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ABSTRACT 

The heat release rate (HRR) is often the most important quantity to characterize fire growth and 
suppression. However, it is still a challenge to obtain a time-resolved HRR for a fire experiment 
conducted under a ceiling. This work proposes a new method to calculate the convective and chemical 
HRRs for a fire under a ceiling. The instantaneous measurements of gas temperature, velocity and species 
concentration in the ceiling layer are used to calculate the HRRs. To verify the proposed method, two 
heptane pan fire tests are conducted under a ceiling and the chemical HRR is calculated from the fuel 
mass loss data. The results show that the proposed method can provide a time-resolved chemical HRR 
that is comparable to that obtained from the fuel mass loss rate. The fraction of convective HRR to 
chemical HRR also agrees well with the test data obtained under a calorimeter.  

KEYWORDS: Ceiling jet, fire, heat release rate. 

INTRODUCTION 

The time-resolved HRR can usually be measured directly under a fire calorimeter (or fire product 
collector). Figure 1 shows a sketch of a fire under a 20-MW calorimeter. The gaseous combustion 
products are drawn directly into the hood, where gas species concentrations, gas velocity and gas 
temperature are measured downstream in the exhaust duct. Based on these measurements, the 
chemical HRRs (%|®}�Z,p
  or %|®}�Z,�p
�p) can be calculated based on either oxygen consumption or 
CO2/CO generation [1] as  

%|®}�Z,p
 	 �| ��ø¨ TU
T�0� ∆Cp
ROp
,M � Op
V. (1) 

%|®}�Z,�p
�p 	 �| ��ø¨ �TVU
T�0� ∆C�p
RO�p
 � O�p
,MV � TVUT�0� ∆C�pRO�p � O�p,MV�. (2) 

The quantity �| ��ø¨ is the total mass flow rate of gas mixture in the exhaust duct, and :p?, :�p?, :�p and  :Z&\  are the molecular weights of O2, CO2, CO and gas mixture in the exhaust duct, 
respectively. The molecular weight of the gas mixture is approximated as that of air. The quantities ∆Cp
 , ∆C�p
  and ∆C�p are the heat production associated with oxygen consumption and CO2 and 
CO generation, which depend on fuel components and chemistry [1]. The quantities Op
 ,	O�p
  and O�p are the measured volumetric fractions of each gas species.  

The convective HRR (%|®ø;�) is calculated as 

%|®ø;� 	 �| ��ø¨56�� � �M�, (3) 

where T0 is ambient air temperature and cp is the specific heat of gases. Although there are time 
delay and signal smearing due to gas transport and sampling, adjustment for these effects can be 
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made so that the time-resolved accuracy of both chemical and convective HRRs is acceptable for 
the calorimeter measurements.  

  

Fig. 1. Illustration of a fire under the 20-MW calorimeter (D – duct diameter).  

In contrast, for a fire experiment conducted under a ceiling, it is a challenge to obtain the time-
resolved HRR. Figure 2 illustrates a fire under a movable ceiling in a large testing laboratory, which 
shows the ceiling jet, the combustion products above the ceiling, and the exhaust direction at the lab 
ceiling level. Because of the large volume of plenum space above the ceiling, the combustion 
products generated at different times tend to accumulate and mix in that space. Therefore, the gas 
mixture that is drawn into the exhaust ducts is different from what the fire is generating at a given 
time and the measured gas concentrations are not time-resolved. Because of this mixing in the 
plenum space above the ceiling, a time-resolved HRR is not possible through direct measurements 
of the exhaust gases in the duct at the lab ceiling. 

 

Fig. 2. Illustrations of a fire under a ceiling with a ceiling jet and combustion products above the ceiling. 

To account for accumulation and mixing of the combustion products within the large volume of 
space above the movable ceiling, a method has been proposed to correct the species concentration 
data by a time parameter [2]. Data from a limited number of tests indicated that a simple first-order 
correction is still inadequate. Another method, developed to estimate the time-resolved HRR by 
using the flame volume [3], is based on the assumption that the chemical HRR per unit flame 
volume is relatively invariant, as long as the combustion is controlled by diffusion in buoyant fires 
under well-ventilated conditions. This method can be used for certain fire scenarios with simple 
geometries where the flame volume can be estimated with confidence.  
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Estimates of the convective HRR obtained from measurements of gas temperature near the ceiling 
have already been reported [4]. Following the above effort, this work will pursue a new approach 
where the instantaneous measurements of gas temperature, velocity and species concentrations in 
the ceiling jet are used to calculate both convective and chemical HRRs. To verify the proposed 
method, two heptane pan fire tests are conducted under the movable ceiling. The chemical HRR of 
the heptane pan fire is calculated from the fuel mass loss rate based on the load-cell data. This direct 
measurement is then used to verify the calculation obtained from the proposed method.  

EXPERIMENTAL SETUP 

The heptane pan fire tests were conducted under the North Movable Ceiling (NMC) in the Large 
Burn Lab (LBL) located at the FM Global Research Campus. The NMC measures 24.4 m × 24.4 m 
in size and is adjustable for heights above the floor ranging from 3.1 m to 18.3 m. The exhaust 
ductwork of the air emission control system for the movable ceiling consists of four extraction 
points, located at the lab ceiling (20.4-m high), that merge into a single duct with a cross sectional 
area of 6.1 m2. The air exhaust rate from the lab space was 118±4 kg/s. 

Figure 3 shows the pan fire test setup in elevation view and a fire image captured in the test. The 
pan fires were established on a 109 cm diameter, 15 cm high steel pan filled with 38 liters of 
heptane (4.1 cm deep) on a layer of 7.6 cm deep water. The fuel pan was placed under the ceiling 
center and 94 cm above the floor on a stand. A load cell of 181±0.002 kg capacity, thermally 
insulated from the steel pan, was used to measure the mass loss rate of the heptane fuel. The flame 
height of the fire shown in Fig. 3 was about 4 m above the pan. 

                    

Fig. 3. Elevation view of the heptane pan fire under a movable ceiling and a fire image captured in the test. 

The ceiling height was 8.2 m above the floor providing a 7.1 m clearance above the fuel pan. There 
were 125 thermocouples (TCs) installed 0.15 m below the ceiling to measure the gas temperatures. 
Figure 4 shows the locations of the 125 TCs. The TC labeled #113 was at the ceiling center. 
Figure 4 also shows the locations of the 12 bi-directional velocity probes (OD 22 mm) with 
corresponding TCs that were installed along four directions (N, E, S and W) and at three radial 
distances from the ceiling center. In the region near the ceiling center, the two radial distances of 2.1 
and 4.0 m were the same for all four directions. Toward the outer edge of the ceiling, the velocity 
probes were installed at a radial distance of 10.7 m in the W-E direction and 10.4 m in the N-S 
direction. The velocity probes were located 0.11 m below the ceiling. 
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To measure the vertical temperature distribution within the ceiling layer flow, four TC trees were 
installed along four directions (N, E, S and W) at a 4.0 m radial distance from the ceiling center. 
The locations of the four TC trees are illustrated in Fig. 4. Each TC tree is 1.22 m in length and 
includes four vertically-spaced TCs (K-type, 28-gauge bare bead) as shown in Fig. 5. Because the 
TC trees were located near a bi-directional velocity probe, the four TCs of the TC tree and the TC of 
the velocity probe were combined to describe the vertical temperature distribution. Four gas 
sampling probes (see Fig. 5) were installed at the same four locations as the TC trees and facing the 
fire to extract ceiling gases for species concentration measurements. Each gas sampling probe is 6.3 
mm in diameter and 11 cm below the ceiling. Because only one gas analyzer was available in the 
LBL, the four gas sampling lines were merged into one and then connected to the Gas Sampling 
Cabinet. The locations of the four gas sampling probes are also illustrated in Fig. 4. Because of 
radiative heating from the pan fire, the gas temperature obtained from the bare-bead TC 
measurement was corrected using the method developed in Ref. [5]. Two heptane pan fire tests were 
conducted under the same test conditions.  

 

Fig. 4. Illustration of the locations of 125 ceiling TCs, 12 bi-directional gas velocity probes,  
four gas sampling probes and four TC trees. 
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Fig. 5. Sketch of a TC tree with four TCs and a gas sampling probe (with TC) installed under the ceiling. 

HEAT RELEASE RATE (HRR) CALCULATION 

The method for the time-resolved HRR calculation is developed based on the assumption that the 
ceiling jet flow under the ceiling is horizontal and outward from the ceiling center. Figure 6 shows a 
sketch of the elevation view and top view of the ceiling jet flow for a fire under a horizontal ceiling. 
The dashed lines in Fig. 6 define the control volume enclosed by a cylinder of radius (r) around the 
ceiling center. The instruments are assumed to be placed along the cylinder surface at different 
heights to measure the gas velocity, temperature and species concentration of the outward gases 
through the cylindrical boundary. These should be made at a sufficient distance from the ceiling 
center so that an outward flow is still observed even if the fire axis moves away from the ceiling 
center. In a fire test where ceiling sprinklers have activated, the disruption caused by the downward 
flow of the sprinkler spray will require that the measurements be made at a sufficiently large radius 
to avoid the resulting near-field effects.  

          

Fig. 6. Sketch of elevation view and top view of the ceiling jet flow of a fire under a horizontal ceiling. 

Based on the above assumption of axisymmetric outflow through the cylindrical boundary of radius 
r, the total instantaneous mass flow rate of the ceiling jet flow is given by  

�| ®�S� 	 2πS W ρ��, S����, S�Y�K
M , (4) 

where z is the height below the ceiling, zc is a height chosen to include the whole ceiling jet flow, 
ρ��, S� is the density of the gas, and ���, S� is the horizontal velocity component of the gas under 
the ceiling. The ceiling gas density is obtained from the ideal gas law as 

ρ��, S� 	 P: g���, S�⁄ , (5) 
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where p is ambient pressure, M is the gas molecular weight, R is the ideal gas constant, and T(z, r) is 
the gas temperature. The ceiling layer temperature distribution along the height can be described by 
an empirical correlation developed in previous work [6] as 

	���, S� � �M 	 ∆���, S� 	 ∆�Z�S�NOP ���WUM.=M?
δt �?�, (6) 

where T0 is the ambient gas temperature, ∆���, S� is the temperature rise, ∆Tm(r) is the maximum 
temperature rise in the ceiling layer at the radius r, δT  is the thermal depth of the ceiling layer 
defined at the location where ∆���, S� 	 ∆�Z�S� N⁄ , and e is the base of the natural logarithm. The 
temperature profile ���, S� was measured in this work by five TCs installed at the same radius (r) 
and different heights (z) (cf. Fig. 5). Based on these measurements, the two parameters ∆Tm and δT 
can be obtained by curve fitting. The integral limit zc was assumed as 3δ� � 0.102. 

The radial outward velocity in the ceiling layer is described by a similar empirical correlation [6] as 

���, S� 	 �Z�S�NOP ���WUM.=M?
δ� �?�, (7) 

where um(r) is the maximum radial velocity in the ceiling layer at radius r, and δu is the depth of the 
velocity profile in the ceiling layer. The value of δu is correlated to δT [6] as δ
 	 0.67δ� . 

Similar to the gas temperature, the species volume fraction (xi) distribution in the ceiling layer is 
assumed to have the same Gaussian profile as 

O&��, S� � O&,M 	 ∆O&,Z�S�NOP ���WUM.=M?
δ� �?�, (8) 

where ∆O&,Z is the maximum species volume fraction difference in the layer and δx is the depth of 
the species profile. If there are enough instruments to measure species concentration, the profile O&��, S� in Eq. (8) can be determined by obtaining ∆O&,Z and δx.  However, since only one gas 
analyzer was available in this work, a single value of O& was measured at a height (z = 0.11 m) 
below the ceiling. In addition, this measurement represented an average from the four azimuthal 
locations. In order to generate the species profile O&��, S�, two approximations were made in this 
work. 

The first approximation is to assume δx = δT, although δx and δT may be different since, outside of 
the flame region, xi is a conserved variable while T is not conserved due to heat transfer. The value 
of δx is also assumed to change with δT at different times and locations. Because only one spatially-
averaged value of O& is available, the second approximation is to assume that the species 
concentrations at the same height (and radius) but different azimuthal locations are the same. After 
obtaining δx and O& 	at z = 0.11 m, Eq. (8) was used to calculate the value of ∆O&,Z. The profile of O&��, S� in the ceiling layer was then determined from ∆O&,Z, δx and Eq. (8). Because the spatially-
averaged value of O& is time-resolved, the total chemical HRR can also be time-resolved and can be 
calculated from CO/CO2 generation or oxygen consumption as 

%|®}�Z,�p
�p�S� 	2π	S TVU
T�0� ∆C�p
 W ρ��, S����, S�@O�p
��, S� � O�p
,MAY�K
M �
																																	2π	S TVUT�0� ∆C�p W ρ��, S����, S�@O�p��, S� � O�p,MAY�K
M , (9) 

%|®}�Z,p
�S� 	 2π	S TU
T�0� ∆Cp
 W ρ��, S����, S�@Op
,M � Op
��, S�AY�K
M . (10) 

The convective HRR is calculated as 
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%|®ø;��S� 	 2π	S W ρ��, S����, S�56h���, S� � �MiY�K
M . (11) 

Based on the method described above, a computer code was developed to post-process the test data 
and to calculate the convective and chemical HRRs. The fire center in the ceiling layer is 
determined as the location of the maximum temperature measured by the 125 TCs installed under 
the ceiling. The above integrations at the radius r are then calculated separately in four sectors along 
four directions (N, E, S and W) where the measurements are made. If the fire center in the ceiling 
layer moves away from the ceiling center, the integration can be calculated in four sections with 
different sizes. Generally, the integration will be less sensitive to this movement if the moving 
distance is relatively short. Because of the transport time from the gas sampling probe to the gas 
analyzers, the species concentration measurements are delayed as compared to the velocity and 
temperature measurements. This delay time can be determined by aligning the time evolution 
profiles of the pertinent measurements. Another delay time is the transport time from the fire source 
to the measuring location (the dashed circle shown in Fig. 6). This delay time depends on the gas 
velocity in the fire plume and the ceiling layer and will be a function of the HRR. 

RESULTS AND DISCUSSION 

Figure 7 shows the load-cell data recorded in Test #1 (one of the two heptane pan fire tests) and the 
corresponding chemical HRR calculated from the fuel mass loss rate. The net heat of complete 
combustion per unit mass of heptane is 44.6 kJ/g, and the combustion efficiency is η = 0.92 [1]. 
Therefore, the expected chemical HRR of the heptane pool fire was calculated from the heptane 
mass loss rate based on the load-cell data. The time t = 0 s denotes ignition. After an initial growth 
period (< 100 s), the data show that heptane was consumed at an approximately constant rate. The 
total burning time was about 10 minutes. In the time period from 200 s to 500 s, the average HRR 
calculated from fuel mass loss rate is 1880 kW. 

  

Fig. 7. The load-cell data recorded in Test #1 and the 
chemical HRR calculated from fuel mass loss rate. 

Fig. 8. Gas temperature rise measured by five TCs 
installed at different heights and the same radius  

(4.0 m) east of the ceiling center for Test #1. 

The method developed in this work was used to calculate the chemical HRR. For Test #1, Fig. 8 
shows five temperature profiles measured by a TC tree with five TCs installed at different heights 
but at the same radius (4.0 m) east of the ceiling center. The figure shows that the gas temperature 
rise decreased with the distance from the ceiling. After 100 s, the ceiling gas temperatures reached 
their respective maxima, remained roughly constant, and then decreased when the fuel burned out. 
There are similar ceiling temperature profiles measured at the other TC trees.  
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Figure 9 shows the time evolutions of ∆Tm and δT determined based on the empirical ceiling profiles 
and the temperatures shown in Fig. 8. During the initial period before significant temperature rise, 
there were small temperature differences between the five TCs. Therefore, the initial thermal depth 
(δT) is uncertain and is not presented in Fig. 9. When the ceiling gas temperature ∆Tm became 
sufficiently large, the thermal depth settled at about 0.4 m. Similar ∆Tm and δT profiles were also 
obtained at the south, west and north locations. As an example, for ∆Tm = 61.8 °C and δT = 0.38 m 
at time t = 250 s, Fig. 10 shows five temperature measurements and the empirical profile from 

Eq. (6) as ∆���� 	 61.8NOP ���WUM.=M?M.uX �?�. The plot shows that the five temperature measurements 

are well described by the profile. 

   

Fig. 9. Values of ∆Tm and δT calculated using the 
temperature profiles measured at 4.0 m  

east of the ceiling center for Test #1. 

Fig. 10. An empirical temperature profile and five 
temperatures measured at t = 250 s and  

4.0 m east of the ceiling center for Test #1. 

Figure 11 shows the time evolutions of the ceiling layer velocity measured at 4.0 m east of the 
ceiling center. The velocity profile is similar to the temperature profiles shown in Fig. 9. The CO2 
volume fraction obtained from the gas sampling probe is also presented in Fig. 11. Because CO2 
was generated by fuel burning, the volume fraction profile increased with time and then reached an 
approximately constant value. Similar to the empirical profile shown in Fig. 10, the profiles for 
velocity and species volume fraction can also be determined using Eqs. (7) and (8) from the one-
point measurements illustrated in Fig. 11. It should be noted that the species concentration 
measurements were delayed as compared to the velocity measurements because of the transport 
time from the gas sampling probe to the gas analyzers. Relative to the temperature and velocity 
data, this delay time was about 40 s. 

After obtaining the above results, the method developed in this work was used to calculate the 
chemical and convective HRRs, with the former shifted to account for transport times. The result for 
Test #1 is shown in Fig. 12. For comparison, the chemical HRRs (load cell) calculated from the fuel 
mass loss rate and that (duct) from the measurements made in the exhaust duct above the ceiling are 
also presented in the figure. The HRR data were smoothed by removing some large fluctuations. 
Figure 12 shows that the chemical HRRs calculated from the present method, on average, agree well 
with those calculated from the fuel mass loss rate; however, the HRRs from the duct measurements 
are delayed and reduced in growth rate due to gas mixing in the volume above the ceiling. 

In the initial fire growth period (0 ∼ 65 s), Fig. 12 shows that the HRRs of the present method align 
well with those calculated from the load cell. However, because of gas transport time from the fire 
source to the measurement station at the ceiling, the HRR data of the present method are about 8 s 
delayed in comparison to those of the load cell. Based on the slope of the HRR profile in the initial 
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fire growth period, the average HRR growth rate obtained from the load cell is 22.7 kW/s and 
21.2 kW/s for the present method. The relative difference is 7%, which means that the proposed 
method can provide a time-resolved chemical HRR. 

   

Fig. 11. The ceiling layer velocity measured 4.0 m 
east of the ceiling center and the CO2 volume  

fraction measured from the gas sampling probe for 
Test #1. 

Fig. 12. Convective and chemical HRRs calculated by 
the present method and the chemical HRR calculated 
from the fuel mass loss rate and the measurements in 

the exhaust duct for Test #1. 

Roughly, the pan fire reached a steady burning rate after 100 s. In the period from 200 s to 500 s, 
the average chemical HRR calculated from the present method is 1860 kW, which is very close (1% 
lower) to the average HRR of 1880 kW calculated from the fuel mass loss rate. It is also noted from 
Fig. 12 that the HRR from the duct measurements took a long time (∼500 s) to reach steady state 
due to the gas smearing effect above the ceiling. After the fuel burned out at 600 s, both the 
chemical HRR of the present method and that of the load cell decreased sharply at the same rate. 
The load cell data remained above zero, due to evaporation of the 7.6 cm deep layer of water in the 
pan. Data were not collected for a sufficient time following fuel burnout for the duct HRR to return 
to zero. 

Using the HRR profiles shown in Fig. 12, the total heat release can be calculated as the integral of 
the HRR over the burning time interval. The total heat release was then calculated to be 1070 MJ for 
the present method, which is 1% lower than the total heat release of 1080 MJ calculated from the 
fuel mass loss of the 38 liters of heptane. 

Figure 12 also shows the convective HRR calculated using the present method. In the same time 
from 200 s to 500 s, the average convective HRR of the present method is 1320 kW. The fraction of 
convective HRR to chemical HRR is 71%. The convective HRR cannot be calculated directly from 
the fuel mass loss rate. Previous tests have shown that the fraction of convective HRR to chemical 
HRR is in the range of 65% - 75% for heptane fires conducted with different pan sizes [7], which 
indicates that the convective HRR obtained by the present method is reasonable. 

One more comparison is shown in Fig. 13 for the other heptane pool fire test (Test #2). Figure 13 
shows the chemical and convective HRRs calculated by the present method, and the chemical HRRs 
(load cell) calculated from the fuel mass loss rate. The figure shows that the chemical HRRs of the 
two methods are similar in the growth, steady and decay periods. However, the chemical HRR of 
the present method is a little higher than that of the load cell. In the same period from 100 s to 500 s, 
the average chemical HRR of the present method is 2200 kW, which is 10% higher than the average 
HRR of 2000 kW calculated from the fuel mass loss rate. The total heat release was calculated to be 
1180 MJ for the present method, which is 9% higher than the total heat of 1080 MJ released from 
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the 38 liters of heptane. In the period of 100 − 500 s, the fraction of convective HRR (1540 kW) to 
chemical HRR (2200 kW) is 70%, which is close to the fraction obtained for Test #1. 

The above comparisons show that the present method can determine the chemical HRR of the pan 
fire tests with an accuracy of about 10%. The uncertainty may come from the test measurements and 
the empirical correlations used in the present method. It is observed that the difference between the 
first and the second test comes from the calculation of the total mass flow rate in the ceiling layer. 
Using Eq. (4), the average mass flow rate was calculated to be 29 kg/s for Test #1 and 32 kg/s for 
Test #2. The relative difference is about 9%. The difference may come from the gas velocity and 
temperature calculation estimated from the one-point measurement in the ceiling layer. Test #2 had 
a higher mass flow rate, resulting in a calculated chemical HRR 10% higher than the value obtained 
from the fuel mass loss rate. 

 

Fig. 13. Convective and chemical HRRs calculated by the present method and the chemical HRR  
calculated from the fuel mass loss rate for Test #2.  

This method has also been used to estimate the HRRs for rack-storage fires under a ceiling and will 
be reported in another paper. If the assumption for the ceiling jet shown in Fig. 6 is still applicable, 
generally, this method can provide a near time-resolved HRR that is comparable to that obtained 
from a similar fuel configuration measured under a calorimeter. For a fire suppression test with 
downward spray injection, the strong plume-spray interaction can change the ceiling jet. The 
empirical correlations used for gas temperature, velocity and species concentrations in the ceiling 
layer need further validation. The measurements of the bare-bead thermocouples and the bi-
directional velocity probes may also be affected by the impingement of water droplets. Therefore, 
this method should be further evaluated with well characterized fire sources under water application 
to estimate the error and the applicability.  

SUMMARY AND CONCLUSIONS 

A new method is proposed in this work to calculate the convective and chemical HRRs for a fire 
conducted under a ceiling. Instantaneous measurements of gas temperature, velocity and species 
concentration in the ceiling layer have been used to calculate the HRRs. To verify the proposed 
method, two heptane pan fires were conducted under the ceiling and the chemical HRR was 
calculated from the heptane mass loss rate based on the load-cell data. In the period for fire growth 
and fuel burn out, the results show that the proposed method can provide a time-resolved chemical 
HRR that is comparable to that obtained from the fuel mass loss rate. The fraction of convective 
HRR to chemical HRR also agrees well with test data obtained under a calorimeter.  
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There are limits to the range of applicability of the measurement approach introduced here. Barring 
the introduction of additional gas analysis instrumentation, the current method is based on the 
assumption of axisymmetric ceiling flow. Also, a well-established outflow at the measurement 
radius is needed, a requirement which may not be easily satisfied in the case of sprinklered fire tests 
if measurements are made too close to the fire axis. Increased distance, however, brings about 
longer travel times and the possible need to correct for them. In conclusion, for ceiling sprinkler-
based fire protection tests, this method should be further evaluated with well characterized fire 
sources in the future. 
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