heat-transferring boundary conditions. In such processes, physical properties of the
medium are temperature-dependent.
Since the �ows through sudden contraction �nd a widespread industrial application,
they attract much attention of the researchers, at least from the middle of last
century. The results of investigation on the laminar isothermal �uid �ow through
contracting geometries available at that time were considered in [1, 2]. These papers
include a detailed discussion on the �ow structure and kinematics, pressure losses
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depending on the Reynolds number and contraction ration for Newtonian and non-
Newtonian �uids. The more recent studies were carried out and re�ected in [3, 4,
5, 6].
The number of signi�cant di�culties appears when solving the problem of non-
isothermal non-Newtonian �uid �ow taking into account mechanical energy dissipa-
tion and temperature-dependent rheological parameters. Therefore, in most cases,
the theoretical studies of the �ow and heat transfer with varying physical character-
istics of the �uid are implemented using approximate solution or numerical methods
at simplifying assumptions.
One-dimensional problems on the steady non-isothermal viscous �ow can be solved
analytically. The pioneering works containing analytic solutions of such problems
appeared in the middle of last century [7, 8, 9, 10]. The stability of obtained sta-
tionary solutions and a corresponding phenomenon referred to as a hydrodynamic
thermal explosion are discussed in [11, 12]. The research results regarding considered
problem are described in the following monographies [13, 14, 15]. Non-isothermal
Newtonian and non-Newtonian �uid �ows in sudden contractions are studied in
[16, 17, 18].
The purpose of this work is to simulate numerically a steady non-isothermal power-
law �uid �ow in a pipe with sudden contraction in order to evaluate the e�ect of
viscous dissipation on the kinematics of the process, �ow structure, and temperature
and apparent viscosity distributions.

2 Formulation of the Problem

The laminar steady power-law �uid �ow through an axisymmetric sudden contrac-
tion under non-isothermal conditions is considered. The �ow region is depicted in
Fig. 1.

Figure 1: Flow region

The mathematical model of the �ow includes the following dimensionless equations
in terms of stream function, vorticity, and temperature [19]:

∂(vω)

∂r
+
∂(uω)

∂z
=

2 n · B
Re

(
∆ω − ω

r2

)
+

2 n · S
Re

, (1)
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∆ψ − 2

r

∂ψ

∂r
= −rω, (2)

∂(vθ)

∂r
+
∂(uθ)

∂z
=

2

Pe

(
∆θ + 2 n−1A2B · Br

)
− vθ

r
, (3)

where, the source term (S) and the intensity of the rate of strain tensor (A) are
given as

S = 2
∂2B

∂r∂z

(
∂v

∂r
− ∂u

∂z

)
+

(
∂2B

∂z 2
− ∂2B

∂r2

)(
∂u

∂r
+
∂v

∂z

)
+

+2
∂B

∂z
· ∂ω
∂z

+ 2
∂B

∂r
· ∂ω
∂r

+
∂B

∂r
· ω

r
,

A =

√
2

(
∂u

∂z

)2

+ 2

(
∂v

∂r

)2

+ 2
(v

r

)2
+

(
∂u

∂r
+
∂v

∂z

)2

.

The stream function (ψ) and vorticity (ω) are de�ned as follows:

v = −1

r

∂ψ

∂z
, u =

1

r

∂ψ

∂r
, (4)

ω =
∂v

∂z
− ∂u

∂r
. (5)

The system of equations is completed by a rheological power law, which speci�es
temperature-dependent apparent viscosity by formula [19]:

B = exp [−θ] An−1 , (6)

where, n is the power-law index. For values of n between 0 and 1, the apparent
viscosity is shear-thinning, for n > 1, the apparent viscosity is shear-thickening, and
for n = 1, the Newtonian apparent viscosity model occurs.
In the equations stated above, v, u are the radial and axial velocity components,
respectively, θ = β (T − T1 ) is the dimensionless temperature, T and T1 are the di-
mensional temperatures of the �uid in the �ow and on a solid wall, respectively, and
D = 2R1 is the diameter of the downstream pipe. The typical scales for space, veloc-
ity, and apparent viscosity are the radius of the downstream pipe (R1 ), the average

velocity in the downstream pipe (U), and the value of k1

(
U
R1

)n−1
, respectively.

The dimensionless Reynolds, Peclet, and Brinkman numbers are represented as

Re =
ρU 2−nDn

k1
, Pe =

cρUD

λ
, Br =

k1D2β

λ

(
U

D

)n+1

.

Here, k1 = k0 exp [−β (T1 − T0 )] is the consistency coe�cient at T1 , k0 is the con-
sistency coe�cient at T0 , β is the temperature dependency coe�cient; ρ is the
�uid density, c is the heat capacity, and λ is the thermal conductivity, which are
considered to be constant.
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At the inlet boundary (Γ1 ), the velocity and temperature pro�les are calculated
corresponding to a fully developed one-dimensional non-isothermal �uid �ow with
a speci�ed constant �ow rate in the in�nite pipe. Based on the obtained velocity
pro�le, the stream function and vorticity are calculated according to Eqs.(4,5), and
assigned as an inlet boundary conditions. On the rigid walls (Γ2 ), the no-slip bound-
ary conditions are realized, and the dimensionless temperature is set to zero. At the
output boundary (Γ3 ), the derivatives of stream function, vorticity, and tempera-
ture with respect to z are set to zero. The inlet and outlet boundaries are supposed
to be remote from contraction plane to exclude the e�ect of the latter on the �ow
behavior in the vicinity of inlet and outlet sections. Along the axis of symmetry
(Γ4 ), the symmetry conditions are applied.
Consequently, the boundary conditions are written as follows:

Γ1 : u = f1 (r), ψ =

r∫
0

urdr , ω = −∂u

∂r
, θ = f2 (r), z =0, 0≤ r ≤ R2

R1

;

Γ2 : ψ = const , ω = −1

r

∂2ψ

∂r2
, θ =0, r =

R2

R1

, 0 ≤ z ≤ L1

R1

,

ψ = const , ω = −1

r

∂2ψ

∂z 2
, θ = 0, 1 ≤ r ≤ R2

R1

, z =
L1

R1

,

ψ = const , ω = −∂
2ψ

∂r2
, θ = 0, r =1,

L1

R1

≤ z ≤ L1

R1

+
L2

R1

;

Γ3 :
∂ψ

∂z
= 0,

∂ω

∂z
= 0,

∂θ

∂z
= 0, z =

L1

R1

+
L2

R1

;

Γ4 : ψ = 0, ω = 0,
∂θ

∂r
= 0, r =0.

3 Method of Solution

During numerical simulation of the considered �ow, an asymptotic time solution of
the unsteady �ow equations was obtained in order to yield a steady-state solution
of the initial problem [20]. The �nite-di�erence method based on the alternative
directions scheme is used to implement the di�erence approximation for governing
equations [21]. The obtained di�erence equations are solved by the sweep method
[20].
A set of calculations was carried out on the sequence of square grids intended to val-
idate the numerical algorithm and to verify the approximating convergence. Distri-
butions of the axial velocity and temperature along contraction plane are presented
at various grid steps (h) in Fig. 2. A resulting data analysis shows an approximat-
ing convergence of the method. The following calculations are implemented for a
di�erence grid with h=0.025.
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Figure 2: Distributions of the (a) velocity and (b) temperature along contraction
plane at Re=1, Pe=100, n=0.8, and R2

R1
=2

4 Results and Discussion

In the considered problem of the power-law �uid �ow in a pipe with sudden contrac-
tion (R2

R1
=2), the lengths of upstream and downstream pipes are assumed to be L1

R1
=8

and L2

R1
=40, respectively. Due to the fact that such �ows are typically characterized

by small Reynolds numbers, the value of Re is �xed at 1 in this work. The Brinkman
number was stated to be Br=1, providing an existence of stable stationary solution.
In general, the �ow �eld observed in a pipe with sudden contraction consists of
three distinct �ow regions in both isothermal and non-isothermal cases. The �rst is
a one-dimensional �ow zone appearing near the inlet section, which is referred to as
a fully developed �ow and is recognized by the parallel to the wall streamlines (Fig.
3). The second is a two-dimensional �ow zone occurring upstream and downstream
of contraction plane including recirculating region at the corner. This zone is char-
acterized by distortion of the streamlines towards the centerline as the contraction
plane is approached. The extension of this region is strongly dependent upon the
governing parameters such as Reynolds number, Peclet number, power-law index,
and contraction ratio. As the downstream pipe is entered, the �ow tends to reach
the fully developed �ow conditions, where the third (one-dimensional) zone appears.

Figure 3: Non-isothermal �ow pattern (Pe=100, n=0.8)

Based on the obtained �ow pattern, the non-dimensional geometrical characteristics
are imposed in order to implement a quantitative analysis of the �ow. These are
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the length of recirculating �ow region (L), and the length of upstream (l1) and
downstream (l2) two-dimensional �ow zones (Fig. 3). Since the �ow structure
is strongly dependent upon rheology and temperature, it is of major interest to
consider both isothermal and non-isothermal �ow formation at varying power-law
index. The results of parametric study revealing the e�ect of power-law index on the
lengths of two-dimensional �ow zones at various thermal conditions are presented
in Table 1.

Table 10: The lengths of two-dimensional �ow zones versus power-law index

isothermal �ow non-isothermal �ow non-isothermal �ow
(Pe=10) (Pe=100)

n 0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

l1 3.85 3.225 2.75 3.975 3.375 2.875 3.875 3.25 2.775
l2 1.325 1.025 0.875 4.275 4.725 5.025 12.775 16.225 19.025
L 0.3811 0.4854 0.5955 0.3470 0.4162 0.4876 0.3963 0.4501 0.5589

Figure 4: Distribution of the apparent viscosity (a,b) and temperature (c,d) in the
vicinity of contraction plane at n=0.8: (a,c) Pe=10 and (b,d) Pe=100

Comparing isothermal and non-isothermal �ows, the tendencies for l1 and L are
found to be similar, i.e. increasing power-law index leads to a decrease in the
length of upstream two-dimensional �ow zone and to an increase in recirculating
�ow region. However, behavior of the downstream two-dimensional �ow zone is
signi�cantly a�ected by non-isothermality. The values of l2 obtained for isothermal
�ow are di�erent from those for non-isothermal �ow: in the �rst case, l2 is found to
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decrease in size with increasing power-law index, and in the second case, an increase
in l2 is observed.
Figures 4,5 demonstrate the e�ect of power-law index and Peclet number on the
apparent viscosity and temperature distribution in the immediate vicinity of con-
traction plane. It is evident that increase in Pe provides changes in the apparent
viscosity and temperature �elds, and those are more signi�cant for the latter. An
increased heat transfer due to convection (as compared to conduction) displaces the
heated region towards outlet section and changes the temperature maximum in the
�ow �eld. Thus, the fully developed temperature distribution is reached at a cer-
tain distance from contraction plane, and this distance increases with higher Peclet
number.

Figure 5: Distribution of the apparent viscosity (a,b) and temperature (c,d) in the
vicinity of contraction plane at n=1.2: (a,c) Pe=10 and (b,d) Pe=100

5 Conclusion

A steady power-law �uid �ow through an axisymmetric sudden contraction un-
der non-isothermal conditions was numerically simulated using the �nite-di�erence
method. The �ow kinematic characteristics such as the lengths of two-dimensional
�ow regions were obtained for shear-thinning, Newtonian, and shear thickening �u-
ids, and compared with those determined in the isothermal case. It was revealed
that the accounted heat generation due to viscous dissipation had little e�ect on
the length of both recirculating region and upstream two-dimensional �ow zone,
and, in contrast, it provided a signi�cant increase in the length of downstream two-
dimensional �ow zone, which enhanced with higher power-law index.
A parametric study was implemented in order to evaluate the impact of rheology and
thermo-physical properties on the apparent viscosity distribution and heat transfer
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behavior. An increase in the Peclet number was found to extend a distance from
contraction plane to the region where the fully developed temperature distribution
occurred.
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Abstract

In this paper hypotheses are accepted, which adequately replace properties
of asymptotic solution of boundary-value problem of plane stress state of mi-
cropolar theory of elasticity with constrained rotation in thin two-dimensional
region. On the basis of them applied model of bending deformation of thin
beams is constructed. The appropriate algorithm of the �nite element method
is developed for solving boundary problems of statics and free oscillations of
bending deformation of micropolar elastic thin beams with constrained rota-
tion. On the basis of the analysis of the numerical results e�ective properties
of the micropolarity of the material are established compared to the classical
case.

1 Introduction

The question of mathematical modeling of an object [1] generates a clear action
plan. It can be conditionally divided into three stages: model-algorithm-program.
This paper relates to the mathematical modeling of bending deformation of elastic
thin beam in the formulation of the moment theory of elasticity with constrained
rotation and with consideration of transverse shear strains, also to the development
of the �nite element method for solving applied problems in this �eld.
In the �rst part of the paper previously accepted approach approach [2-4] is de-
veloped and based on the equations of the plane problem of the moment theory of
elasticity with constrained rotation [5] an applied model of bending deformation of
thin beam is constructed with the derivation of the formula for the density of the
potential energy of deformation.
The �nite element method (FEM), which is closely connected to a personal computer
and completely corresponds to it, is very popular now among the numerical methods.
The main functional For FEM in the form of displacements is the total potential
energy of the system [6,7].
In the second part of the paper an FEM is developed for solving concrete problems of
determination the stress-strain state of the bending deformation of micropolar elastic
thin beams with constrained rotation, which is realized on a personal computer.
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2 Problem statement

An isotropic micropolar elastic parallelepiped of constant height 2h, length a and
thickness 2h1 = 1 is considered. The coordinate plane x1x3 is placed in the middle
plane of the parallelepiped. The axis x3 is directed along the height and x1 -along
the length of the parallelepiped, which divides the height 2h in half. It is assumed
that plane stress state is realized in direction of the axis x2. Basic equations of
the generalized plane stress state of micropolar theory of elasticity with constrained
rotation are given in paper [5].
Our aim is to construct an applied (one-dimensional) model of bending deforma-
tion of thin beam with transverse shear deformations, taking the equations of the
two-dimensional theory of the generalized plane stress state of micropolar elasticity
with constrained rotation as a basis, with application of the already developed [2-4]
approach.
The description of the law of the change of displacements and rotation along the
beam's thickness is taken to be linear[2]:

V3 = w(x1), V1 = x3ψ1(x1), ω2 = Ω2(x1). (1.1)

In papers [2-4] the kinematic hypothesis (1.1) is called Timoshenko's generalized
hypothesis for the micropolar case (since the formulas for displacements in (1.1)
coincide with the formulas of Timoshenko's kinematic hypothesis [8] in the classical
theory of elasticity).
In the micropolar theory of elasticity with constrained rotation, the rotations of body
particles are expressed through displacements as in the classical theory of elasticity
(−→ω = 1

2
rot
−→
V ), so that in this case we will have:

ω2 = Ω2(x1) =
1

2
(ψ1 −

dw

dx1
). (1.2)

Besides the kinematic hypothesis (1.1), static hypotheses were developed in paper
[2] to reduce two-dimensional problem to one-dimensional one.
On the basis of these hypotheses one-dimensional model (applied model) of the
bending deformation of micropolar elastic thin beams with constrained rotation will
be obtained from the above mentioned two-dimensional theory:

Equilibrium equations(motion)

∂N13

∂x1
= −2q(+2ρh

∂2w

∂t2
),

∂M11

∂x1
−N31 = −h · 2q1(+

2ρh3

3

∂2ψ1

∂t2
),

∂L12

∂x1
+N31 −N13 = −2m3(+2Jh

∂2Ω2

∂t2
). (1.3)

Elasticity relations
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N13 +N31 = 4hµΓ13,

M11 =
2Eh3

3
K11, L12 = 2Bhk12. (1.4)

Geometrical relations

Γ13 =
∂w

∂x1
+ ψ1, K11 =

∂ψ1

∂x1
,

k12 =
∂Ω2

∂x1
, Ω2 =

1

2
(ψ1 −

∂w

∂x1
). (1.5)

Here N13, N31 are averaged forces along the beam thickness; M11, L12 are averaged
moments of power stress σ11 and moment stress µ12 along the beam thickness; Γ13

is shear deformation; K11 is beam axis bending (connected with transfer moment
M11), and k12 is beam axis bending (connected with transfer moment L12); 2q is
intensity of the load distributed normally to the beam axis; 2q1 is intensity of the
load distributed parallel to the beam axis; 2m3 is intensity of external moment; E
and µ are classical modules of elasticity and shear of beam material; B is new elastic
constant of beam micropolar material.
Boundary conditions on the edge (on x1 = 0 or x1 = a ) of the beam are the
followings:

M11 = M∗
11, or ψ1 = ψ∗1,

N13 = N∗31, or w = w∗,

L12 = L∗12, or Ω2 = Ω∗2. (1.6)

General form of the total potential energy functional of the system is expressed as
follows:

U =

a∫
0

(W − 2q1hψ1 − 2qw − 2m3Ω2) dx1−

− ((M11ψ1 +N13w + L12Ω2)x1=a − (M11ψ1 +N13w + L12Ω2)x1=0) , (1.7)

where

W = E
h3

3
K2

11 + hµΓ2
13 +Bhk212 . (1.8)

W is linear density of deformation potential energy of micropolar beam during the
bending (Ω2 expressed by formula (1.2)).
Minimizing the functional (1.7) basic di�erential equations (1.3)-(1.5) and natural
boundary conditions (1.6) will be obtained for bending deformation of micropolar
beam.

3 Sti�ness matrix of �nite element of micropolar
beam

Let's consider determination of sti�ness matrix of micropolar beam �nite element.
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Following expansions in the form of cubic polynomials are chosen for de�ection w,
complete rotation ψ1 of normal element:

w(x1) = a0 + a1x1 + a2x
2
1 + a3x

3
1,

ψ1(x1) = b0 + b1x1 + b2x
2
1 + b3x

3
1. (2.1)

Here ai, bi are coe�cients, which are expressed with the help of nodal displacements
and rotations. Nodal displacements are denoted as follows:

w(0) = δ1, w
′
(0) = δ2, ψ1(0) = δ3, ψ

′

1(0) = δ4,

w(a) = δ5, w
′
(a) = δ6, ψ1(a) = δ7, ψ

′

1(a) = δ8, . (2.2)

As we can see above mentioned �nite element has eight degrees of independence.
Substituting (2.1) into (2.2), coe�cients ai, bi will be expressed with the help of nodal
displacements and rotations δk. Substituting ai, bi into (2.1), we obtain following
approximations for displacements and rotations.

w(x1) =
∑

i=1,2,5,6

δiNi(x1),

ψ1(x1) =
∑

i=3,4,7,8

δiNi(x1), (2.3)

here Ni(x) are form functions of the element:

N1 = N3 = 1− 3

a2
x21 +

2

a3
x31, N2 = N4 = x1 −

2

a
x21 +

1

a2
x31,

N5 = N7 =
3

a2
x21 −

2

a3
x31, N6 = N8 = −1

a
x21 +

1

a2
x31. (2.4)

Substituting (2.3) into functional (1.7), after integration we obtain function of eight
independent variables δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8. The minimization of functional (1.7)
reduces to the determination of the minimum of function of eight independent vari-
ables:

∂U

∂δk
= 0 (k = 1, 2, 3, . . . , 8).

Calculating corresponding partial derivatives, we obtain system of linear algebraic
equations:

[K] · {δ} = {P}. (2.5)

Here K is sti�ness matrix of element with size 8 × 8, which is the most important
concept of the �nite element method; {δ}T = {δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8} is vector of
nodal displacements and rotations; {P}T is vector concentrated nodal forces and
moments.
Expressions for the elements of the sti�ness matrix of a �nite element are introduced
below:

K11 = −K15 = K55 =
6h(5B + 2a2µ)

5a3
,

K12 = K16 = −K25 = −K76 =
3Bh

a2
+
hµ

5
,
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K13 = K17 = −K35 = −K57 = −hµ,

K14 = −K18 = −K23 = K27 = K36 = −K45 = K58 = −K67 =
Bh

2a
− haµ

5
,

K22 = K66 =
2Bh

a
+

4ahµ

15
, K24 = K68 =

Bh

4
, K26 =

Bh

a
− haµ

15
,

K28 = −K46 = −Bh
4

+
a2hµ

30
, K33 = K77 =

h(21B + 26a2µ+ 28h2E)

35a
,

K34 = −K78 =
h(21B + 44a2µ+ 28h2E)

420
,

K37 =
h(−21B + 9a2µ− 28h2E)

35a
,

K38 = −K47 =
h(21B − 26a2µ+ 28h2E)

420
,

K44 = K88 =
ah(21B + 6a2µ+ 28h2E)

315
,

K48 = −ah(21B + 18a2µ+ 28h2E)

1260
.

4 Model calculation of micropolar elastic beams
with constrained rotation for the static problem

As an example we'll consider problem of the bending of the beam when evenly
distributed load with intensity q is acting along the axis x1 (in this case q1 = 0, q 6=
0,m3 = 0) and the edges are hinged-supported. Boundary conditions for hinged
supported beam are follows:

w = 0, M11 = 0, L12 = 0, on x1 = 0; a. (3.1)

We obtain following expression for functional (1.7) with consideration of (3.1):

U =

a∫
0

(W − 2qw)dx1.

After the constructing of the sti�ness matrix K, the vector of equivalent nodal
forces and moments P , with consideration of the boundary conditions (3.1), we
form a system of linear algebraic equations (2.5) corresponding to the considered
problem for di�erent numbers of dividing the beam into �nite elements.
We consider the case when the beam is divided into two �nite elements. Numerical
results (maximum de�ection) of the calculation are given for the case, when the
physical constants have following values: µ = 0, 75MPa, E = 191MPa, B =
1000N , load is q = 0, 5 · 103Pa, and geometrical dimensions of the beam are the
followings: a = 8mm, h = 0.2mm (we also introduce the result for classical theory
of elastic thin beam, when it is bent).
As can be seen from the given values of Table 1, the micropolarity of the material
of the beam increases the sti�ness of the beam compared with the classical case of
the material.
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Table 11: The maximum de�ection of micropolar and classical beam.

Micropolar beam Classical beam

wmax Exact
value

2 �nite el-
ements

4 �nite el-
ements

Exact
value

2 �nite el-
ements

4 �nite el-
ements

wcl
max−wmic

max

wcl
max

(m) 2, 86 ·
10−8

2, 59 ·
10−8

2, 77 ·
10−8

4·10−8 3, 62 ·
10−8

3, 86 ·
10−8

0, 285

5 Dynamic problem of a micropolar elastic beam
with constrained rotation

The general form of the functional of the total mechanical energy (the sum of the
potential energy of deformation and kinetic energy) of a micropolar-elastic beam for
bending deformation is expressed as follows:

Ũ =

a∫
0

(W + ρh
∂2w

∂t2
· w +

ρh3

3

∂2ψ1

∂t2
· ψ1 + Jh

∂2Ω2

∂t2
· Ω2)dx1. (4.1)

In case of free oscillations the main kinematic functions of the problem are introduced
in this way:

w(x1, t) = (a0 + a1x1 + a2x
2
1 + a3x

3
1) sinωt,

ψ1(x1, t) = (b0 + b1x1 + b2x
2
1 + b3x

3
1) sinωt, (4.2)

where ω is frequency of the natural oscillation.
Substituting (4.2) into (4.1), the problem of minimizing the functional (4.1) is re-
duced to the obtaining of the minimum of the function of eight independent variables
( ∂U
∂δk

= 0, k = 1, 2, 3, ...8).
Calculating the corresponding partial derivatives, we obtain the following matrix
equation:

(K − ω2M) · {δ} = 0, (4.3)

where K is sti�ness matrix of �nite element, M is the matrix of masses of a �nite
element.
Expressions for the elements of the matrix of masses of the �nite element are intro-
duced below:

M11 = M55 =
3hJ

5a
+

26haρ

35
, M12 = −M56 =

hJ

20
+

11ha2ρ

105
,

M13 = M17 = −M35 = −M57 =
hJ

4
,

M14 = −M18 = −M23 = M27 = M36 = −M45 = M58 = −M67 =
ahJ

20
,

M15 = −3hJ

5a
+

9

35
ahρ, M16 = −M25 =

h(21J − 26a2ρ)

420
,

M22 = M66 =
h(7aJ + 2a3ρ)

105
, M24 = M68 = 0,
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M26 =
h(−14aJ − 12a3ρ)

840
, M28 = −M46 = −a

2hJ

120
,

M33 = M77 =
13

210
ah(3J + 4h2ρ), M34 = −M78 = 11a2h(

J

420
+
h2ρ

315
),

M37 =
3

140
ah(3J + 4h2ρ), M38 = −M47 = − 13

2520
a2h(3J + 4h2ρ),

M44 = M88 =
ha3J

210
+

2

315
h3a3ρ, M48 = −3ha3J

840
− 1

210
h3a3ρ.

We formulate the equation to determine the frequencies of free oscillations:

|K−1M − 1

ω2
E| = 0.

The results of numerical calculations (when the beam is divided into two �nite
elements) we given for the case, when physical constants of the beam have the
values of the previous problem, and ρ = 7700kg/m3, J = 5, 3 · 10−6kg/m.

Table 12: The lowest frequency of free oscillation ω.

Micropolar beam(sec−1) Classical beam(sec−1)

a(m) h(m) Exact value 2 �nite ele-
ments

Exact value 2 �nite ele-
ments

8·10−3 0, 2 · 10−3 0, 848 · 105 0, 849 · 105 0, 7181 · 105 0, 7184 · 105
10−7 0, 5 · 10−9 0, 1965·1011 0, 1969·1011 0, 1404·1010 0, 1408·1010
10−8 0, 5·10−10 0, 1965·1012 0, 1969·1012 0, 1404·1011 0, 1408·1011

As can be seen from the tables above, the micropolarity of the beam material in-
creases the frequency of oscillations, and in the nanosized region, the frequencies are
in the terahertz range.
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Abstract

The results of computations of the thermal and stress-strain state of single-
crystal corset specimens subjected to the action of periodic electric current,
leading to variable inhomogeneous heating and subsequent thermal fatigue
failure, are presented. The in�uence of maximum value and range of tempera-
ture and also delay time at the maximum temperature on the number of cycles
before the macrocrack formation is investigated. Comparison of the computa-
tional results with the experimental data for various single-crystal nickel-based
superalloys showed a good accuracy.

1 Introduction

Single-crystal nickel-based superalloys [1] are widely used for the manufacture of noz-
zle and working blades of gas turbine engines (GTE). The thermal-fatigue strength
of such materials with a pronounced anisotropy and a sensitivity of mechanical
properties to the temperature is currently not fully studied. For the investigation
of thermal fatigue durability under a wide range of temperatures with and without
intermediate delays the experiments are carried out on di�erent types of samples,
including corset (plane) specimen on the installation developed in NPO CKTI [2]
(see Fig. 1 a). Fixed in axial direction by means of two bolts with a massive foun-
dation the corset sample (see Fig. 1 b) is heated periodically by passing electric
current through it. During cycling the maximum and minimum temperatures are
automatically maintained constant.
The objective of the study is to determinate numerically the thermal and stress-
strain states of the corselet specimens under cyclic electric loading and to study
systematically the e�ect of delay at maximum temperature on the thermal fatigue
durability on the base of the deformation criterion [3, 4, 5] of thermal-fatigue failure
for single crystal superalloys using the results of �nite element (FE) simulation of
full-scale experiments. The results of simulation and their veri�cation are obtained
for the di�erent single-crystal nickel-based superalloys: VZhM4, VIN3 and ZhS32.
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a) b)

Figure 1: a) Installation for carrying out experiments on thermal fatigue, b) Geom-
etry corset sample for thermal fatigue experiment.

2 Results of thermo-electric analysis

Modeling of heating process in the corset samples was carried in the FE program
ANSYS with taking into account the temperature dependence of all material prop-
erties, nonstationary Joule heating, the convective heat exchange and radiative heat
transfer between the sample and the environment. The full-scale FE model of ex-
perimentation object including discrete models of the specimen and the setup is
presented in Fig. 2.

Figure 2: Finite-element model for thermoelectric problem.

Modeling of heating processes and thermal fatigue fracture of sample was carried
out for four temperature regimes (modes): 150 ÷ 900, 250 ÷ 1000, 500 ÷ 1050 and
700÷ 1050◦C. The used in FE simulations material properties for the single crystal
nickel superalloy sample and for the steel equipment were taken from literature [6],
[13, 14, 15] (see also Table 1). While specifying the properties of nickel alloy and
steel the implementation of the Wiedemann-Franzâ��s law was controlled: λρe=
LT, where λ is the thermal conductivity,ρe is the speci�c electrical resistance, T is
the temperature in K, L = 2.22 · 10−8WΩK−2 is the Lorentz,s constant.

Table 1.Thermo-electric properties of nickel superalloy used in FE simulations.
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T ◦C 20 200 400 800 1000 1150 Ref.
ρ kg

m3 8550 8500 8450 8350 8330 8310 [13]
Cρ

J
kg·K 440 520 520 575 590 600 [13]

λ W
m·K 7.4 11.2 14.1 19.8 26.7 36.7 [6]

ρe Ω ·m 8.7·10−7 9.3·10−7 1.1·10−6 1.2·10−6 1 · 10−6 8.9·10−7 [6]

The coupled three-dimensional transient thermo-electrical analysis has been per-
formed. Due to the symmetry in respect to the xz and yz planes, a quarter of the
structure was considered. The thermal and electric contacts between the sample
and bolts, between the sample and the foundation were taken into account. The
initial temperature for the sample and the equipment was set to 30 ◦C. For the free
surface of sample the boundary condition of convective heat transfer is used:

qn = h(T − T0), (1)

where n is the normal to body, qn is the heat �ux density, h = 20 W
m2K

is the coe�cient
of convective heattransfer, T0 is the ambient temperature. The condition of radiative
heat transfer was also set on the surfaces of central (high temperature) part of the
sample (10 mm length):

qn = εσSB(T 4 − T04), (2)

where ε = 0.8 is the black factor of the body, σSB = 5.67 · 10−8Wm−2K−4 is the
coe�cient of Stefan-Boltzmann.
The temperature �eld distribution in the VZhM4 sample is shown in Fig. 3a for
the loading regime with Tmax = 1050◦C. Note that the solution of thermo-electric
problem has been obtained for the complete FE model shown in Fig. 2 with tak-
ing into account the equipment.The evolution of temperature spatial-distribution is
given in Fig. 3b (x is a distance from the sample center). The bell-form of the curve
is keeping during whole heating process.

a)
b)

Figure 3: a) Temperature �eld distributions in VZhM4 sample by heating for regime
with Tmax = 900◦C, b) Evolution of temperature distribution along the VZhM4
sample axis for di�erent heating times.

The comparison of FE results with experimental data for axial temperature distri-
bution demonstrates a good agreement for the all considered loading regimes (see,
for example, Fig. 4).
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a) b) c)

Figure 4: Comparison of computational results with experimental data for axial
temperature distributions in VZhM4 sample for regimes with: a) Tmax = 900◦C,b)
Tmax = 1000◦C, c) Tmax = 1050◦C

3 Results of thermo-elasto-visco-plastic analysis

The obtained in thermo-electric problem the spatial and temporal distribution of
the temperature �eld is the base for the strain and stress �eld computation within
the framework of thermo-elasto-visco-plastic problem solution.
The �xing of sample under heating leads to the high stress level and inelastic strain
appearance. The local strain and stress concentration is observed in the central
(working) part of sample. The FE simulation is required for the computation of in-
homogeneous stress and inelastic strain �elds. Modeling of inelastic deformation in
the corset samples has been performed with taking into account of the temperature
dependence of all material properties, anisotropy of mechanical properties of sin-
gle crystal sample, kinematic hardening, inhomogeneous nonstationary temperature
�eld, mechanical contacts bolt/specimen and specimen/foundation, friction between
the contact surfaces, temperature expansion in the specimen, bolt and foundation.
The two FE formulations for the thermo-mechanical problem have been considered:

� with taking into account of equipment;

� without taking into account equipment (simpli�ed formulation [7] for the sam-
ple only).

Using the second formulation provides signi�cant saving computational time due to
reduction in the number of degrees of freedom and refusal to solve a contact problem
that is very actual for the numerous multivariant computations for di�erent regimes
of loading and the crystallographic orientations. One of the aims of the investigations
was the selection of the equivalent (e�ective) length of the sample for the simpli�ed
formulation. The validity of the simpli�ed formulation is based on the comparison
with the results of full-scale formulation (with taking into account equipment), as
well as on the comparison with the relative displacements of two markers measured
in experiments.
In the general case there is no symmetry in the problem (see Fig.4 a) due to
anisotropy of mechanical properties of single crystal sample. However in the im-
portant for practice case of [001] crystallographic orientation of sample the sym-
metry in respect to planes xz and yz (see Fig.4 b) can be introduced. Equipment
and bolts were modeled by linear elastic material (steel), and for the sample the
elasto-viscoâ��plastic model of the material was used.
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The problem was solved in a three-dimensional, quasi-static formulation. As bound-
ary conditions the symmetry conditions were set: zero displacements on the y-axis
on the xz plane and zero displacements on the x-axis on the yz plane. On the lower
side of the equipment zero displacements along the x and z axes were set. On the
bolt cap the pressure of 100 MPa has been applied that is equivalent to the tight-
ening force of the bolt. The mechanical properties for the alloys VZhM4 and VIN3
were taken from the papers [11, 12] and for ZhS32 from [2] (see Table 2 for details).
The mechanical properties of bolts are taken for pearlitic steel [13].
Table 2. Mechanical properties of VZhM4 used in simulations [11]:
T ◦C 20 700 900 1000 1050
E001 MPa 130000 96000 91000 86000 82000
ν - 0.39 0.422 0.425 0.428 0.43
α 1/K 1.1·10−5 1.7·10−5 1.9·10−5 2.1·10−5 2.3·10−5

σY
001 MPa 846 950 - - 820

n - 8 8 8 8 8
A MPA−nc−1 1 · 10−42 1 · 10−29 1 · 10−28 2 · 10−27 1 · 10−26

In simpli�ed formulation (see Fig. 5 d) we consider only the sample without equip-
ment, in which zero displacements on the symmetry planes xz and yz were set, the
outer face of the sample parallel to the symmetry plane xz was �xed in the direction
of the axis x. To exclude solid body motions, a number of points on this face were
also �xed in the direction of the y and z axes.

a) b)

c) d)

Figure 5: Finite-element models in mechanical problem: a) complete model (sam-
ple/bolt/equipment) without symmetry account, b) complete model (sample/bolt/e-
quipment) with symmetry account, c) simpli�ed model (sample only) without sym-
metry account, d) simpli�ed model (sample only) with symmetry account.

Fig. 6 shows distributions of plastic strain intensity for nickel superalloys and
three temperature modes after 7 cycles for thermoplasticity problem in ANSYS
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(for VZHM4 and VIN3 the length of the sample is 42 mm, for ZHS32 is 50 mm).

a) b) c)

Figure 6: Distributions of plastic strain intensity for a) superalloy VZhM4, mode
700÷ 1050◦C; b) superalloy VIN3, mode 500÷ 1050◦C; c) superalloy ZhS32, mode
150÷ 900◦C after 7 cycles.

The Table 6 shows the equivalent (e�ective) length of the sample for the simpli�ed
formulation, which has been found from the condition of equality of the inelastic
strain ranges with complete model for di�erent alloys. In the FE simulations with
acceptable engineering accuracy can be used the value 40 mm. E�ective length takes
into account the compliance of equipment and its variation in considered range has
no appreciable on the results.
Table 6. The equivalent length of the corset sample for di�erent alloys.
VZhM4 VIN3 ZhS32
34-42 mm 38-46 mm 40-52 mm

4 In�uence of delay on the thermal fatigue durabil-
ity

Simulations of inelastic cyclic deformation of corset samples were performed by
means of the FE program PANTOCRATOR [8], which allows to use the microme-
chanical (physical) models of plasticity and creep for single crystals [9, 10]. The
Norton power-type law without hardening was applied to describe creep properties.
The micromechanical plasticity model accounting 12 octahedral slip systems with
lateral and nonlinear kinematic hardening [9] was used in the FE computation for
single crystal alloy.
FE computations were carried out for a part of a corset sample (simpli�ed FE model
with e�ective length of sample equal 40 mm, see Fig. 7a.
The in�uence of the delay at maximum temperature on the number of cycles to the
formation of macro cracks is analyzed in the range from 1 min to 1 hour for the
cyclic loading regimes (see, for example, Fig. 7b) with:

� maximum temperature of 1000◦C and a temperature range of 350◦C and
550◦C;

� maximum temperature of 1000◦C and a temperature range of 750◦C;

� maximum temperature of 900◦C and a temperature range of 750◦C.

The heating times in the cycle were 7s, 25s, 18 s and 28s, the cooling time was 15s,
17s, 40s and 52s for VZhM4. The heating time in the cycle was 25 s, the cooling
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time was 17s for VIN3. The heating times in the cycle was 25 s and 15s, the cooling
time was 15s and 75s for ZhS32. The mechanical properties for the alloys VZhM4
and VIN3 were taken from the papers [11, 12] and for ZhS32 from [2].

a)
b)

Figure 7: a) Finite element model of sample (simpli�ed formulation) for analysis
of delay in�uence;b) temperature evolutions in central point of sample with and
without delay for temperature regime 700-1050 ◦C

Damage calculation and estimation of the number of cycles before the formation of
macrocracks were made on the basis of deformation four-member criterion [3],[4],[5]:

where the �rst term takes into account the range of plastic strain within the cycle,
the second term is the range of creep strain within the cycle, the third term is
unilaterally accumulated plastic strain (ratcheting), the fourth term is unilaterally
accumulated creep strain. The number of cycles before the formation of macrocracks
N is determined from the condition D = 1. The maximum shear strain in the sliding
system with normal to the slip plane n and the sliding direction l is considered as
equivalent deformation. The values k=2, m = 5/4 , C1 = (εpr)

k , C2 = 3/4 ∗ (εcr)
m

are usually accepted, where εpr and ε
c
r ultimate strains of plasticity and creep under

uniaxial tension.
In the FE computations the values of ultimate strain εpr = 0.40 for VZhM4, εpr = 0.36
for ZhS32, εpr = 0.42 for VIN3 were used. Improvement of the accuracy of prediction
of in�uence the delay time on durability can be achieved by the re�nement of the
constant εpr on the basis of data without delay.
The comparison of the results of FE simulations and experiments concerning the ef-
fect of the delay time at the maximum temperature on the thermal fatigue durability
for single-crystal superalloys VZhM4, VIN3 and ZhS32 is given in Fig. 8,9,10.
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a) b)

c) d)

Figure 8: Comparison of results of FE simulation and experimental data for the
alloy VZhM4: a)mode 150÷ 900◦C, heating time is 28s, cooling time is 52s,b)mode
500÷ 1050◦C, heating time is 7s, cooling time is 15s,c)mode 700÷ 1050◦C heating
time is 25s, cooling time is 17s,d)mode 250 ÷ 1000◦C heating time is 18s, cooling
time is 40s.

a) b)

Figure 9: Comparison of results of FE simulation and experimental data for alloy
ZhS32: a) mode 150 ÷ 900◦C, heating time is 25 s, cooling time is 75 s, b) mode
700÷ 1050◦C, heating time is 15 s, cooling time is 15 s.

Figure 10: Comparison of calculation and experiment for alloy VIN3, mode 500-1050
◦C, heating time-25 s, cooling time-17s
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5 Conclusions

The results of the computations show a good agreement with the experiment, which
suggests that the �nite-element computations in combination with application of
deformational criterion can be used to predict the thermal-fatigue strength of various
single-crystal superalloy samples in wide range temperatures.
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Abstract

A study is based on the �nite element investigation of the response of
Mild Steel (MS) and Armox 500T Steel (AS) target subjected to macro and
micro size impactor. The simulations were carried out on target against pen-
etrator with varying masses, sizes, shapes and di�erent in nature (rigid and
deformable projectiles) using ABAQUS/Explicit. The material parameters of
the Johnson-Cook elasto-viscoplastic model was employed for predicting the
behaviour of target. The impact resistance of MS and AS target plates have
been studied against �at nose having masses of 4, 8, 13.5, 27, 32 and 64 kg.
The in�uence of temperature has also been studied numerically for particular
penetrator of large masses. To study the in�uence of nature of projectile, the
simulation were performed on MS and AS targets against deformable 2024
aluminium �at, hardened steel �at and hardened steel conical impactor at 950
and 150 m/s incidence velocity. The study thus presents a detailed investiga-
tion in terms of penetration, perforation and failure mechanism of MS and AS
target and leads to some important conclusions pertaining to the force and
resistance o�ered by the target.

Keywords: Finite element analysis, Armox 500T steel, Mild steel, Flat and conical
nose impactor, Rigid and deformable projectiles

1 Introduction

For successful military operations, high strength steel may be widely considered how-
ever, the structural steels like low strength steels are used in the building, automobile
and industrial applications. For instance, the tallest structures are constructed us-
ing structural steel due to its constructability. High strength and low strength steel
plates are predominantly used as civil, aerospace and military protective structures.
The idea of using these plates is to protect the personnel against accidental loads,
terrorist attacks or international peace keeping operations. Bhat [2] discussed some
basic principles that underlie design of materials e�ective for armour. Brian [3] ob-
served that the IRHA performed better than standard RHA against the L/D 5KE
penetrators. Buchar et al. [5] concluded that the targets of dual hardness exhibit
very good resistance against the impact of AP projectile. Although the increase in
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the hardness of the steel improved its ballistic behaviour, the steel specimens having
either 50 or 60 HRc were broken in a brittle manner rather than perforation by
the projectiles [6]. Hardness levels in steel plates played an important role in the
ballistic performance. When the hardness of the steel plates increased, the penetra-
tion and the ballistic performance. When the hardness of the steel plates increased,
the penetration and propagation ability of the projectile decreased signi�cantly [19].
A detailed literature survey has been carried out on the target and projectiles in
the present study have been carefully identi�ed. The selection of suitable armour
materials for defence applications is very crucial in order to design military vehi-
cles, structural occupancy and military bunkers. The ideal material should possess
the lowest areal density, high ductility and high strength [8, 9, 18, 7]. However,
high strength steel still seems to be an ideal material for armour applications due
to high strength and superior mechanical properties. Also, the investigations on
armour steel plates against normal and oblique impact by di�erent penetrator and
fragments with help of computer tool is interesting [4, 12]. Based on the detailed
literature survey, it is observed that the ballistic resistance of Armox 500T steel
could not be found much studies in the available literature despite the fact that it
possesses high strength, high hardness and high ductility which have been identi�ed
as the ideal properties for armour. The numerical reproduction of the experimental
results is however limited due to the unavailability of strength and fracture param-
eters required for the Johnson-Cook constitutive modeling. It is observed that the
studies on numerical investigations on ballistic resistance of mild steel, Armox steel
target with elevated temperature against large mass �at impactor is limited. Also,
it is observed that the ballistic resistance of Armox 500T steel against di�erent pen-
etrator with varying shape, size and mass is limited. In the present study, impact
resistance of Armox 500T steel and mild steel targets has been studied against �at
nose and conical nose at normal obliquity using ABAQUS/Explicit �nite element
code. The in�uence of temperature has also been studied numerically consider-
ing the fact that target may experience the temperature load from accidently/man
made sources. The temperature was varied as 500, 900 and 1300 ◦K in light of var-
ious scenarios like protective structures against vehicle engine, special application
in industry and blast waves cause various level of temperature. The Johnson-Cook
constitutive model has been employed for predicting the material behavior of the
Armox 500T steel (AS) and mild steel (MS) targets.

2 Constitutive Modelling

The �ow and fracture behavior of projectile and target material was predicted
employing the Johnson-Cook [15] elasto-viscoplastic material model available in
ABAQUS [1] �nite element code. The material model is based on the von Mises yield
criterion and associated �ow rule. It includes the e�ect of linear thermo-elasticity,
yielding, plastic �ow, isotropic strain hardening, strain rate hardening, softening due
to adiabatic heating and damage. The Johnson and Cook [15] extended the fail-
ure criterion proposed by Hancock and Mackenzie [10] by incorporating the e�ect of
strain path, strain rate and temperature in the fracture strain expression, in addition
to stress triaxiality. The fracture criterion is based on the damage evolution wherein
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the damage of the material is assumed to occur when the damage parameter, exceeds
unity: The strain at failure is assumed to be dependent on a non-dimensional plas-
tic strain rate, a dimensionless pressure-deviatoric stress ratio, (between the mean
stress and the equivalent von-Mises stress) and the non-dimensional temperature,
T̂ de�ned earlier in the Johnson-Cook hardening model. When material damage
occurs, the stress-strain relationship no longer accurately represents the material
behavior [1]. The use of stress-strain relationship beyond ultimate stress introduces
a strong mesh dependency based on strain localization i.e., the energy dissipated
decreases with a decrease in element size. Hillerborg's [11] fracture energy criterion
has been employed in the present study to reduce mesh dependency by considering
stress-displacement response after the initiation of damage.

3 Finite Element Modelling

The �nite element simulation of the problem was carried out using ABAQUS/-
Explicit �nite element code. The explicit algorithm of the code was employed for
predicting the perforation phenomenon. The AS and MS target of thickness 3.18 and
4.7 mm was modelled in ABAQUS/CAE as three dimensional deformable contin-
uum. The targets were restrained at periphery with respect to all degree of freedom.
The calibrated JC model discussed in Iqbal et al. [12, 13] was employed to assign the
�ow and fracture behaviour of the target material. The geometry of �at and conical
nose impactor was also created in accordance with its actual dimensions of Gold-
smith and Finnegan [8] as a three dimensional deformable body. The geometry of
large mass �at nose impactor was also created in accordance with its actual dimen-
sions of Jones and Kim [16], as a three dimensional deformable body. As discussed
above the steel core of the projectile has been modelled for all the �nite element
simulations assuming that the brass jacket has stripped o� and had no in�uence the
perforation process. The �ow and fracture behaviour of target [12, 13] as well as
projectile [17] was modelled employing the JC model. The target was meshed with
eight node linear hexahedral elements with hourglass control. The �nite element
model of of a typical target with impactor are shown in Fig. 1. The element size in
the impact zone of the targets for all the simulations of MS and AS were considered
0.2 and 0.35 mm3 respectively and the aspect ratio close to unity. Away from the
impact region, however, the size of element was slightly increased keeping the aspect
ratio unity. The hexahedral elements of 0.9 mm3 was used to discretize the conical
and �at 2024 aluminium deformable projectile throughout its body. The contact
between the projectile and target was modelled by employing the Kinematic con-
tact algorithm, ABAQUS. The projectile was considered as master and the through
thickness contact region of the target as node based slave surface. In the present
study, a coe�cient of friction of 0.02 was assumed between the projectiles and target.

4 Results and Discussion

The simulations were performed on various target and impactor con�guration and
classi�ed into six phases. First phase, the simulations were performed on 4 mm
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Figure 1: Target with (a) �at (b) double nose �at (c) conical (d) 12.7 mm and (e)
7.62 mm impactor

thick targets against 4, 8, 13.5, 27 and 64 Kg mass by 8.1 m/s incidence velocity
(considering the drop of mass from 3.2 m height). Also, the in�uence of temperature
on both the target against varying temperature was studied. Second phase, the
simulation was performed on 3.18 mm thick targets against solid deformable 2024
aluminium �at impactor at 0◦ obliquity against 150 and 950 m/s incidence velocity.
Third phase, the simulation was performed on 3.18 mm thick targets against solid
deformable hardened steel �at impactor against 150 and 950 m/s incidence velocity.
Fourth phase, the simulation was performed on 3.18 mm thick targets against solid
deformable hardened steel conical impactor at 0◦ obliquity against 150 and 950 m/s
incidence velocity. The ballistic resistance for all chosen target thicknesses has been
studied numerically at given incidence velocities. The resistance of monolithic and
layered targets studied in terms of forces and acceleration has been compared and
discussed.

4.1 Response of target by varying mass of �at nose impactor

The impact resistance of 4 mm thick MS plates have been studied against blunt nose
cylindrical object having masses of 4, 8, 13.5, 27, 32 and 64 kg at 8.1 m/s incidence
velocity through numerical simulations using ABAQUS/Explicit. The numerical
results pertaining to the resistance of 101 mm span target has been compared in our
previous studies and validated with experiments conducted by Jones and Kim [16],
see Figs. 2-4.
The forces o�ered by the target has been simulated within 10% deviation from
the experimental results, Fig. 2(a). However, the predicted as well as measured
maximum force o�ered by the target was found to be same 35.8 kN at 1.8 milli
seconds. The penetration and perforation of target by striker at various time step
has been shown in Fig. 2(b)-(d). It is observed that the predicted force was found
to be overestimated upto 2 milli seconds whereas it is found under estimated after
2 milli seconds. The residual velocity of penetrator has been simulated within 15%
deviation from the experimental results, Fig. 3(a). The simulated and measured
residual velocity was found to be 0 and 1.68 m/s respectively, at 1.9 milli seconds.
It is observed that the predicted residual velocity was found to be under predicted
near about to 2 milli seconds whereas it is found in close agreement to their actual
results upto 1.5 milli seconds. The penetration event of target by striker at 1, 2 and
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Figure 2: Comparison of (a) actual and simulated results of force by 8 Kg penetrator
at (b) 1.0 (c) 2.0 and (d) 2.5 milli second and enlarged view at (e) 1.0 (f) 2.0 and
(g) 2.5 milli second

2.5 milli seconds time step has been shown in Fig. 3(b)-(d).

The de�ection of target has been predicted maximum 17% deviation from the exper-
imental results, Fig. 4(a). The simulated as well as measured de�ection of the target
was found to be same, till 1.6 milli seconds. After 1.6 milli seconds, the predicted
de�ection was found to be lesser than measured de�ection. It is also observed that
the simulated residual velocity was found to be underestimated near about to 2 milli
seconds whereas it is found in close agreement to their actual results upto 1.6 milli
seconds. The de�ection of target at 1, 2 and 2.5 milli second time step has been
shown in Fig. 4(b)-(d). Therefore, it is concluded that the de�ection of target and
residual velocity of penetrator were in close agreement to their actual results upto
1.6 milli seconds, whereas the force o�ered by the target found deviated maximum
of 10%. After 1.6 milli seconds, the force o�ered by the target was found in good
agreement to their experimental results, whereas the de�ection and residual velocity
of projectile was found deviated to maximum of 16%.

The in�uence of temperature on MS and AS target has been studied by varying
the temperature. Fig. 5 shows the e�ect of temperature at 230, 500, 900 and 1300
◦K on both the target impacted by 8 Kg mass at 8.1 m/s incidence velocity. The
maximum forces o�ered by the MS target was 37, 37, 24 and 15 kN against 230, 500,
900 and 1300 ◦K temperature, respectively. The maximum resistance o�ered by AS
target was 93, 86, 66 and 42 kN against 230, 500, 900 and 1300 ◦K temperature,
respectively. It is observed that the resistance of target was found to decrease almost
50% when the target temperature increased from ambient temperature to 1300 ◦K.
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Figure 3: Comparison of (a) actual and simulated results of residual velocity by 8
Kg penetrator at (b) 1.0 (c) 2.0 and (d) 2.5 milli second and enlarged view at (e)
1.0 (f) 2.0 and (g) 2.5 milli second

Figure 4: Comparison of (a) actual and simulated results of de�ections of target by
8 Kg penetrator at (b) 1.0 (c) 2.0 and (d) 2.5 milli second and enlarged view at (e)
1.0 (f) 2.0 and (g) 2.5 milli second
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The MS target has experienced penetration when the temperature of target was
1300 ◦K whereas AS target o�ered resistance signi�cantly and doesnâ��t experience
perforation under high temperature, i.e. upto 1300 ◦K.

Figure 5: Resistance o�ered by the target against varying temperature

4.2 Response of target by deformable aluminium �at nose
impactor

The simulations were performed on 3.18 mm thick targets of 118 mm span against
solid deformable 2024 aluminium �at impactor of 37 grams by 150 and 950 m/s
incidence velocity. The in�uence of low and high incidence velocity of impactor on
mild steel and Armox 500T steel has been studied. At 150 m/s incidence velocity,
both the target o�ered resistance signi�cantly without any perforation and the im-
pactor was found rebound back into same direction. The maximum forces o�ered
by the MS and AS target at 150 m/s velocity was 17.6 and 26.3 kN respectively
corresponding to 100 micro Seconds, see Fig 6(a)-(l). At 950 m/s velocity, Armox
target o�ered resistance signi�cantly without any penetration whereas the mild steel
target was found perforated. It is observed that the AS target has experienced global
deformation due to deformable impactor found deformed into mushroom shape, see
Fig 6(d, h and l). The maximum forces o�ered by the mild steel and Armox target
at 950 m/s velocity was 12.8 and 128 kN respectively. It is observed that the AS
target o�ering resistance was found to be increased almost 30% as compared to MS
target for low velocity whereas in case of high velocity, AS target o�ering resistance
was found to be increased almost 90% as compared to MS target. Therefore, it is
concluded that at low incidence velocity, the forces of both the target found almost
similar whereas at high incidence velocity AS target was found to be superior against
�at nose deformable projectiles.
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Figure 6: Resistance (Kg) o�ered by the target against deformable aluminium �at
impactor of (a) MS-150 m/s (b) AS-150m/s (c) MS-950 m/s and (d) AS-950 m/s
targets at 100 micro second, enlarged view of (e) MS-150 m/s (f) AS-150m/s (g) MS-
950 m/s and (h) AS-950 m/s targets and deformation of projectiles by (i) MS-150
m/s (j) AS-150m/s (k) MS-950 m/s and (l) AS-950 m/s target in terms of von-Mises
stresses
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4.3 Response of target by hard steel �at nose impactor

The simulations were performed on 3.18 mm thick targets against solid hardened
steel �at impactor by 150 and 950 m/s incidence velocity. Fig. 7(a)-(b) shows
the e�ect of incidence velocity of 150 and 950 m/s on both the target impacted
by 37 grams mass �at impactor. At 150 m/s incidence velocity, both the target
o�ered resistance signi�cantly without any perforation and the impactor was found
rebound back into same direction, see Fig. 8. The maximum forces o�ered by the
MS and AS target at 150 m/s velocity was 12 and 56 kN respectively corresponding
to 100 Âµs, see Fig. 8(a)-(b) and Fig. 8(a). It is observed that the Armox target
has experienced global deformation whereas the mild steel target has experienced
local deformation. At 950 m/s velocity, both the target was found perforated. The
maximum forces o�ered by the MS and AS target at 950 m/s velocity was 4.7
and 12.3 kN respectively, Fig. 7(b). It is observed that the AS target o�ering
resistance was found to be increased almost 78% as compared to MS target for low
velocity whereas in case of high velocity, AS target o�ering resistance was found to
be increased almost 62% as compared to MS target.

Figure 7: Resistance o�ered by the target against �at impactor at (a) 150 and (b)
950 m/s incidence velocity

Figure 8: Resistance (Kg) o�ered by the target against hard steel �at impactor by
(a) MS-150 m/s (b) AS-150m/s (c) MS-950 m/s and (d) AS-950 m/s con�guration
at 100 µs
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4.4 Response of target by conical impactor

The simulations were performed on 3.18 mm thick targets against hardened steel
conical impactor by 150 and 950 m/s incidence velocity. At 150 m/s incidence
velocity, both the target o�ered resistance signi�cantly without any perforation and
the impactor was found struck inside the target, Fig. 9(a)-(b). The maximum forces
o�ered by hard steel conical impactor on MS and AS target at 150 m/s velocity was
36.3 and 50.2 kN respectively corresponding to 250 and 150 Âµs respectively, see Fig.
9(a). It is observed that the AS target has experienced global deformation whereas
the MS target has experienced local deformation, see Fig. 10(a)-(b). At 950 m/s
velocity, both the target was found perforated. At 950 m/s incidence velocity, the
maximum forces o�ered by hard steel conical impactor on MS and AS target was
4.17 and 46.9 kN respectively, see Fig. 10(c)-(d). It is observed that the forces of
AS target found better resistance for both high as well as low incidence velocity,
whereas both the target was found to o�er resistance better against low incidence
velocity. Therefore, it is concluded that when incidence velocity of conical projectiles
increases from low to high, the response of AS target is found insigni�cant whereas
MS target is found to decrease by 90%. It may be due to the low sti�ness and low
strength of MS target and sharp nose of projectiles, the target loses its resistance
quickly.

Figure 9: Resistance o�ered by the target against conical impactor at (a) 150 and
(b) 950 m/s incidence velocity

Figure 10: Resistance (Kg) o�ered by the target against hard steel �at impactor
of (a) MS-150 m/s (b) Armox-150m/s (c) MS-950 m/s and (d) Armox-950 m/s
con�gurations
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5 Conclusions

A detailed numerical investigation has been carried out on Armox 500T steel and
mild steel targets against �at, conical and ogival nosed projectiles. The results
wherein the induced peak force and damage of target were predicted and compared
with each other. The in�uence of temperature has also been studied numerically for
particular penetrator and the following conclusions are drawn.
The maximum forces o�ered by AS and MS target was 121 and 41 kN and corre-
sponding mass 27 and 13.5 Kg mass respectively. It is concluded that this behavior
describes that the ballistic performance of target has improved signi�cantly with in-
crease in strength and hardness of target. It is observed that the resistance of both
the target found to decrease almost 50% when the target temperature increased
from ambient temperature to 1300 ◦K.
It is observed that at low incidence velocity of deformable �at nose projectiles, the
forces of both the target found almost similar whereas at high incidence velocity
AS target was found to be superior due to the high resistance capacity and high
sti�ness. In case of hard �at nose projectiles, the trend is reverse that at high
incidence velocity, the acceleration of both the target found almost similar whereas
in case of low incidence velocity, AS target was found superior.
It is concluded that the AS target o�ered better resistance against high as well as
low incidence velocity of conical nose projectiles, whereas both the target was found
to be better against low incidence velocity. It is also concluded that the acceleration
of AS target was found to be increased by only 16% as compared to MS target for
both the incidence velocity.
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Abstract

In this study, we show the integrability of certain classes of dynamic sys-
tems on the tangent bundle to a four-dimensional manifold. In this case, the
force �elds have so-called variable dissipation and generalize the cases consid-
ered previously.

1 Introduction

In many problems of dynamics, mechanical systems arise with the space of positions
� a four-dimensional manifold. Their phase spaces naturally become the tangent
bundles to these manifolds. Thus, for example, the study of a �ve-dimensional
generalized spherical pendulum in a nonconservative force �eld leads to a dynamic
system on the tangent bundle to a four-dimensional sphere, while the special metric
on it is induced by an additional symmetry group. In this case, the dynamic systems
describing the motion of such a pendulum have alternating dissipation and the
complete list of �rst integrals consists of transcendental functions expressed through
a �nite combination of elementary functions.
We also single out the class of problems on the motion of a point along a four-
dimensional surface, the metric on it being induced by the Euclidean metric of
a comprehensive space. In a number of cases, the complete list of �rst integrals
consisting of transcendental functions can also be found in systems with dissipation.
The results obtained are especially important in the sense of the presence of a
precisely nonconservative force �eld in the system.

2 Equations of geodesic lines under a change of co-
ordinates and its �rst integrals

It is well known that, in the case of a four-dimensional Riemannian manifold M4

with coordinates (α, β), β = (β1, β2, β3), and a�ne connection Γijk(x) the equations

of geodesic lines on the tangent bundle T∗M4{α̇, β̇1, β̇2, β̇3;α, β1, β2, β3}, α = x1,
β1 = x2, β2 = x3, β3 = x4, x = (x1, x2, x3, x4), have the following form (the
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derivatives are taken with respect to the natural parameter):

ẍi +
4∑

j,k=1

Γijk(x)ẋjẋk = 0, i = 1, . . . , 4. (1)

Let us study the structure of Eqs. (1) under a change of coordinates on the tangent
bundle T∗M4. Consider a change of coordinates of the tangent space:

ẋi =
4∑
j=1

Rij(x)zj, (2)

which can be inverted:

zj =
4∑
i=1

Tji(x)ẋi,

here Rij, Tji, i, j = 1, . . . , 4, are functions of x1, x2, x3, x4, and

RT = E,

where

R = (Rij), T = (Tji).

We also call Eqs. (2) new kinematic relations, i.e., relations on the tangent bundle
T∗M

4.
The following equalities are valid:

żj =
4∑
i=1

Ṫjiẋ
i +

4∑
i=1

Tjiẍ
i, Ṫji =

4∑
k=1

Tji,kẋ
k, (3)

where

Tji,k =
∂Tji
∂xk

, j, i, k = 1, . . . , 4.

We also have:

żi =
4∑

j,k=1

Tij,kẋ
jẋk −

4∑
j,p,q=1

TijΓ
j
pqẋ

pẋq. (4)

Otherwise, we can rewrite Eq. (4) in the form

żi +
4∑

j,k=1

Qijkẋ
jẋk|(2) = 0, (5)

where

Qijk(x) =
4∑
s=1

Tis(x)Γsjk(x)− Tij,k(x). (6)

Proposition 2.1. System (1) is equivalent to compound system (2), (4) in a domain
where detR(x) 6= 0.

Therefore, the result of the passage from equations of geodesic lines (1) to an equiv-
alent system of equations (2), (4) depends both on the change of variables (2) (i.e.,
introduced kinematic relations) and on the a�ne connection Γijk(x).
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3 A fairly general case

Consider next a su�ciently general case of specifying kinematic relations in the
following form:

α̇ = −z4,
β̇1 = z3f1(α),

β̇2 = z2f2(α)g1(β1),

β̇3 = z1f3(α)g2(β1)h(β2),

(7)

where fk(α), k = 1, 2, 3, gl(β1), l = 1, 2, h(β2) are smooth functions on their domain
of de�nition. Such coordinates z1, z2, z3, z4 in the tangent space are introduced when
the following equations of geodesic lines are considered [1, 2, 3] (in particular, on
surfaces of revolution):


α̈ + Γα11(α, β)β̇2

1 + Γα22(α, β)β̇2
2 + Γα33(α, β)β̇2

3 = 0,

β̈1 + 2Γ1
α1(α, β)α̇β̇1 + Γ1

22(α, β)β̇2
2 + Γ1

33(α, β)β̇2
3 = 0,

β̈2 + 2Γ2
α2(α, β)α̇β̇2 + 2Γ2

12(α, β)β̇1β̇2 + Γ2
33(α, β)β̇2

3 = 0,

β̈3 + 2Γ3
α3(α, β)α̇β̇3 + 2Γ3

13(α, β)β̇1β̇3 + 2Γ3
23(α, β)β̇2β̇3 = 0,

(8)

i.e., other connection coe�cients are zero. In case (7) Eqs. (4) take the form

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

− Γ2
33(α, β)

f 2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 ,

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f 2
2 (α)

f1(α)
g21(β1)z

2
2−

− Γ1
33(α, β)

f 2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż4 = Γα11f
2
1 (α)z23 + Γα22f

2
2 (α)g21(β1)z

2
2 + Γα33f

2
3 (α)g22(β1)h

2(β2)z
2
1 ,

(9)

and Eqs. (8) are almost everywhere equivalent to compound system (7), (9) on the
manifold T∗M4{z4, z3, z2, z1;α, β1, β2, β3}.
To integrate system (7), (9) completely, it is necessary to know, generally speaking,
seven independent �rst integrals.
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Proposition 3.1. If the system of equalities

2Γ1
α1(α, β) +

d ln |f1(α)|
dα

+ Γα11(α, β)f 2
1 (α) ≡ 0,

2Γ2
α2(α, β) +

d ln |f2(α)|
dα

+ Γα22(α, β)f 2
2 (α)g21(β1) ≡ 0,[

2Γ2
12(α, β) +

d ln |g1(β1)|
dβ1

]
f 2
1 (α) + Γ1

22(α, β)f 2
2 (α)g21(β1) ≡ 0,

2Γ3
α3(α, β) +

d ln |f3(α)|
dα

+ Γα33(α, β)f 2
3 (α)g22(β1)h

2(β2) ≡ 0,[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f 2
1 (α) + Γ1

33(α, β)f 2
3 (α)g22(β1)h

2(β2) ≡ 0,[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f 2
2 (α)g21(β1) + Γ2

33(α, β)f 2
3 (α)g22(β1)h

2(β2) ≡ 0,

(10)

is valid everywhere in its domain of de�nition, system (7), (9) has an analytic �rst
integral of the form

Φ1(z4, . . . , z1) = z21 + . . .+ z24 = C2
1 = const. (11)

One can prove a special existence theorem for the solution fk(α), k = 1, 2, 3, gl(β1),
l = 1, 2, h(β2) of system (10) for the presence of analytic integral (11) for system
(7), (9) of equations of geodesic lines. Below, however, we do not need all conditions
(10) in studying dynamic systems with dissipation. Nevertheless, in what follows,
we suppose that the condition

f1(α) = f2(α) = f3(α) = f(α), (12)

is satis�ed in Eqs. (7); the functions gl(β1), l = 1, 2, h(β2) must satisfy the trans-
formed third equality from (10):

2Γ2
12(α, β) +

d ln |g1(β1)|
dβ1

+ Γ1
22(α, β)g21(β1) ≡ 0,

2Γ3
13(α, β) +

d ln |g2(β1)|
dβ1

+ Γ1
33(α, β)g22(β1)h

2(β2) ≡ 0,

2Γ3
23(α, β) +

d ln |h(β2)|
dβ2

+ Γ2
33(α, β)h2(β2) ≡ 0.

(13)

Thus, the functions gl(β1), l = 1, 2, h(β2) depend on the connection coe�cients; as
for restrictions on the function f(α) they are given below.

Proposition 3.2. If properties (12) and (13) are valid, and the equalities

Γ1
α1(α, β) = Γ2

α2(α, β) = Γ3
α3(α, β) = Γ1(α), (14)

are satis�ed, system (7), (9) has a smooth �rst integral of the following form:

Φ2(z3, z2, z1;α) =
√
z21 + z22 + z23 Φ0(α) = C2 = const, (15)

Φ0(α) = f(α) exp

{
2

∫ α

α0

Γ1(b)db

}
.
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Proposition 3.3. If the properties in proposition 3.2 are valid, and also

g1(β1) = g2(β1) = g(β1), (16)

herewith the equalities

Γ2
12(α, β) = Γ3

13(α, β) = Γ2(β1), (17)

are valid, that system (7), (9) has a smooth �rst integral of the following form:

Φ3(z2, z1;α, β1) =
√
z21 + z22Φ0(α)Ψ1(β1) = C3 = const, (18)

Ψ1(β1) = g(β1) exp

{
2

∫ β1

β10

Γ2(b)db

}
.

Proposition 3.4. If the properties in propositions 3.2, 3.3 are valid, herewith the
equality

Γ3
23(α, β) = Γ3(β2), (19)

are valid, that system (7), (9) has a smooth �rst integral of the following form:

Φ4(z1;α, β1, β2) = z1Φ0(α)Ψ1(β1)Ψ2(β2) = C4 = const, (20)

Ψ2(β2) = h(β2) exp

{
2

∫ β2

β20

Γ3(b)db

}
.

Proposition 3.5. If the properties in propositions 3.2, 3.3, 3.4 are valid, that system
(7), (9) has a �rst integral of the following form:

Φ5(z2, z1;α, β) = β3 ±
∫ β2

β20

C4h(b)√
C2

3Φ2
2(b)− C2

4

db = C5 = const. (21)

Under the conditions listed above, system (7), (9) has a complete set (�ve) of inde-
pendent �rst integrals of the form (11), (15), (18), (20), and (21).

4 Equations of motion on the tangent bundle of a
three-dimensional manifold in a potential �eld of
force and its �rst integrals

Let us now somewhat modify system (7), (9) under conditions (12)�(14), (16), (17),
and (19), which yields a conservative system. Namely, the presence of the force �eld
is characterized by the coe�cient F (α) in the second equation of system (22). The
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system under consideration on the tangent bundle T∗M4{z4, z3, z2, z1;α, β1, β2, β3}
takes the form

α̇ = −z4,
ż4 = F (α) + Γα11f

2
1 (α)z23 + Γα22f

2
2 (α)g21(β1)z

2
2 + Γα33f

2
3 (α)g22(β1)h

2(β2)z
2
1 ,

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f 2
2 (α)

f1(α)
g21(β1)z

2
2−

− Γ1
33(α, β)

f 2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

− Γ2
33(α, β)

f 2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 ,

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

β̇1 = z3f(α),

β̇2 = z2f(α)g(β1),

β̇3 = z1f(α)g(β1)h(β2),

(22)

and it is almost everywhere equivalent to the following system:
α̈ + F (α) + Γα11(α, β)β̇2

1 + Γα22(α, β)β̇2
2 + Γα33(α, β)β̇2

3 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇2

2 + Γ1
33(α, β)β̇2

3 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ2
33(α, β)β̇2

3 = 0,

β̈3 + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0.

Proposition 4.1. If the conditions of Proposition 3.1 are satis�ed, system (22) has
a smooth �rst integral of the following form:

Φ1(z4, . . . , z1;α) = z21 + . . .+z24 +F1(α) = C1 = const, F1(α) = 2

∫ α

α0

F (a)da. (23)

Proposition 4.2. If the conditions of Propositions 3.2, 3.3, and 3.4 are satis�ed,
system (22) has three smooth �rst integrals of form (15), (18), and (20).

Proposition 4.3. If the conditions of Proposition 3.5 are satis�ed, system (22) has
�rst integral of form (21).

Under the conditions listed above, system (22) has a complete set of (�ve) indepen-
dent �rst integrals of form (23), (15), (18), (20), and (21).
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5 Equations of motion on the tangent bundle of a
two-dimensional manifold in a force �eld with dis-
sipation and its �rst integrals

Let us now consider system (24). In doing this, we obtain a system with dissipa-
tion. Namely, the presence of dissipation (generally speaking, sign-alternating) is
characterized by the coe�cient bδ(α) in the �rst equation of system (24):

α̇ = −z4 + bδ(α),

ż4 = F (α) + Γα11f
2
1 (α)z23 + Γα22f

2
2 (α)g21(β1)z

2
2 + Γα33f

2
3 (α)g22(β1)h

2(β2)z
2
1 ,

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f 2
2 (α)

f1(α)
g21(β1)z

2
2−

− Γ1
33(α, β)

f 2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

− Γ2
33(α, β)

f 2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 ,

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

β̇1 = z3f(α),

β̇2 = z2f(α)g(β1),

β̇3 = z1f(α)g(β1)h(β2),

(24)

which is almost everywhere equivalent to the following system

α̈− bα̇δ′(α) + F (α) + Γα11(α, β)β̇2
1 + Γα22(α, β)β̇2

2 + Γα33(α, β)β̇2
3 = 0,

β̈1 − bβ̇1δ(α)W (α) + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇2

2 + Γ1
33(α, β)β̇2

3 = 0,

β̈2 − bβ̇2δ(α)W (α) + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ2
33(α, β)β̇2

3 = 0,

β̈3 − bβ̇3δ(α)W (α) + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0,

W (α) = 2Γ1
α1(α, β) +

d ln |f1(α)|
dα

.

Now we pass to integration of the sought six-order system (24) under condition (13),
as well as under the equalities

Γα11(α, β) = Γα22(α, β)g2(β1) = Γα33(α, β)g2(β1)h
2(β2) = Γ4(α), (25)

hold.
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We also introduce (by analogy with (13)) a restriction on the function f(α). It must
satisfy the transformed �rst equality from (10):

2Γ1(α) +
d ln |f(α)|

dα
+ Γ4(α)f 2(α) ≡ 0. (26)

To integrate it completely, one should know, generally speaking, seven independent
�rst integrals. However, after the following change of variables,

w4 = z4, w3 =
√
z21 + z22 + z23 , w2 =

z2
z1
, w1 =

z3√
z21 + z22

,

system (24) decomposes as follows:
α̇ = −w4 + bδ(α),

ẇ4 = F (α) + Γ4(α)f 2(α)w2
3,

ẇ3 =

[
2Γ1(α) +

d ln |f(α)|
dα

]
w3w4,

(27)


ẇ2 = ±w3

√
1 + w2

2f(α)g(β1)

[
2Γ3(β2) +

d ln |h(β2)|
dβ2

]
,

β̇2 = ± w2w3√
1 + w2

2

f(α)g(β1),
(28)


ẇ1 = ±w3

√
1 + w2

1f(α)

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
,

β̇1 = ± w1w3√
1 + w2

1

f(α),
(29)

β̇3 = ± w3√
1 + w2

2

f(α)g(β1)h(β2). (30)

It is seen that to integrate system (27)�(30) completely, it is su�cient to determine
two independent �rst integrals of system (27), by one integral of systems (28) and
(29), and an additional �rst integral �attaching� Eq. (30) (i.e., �ve integrals in total).

Theorem 5.1. Let the equalities

Γ4(α)f 2(α) = κ
d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)

2
(31)

be valid for some κ, λ ∈ R. Then system (24) under equalities (12), (13), (16), (25),
and (26) has a complete set of (�ve) independent, generally speaking, transcendental
�rst integrals.

6 Conclusions

By analogy with low-dimensional cases, we pay special attention to two important
cases for the function f(α) de�ning the metric on a sphere:

f(α) =
cosα

sinα
, (32)
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f(α) =
1

cosα sinα
. (33)

Case (32) forms a class of systems corresponding to the motion of a dynamically
symmetric �ve-dimensional solid body at zero levels of cyclic integrals, generally
speaking, in a nonconservative �eld of forces [3, 4, 5]. Case (33) forms a class
of systems corresponding to the motion of a material point on a four-dimensional
sphere also, generally speaking, in a nonconservative �eld of forces. In particular,
at δ(α) ≡ F (α) ≡ 0 the system under consideration describes a geodesic �ow on a
four-dimensional sphere. In case (32), if

δ(α) =
F (α)

cosα
,

the system describes the spatial motion of a �ve-dimensional solid body in the force
�eld F (α) under the action of a tracking force [6, 7, 8]. In particular, if

F (α) = sinα cosα, δ(α) = sinα,

the system also describes a generalized �ve-dimensional spherical pendulum in a
nonconservative force �eld and has a complete set of transcendental �rst integrals
that can be expressed in terms of a �nite combination of elementary functions [9,
10, 11].
If the function δ(α) is not periodic, the dissipative system under consideration is a
system with variable dissipation with a zero mean (i.e., it is properly dissipative).
Nevertheless, an explicit form of transcendental �rst integrals that can be expressed
in terms of a �nite combination of elementary functions can be obtained even in
this case. This is a new nontrivial case of integrability of dissipative systems in an
explicit form [12].
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Abstract

The boron carbide (B4C) ceramic is suitable material for armour appli-
cation due to its low density, high hardness and compressive strength. It is
subjected to high strain rate of loading during the projectile impact. There-
fore, in this study, the compressive response of B4C is determined under low
and high strain rate of loading using Modi�ed Split Hopkinson Pressure Bar
(MSHPB) test. The experimental results indicated that the uniaxial compres-
sive strength of B4C ceramic is not sensitive to the strain rate of up to 103 s-1
and the failure of the B4C specimen was sudden and catastrophic under the
uniaxial compressive loading at both low and high strain rate.

1 Introduction

Ceramics are suitable candidate for the armour design due to it is superior properties
like high hardness and high strength to weight ratio. Boron carbide (B4C) ceramic
is widely used for the armour design due to its higher hardness, compressive strength
and low density among the advance ceramic materials [1].
The projectile impact on the ceramic layer develops strain rate in the range of
103 − 104 s−1 [2]. Therefore, it is essential to understand the B4C ceramic response
at these strain rates and also the e�ect of strain rate on its behaviour. The most
of the available studies of B4C ceramic for armour application was focused on the
strength of the material under shock loading where the material experiences strain
rate of above 105 s−1 [3]�[6]. There is very few studies are available on B4C response
at the strain rate range of 10−3 − 104 s−1.
Paliwal and Ramesh [2] conducted uniaxial compressive tests at strain rate range of
10−6 − 2 ×102 s−1 to study the dynamic failure and strength of the B4C ceramic
using modi�ed split Hopkinson pressure bar test and high speed camera. Hogan et
al. [7] studied the e�ect of processing-induced defects on the dynamic compressive
strength and failure of B4C using SHPB. The material was investigate at strain rate
range of 3.5×102−103 s−1. There is no other studies are available in these strain rate
as per the author knowledge. Therefore, in this study the response of B4C ceramic
was explored under high strain rate of loading. The Split Hopkinson pressure bar
setup for the metal testing is modi�ed for ceramic testing in the current study.
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2 Experimental Procedure

The commercially available hot pressed boron carbide ceramic tile was used for
the current study. The B4C specimens for the quasi-static, SHPB and density
measurements were machined from the 100 mm × 100 mm × 5 mm and 10 mm
thick tiles using the Wire-cut Electrical Discharge Machine (WEDM). The WEDM
machining quality is mainly depends on the electrical conductivity and ductile or
brittle nature of the material. Though the B4C ceramic has su�cient electrical
conductivity to be machined using WEDM, due to its brittle nature, the machining
was very di�cult and time consuming process. The quality of the surface �nish
after machining the specimen by WEDM was extremely good due to the slow rate
of machining and intense care. Density of the B4C was measured using Archimedes
method as per the guidance of ASTM - C373-16 and the measured density was 2.50
g/cc.
Cylindrical B4C specimens of 5 mm diameter and 5 mm length were used for uniaxial
compressive experiments at quasi-static and high strain rate loading see Fig. 1. The
loading surface of the specimens were polished to 6 Âµm using the Buehler diamond
impregnated metal discs of 45 Âµm to 6 Âµm to eliminate the premature failure due
to the presence of surface defect. The surface of the specimens were examined by
optical microscope before the testing to ensure the surface is defect free. Specimens
with unpolished surface was also tested under the quasi-static and high strain rate
loading. The end friction between the loading platens of the testing machine and
the specimen surface builds the complex stress and the testing is no more uniaxial.
Therefore, lubricant was applied on the specimen surface to minimize the interface
friction during the testing.

Figure 1: WEDM machined B4C specimens

The quasi-static test was carried out using the INSTRON Universal Testing Machine
(UTM). The UTM loading platen hardness was lower than the hardness of B4C
ceramic. The harder B4C indent into the loading platen due the large di�erence
of hardness. Therefore, harder material of tungsten carbide (WC) platens of the
diameter 13 mm, 30 mm, 50 mm with 10 mm thick was placed between the loading
platen and B4C ceramic specimen. The quasi-static tests were conducted with strain
rate of 10−3 s−1 and 10−2 s−1.
Modi�ed split-Hopkinson pressure bar (MSHPB) apparatus was used to measure the
uniaxial compressive strength of B4C ceramic under high strain rate. The SHPB
apparatus for metal testing is modi�ed for the ceramic testing. The apparatus
contains striker of various length, incident, transmission and momentum trapper
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Table 13: Detail of pulse shaper and insert

Material Dimension

Pulse shaper Copper
5 mm diameter and 0.5 mm thick and
8 mm diameter 0.5 mm thick

Insert Tungsten carbide 13.1 mm diameter and 6 mm length

Insert con�nement Steel
Inner diameter = 13.1 mm,
Outer diameter = 20 mm,Length = 5.9 mm

bar of 2000 mm. the bar material is vascomax steel with density of 8080 kg/m3,
elastic modulus of 196.4 GPa and poisson's ratio of 0.3. The same has been modi�ed
by introducing thin copper pulse shaper between striker and the incident bar and
steel con�ned WC inserts in the interface of incident bar-specimen and specimen-
transmission bar see Fig. 2. The detail of the insert and pulse shaper is given in
Table 1.
The WC inserts is protect the incident and transmission bars from the indentation
of B4C specimen due to the high hardness. The WC inserts was con�ned by the
steel rings to prevent the inserts failure beforehand the ceramic undergoes failure.
The function of copper pulse shaper is to increase the rise time of the incident pulse
which helps to maintain the stress equilibrium in the ceramic specimen throughout
the test. Several SHPB trials with di�erent impact velocity and striker length were
conducted on copper pulse shaper to establish the required shape of the incident
pulse. The dimension of the pulse shaper is �nalised based on the trial test results.
For further details regarding the design and modi�cation of the SHPB for the ceramic
testing can be seen in [8].

Figure 2: Modi�ed split Hopkinson pressure bar setup for testing the ceramic ma-
terial

3 Results and discussion

3.1 Quasi-static test

The B4C ceramic stress-strain relationship at the strain rate of 10−3 s−1 is shown
in the Fig. 3. The average uniaxial compressive strength of the B4C ceramic was
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3600 MPa. Ceramic specimen fracturing and spalling was observed during the end
of test. The B4C specimen failed catastrophically after the specimen attains the
capacity and the most of the ceramic specimen became powder. It was di�cult to
collect all the failed material due to �neness of the crushed ceramic. Therefore, the
crushed B4C specimen of little quantity is collected and it will be analysed further
for understand the fracture and failure mechanism of B4C ceramic under quasi-static
loading.

Figure 3: Stress-strain relationship of B4C at strain rate of 10−3 s−1

3.2 High strain rate loading

The SHPB strain signal of the current experiment for 200 mm striker is shown in the
Fig. 4. The rise time the signal is increased by copper pulse shaper. The impedance
match of the inserts and the SHPB bars were ensured by trial experiments without
any specimen and it is observed that the incident strain signal completely passed
through the inserts.
Hence, the dimension and arrangement of the inserts is satisfactory for the SHPB
experiment. The B4C specimens then tested under various strain rate. Maximum
strain rate achieved in the current experiment was 103 s−1. For the higher strain rate
the striker velocity increased, however the signals measured in the transmission bar
was not appropriate and was di�cult to establish the stress-strain relationship and
calculate the strength of B4C ceramic, therefore these tests results were excluded. In
future, the B4C ceramic response at the strain rate above 103s−1 will be studied in
by �xing the strain gauges on the surface of the specimen. The strain rate sensitivity
of the B4C ceramic is studied by comparing the strength at various strain rate. It
is observed from the experimental results that the strength of the B4C ceramic is
not sensitivity in the strain rate range of 10−3 to 103 s−1(Fig. 5) and the similar
behaviour was reported by [2, 7].
Therefore, it can be concluded that the B4C ceramic is strain rate independent for
the strain rate up to 103 s−1. The failure of the B4C was axially splitting and the
failure was exactly at the center of the specimen for the strain rate of 3 × 102 s−1

and the failure surface of the B4C was rough which indicates the excellent shear
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Figure 4: Strain signal of SHPB without specimen and with the 13 mm diameter
insert (striker length and impact velocity is 200 mm and 13 m/s respectively)

Figure 5: . Uniaxial compressive strength of B4C at various strain rate

resistance of the material. At higher strain rate the specimen becomes powder and
the fractured fragments were similar to the quasi-static loading. The failed ceramic
was collected for the further analysis of the fragment shape and size and the fractured
surface of the B4C for the future study.
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4 Conclusion

The uniaxial compressive strength of the B4C ceramic is determined at the quasi-
static and dynamic loading condition and the strain rate ranged from 10−3s− 1 to
103 s−1. The specimens were machined by wire-cut EDM and tested under dynamic
loading using split Hopkinson pressure bar setup. The experimental results showed
that the uniaxial compressive strength of B4C is not sensitive to the strain rate
as the strength was almost same in all the strain rate loading. The failure of the
ceramic under both quasi-static and dynamic loading condition was catastrophic
and crushed to powder. The failed B4C ceramic is collected and its failure surface
and fragments will be analysed for the understanding the fracture and failure of this
material under various loading condition.
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Abstract

The Medical Linear Accelerator (MedLINAC) at Synchrotron Light Re-
search Institute (SLRI) in Thailand is the �rst machine prototype that has
been successfully installed and commissioned. The MedLINAC provides the
radiation e�ect of X-RAY for cancer treatment. The control system of the
MedLINAC is currently manually controlled by Users, adjusting the microwave
power, provided by a magnetron, through the Graphical User Interface (GUI).
The magnetron system includes the structure of anode and cathode polarities
and two-polarities of permanent magnets, generates the resonant frequency to
accelerator tube. The resonant frequency of 2.998 GHz and the peak power
of 3.1 MW are suitable parameters with in�uence to the energy of an elec-
tron. The analysis of a magnetron is very complex and it usually requires
solving transcendental equations. Both Hull-cuto� and Hartree conditions
are estimated properly as parameters of the resonant frequency by using the
fundamental principle of an electron motion in structured magnetron. This pa-
per demonstrates the design procedures of automatic frequency control of the
magnetron system for the MedLINAC using the Fuzzy Logic Control (FLC)
and adjusts the parameters of fuzzy identi�er model by using recursive least
square algorithm. The controller has a recursive form and model uncertain-
ties. The experimental results obtained from adjusting the desirable resonant
frequency, which excites the electrons charge and makes High-power energy
for performance of X-RAY radiation.

1 Introduction

The MedLINAC has been developed the capability to accelerate an energy of an
electron and to generate radiation of X-RAY by SLRI for medical use in hospitals.
It is a necessary equipment for the radiotherapy treatment implies a cancer. Two
modes Operations of the radiotherapy treatment can be used. They are the treat-
ment by the X-RAY and electron beam. The MedLINAC consists of 3 main parts:
Linear Accelerator (LINAC), LINAC treatment head and the treatment couch sys-
tem. The prototype of the MedLINAC at SLRI has used LINAC of S-band type
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and the resonant frequency of 2.998 GHz. The generation of an electron is emitted
by the electron-gun type of hot-cathode, which sets to be negative voltage of -30
kV. In the process for producing of frequency or the resonant frequency of 3 GHz
approximately, the Magnetron system is operated the power rating of 3.1 MW and
generated the frequency range between of 2,993 to 3,002 MHz by applying high-
voltage from a modulator and the voltage must set at 1,043 V.
The Magnetron system has generated high-power frequency which requires to match
properly the accelerator tube at resonant frequency of 2.998 GHz. Two techniques
for the control of the magnetron system were currently used. They were using to
tune the technique of the frequency with applied voltage for experimenting the mag-
netron by [11, 15] and using to tune the technique of the multiple-cavity magnetron
with consideration of the internal structures such as amount, dimension, space and
gap of cavities, which depends on the actuator with rod of a motor by [10, 13, 14].
A stepping-motor is manually controlled by Users via a program on computer. Re-
sult of the manual control can control constantly the resonant frequency. If the
magnetron system is disturbed by the ambient temperature, it takes e�ect on the
resonant frequency as change and canâ��t adjust the frequency back to the refer-
ence point rapidly. The energy of an electron and the radiation are fast decreasing.
Therefore, it is the unstable system. [5, 6, 7, 8, 9] The control system with the FLC
Algorithm is a simple, reliable and accurate system. It usually uses in the feedback
control loop and improves capable of the performance under external disturbance,
which is using to control a linear or non-linear system.
In this paper, The FLC designs and applies the Automatic Frequency Control of
the magnetron system for the MedLINAC and it controls to generate constantly the
resonant frequency of 2.998 GHz. The FLC of the resonant frequency can control
back to the reference point as automatically, although the external disturbance is oc-
curred. The FLC is designed by LabVIEW programming. The objective of the FLC
controls the position of stepping motor by keeping the voltage from modulator and
shows the dynamic response of X-RAY radiation on the screen. The performance of
the FLC was found better than the control of manual user.

2 Magnetron System Analysis

2.1 An electron motion in an electromagnetic �eld

Both electric and magnetic �eld in�uence signi�cantly the motion of an electron,
that depends on the orientation of the two �elds. If the electric and magnetic �eld
are at the right angle (90◦) to each other, this type of �eld is called a crossed �eld.
The electrons were emitted by the cathode polarity, which are accelerated by the
electric �eld and the more their path is bent by the magnetic �eld. Since electric
and magnetic �eld or called an electromagnetic �eld directly in�uence acting on an
electron, it can be explained by Lorentz force law. [1, 2] For rectangular coordinates
were written to replace by cylindrical coordinates, which are analyzed data from
structure of the magnetron. Hence, the equation of motion for electrons in cylindrical

276



Automatic frequency control of the magnetron system for medical linear
accelerator using fuzzy logic control

coordinates is written to rearrange the equations as.
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2.2 Hull cut-o� and Hartree conditions

General operation of a cylindrical magnetron is controlled by applying the voltage
(VOC) at the anode and cathode polarities from a modulator, generates the charac-
teristic dc-voltage of 980 to 1,043 V and the pulse width of 5 µS. The magnetron
system connects with perpendicular �elds of between the magnetic �eld (BOC) and
the electric �eld. The electrons are emitted by cathode. They move to the anode
and be grazed by the in�uence of magnetic �eld. The electron leaves from the cath-
ode with initial velocity of zero and the behavior of the electron grazes the anode
block. It can be called the cut-o� condition. From equation (2), rearrangement
of the equation result in the condition of both the Hull cut-o� magnetic �eld and
dc-voltage to the equations as [3, 4, 12].

BOC =

√
8mV
e

ra(1− r2c
r2a

)
(3)

VOC =
e

8m
(BOC)2(rc)

2(1− r2c
r2a

)2 (4)

where ra, rc are the radius of anode and cathode, respectively.

The Radio Frequency (RF) Field occurs, this voltage is the condition at which os-
cillations should start. From an equation (1) and (2), applying this synchronous
condition govern an electron movement in a cylindrical coordinate system. It pro-
vides at the same time that the magnetic is su�ciently large, so the undistorted
space charge does not extend to the anode. The general working operation of cylin-
drical magnetron is operated by applying the anode-voltage that is slightly above
the Hartree-voltage curve and the magnetron system starts to oscillate. [3, 4] How-
ever, the anode-voltage of a magnetron is always set below the π − 1 mode line to
avoid mode competition. The Hartree voltage VH for RF oscillation to start in a
magnetron can be obtained.

VH =
ωoB

2
(r2a − r2c )2 −

m

2e
(raωo)

2 (5)

where ωo = ω
n
, ωo is the angular frequency of the electron, ω is the angular frequency

of RF �eld and n is the modes of oscillation.
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3 Automatic Frequency Control (AFC) System

The control of the RF signal is generated by the coupling from the cavity of the
magnetron. It depends on the adjustable position of the structured magnetron with
the tuning on the rod of a stepping motor. The result of the tuning indicates a
changing frequency. The appropriate RF signal for the LINAC of s-band type (2 to
4 GHz) requires the frequency of 2.998 GHz approximately. It is called the resonant
frequency. An electron was emitted by the electron gun. If when it hits the resonant
frequency, the electron increases more energy. After the electron with high-energy
moves towards and hits the x-ray target, it causes to a�ect the radiation of X-Ray.
In part of the resonant frequency, the disturbance of the temperature is one main
factor of working operation on the magnetron system to e�ect of the frequency
inconsistently. Therefore, the resonant frequency must be measured by using the
sensors (AFC circuit). They are the Forward (FWD) power and Re�ect (REFL)
power. The adjustment of the resonant frequency depends on the design via the
linguistic development of program and operates the frequency automatically. The
algorithmic FLC is part of the key component for controlling the output signal and
compensating the frequency.
The experimentation of the AFC system, the start writes the code to form based
GUI on Main Computer (Main PC). The developmental code of based language
uses Graphical programming language. It is called LabVIEW, which can write the
code on the Embedded system under the real-time system (Fuzzy Controller). The
Fuzzy Controller is controlled by the Ethernet network communication. It controls
and monitors the positional movement of the stepping motor with the hardware and
software of the National Instruments products or be called SoftMotion Module. This
is the central communication of devices between the name of NI-9512 and Motor
driver. Both the NI-9512 and Motor driver generate the pulse signal and convert
the pulse signal to the position of a stepping motor, respectively. The radiation
of X-Ray is caused by hitting the X-Ray target. It can use the sensor (Radiation
Monitor) on the measurement of the radiation and displays on Main PC. Finally,
the procedures of the AFC system are shown in Fig. 1.

Figure 1: Block diagram of automatic frequency control
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In section of tuning for the resonant frequency, the AFC sensing is the measurement
device of the feedback signal system. Main components consist of Directional coupler
and Circulator. Which are the monitor of the FWD and REFL signal, respectively.
Both FWD and REFL signal are compared by AFC circuit module, which uses a
particular frequency of 2.998 GHz. The results of the comparison signal can use in
the process of the FLC towards the future. All components for the experimentation
of the AFC system are shown in Fig. 2.

Figure 2: The AFC system of Medical Linear Accelerator

In Fig. 2, the component of the generational resonant frequency is a magnetron. It
is a structured form in the shape of a cylindrical tube and that was produced by
e2v technologies. The Oscillation of the magnetron (MG7095) depends on work-
ing operation by applying the anode-voltage supply between region of Hull cut-o�
curve and the straight Hartree line. It is always set the mode oscillation of the
magnetron as π − 1 mode. [3] The anode structure of the hole-and-slot-Magnetron
(MG5193) with twelve-cavity forms the same as the Magnetron (MG7095) such as
the dimension shape and structured form but the output rating di�ers. Therefore,
the MG7095 type of the magnetron can use the same speci�cation of the dimension
as the MG5193. It is presented in the Table 14 and can be calculated by using the
equation (5) and illustrates results of calculation in Fig. 3.

Table 14: Hull cut-o�/Hartree conditions of the cylindrical magnetron (MG7095)

No. Magnetrons parameters Results
1 Radius of anode (mm) 17
2 Radius of cathode (mm) 9.25
3 Permanent magnet (Tesla) 0.152
4 Hull cut-o� curve (kV) 72.6378
5 Hartree line π mode (kV) 40.4312
6 Hartree line π − 1 mode (kV) 46.5712
7 Frequency (GHZ) 2.998
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Figure 3: Operating anode-voltage of mode oscillations

4 Implementation of Fuzzy Controller

The design of Fuzzy controller is the key component of the controller for engineering
design. The preprocessing and postprocessing steps depend on the determinant laws
of the control such as the adjustment of the input and output membership. They
must be converted by using the rules-based or the inference engine of the FLC and
results in the degree of membership. The characteristic membership indicates the
upper-lower and maximum-minimum value and can assign the value of membership
function such as triangular shape and straight-line membership function, which uses
for input and output variables, respectively. The Input and Output membership
function is shown in Fig. 5, 6 . The rules-based FLC determines the human linguistic
expression in the series of IF-THEN rules and is illustrated in Table 15. Hence, both
the memberships and rules-based FLC should be interpreted by an expert.

Figure 4: Block diagram of the Fuzzy controller

Block diagram of Fuzzy controller is shown in Fig. 4. An error (ε) of the system
is the feedback signal (y) of the AFC system. The feedback signal includes of the
AFC-A and AFC-B and they are compared by the AFC circuit module, which is
a key component within a control loop for the frequency tuning of the operation
of LINAC. After that the feedback signal compares again with the reference input.
Hence an error value uses in the rules-based FLC. For Block of Fuzzy controller, the
preprocessing and postprocessing data always convert the data such as a real signal
to the Fuzzy sets and the Fuzzy sets to a real signal, respectively. The example
of the output data (u) should convert type of data from digital signal to analog
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signal and determines properly the value for moving position of the actuator. So,
it can set the value in percentage unit (0-100%). Next, Block of the actuator is the
stepping motor. It can control to desire the position consistently by applying the
pulse signal from the motor driver. The position of the stepping motor is changed by
a mechanism of the structured magnetron or space of cavity, which it changes. This
directly a�ects the frequency output or AFC signal. The AFC system is controlled
by the linguistic rules and uses in the Fuzzy Controller Block. It is used by Takagi-
Sugeno or center of sum (COS) method. [5] A. Basci proposes the inference of
Fuzzy, which uses an on-line method or adjusts the parameters of a Takagi-Sugeno
identi�er model to matching behavior of the control system. From Fig. 5, 6, it is
straight line group that can be calculated as follow.

COS =
L∑

m=1

µ(km)km
µ(km)

(6)

where µ(km) is the degree of membership of the input variable and km is the output
variable range.

Figure 5: Membership function: Input variables

Figure 6: Membership function: Output variables

The output variable of the AFC system is chosen. It should convert to the position
control of 0 to 100 %. The membership function of the rules-based FLC includes
the input and output logics. They consist of very Low (VL), Low (L), Medium (M),
High (H) and very High (VH). The linguistic values of Fuzzy Controller and the
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Table 15: Fuzzy Rules Bases

No. If Input is Then Output is
1 VL VL
2 L L
3 M M
4 H H
5 VH VH

inference system are evaluated by Takagi-Sugeno method. Therefore, the rules of
the FLC are mentioned and can be edited by the Fuzzy system designer, which adds
the add-on LabVIEW. The system of the fuzzy controller is a single input and single
output (SISO) system. It determines the input of position error and the output of
position movement. The design of the LabVIEW program writes the code with two
sections such as the front panel and the block diagram, which are together called
VI (Virtual Instrument).

5 Experimental Results

The magnetron system is controlled by using Algorithm of the FLC for the
MedLINAC via LabVIEW program. The determined reference of the temperatures
at important components consist of the magnetron system and accelerated tube.
The tuning of device requires to set the constant temperature by heating of the
inlet water manifolds of 40◦C. Next, the input-voltage and the output-voltage is
applied by a modulator, which is capability of device generates a pulse width of 5
µS and the input and output voltage with rating of 1,043 V and 45 kV, respectively.
The Magnetron system works in the region between range of the Hull cut-o� and
Hartree line refer to Fig. 3. The experimentations of AFC system for the MedLINAC
and results are shown in Fig. 7�9.

Figure 7: Fuzzy system response: Error response
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Figure 8: Fuzzy system response: Position response

Figure 9: Fuzzy system response: Radiation response

Fig. 7�9 show all experimental results of 2,252 seconds or 38 minutes approximately.
An error response (ε) or AFC comparative signal in Fig. 7 response compares be-
tween the frequency output and the input reference (Required 2.998 GHz). It con-
trols the feedback frequency (Resonant frequency) of 2.998 GHz constantly. The
boundary of control sets at the range of between -0.04 to +0.04 V. Results of the
signal are out of range, which consist of 0 to 400 second, 700 and 1400 second ap-
proximately. In Fig. 8, the e�ect of the moving Stepping Motor with out of range
tunes automatically the position. This moves from 1.6 to 4.6 degree approximately
and the signal of the motor position response is zero overshoot, rise time of 100
second and the system of positional Motor in time of 1,430 second constantly. And
�nally, the results of X-RAY radiation (Fig. 9) from the MedLINAC of 0.775 µSv/hr
approximately, the signal of the radiation likely follows direction of an error and the
positional Motor response. It observes that the radiation signal of the AFC sys-
tem. The Fuzzy logic control can control the X-RAY radiation response constantly.
However, if the disturbance caused, The Stepping Motor properly moves to tune the
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position by the Fuzzy logic rules and the magnetron system can adjust itself so the
output converges to its desired boundary.

6 Conclusions

The experimental result presents the e�ective performance control system for fre-
quency control of the magnetron system using the FLC design with LabVIEW pro-
gram. The dynamic response of the frequency shows no overshoot, rise time of 100
seconds and settling time of 320 seconds. The disturbance caused in system such
as the changing ambient temperature in the system. The FLC can adjust itself and
output signal is in range of the desired input. This control system is an engineering
research and development study for sustainable technology of the MedLINAC at
SLRI, Thailand.
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Abstract

An essential present-day engineering problem of pipeline destruction in
the result of in�uence of hydrogen contained in the transported medium is
considered. The relevance of this topic is determined by possible environmental
and economic issues, in the event of an accident resulting in gas and oil leaks.

Hydrogen a�ects mechanical properties of the pipe, changing its stress-
strain state, which, in turn, changes the distribution of bound hydrogen in the
material of the pipe. The hypothesis adopted on the nature of this connection
made it possible to explain the reasons for the destruction of pipeline on a
simple model.

The problem of the theory of elasticity for a hollow pipe under internal
pressure is considered in a plane axisymmetric formulation; stress and strain
�elds are found. Estimates of stresses according to the Mises criterion have
shown the appearance of plastic deformation zone in the pipe that is leading to
the delamination of the material in the circumferential direction. This result
corresponds to presently known experimental data.

Keywords: in�uence of hydrogen, stresses in pipeline, hydrogen-a�ected
delamination.

1 Introduction

Many disasters were caused by hydrogen cracking of metals. This phenomenon
is especially dangerous for engineering structures operating under high pressure,
including oil pipelines. Presence of hydrogen in the transported medium leads to
its quick accumulation inside the mass of metal, and, as a result, to a signi�cant
deterioration of pipeline mechanical properties [1].
A research by Nie [2] shows, that hydrogen saturation reduces the ultimate stress of
metal by a factor of 3 � 5. Studies of Polyanskiy et al [3] have shown that increase of
hydrogen concentration by a factor of 2 � 3 with respect to its natural concentration
leads to damage of pipe material.
It is well known, that hydrogen causes crack formation inside metal pipes (�g. 1).
Usually presence of such cracks is explained by microscopic defects during rolling of
metal. However, analysis of experimental data shows that such defects are caused
by hydrogen [4].
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Figure 1: Hydrogen induced fracture near the external surface of a thick steel pipe

Critical reviews of a large number of modern studies on the topic of hydrogen-
induced cracking and hydrogen embrittlement are given in [5, 6].
Most studies consider growth condition of a previously-formed crack, without study-
ing of its causes. Mathematical modeling and analysis of causes are still timely issues
in studies of cracks. Unfortunately, there are not enough experimental data covering
in�uence of low concentrations of hydrogen onto mechanical properties of materials.
The goal of this research is to explain causes of pipe destruction under internal
pressure of hydrogen-containing feed with the methods of the theory of elasticity.

2 Prolegomena

Let us �rst calculate the stress-strain state of a long steel pipeline that experience
a pressure onto its internal wall. For that end, let us consider a plane axisymmetric
Lame's problem for a hollow pipe under a uniform internal pressure of p.
The overall solution to this problem is known, see [7, 8]:

σr = A− B

r2
, σϕ = A+

B

r2
, u =

1

E

[
A(1− ν)r +

B(1 + ν)

r

]
. (1)

Here σr and σϕ are radial and circumferential stress values, u is a radial displacement,
A,B are arbitrary constants determined from boundary conditions: on the internal
radius (r0) the stress is σr = −p, on the external radius (r2) the stress is σr = 0.
From that we may �nd

A =
r20

r22 − r20
p, B =

r20r
2
2

r22 − r20
p. (2)

Let us determine deformation in the pipe following the formulas

εr = u′ =
1

E

[
A(1− ν)− B(1 + ν)

r2

]
, εϕ =

u

r
=

1

E

[
A(1− ν) +

B(1 + ν)

r2

]
, (3)

here E is the elasticity modulus and ν is Poisson's ratio of material.
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Let us note, that the coe�cient of volumetric expansion is constant and positive

trε , εr + εϕ =
2A(1− ν)

E
> 0, (4)

i.e., the pipe material is under conditions of a uniform voluminous expansion.
In this problem, displacements and deformations are two-dimensional, but stress
tensor contains the third component in the perpendicular direction:

σz = ν (σr + σϕ) . (5)

Figure 2a shows the calculation results for stress in the pipe with parameters cor-
responding to major gas and oil pipelines: internal radius of r0 = 680 mm, out-
side radius of r2 = 710 mm, working pressure of p = 12 MPa, steel properties:
E = 2 · 105 MPa, ν = 0.28.
The maximum of von Mises yield criterion τ0 is of special interest in determining
pipe strength:

τ0 = max
√

(σϕ − σz)2 + (σz − σr)2 + (σr − σϕ)2
/

2, (6)

its value shall not exceed the steel tensile yield stress (300 MPa). The distribution
of equivalent (von Mises) stress in a pipe is shown on Figure 2a by dotted line. It is
evident, that its maximum is located at the internal surface, but the pipe does not
have any plastic deformations yet.
Then, it is necessary to take into account presence of hydrogen inside the pipe. It
presents in the metal in its natural concentration, but it may also penetrate from
medium transported through the pipeline.
Studies [9, 10] stipulate, that di�usion of hydrogen atoms in metal is in�uenced not
only by their concentration and thermal �eld, but by the stress-strain state of the
matrix as well. According to Gorsiy's hypothesis, hydrogen atoms are attracted to
areas of tensile stress in metal. High-energy hydrogen is incorporated into crystal
lattice of metal. Due to that, mechanical properties of the material undergo changes,
in particular, its modulus of elasticity and yield point are reduced [5].
In the problem under consideration, the pipe material is compressed in the radial
direction (σr < 0) and stretched out in the circumferential direction (σϕ > 0) ; one
may assume, that hydrogen will ingress the crystal lattice predominantly in the
circumferential direction.
It seems, that a number of condition shall be held for hydrogen intrusion: interatomic
bonds in the lattice shall be signi�cantly stretched out, while hydrogen atoms shall
have su�cient energy. These conditions are held near the internal surface of the
pipe, where both tensile stress and hydrogen concentration are maximal. Thus,
there is an internal layer formed in the pipe with weakened mechanical properties.
One may expect, that the properties of metal are changed non-uniformly in di�er-
ent directions. Young's modulus is probably more weakened in the circumferential
direction, than in the radial one. For now, let us limit ourselves with analysis of
isotropic material with a reduced modulus of elasticity.
The process of hydrogen redistribution through metal is very slow and may take
anywhere from several hours to several years [5]. Thus, studies of pipe destruction
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(a)

(b)

Figure 1: Figure 2: Stresses in a pipe (a) without weakened layer, (b) with weakened
layer of 15 mm: 1 � radial σr, 2 � axial σz, 3 � circumferential σϕ, 4 � equivalent
stress as function of radius
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mechanism under the in�uence of hydrogen may be considered as a sequence of
static problems in the theory of elasticity.

Let us assume, that due to interactions with hydrogen, there is an internal layer
of thickness h formed, characterized by weakened mechanical properties. Let us
determine the stress-strain state of such a pipe.

3 A pipe with a weakened layer

Let us consider a problem similar to Lame's problem for a circular ring made of
two materials. In the internal part r0 < r < r1 there is a weakened material with a
constant Young's modulus of E; in the external part r1 < r < r2 there is steel with
the Young's modulus of E0. Boundary conditions are the same as in the previous
problem, with two additional conditions: on the radius of conjugation (r1) the values
of σr and u are continuous.

Formulas (1) are written down for the internal layer with the constants A,B, while
for the external layer there are A0, B0. Applying boundary conditions, we obtain
a linear algebraic system for the four constants. Its solution will give us values of
displacement and stress from the formulas (1).

Figure 2b shows diagrams of stresses and deformations for the same parameters as
above, the weakened layer thickness is 15 mm (r1 = 695 mm), while the modulus of
elasticity is E = 0.7E0.

The calculations show, that radial stress has changed insigni�cantly, while circum-
ferential and axial stresses have a discontinuity at the boundary between the two
layers and there's maximum values increased. The maximum value of the von Mises
yield criterion has increased to τ0 = 292 MPa.

Let us note, that the maximum tensile stress values are now localized in a hydrogen-
free layer of steel near the boundary between the layers. As a result, the hydrogen
atoms, having ingressed into the crystal lattice in this area, are going to weaken the
material. Thus, the thickness of the weakened layer is going to gradually increase.

Obviously, the increase in the thickness of the weakened layer will be accompanied
with increasing equivalent stresses. At some critical value of h a yield stress will be
attained and plastic deformations appear. The area of such deformations is a circle,
marking the boundary of hydrogen-weakened layer of material.

Figure 3 shows maximum equivalent stress as a function of weakened layer thickness;
it may be seen that the critical value is h=18 mm.
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Figure 3: Equivalent stress in a pipe with a weakened layer

The calculation results support the available experimental data, showing that hy-
drogen damage in pipes happens along a circle.

4 Conclusion

The mathematical modeling study explains the cause of damage of pipeline material
as a result of hydrogen impact.
It is shown, that during the transportation of hydrogen-containing feed through
the pipeline, a stress-strain state appears that facilitates redistribution of hydrogen
through the pipe material. As a result, there is an internal layer formed in the
pipe with weakened mechanical properties. Analysis of stress in such a two-layer
pipe has shown appearance of a plastic deformation area in the form of a circle
along the boundary between layers. This leads to appearance of circular cracks and
longitudinal delamination of pipe walls.
Exact quantitative assessment requires new experimental data on in�uence of small
concentrations of hydrogen onto the properties of structural materials.

References

[1] M. Elboujdaini. Initiation of Near Neutral pH Environmentally Assisted Crack-
ing in Line Pipe Steel // Proceedings of the 16th European Conference of Frac-
ture, Alexandroupolis, Greece, July 3 � 7, 2006.

[2] Y. Nie, Y. Kimura, T. Inoue, et al. Hydrogen embrittlement of a 1500-MPa
tensile strength level steel with an ultra�ne elongated grain // Metallurgical and
Materials Trans. A. 2012. Vol. 43. No. 5. Pp. 1670�1687.

[3] A.M. Polyanskiy, V.A. Polyanskiy, Yu.A. Yakovlev. Issledovaniye protsessov
ustalosti i razrusheniya metallicheskikh materialov s privlecheniyem metoda

291



REFERENCES

opredeleniya energii svyazi vodoroda v tverdom tele [Investigation of metal fa-
tigue and destruction by method of determination of hydrogen binding energy in
solid] // Deformatsiya i razrusheniye materialov. No. 3 (2009). Pp. 39�43. (rus.)

[4] A. Balueva. Modeling of hydrogen embrittlement cracking in pipe-lines under
high pressures // Procedia Materials Science 3, 2014. Pp. 1310�1315.

[5] A.K. Belyaev, N.R. Kudinova, V.A. Polyanskiy, Yu.A. Yakovlev. The Description
of deformation and destruction of materials containing hydrogen by means of
rheological model // St. Petersburg Polytechnical University Journal: Physics
and Mathematics ¹ 3 (225) 2015. Pp. 134�149. (rus.)

[6] M.B. Djukic et al. Towards a uni�ed and practical industrial model for prediction
of hydrogen embrittlement and damage in steels // Procedia Structural Integrity
2 (2016). Pp. 604-611.

[7] V.V. Eliseev. Mekhanika uprugih tel [Mechanics of elastic bodies]. SPb.: Izd-vo
SPbGPU, 2003. 336 p. (rus.)

[8] A.I. Lurie. Theory of Elasticity. Springer Science & Business Media, 2010. 1050 p.

[9] W.S. Gorsky. Theorie der ordnungsprozesse und der Di�usion in Mischkristallen
von CuAu // Sow. Phys. 1935. Bd. 8. Pp. 433�456.

[10] W.S. Gorsky. Theorie des elastichen Nachwirkung in ungeordneten Mis-
chkristallen (elastische Narchwirkung zweiter Art) // Phys. Zeitschrift der Sow-
jetunion. 1935. Bd. 8. Pp. 457�471.

Tatiana V. Zinovieva, Institute of Problems of Mechanical Engineering RAS, Bolshoj 61,
Vas. Ostrov, Saint-Petersburg, 199178, Russia

292



Proceedings of XLVI International Summer School–Conference APM 2018 

293 
 

 

 

 

Alternative seating of the drum in a separation line 
Bosak M.1, Tarca A.1 

 
1University of Economics in Bratislava 

 
martin.bosak@euke.sk 

 

Abstract 

 Separation processes are used in order to separate substances in 
homogeneous and heterogeneous substance systems. Fabric systems are mostly 
the product of chemical transformation obtained by chemical or biochemical 
reaction in some apparatus or they may occur as a natural source (air, water, 
mineral deposits). They are further used for cleaning e.g. desulphurisation of 
gases from combustion or water purification. Continuous working filters are often 
part of the separation line. In this case, it is a drum rotary filter. The rotating drum 
has a filter partition on the side, which is outside. The drum is partially immersed 
in a slurry vessel and the filtrate passes through the forming cake, the filtering 
baffle, through the individual drum segments to the axis of rotation through the 
distributor head outwards. Formed cake is continuously washed, blown and 
removed. The solids content of the slurry should be relatively low (from 3% to 
5%) because thanks to that sediment often does not have to be emptied (cleaned). 

1  Introduction 

The drum rotary filter operates with a horizontal axis of rotation and it is filled along an 
axis, which is near the bottom part of the drum. Emptying is manual and the drum holder 
is rigid by means of the two pressed pins according to Fig. 1 

During operation of the device due to external and internal factors at the place where the 
pivot was attached to the drum, the pins were often broken. The demandingness of the 
work on the replacement of the new pin contributed to the consideration of applying the 
pins as a mechanically dismountable screw connection. In this case, as a screw 
connection there were used the pre-assembled screws. The bolt would be screwed through 
the flange to the front of the drum, as shown in Fig 2.  
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Fig. 1 Drum holder bar 

 

Fig. 2 Mounting of the pin on the front side of the drum 

Advantage or the disadvantage of such a solution was verified by the performed 

calculation and FEM analysis. The creation of a computational model for FEM analysis 

was based on the work of various authors. Bocko et al. [1] analyze the impact of screw 

connections on stress and deformation as a whole. It indicates that the type of used 

calculation model depends on the desired calculation goal. In the case of a strength test, 
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the joint recommends using a model to determine axial force, transverse force and 

bending moment, or to create a sufficiently accurate model for voltage-based evaluation. 

The calculation shows 5 types of calculation models. Krištofovič [2] works on the 

dynamic interaction of the liquid with the tank, which leads to complex motion equations 

and indicates the simplification of the hydrodynamic side of the problem. Koves [3] in his 

contribution provides a method for sizing flanges and screws. The optimization of the 

shape of the joint is discussed by [4], where it states that the optimized shape has a 

positive effect on the maximum stress which results in a more even distribution of the 

load along the threads in the engagement. The problem of the sensitivity of the torsion 

stiffness of the bolt is analyzed in [5], for example and with changes in the dynamics of 

the rotor when loosening the screws it is analyzed in [6]. The effects of clamping forces 

on fatigue life of screw connections are examined by [7].  

2  Computational model - static analysis using FEM 

The object of the analysis is the pin consisting of material Fe 510 (11 523.1), which has a 

value of fy (Re) = 345 MPa, the strength of fu (Rm) = 490 - 630 MPa [9]. 

The pin is designed in two cases of hub connection, both as a pressed joint and as a screw 

connection after design modifications.  

The input data for the calculation of the reactions were taken from a static calculation [8] 

where a total load of 1 452 kN was assumed to consist of the drum's own weight and the 

weight of the load plus the dynamic coefficients. The test pin is located at reaction site B, 

Fig. 3. 

 

 

Fig. 3 The magnitude of the reactions at the locations of the bearing supports 
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3  Pin fastening made as a moulded joint 

In Fig. 1 is shown a pin whose connection to the face of the drum is made by pressing 

(used housing H7 / s6). The following tolerance values [11] are used for the used storage: 

 

 

On the pressed joint with a hollow pin, according to [10], the relative pressures p0 - in the 

hole of the hollow pin, p1 - in the contact surface at the radius r1 and the relative pressure 

p2 - act on the surface of the hub at the radius r2. 

Simplified 3D pin model was created for simulation purposes. The boundary conditions, 

applied loads, and a finite element network have been defined on the model. 

The result of the simulation is the total stress distribution in the pins (Figure 4), which 

does not exceed the value of the tread of the material. 

 
Fig. 4 Total tension distribution in the pin 

4  Pin bolt made as a screw connection 

A design was made on the pin, which consisted of changing the pin attachment to the 

front wall of the press from the pressed joint to the screw connection. The drawing of the 

pin adjustment is shown in Fig. 5. 
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Fig. 5 Drawing of a modified pin 

In this case, the pin attachment to the front of the drum is realized by means of 8 screws 

M27. Analogously, the pattern was applied to the model, with the marginal conditions 

adjusted for the new drum connection. The simulation result is shown in Fig. 6. 

 

Fig. 6 Total tension distribution in the adjusted pins 

From the Fig. 6 it can be seen that even in this case the maximum voltage does not exceed 

the value of the slump of the material. 
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5  Calculation of torque and shear force on screws 
The pin to the drum is bolted by means of 8 screws M27 x 80 DIN 933 with the diameter 

400 mm. The most unfavourable situation may occur in the case of locking of the bearing 

on the pin, which results in a maximum load on the pin at the point of attachment to the 

drum  

The torque required for the analysis was calculated from the engine power and the drum 

speed. The engine power is P = 30 kW, drum speed is nb = 2 min-1. 

       (1) 

      

The cutting force applied to the bolts at the point of attachment of the pin to the drum is 

determined according to the following equation: 

          

 (2) 

where Ds is the diameter of the bolt attachment. 

Fc = 716,5 kN. 

The force acting on one screw (Figure 7) is given as a proportion of the total shear force 

and number of screws (3) used.  

 
Fig. 7 Dynamically loaded coupling 

 

F - the shear force, F0 - the preload obtained by tightening the screw 

F = Fc / 8 = 89,6 kN.                                            (3) 

The recommended tightening torque for screws M27 DIN 933 of the strength class 8.8 

(without pre-tensioning) is, according to the manufacturer, F0 = 109 Nm. 

Screw parameters M27 x 80 DIN 933: 

thread pitch p = 3 mm, 

mean diameter d2 = 25,051 mm, 



Proceedings of XLVI International Summer School–Conference APM 2018 

299 
 

small diameter d3 = 23,319 mm, 

cross-section of the screw core A = 459 mm2. 

According to [12], for the strength class of screws 8.8, the following nominal values of 

the fluctuation factor fyb = 640 N/mm2 and tensile strengths fub = 800 N/mm2. 

The resistance of the shear bolt for a single shear plane is determined according to the 

relationship (4) as follows: 

    

 (4) 

where  αv = 0,6 for strength classes 4.6, 5.6 a 8.8, 

 γM2 - is the partial confidence factor = 1,25 

Fv,Rd = 176 256 N = 176,3 kN. 

For the resistance of the cutting screw, the condition must be met: 

 F  Fv,Rd 
89,6 kN  176,3 kN 

  

6  Shear resistance of screw for one shear plane using 

the FEM 

For the loads weighing on one bolt, finite element analysis for shear bolt resistance was 

performed (Figure 8). 

 
Fig. 8 Result of analysis for cutting screw resistance 

 

According to the results of the analysis, the yield curve of the material was not exceeded, 

which confirmed the calculation of the cutting screw resistance described above. 
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The most unfavourable case of pivot loading is assumed to be an extreme load case when 

the bearing on the pins under investigation is completely blocked, thereby resulting in a 

combined load of force from the drum's own gravity to the drum load in conjunction with 

the maximum torque transmitted from the propulsion system. 

The simulation model of this extreme load condition and the simulation results are shown 

in Fig. 9.  

 

Fig. 9 Simulation results 

For more accurate results, it is necessary to create a simulation of the load on the whole 

system, since the partial simulation for the pin only represents a rough approximation of 

the boundary conditions, causing uncertainties in the resulting voltage values.  

 

7  Summary of results and conclusion 
Based on the computational simulations for extreme load conditions, the analysis showed 

that the proposed adjustment of the pin in terms of stress is not as advantageous as, for the 

same load conditions, it shows 27% higher stresses but not exceeding the allowable 

values. However, considering the costs associated with the replacement of the damaged 

pin and the total line shutdown time and then despite this aspect, it is advantageous to use 

the proposed adjustment of the pin for the screw connection. 

 

References 

[1] Bocko, P., Mantič, M.: Input data for preloaded bolted connection design in FEM.  In: 
Nové trendy v konštruovaní a v tvorbe technickej dokumentácie. Nitra SPU. 2005: 
24-27.  ISBN 8080695172.  

[2] Krištofovič, V., Kotrasová, K.:  Interaction of steel water tank tower with subsoil 
under Earthquake excitation. Modelování v mechanice, Ostrava, 2006: 1-13. 

[3] Koves, W.J.: Flange joint bolt spacing requirements. Am Soc Mech Eng Press Vessel 

Pip Div PVP 2008;3:3–10. doi:10.1115/PVP2007-26089. 

[4] Pedersen, N.L.: Overall bolt stress optimization. J Strain Anal Eng Des 2013;48:155–

65. doi:10.1177/0309324712470233. 



Proceedings of XLVI International Summer School–Conference APM 2018 

301 
 

[5] Smith, L.M., Nassar, S.A., Ganeshmurthy, S., Burgues, O. J.: Sensitivity analysis of a 

bolt-together vehicle chassis. SAE Tech Pap 2006. doi:10.4271/2006-01-1251. 

[6] Qin, Z., Han, Q., Chu, F.: Bolt loosening at rotating joint interface and its influence 

on rotor dynamics. Eng Fail Anal 2016;59:456–66. doi:10.1016/j.engfailanal. 

2015.11.002. 

[7] Chakherlou, T.N., Razavi, M.J., Abazadeh, B.: Finite element investigations of bolt 

clamping force and friction coefficient effect on the fatigue behavior of aluminum 

alloy 2024-T3 in double shear lap joint. Eng Fail Anal 2013;29:62–74. 

doi:10.1016/j.engfailanal.2012.11.004. 

[8] Argaláš, B.: Statický posudok skrutkovaného spoja pre uchytenie bubna. Stroj: 

Vláknitá linka-Pracie filtre (hnedá linka). 

[9] Trebuňa, F., Šimčák, F.: Odolnosť prvkov mechanických sústav, Edícia vedeckej a 

odbornej literatúry, TU Košice, 980 s., ISBN 80-8073-148-9 

[10]  Málik, M., Medvecký Š. a kol.: Časti a mechanizmy strojov, Žilinská univerzita v 

Žiline, EDIS, 2002, 535 s., ISBN 80-8070-043-5.  

[11]  Leinveber, J., Řasa, J., Vávra, P.: Strojnícke tabuľky, Scientia, Praha, 1999, ISBN 

80-7183-164-6. 

[12]  STN EN 1993-1-8 Eurokód 3 - Navrhovanie oceľových konštrukcií, časť 1-8: 

Navrhovanie uzlov. 



Proceedings of XLVI International Summer School�Conference APM 2018

Chaotic dynamics of interacting pendulums (the
decision of the synchronization problem)

S.O. Gladkov, S.B. Bogdanova

sglad51@mail.ru, sonjaf@list.ru

Abstract

It's consider as an example of two coplanar metal pendulums, suspension
points of which are at the same horizontal level and the same �xed distance
of b from each other. It's shown that the principle of possibility of synchro-
nization due to two main factors. The �rst one is the e�ect of electromagnetic
interaction between the pendulums. The second one is taking into account of
the power of EM radiation coming to the nonlinear attenuation.

1 Introduction

In this paper, we would not research internal structure of the clock mechanism. It
was obtained the system of nonlinear dynamic equations of motion and it was given
analytical estimates of synchronization time of tsynch, supported by numerical solu-
tion of the equations obtained, which has not bad agreement with the experimental
results (see below).
The problem to which this paper is devoted is not new one, because dated back to
Huygens time, who �rst turned attention to the e�ect of synchronization of physical
metal pendulums, hanging at some distance from each other. Later the e�ect of
synchronization have been searched in other papers (for example [1] � [4]) and in
monographs (for example, [5] � [7]). We should note that in some sources (for
example, [7] and [8]), the model of synchronization is based on condition of small
adjustment of pendulums swing connected with �dry friction� which proportional to
the velocity of pendulums motion and in the opinion of the authors, the internal
structure of the clock mechanism is determined only. In this paper, we would not
research internal structure of the clock mechanism, but we approach the solution of
the problem from a fundamentally di�erent physical point of view.
We should note that none of the mentioned sources estimated the time of synchro-
nization tsynch was not estimated in any mentioned sources, what is more, it was
not o�er physically grounded interaction between pendulums, leading exactly to the
e�ect of synchronization.
What is more, the e�ect of EM radiation had never been taken into account, however,
as we are going to prove now, it plays a pivotal role in this interesting phenomenon.
Also, in the previous papers it was not mentioned at all.
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We should notice that the arguments given below can easily be transferred to any
other similar problems that are somehow related to the e�ects of the radiation of
the currently known physical �elds (gravitational, electromagnetic and acoustic) and
are an attribute of any moving and interacting objects. As an example we choose
two absolutely identical physical pendulums, points of suspension are at the same
distance b from each other. For the sake of concretization the calculations below,
we should take the pendulums are coplanar as in Fig. 1. We should notice that the
explained algorithm for calculation is trivially genereliazed even if the pendulums
are suspended in parallel planes, however, the substance of the issue is identical in
both cases.
In the general, if lengths of suspension are di�erent or equal to l1 and l2 , then
according to the geometry of Fig. 1, we get the following expression for the distance
between the centers of the pendulums:

R =
√
l21 + l22 + b2 + 2bl1 sinϕ1 − 2bl2 sinϕ2 − 2l1l2 cos(ϕ1 − ϕ2) (1)

In our case, when both pendulums are identical, i.e. l1 = l2 = l, m1 = m2 = mfrom
the formula (1) synchronization condition is trivially written, i.e.R = b equality
should be realized R = b . This automatically leads to the equation:

l + b sinϕ1 − b sinϕ2 − l cos(ϕ1 − ϕ2) (2)

Solving this equation in ϕ2 , we obtain that:

sinϕ2 = sinϕ1 (3)

I.e. the synchronization condition is

ϕ1 = ϕ2, ϕ̇1 = ϕ̇2 (4)

2 Setting of the problem

Before proceeding to the direct formulation and solution of the problem, it is nec-
essary to say a few words about the physical side of the problem. For identical
pendulums when l1 = l2 = l, m1 = m2 = m the potential energy should be repre-
sented in a symmetrical form as a half sum

U(R) =
U12(R) + U21(R)

2
(5)

The total energy of the system should be like this

E = T + U = U0 +
ml2c ϕ̇

2
1

2
+
ml2c ϕ̇

2
2

2
−mglc (cosϕ1 + cosϕ2) +

+
U12(R) + U21(R)

2
= const,

(6)
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where U0 = mgH, lc the distance of suspension point of the pendulum from its
center of attraction, H height of suspension of pendulums above the Earth. In
contrast to the dependence (1), the distance between the centers of the pendulums
is conveniently introduced in vector form, which automatically allow for the curve
trajectory of its motion. Indeed, since at the initial instant time t = 0 , the distance
is R0 , then at any moment of the time it can be represented as

R = R0 −
∫ t

0

(v1(t) + v2(t)) dt, (7)

where v1,v2 the velocities of both balls. As a result, the potential energy of inter-
action can be represented in the following form

U = UG

(∣∣∣∣R0 −
∫ t

0

(v1(t) + v2(t)) dt

∣∣∣∣)+UEM

(∣∣∣∣R0 −
∫ t

0

(v1(t) + v2(t)) dt

∣∣∣∣) .
(8)

The �rst term is the usual gravitational interaction of two material objects, but we
will dwell on the second term in (8) in more detail. To �nd it we should recall some
of the basic principles of electrodynamics (see, for example, [9]) and among other
factors, Maxwell's equations. In the quasi static case from classical electrodynamics
it follows that the vector potential A of the magnetic �eld should satisfy equation

∆A = −4π

c
j, (9)

where j is the inertial current of the density in moving balls, c is the velocity of the
light. As it's known (see ref. [9]) the interaction determined by the motion of the
electrons can be represented in the form:

U = −1

c

∫
V

jAdV. (10)

In our case, a moving pendulum, conditionally denoted by index 1, induces a poten-
tial on the second pendulum A1 . Therefore, in the accordance with the expr. (10)
and eq. (9) we have for the potential interaction energy

UEM =
1

c2

∫
V1

∫
V2

j1j2

R̃
dV1dV2, (11)

where the vector R̃ is determined as R̃ = R + r1 − r2 , where radius-vectors r1, r2
are current directions in each of the balls counted from their centers, for which
integration is carried out in (11), V1 and V2 the volumes of these balls. Since the
current density in the moving sphere is j = ρev , where ρe electric density in the
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ball, its velocity at �uctuating motion is de�ned as v = lcϕ̇τ , where lc the distance
of suspension center from center of attraction the system of the ball + rod.
In the result with the accordance formula (11) we can obtain that the potential
energy of interaction is

UEM =
ϕ̇1ϕ̇2 (k1 · k2) ρ2e

c2

∫
V1

∫
V2

(lcτ1 + r1v1) (lcτ2 + r2v2) dV1dV2

R̃
=

=
ϕ̇1ϕ̇2 (k1 · k2) ρ2e

c2

[
l2c (τ1 · τ2)

∫
V1

∫
V2

dV1dV2

R̃
+ lc

∫
V1

∫
V2

r1 (τ1 · v2) dV1dV2

R̃
+

+ lc

∫
V1

∫
V2

r2 (τ2 · v1) dV1dV2

R̃
+

∫
V1

∫
V2

r1r2 (v1 · v2) dV1dV2

R̃

]
,

(12)

where k1 and k2 - unit vectors directed along the angular velocities ω1 and ω2 and
along the axisz , perpendicular to the plane of the Fig. 1
As we can see from the Fig. 1, scalar product of unit vectors τ1 and τ2 is τ1 · τ2 =
cos (π − ϕ1 + ϕ2) = − cos (ϕ1 − ϕ) . For other scalar products in (15), we are �nding
that τ1 · v2 = cos (ϕ1 − ϕ2), τ2 · v1 = cos (ϕ2 − ϕ′) , v1 · v2 = cos (ϕ− ϕ′) , where
angles ϕ and ϕ′ are the current vector angles in the plane x − y of the spherical
coordinate system for which integration is carrying out, i.e.dV1 = r21 sin θ1dr1dθ1dϕ
and dV2 = r22 sin θ2dr2dθ2dϕ

′.
After all calculation we are �nding from the expr. (12)

UEM =
ϕ̇1ϕ̇2 (k1 · k2) ρ2e

c2

[
−l2c cos (ϕ1 + ϕ2)

∫
V

∫
V

dV1dV2

R̃
+ F

]
, (13)

where the function

F =

r0∫
0

r31dr1

r0∫
0

r32dr2

π∫
0

sin θ1dθ1

π∫
0

(√
A−B −

√
A+B

)
sin θ2

2r1r2 sin θ1 sin θ2
dθ2 =

2

r0∫
0

r21dr1

r0∫
0

r22dr2

π∫
0

dθ1

π∫
0

(√
R2 + 2Rr1 cos θ1 − 2Rr2 cos θ2 + r21 + r22 − 2r1r2 [cos (θ1 − θ2) + sin θ1 sin θ2]−

−
√
R2 + 2Rr1 cos θ1 − 2Rr2 cos θ2 + r21 + r22 − 2r1r2 cos θ1 cos θ2

)
dθ2

and approximately we have that the interaction is

UEM =
ϕ̇1ϕ̇2 (k1 · k2) ρ2eV

2l2c cos (ϕ1 + ϕ2)

c2b
ξ (14)
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where ξ � is a numerical dimensionless factor of the order of unity. It is not so
important for our investigation. As we can easily understand, scalar product of unit
vectors k1 and k2 should be written as k1 · k2 = cosψ and the sign of this expres-
sion at certain times must change. Essentially, such a fact could have signi�cance,
however, it does not carry a fundamental and profound meaning. Therefore for all
analytic calculations carried out below the solution will be given at cosψ = ±1 . So
v1 = ϕ̇1lτ1 and v2 = ϕ̇2lτ2, where τ1,2 is an unit vectors tangent to the trajectory
of motion that can be represented as an expansion in a �xed two � dimensional basis
i, j .

3 The power of the electromagnetic radiation of the
moving pendulums

Herein we are going to pay attention on the most important moment of our theory
and give a detailed calculation of the power of the EM radiation of pendulums,
leading ultimately to their synchronization. For this goal we should recall some
properties of the LiÃ©nard-Wiechert potentials. According to for example ref. [12]
any moving charge creates a scalar potential and a vector potential A at some
distance r from itself, which are given by the following symmetric formulas

ψ (r, t) =
e

2

 1

R− v ·R
c

+
1

R +
v ·R
c

 =
e

R

[
1−

(v · n
c

)2] ,

A (r, t) =
ev

2c

 1

R− v ·R
c

+
1

R +
v ·R
c

 =
ev

Rc

[
1−

(v · n
c

)2]
(15)

where n =
R

R
- is an unit vector, R = |r− r0(t)| is the distance, where r0(t) is the

trajectory of the charge and r is the point of observation. For our speci�c case these
formulas we are completely trivially generalized to a moving metal pendulum and
in the accordance of expr. (15), we obtain after the integration on volumes V1 and
V2

ψ (r, t) =
enV

R

[
1−

(v · n
c

)2] ≈ enV

R

[
1−

(v · n
c

)2]
,

A (r, t) =
enV v

Rc

[
1−

(v · n
c

)2] ≈ enV v

R

[
1−

(v · n
c

)2]
,

(16)

where n is the charge concentration, V is the volume of pendulum (see above). The
potentials (16) give us a possible to calculate the distributions of EM �elds outside
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pendulums. Indeed, in the accordance with the formulas which good known from
the electrodynamics (see ref. [12]) we have for the electric and magnetic �elds

E = −1

c

∂A

∂t
−∇ψ,B = rotA. (17)

Substituting here expr. (16), we are getting that

E = −enV
c2

(
v̇

R
+
v (v ·R)

R3

)
+
enVR

R3
+
enVR

R3

(v · n
c

)2
+

2enV v

R3

(
v ·R
c

)2

=

=
enVR

R3
− enV

c2
v̇

R
+
enVR

R3

(v · n
c

)2
+

2enV v

R3

(
v ·R
c

)2

,

B =
enV

cR3
[v×R] ,

(18)

Where we have accounted that R = r− r0(t) and accounted that Ṙ = −ṙ0 = −v .
As it is known from the ref. [12] the radiation should be determined only by terms
that include a derivative of the velocity with respect to time. This is due to the
fact that when the emission intensity of the squared absolute value of the �elds and
and multiplied by the element of the spherical surface R2dO where the solid angle
element dO = sin θdθdϕ and in the limit R → ∞ of the sum of the squares of the
�elds de�ned in (18) will only the term of v̇ . Therefore from the expr. (18) we can
take only the radiation part of the electric �eld, i.e.

Erad = −enV
c2

v̇

R
. (19)

Since v = vτ for the acceleration we have v̇ = v̇τ +
v2

l
n , where n the unit vector

of the normal to the trajectory of motion (in our case to a circle of radius l equal
to the length of the suspension). Therefore following the de�nition of the emission
intensity according I as it's shown in the ref. [12] and taking into account formula
(19) above, we are getting that

I =
cE2

rad

8π
=

c

8π

(
enV

c2
v̇

R

)2

=
(enV )2

8πc3
1

R2

(
v̇2 +

v4

l2

)
. (20)

As far as the tangential velocity is v = lϕ̇ we have, hence

I =
(enV )2

8πc3
l2

R2

(
ϕ̈2 + ϕ̇4

)
. (21)

So as the power of radiation is de�ne as W =
∫
IR2dO = 4πIR2 , from the expr.

(21) we are obtain

W =
(enV l)2

2c3
(
ϕ̈2 + ϕ̇4

)
(22)
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4 Derivation of the motion equations in general
form and the analysis

As it's shown in the ref. [11], in the general case we can write the following equation

∑
Ė +

∑
Q̇+

∑
W = 0 (23)

whereQ̇ � is the dissipation function. Neglecting by the dissipative properties of the
continuum from the expr. (32), we have

∑
Ė +

∑
W = 0. (24)

After di�erentiating of the total energy over the time and using (6), (22) and (24),
we are getting the following equation

ml2c ϕ̇1ϕ̈1 +ml2c ϕ̇2ϕ̈2 +mglc (ϕ̇1 sinϕ1 + ϕ̇2 sinϕ2) +

+
∂UEM
∂R

∂R

∂ϕ1

ϕ̇1 +
∂UEM
∂R

∂R

∂ϕ2

ϕ̇2 +
(enV )2

8πc3
l2

R2

(
ϕ̈2 + ϕ̇4

)
= 0

(25)

Where the distance are

R =

(
(R0x + lc (sinϕ1 − sinϕ01 + sinϕ2 − sinϕ02))

2 +

+ (R0y − lc (cosϕ1 − cosϕ01 + cosϕ2 − cosϕ02))
2

)1

2
.

(26)

As we can see from the expr. (22) the emission power consists from two parts.
The �rst part of the summand turns is much less than the second one and it's
connected with the following simple reason. According to the numerical solutions
of the resulting system of equations (25) (see below) the nonlinear "damping" due
to the radiation leads to the ful�llment of the condition |ϕ̈1,2| �

∣∣ϕ̇2
1,2

∣∣ , which is
con�rmed by a graphic comparison of these two terms (see Fig. 2). This means

that we can write the formula (22) in approximate form as W ≈ (enV l)2

2c3
ϕ̇4 , as we

written in the eq. (25).
After the substitution in the eq. (25), we obtain the following system of equations
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ϕ′′1 + ω2
0 sinϕ1 + ω2

1q1 [sin(ϕ1 − ϕ2)− a cosϕ2]− λ2q2(ϕ′′2cosψ − ϕ′2ψ′ sinψ) cos(ϕ1 + ϕ2)−
− 3λ2q2(ϕ

′
1 − ϕ′2) sin(ϕ1 − ϕ2) cos(ϕ1 + ϕ2)ϕ

′
2 cosψ + κϕ′31 −

− 3λ2a

2
cos(ϕ1 + ϕ2)

[
ϕ′1 cosϕ1 − ϕ′2 cosϕ2

Q5
12

+
ϕ′2 cosϕ2 − ϕ′1 cosϕ1

Q5
21

]
ϕ′2 cosψ = 0,

ϕ′′2 + ω2
0 sinϕ2 + ω2

1q1 [sin(ϕ1 − ϕ2) + a cosϕ1]− λ2q2(ϕ′′1cosψ − ϕ′1ψ′ sinψ) cos(ϕ1 + ϕ2)−
− 3λ2q2(ϕ

′
1 − ϕ′2) sin(ϕ1 − ϕ2) cos(ϕ1 + ϕ2)ϕ

′
1 cosψ + κϕ′32 −

− 3λ2a

2
cos(ϕ1 + ϕ2)

[
ϕ′1 cosϕ1 − ϕ′2 cosϕ2

Q5
12

+
ϕ′2 cosϕ2 − ϕ′1 cosϕ1

Q5
21

]
ϕ′1 cosψ = 0.

(27)

where the frequencies are

ω2
0 =

g

lc
, ω2

1 =
Gm

l3c
(28)

and the parameters are

λ2 =
ρ2eV

ρbc2b
ξ, κ =

ρ2el
2V

2ρbc3l2c
ξ. (29)

New functions are

q1 =
1

2

(
1

Q3
12

+
1

Q3
21

)
, q2 =

1

2

(
1

Q5
12

+
1

Q5
21

)
, (30)

where the denominators are Q12 =
√
a2 + 2 (1− cos(ϕ1 − ϕ2)) + 2a (sinϕ1 − sinϕ2)

and Q21 =
√
a2 + 2 (1− cos(ϕ1 − ϕ2))− 2a (sinϕ1 − sinϕ2) . Here a =

b

lc
� is a new

dimensionless parameter. As we can see form the system (27) as it must be it is
symmetric with respect to the change inversion operations ϕ1 → −ϕ1, ϕ2 → −ϕ2 and
ϕ1 → ϕ2, ϕ2 → ϕ1 . Introducing for convenience else one dimensionless parameter

λ1 =
ω2
1

ω2
0

, as well as dimensionless time τ = ω0t , we are �nding in the result



ϕ′′1 + sinϕ1 + λ1q1 [sin(ϕ1 − ϕ2)− a cosϕ2]− λ2q2(ϕ′′2cosψ − ϕ′2ψ′ sinψ) cos(ϕ1 + ϕ2)−
− 3λ2q2(ϕ

′
1 − ϕ′2) sin(ϕ1 − ϕ2) cos(ϕ1 + ϕ2)ϕ

′
2 cosψ + kϕ′31 −

− 3λ2a

2
cos(ϕ1 + ϕ2)

[
ϕ′1 cosϕ1 − ϕ′2 cosϕ2

Q5
12

+
ϕ′2 cosϕ2 − ϕ′1 cosϕ1

Q5
21

]
ϕ′2 cosψ = 0,

ϕ′′2 + sinϕ2 + λ1q1 [sin(ϕ1 − ϕ2) + a cosϕ1]− λ2q2(ϕ′′1cosψ − ϕ′1ψ′ sinψ) cos(ϕ1 + ϕ2)−
− 3λ2q2(ϕ

′
1 − ϕ′2) sin(ϕ1 − ϕ2) cos(ϕ1 + ϕ2)ϕ

′
1 cosψ + kϕ′32 −

− 3λ2a

2
cos(ϕ1 + ϕ2)

[
ϕ′1 cosϕ1 − ϕ′2 cosϕ2

Q5
12

+
ϕ′2 cosϕ2 − ϕ′1 cosϕ1

Q5
21

]
ϕ′1 cosψ = 0.
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(31)

where the primes are means the di�erentiation over τ . The dimensionless parameter

k =
ρ2el

2V ω0

2ρbc3l2c
(see expr. (29)), where ρb =

m

V
� is a density of the metal balls. As

we mentioned above, appearing in (27) the parameter cosψ and it derivative for
simplifying the analysis we are putting that cosψ = ±1, (cosψ)′ = 0 . Moreover,
we take into account that Q12 ≈ Q21 = a . In the result the equations (31) are
simpli�ed and we obtain the compact system of equations

{
ϕ′′1 + sinϕ1 + γϕ′′2 cos(ϕ1 + ϕ2) + 3γ(ϕ′1 − ϕ′2) sin(ϕ1 − ϕ2)ϕ

′
2 cos(ϕ1 + ϕ2) + kϕ′31 = 0,

ϕ′′2 + sinϕ2 + γϕ′′1 cos(ϕ1 + ϕ2) + 3γ(ϕ′1 − ϕ′2) sin(ϕ1 − ϕ2)ϕ
′
1 cos(ϕ1 + ϕ2) + kϕ′32 = 0

(32)

where the parameter γ =
λ2
a5

. To solve the equations (32), we should also de�ne

initial conditions, which we choose in the following form:

ϕ1(0) = −ϕ01, ϕ2(0) = ϕ02, ϕ̇1(0) = ϕ̇2(0) = 0. (33)

The rigorous proof of the principle possibility of synchronization, given by us, is
based only on two factors: 1. The potential energy of electromagnetic interaction
between metallic spheres and 2. EM radiation. The numerical solution of the
systems (32) at initial conditions (33) can be illustrated by the Figs. 3 � 6 (on this
Fig. we are choice the parameters γ = 10−2 and k = 10−3 ).
So, as it's shown above analytical and numerical solution of the equations (32) and
their analysis help us to realize that the eye of the synchronization problem is more
understandable. The solution described above, explaining the mechanisms of inter-
action of pendulums and answers to the question about the physical nature of this
interesting and very curious phenomenon. From the point of view of numerical anal-
ysis, graphical illustration of the solutions of the equations (32) is very important,
because of its clarity, which allows us to show the entire synchronization stage in
the �gures, and numerically estimate the synchronization time tsynchr for di�erent
values of the parameters γ and k .

5 On physical nature of synchronization

We need to say that at �rst the issue of the synchronization of the pendulums, as a
historical fact, applied to ordinary mechanical watches. Evidence of this is the very
�rst experiment in this direction, conducted by Huygens with the aid of ship clocks,
which for the �rst time established the fact of their synchronization. All subsequent
studies, one way or another, were reduced to mechanical watches (see, for example,
the monograph [7]), i.e. on the clockwork. The task posed in this article, as it
appears from the previous text, was devoted to solving a purely physical problem,
which is completely unrelated to the mechanics of the clockwork mechanism, and
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pursued only one goal. To show the principle possibility of synchronization due to
taking into account the two most important physical factors, the nature of which
is purely electromagnetic, i.e. 1. EM interaction between pendulums and 2. EM
radiation. It is quite clear that out of all the many interactions currently known, this
is gravitational, electromagnetic, Van der Waals and magnetic dipole. The last one is
the most e�ective only for magnetic materials. This means that in case you want this
to happen. However, in this case the physics becomes completely di�erent because it
will be too small in comparison with metals, and the main role will shift to the e�ect
of EM wave emission due to the precession of the magnetization vector, as its shown
in the papers [14], [15] (see also [16]). As it turned out, the greatest contribution to
the attraction e�ect of metal pendulums is provided by electromagnetic interaction,
accompanied by inhibition in the form of EM radiation, and that was described in
some detail a little higher. At the moments of closest approach of pendulums, the
interaction e�ect reaches a maximum, as a result of which the pendulums begin to
intensely "feel" each other. One at the same time slightly slows down, and the other
� slightly accelerated due to the more intense radiation coming from the opposite
pendulum, but the total energy of both pendulums in the absence of dissipation
should remain constant. It is rather subtle moment tells us only that the formal
languages for describing any non-equilibrium phenomena with or without energy
dissipation will be very di�erent from the formalism of the description of phenomena
in the language of radiation powers. The only essential condition for this is the
movement of the object along the curvilinear trajectory.

6 Conclusion

1. Due to the assumption that the interaction between pendulums is of a long-
range nature of electromagnetic interaction a system of symmetric relatively
permutations and non-linear di�erential equations are obtained, which are
the invariant relative to the transformations: ϕ1 → ϕ2, ϕ2 → ϕ1 and ϕ1 →
−ϕ1, ϕ2 → −ϕ2 . The EM radiation is a main factor of synchronization
phenomenon. Based on these two physical factors, we have a possible to
describe mathematically the entire synchronization process.

2. It is strictly analytically shown that in the approximation of small oscillations
the synchronization e�ect occurs after a time tsynchr. The numerical values of
which corresponds to the experimentally observed times.

3. Using numerical integration methods, we give a general solution of the non-
linear system (32) of the di�erential equations illustrated by the Fig. 3 - 6.
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Fig. 1

Fig. 2

312



Chaotic dynamics of interacting pendulums

Fig. 3

Fig. 4
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Fig. 5

Fig. 6
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Caption

Fig. 1 Schematic geometry of the problem
Fig. 2 Dependence ϕ̇2

1,2(τ) and ϕ̈1,2(τ) . In the given metric scale essentially, func-
tion ϕ̈1,2 merges with abscissa τ . I.e., condition |ϕ̈1,2| �

∣∣ϕ̇2
1,2

∣∣ realizes.
Fig. 3 Dependence ϕ2(ϕ1) on the interval time τ ∈ [0, 500]
Fig. 4 Dependence ϕ2(ϕ1) on the interval time τ ∈ [2000, 3000]
Fig. 5 Dependence ϕ2(ϕ1) on the interval time τ ∈ [8000, 9000]
Fig. 6 Dependence ϕ2 ≈ ϕ1 on the interval time τ ∈ [48000, 49000]
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