Детальная информация

Название Using Machine Learning in Physics-based Simulation of Fire // Proceedings of the Ninth International Seminar on Fire and Explosion Hazards: 21-26 April 2019, Saint Petersburg, Russia. Vol. 1
Авторы Lattimer B. Y. ; Hodges J. L. ; Lattimer A. M.
Организация Jensen Hughes ; Socially Determined
Выходные сведения Saint Petersburg, 2019
Коллекция Общая коллекция
Тип документа Статья, доклад
Тип файла PDF
Язык Английский
DOI 10.18720/SPBPU/2/k19-136
Права доступа Свободный доступ из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\61216
Дата создания записи 19.06.2019

Разрешенные действия

Прочитать Загрузить (2,0 Мб)

Группа Анонимные пользователи
Сеть Интернет

There is a current need to provide rapid, high fidelity predictions of fires to support hazard/risk assessments, use sparse data to understand conditions, and develop mitigation strategies. Machine learning is one approach that has been used to provide rapid predictions based on large amounts of data in business, robotics, and image analysis; however, there have been limited applications to support physicsbased or science applications. This paper provides a general overview of machine learning with details on specific techniques being explored for performing low-cost, high fidelity fire predictions. Examples of using both dimensionality reduction (reduced-order models) and deep learning with neural networks are provided. When compared with CFD results, these initial studies show that machine learning can provide full-field predictions 2-3 orders of magnitude faster than CFD simulations. Further work is needed to improve machine learning accuracy and extend these models to more general scenarios.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Все

Количество обращений: 1029 
За последние 30 дней: 27

Подробная статистика