Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет имени Петра Великого»

На правах рукописи

LONED

Соколова Ольга Николаевна

ИССЛЕДОВАНИЕ ДЕЙСТВИЙ ГЕОМАГНИТНЫХ ТОКОВ НА ЭНЕРГОСИСТЕМЫ И МЕРОПРИЯТИЙ ПО ПРЕДОТВРАЩЕНИЮ СИСТЕМНЫХ АВАРИЙ

05.09.05. - Теоретическая электротехника

Диссертация на соискание ученой степени кандидата технических наук

Научный руководитель: доктор технических наук, проф. Коровкин Н.В.

Санкт-Петербург - 2016

Содержание

Bı	зеден	ие	1
1	Геом	магнитные бури и их влияние на режим работы энергосистем мира и Рос-	
	сии		7
	1.1	Внешние возмущения как характерная особенность режимов энергоси-	
		стемы	7
	1.2	Этапы исследования научно-технической проблемы эксплуатации энер-	
		госистем во время геомагнитных бурь	9
	1.3	Особенности воздействия геомагнитных бурь на режим работы энерго-	
		системы	14
	1.4	Анализ геомагнитных бурь как специфического возмущения режима	
		энергосистемы	18
	1.5	Анализ современного состояния научно-технической проблемы эксплуа-	
		тации энергосистем во время появления геомагнитных бурь	22
	1.6	Выводы	24
2	Мет	одика исследования воздействий электромагнитных эффектов от геомаг-	
	НИТІ	ных бурь на элементы энергосистемы	27
	2.1	Постановка задачи расчета токов малой частоты, индуктированных	
		геомагнитными бурями в протяженных электротехнических системах .	27
	2.2	Алгоритм расчета геоэлектрического поля на поверхности Земли	29
	2.3	Алгоритм расчета геомагнитных токов в наземных электротехнических	
		системах	33
	2.4	Принципы анализа вторичных электромагнитных эффектов от геомаг-	
		нитных бурь	35

	2.5	Вывод	цы		36		
3	Возд	цействи	е геомаги	нитных бурь на режим и оборудование энергосистемы. Оцен	[-		
	ка н	адежно	ости		37		
	3.1	эффектов от геомагнитных бурь на режим и оборудова-					
		ние эн	ергосист	емы	37		
	3.2	электромагнитных и тепловых процессов в обмотках					
	ерительного оборудования энергосистемы	39					
		3.2.1	Силовы	е трансформаторы	40		
			3.2.1.1	Схема магнитной цепи силовых трансформаторов	42		
			3.2.1.2	Схема соединения обмоток	45		
			3.2.1.3	Деградация изоляции силового трансформатора в ре-			
				зультате воздействия геомагнитно индуцированных токов	46		
		3.2.2	Синхрон	нные машины	47		
		3.2.3 Измерительные трансформаторы					
3.2.4 Прочее оборудование					58		
3.3 Особенности расчета режима энергосистемы при наличии геомагнит							
		индуц	ированны	ЫХ ТОКОВ	61		
	3.4 Анализ эффективности алгоритмов управления энергосистем при появ-						
		лении	геомагни	итных бурь	63		
	3.5	Вывод	цы		69		
4	При	нципы	управлен	ния энергосистемой во время сильных геомагнитных бурь	71		
	4.1	Крити	ические ф	ракторы и оценка их влияния на силу воздействия гео-			
		магни	тных бур	ь на режим и оборудование энергосистемы	71		
		4.1.1	Параме	гры геомагнитной бури	71		
			4.1.1.1	Характер геомагнитной бури	71		
			4.1.1.2	Проводимость подстилающей породы	74		
			4.1.1.3	Геомагнитная широта	74		
		4.1.2	Параме	гры энергосистемы	76		
			4.1.2.1	Топология и режим работы энергосистемы	76		
			4.1.2.2	Схемы заземления	91		

		4	1.1.2.3	Параметры сетевого оборудования	92				
		4.1.3 I	Информ	ированность практики энергосистем	93				
	4.2	Анализ	уязвим	юсти Единой Энергосистемы России к воздействиям					
		геомагн	итных б	бурь	96				
	4.3 Меры и средства защиты электротехнических систем от воздействи								
		геомагн	итных б	бурь	107				
	4.4	Выводы	[113				
5	Мет	оды меж	системн	юго взаимодействия для предупреждения и ликвидации	4				
	посл	едствий	геомагн	итных бурь	115				
	5.1	Анализ	энергос	истемы как критической инфраструктуры	115				
	5.2	Фазы эн	нергоава	арии	121				
	5.3	Принци	пы орга	анизации межсистемного взаимодействия во время гео-					
		магнитн	ных бур	Б	125				
	5.4	Выводы	ί		130				
За	КЛЮЧ	ение			131				
Сп	исок	сокраще	ений		136				
Сл	ювар	ь термин	ЮВ		139				
Ли	итера	гура			141				
Сп	исок	иллюстр	оаций		154				
Сп	исок	таблиц			158				
ПĮ	оилож	кение А	Солнеч	ные циклы	160				
Пŗ	оилож	кение В	Систем	а геомагнитных индексов	161				
ΠĮ	оилож	кение С	Предел	ы допустимых погрешностей трансформаторов тока	162				
Пŗ	оилож	кение D	Параме	етры схемы замещения энергосистемы Скандинавии	163				
Пŗ	оилож	кение Е	Данные	е о проводимости подстилающей породы в Скандинавии	169				

Приложение F	Результаты расчета геомагнитно индуцированных токов в энер)-
госистеме Си	кандинавии	170
Приложение G	Схема Центрального энергорайона ЭЭС Якутии	180
Приложение Н	Данные о параметрах графа схемы центрального энергорайон	a
ЭЭС Якутии	1	182

Введение

Актуальность темы исследования и степень её разработанности

Развитие технических систем, в частности электроэнергетических систем (ЭЭС) и усложнение технических процессов и алгоритмов контроля усиливает влияние тех факторов на их функционирование, которыми раньше можно было пренебречь. Одним из таких факторов являются геомагнитные бури (ГМБ). ГМБ, связанные с изменением магнитносферно-ионосферной токовой системы, оказывают воздействие на протяженные электротехнические системы путем создания кондуктивной помехи ультранизкой частоты, так называемых геоманитно индуцированных токов. ГИТ, протекая по сетевым элементам, приводят к нарушению симметрии передачи энергии по фазам, появлению ненормированного распределения тока высших гармоник и, соотвественно, дополнительному термическому нагреву сетевого оборудования. Несмотря на полученные результаты выполненных исследований по данной проблеме, практике ЭЭС не удалось предотвратить межсистемные аварии, вызванные ГМБ, что показывает актуальность данной задачи.

Впервые сбои в работе технологических систем, связанные с геомагнитными вариациями, были зарегистрированы в 1859 году. ГМБ длилась с 28 августа по 2 сентября 1859 и является наибольшим изменением магнитным полем Земли за всю историю регистраций. ГМБ привело к отказу телеграфа на территориях Северной Америки и Европы. Полярные сияния наблюдались на территориях, находящихся значительно южнее традиционных, а именно на территориях Франции, Испании, Карибского бассейна [1]. Вехой в исследованиях влияния ГМБ на ЭЭС стала Hydro-Quebec blackout. Изменение геомагнитного поля 13-14 марта 1989 года спровоцировало лавину напряжения в ЭЭС Квебека, приведшей к потере 9,5 ГВт нагрузки (40% от суммарной нагрузки). Электроснабжение 6 миллионов потребителей было прервано на срок до 9 часов. Экономический ущерб от аварии был также связан с прекращением электроснабжения непрерываемых производств [2]. Hydro-Quebec blackout стала аварией, изменивший статус исследования воздействий ГМБ на ЭЭС с фундаментального на фундаментально-прикладной. В США начали выполняться целевые программы, а проблема получила статус критической [3]. Меньшее по силе возмущение магнитносферно-ионосферной токовой системы 29-30 октября 2003 года послужило причиной множественного отказа разнообразных технологических систем не только в так называемых зонах высокого риска, но и на территориях умеренного риска (Россия, ЮАР, страны Скандинавии, Северной Америки). На основании анализа последствий можно сделать вывод о том, что применяемые меры по повышению качества и надежности электроснабжения в нормальных и более изученных аварийных режимах повышают уязвимость ЭЭС к менее изученным аварийным возмущениям - ГМБ.

Одним из факторов, определяющих устойчивость ЭЭС к негативным электромагнитным эффектам ГМБ, являются параметры самой ГМБ. Значительный вклад в разработку методов корректного моделирования геомагнитного поля при различных сценариях возмущений магнитносферно-ионосферной токовой системы внесли ученые Финского метеорологического института (Risto Pirjola, Ari Viljanen), Министерства Природных ресурсов Канады (David Boteler, Larisa Trichtchenko), Британского геологического общества (Alan Thomson), Национального агенства по воздухоплаванию и исследованию космического пространства (Antti Pulkkinen). Неоценимы труды отечественных ученых Научно-исследовательского центра 26 ЦНИИ МО РФ, Центра физико-технических проблем энергетики севера (ЦФТПЭС) и Полярного геофизического института (ПГИ) Кольского научного центра (КНЦ) РАН (г. Апатиты), Арктического и антарктического научно-исследовательского института, Института земного магнетизма, ионосферы и распространения радиоволн имени Н.В. Пушкова РАН.

Вторая группа факторов, влияющих на уязвимость ЭЭС к электромагнитным эффектам ГМБ, связана с параметрами оборудования ЭЭС. Исследованием данного вопроса занимались группы исследователей в университете Кейп-Тауна (Charles Trevor Gaunt), компании ABB и Siemens, Svenska Kraftnat. В 2003-2007 годах учеными ЦФТПЭС и ПГИ КНЦ РАН в рамках целевых исследований были выполнены оценки надежности эксплуатации и использования высоковольтного оборудования энергосистем с учетом процессов его старения и повышения требований к электромагнитной совместимости. Под руководством Я.А. Сахарова была разработана и установлена в ЭЭС Кольского полуострова система регистрации ГИТ в нейтралях трансформаторов магистральной линии.

Тем не менее в масштабах страны не ведется регулярный контроль воздействий ГМБ на объекты ЭЭС. Влияние ГМБ на оборудование ЕЭС России не подкреплено целенаправленно собранными массивами экспериментальных данных, ориентированных на анализ и выявление закономерностей. Дополнительной сложностью является малый опыт эксплуатации ЭЭС при появлении ГМБ у современной электроэнергетики. Выявлены лишь качественные закономерности о росте стоимости ущерба от ГМБ по мере развития и усложнения ЭЭС и других инфраструктурных. Проблема исследований действий ГМБ на ЭЭС и мероприятий по предотвращению системных аварий является междисциплинарной и определяется группой факторов разной природы. Отсюда следуют цели и задачи данной диссертационной работы.

Цель и задачи исследования Целью настоящей диссертационной работы является совершенствование методики анализа негативных эффектов ГМБ на ЭЭС с целью предупреждения крупных межсистемных аварий. Для достижения поставленной цели решались следующие задачи:

- Сбор, систематизация и обобщение данных о ГМБ и их воздействии на ЭЭС России и мира;
- Составление и обоснование методики расчета квазипостоянных токов, индуктированных ГМБ, в протяженных электротехнических системах и разработка алгоритма численных исследований;
- Анализ надежности действующего силового и измерительного оборудования ЭЭС к геомагнитным воздействиям;
- Оценка и ранжирование критических факторов по степени влияния на режим и оборудование ЭЭС;
- 5. Разработка критериев и алгоритмов оценки воздействия ГМБ;
- 6. Разработка рекомендаций и мероприятий по прогнозированию сценариев межсистемных аварий и координации действий технических служб с целью их

недопущения.

Научная новизна работы заключается в том, что:

- Впервые выполнено ранжирование критических факторов разной природы, влияющих на устойчивость ЭЭС к негативным электромагнитным эффектам ГМБ.
- Предложен и обоснован качественно новый метод анализа устойчивости ЭЭС к ГМБ, учитывающий многофакторный характер их влияния.
- Разработана модель анализа межинфраструктурных аварий вследствие потери электроснабжения при появлении ГМБ.
- 4. Разработана модель межинститутиональных взаимодействий с целью предотвращения межсистемных аварий, вызванных геомагнитными возмущениями.

Теоретическая и практическая значимость работы Теоретическая значимость работы заключается в обосновании составленной методики оценки устойчивости ЭЭС к геомагнитным воздействиям, учитывающей совокупность факторов разной природы, а также в разработке модели анализа межсистемных аварий, вызванных ГМБ.

Практической значимостью работы является выявление географических районов в ЕЭС России, в которых, с учетом актуальных схем энергорайонов, влияние ГМБ значительно. Результаты проведенных исследований могут быть использованы для уменьшения негативных электромагнитных эффектов ГМБ на режим и оборудование ЭЭС.

Методология и методы диссертационного исследования Исследование базируется на методах математического моделирования элементов и режимов ЭЭС, методах обработки экспериментальных данных, методах работы с базами данных, методами анализа сложных систем и методах коммуникационных взаимодействий между организациями, работающими в разных предметных технических областях. Расчеты производились с использованием разработанных алгоритмов и программ, реализованных в программных продуктах Matlab и ArcGIS.

Основные положения диссертации, выносимые на защиту

1. Систематизация и анализ воздействий сценариев воздействий зарегистрированных ГМБ на режим и оборудование ЭЭС.

- Численные методы исследования электрофизических и тепловых процессов в элементах электрических цепей при действии ГМБ. Оценка устойчивости ЭЭС к эффектам ГМБ, позволившая установить относительную уязвимость силового и измерительного оборудования ЭЭС и системный эффект от потери N-1 элемента одного типа.
- Ранжирование критических факторов различной природы, определяющих устойчивость ЭЭС к ГМБ, дающих комплексную оценку робастности цепи. На основании полученных данных разработаны методы выявления географических районов со значительным влиянием ГМБ.
- 4. Алгоритм графической визуализации рисков ГМБ для ЕЭС России, дающий возможность адаптации схем перспективного развития ЭЭС с учетом воздействий ГМБ. Предлагаемые мероприятия по предотвращению межсистемных аварий, обеспечивающих равноправное участие 5 участников рынка.

Степень достоверности и апробация результатов Основные результаты работы докладывались и обсуждались на IV Всероссийском форуме студентов, аспирантов и молодых ученых "Наука и инновация в технических университетах" (Санкт-Петерубрг, 2010 г.); 1-ой Международной научно-практической конференции "Научные и технические средства обеспечения энергоэффективности и энергосбережения в экономике РФ"(Санкт-Петерубрг, 2011 г.); 3rd International and scientific conference "Actual trends in development of power system protection and optimization" (Cahkt-Петерубрг, 2011 г.); 17th International conference of the Society for Design and Process Science (Берлин, Германия, 2012 г.); 7th International conference on Deregulated electricity market issues in South-Eastern Europe (Бухарест, Румыния, 2012 г.); Workshop on Ground effects of solar storm impact on terrestrial infrastructure and adaptation measures (Берлин, Германия, 2013 г.); Workshop on Geomagnetically induced currents in power systems with emphasis on mid- and low-latitude regions (Кейптаун, ЮАР. 2014 г.); European Safety and Reliability Conference (Вроплав, Польша, 2014 г.); 12th European Space Weather Week (Оостенде, Бельгия, 2015 г.); 2015 Annual conference SCCER-FURIES Shaping the Future Swiss Electrical Infrastructure (Лозанна, Швейцария, 2015 г.); 2016 Workshop on Complexity in Engineering (Катания, Италия, 2016 г.).

Основные теоретические и практические результаты диссертации отражены в 12

печатных работах, в том числе 3 статьи в изданиях, входящих в список рекомендуемых в перечне ВАК РФ, 2 статьи в базе Scopus и одной статьи в базе Web of Science.

Работы выполнялась при поддержке Стипендии Правительства Швейцарии в 2011-2012 учебном году (Swiss Government Excellence Scholarships for Foreign Scholars and Artists for the Academic Year 2011-2012); Гранта Президента Российской Федерации для обучения за рубежом студентов и аспирантов российских вузов в 2012/2013 учебном году (приказ Минобрнауки России о назначении стипендии № 539 от 17.07.2012г.); Стипендии Президента Российской Федерации молодым ученым и аспирантам, осуществляющим перспективные исследования и разработки по приоритетным направлениям модернизации российской экономики, на 2015/2017 годы (приказ Минобрнауки России о назначении стипендии Приказ Минобрнауки России о назначении приоритетным направлениям модернизации российской экономики, на 2015/2017 годы (приказ Минобрнауки России о назначении стипендии № 184 от 10.03.2015г.).

Структура и объем работы Диссертация состоит из введения, пяти глав с выводами, заключения, библиографического списка, включающего 150 наименований, и пяти приложений. Основная часть работы изложена на 135 страницах машинописного текста. Работа содержит 61 рисунок и 17 таблиц.

1 Геомагнитные бури и их влияние на режим работы энергосистем мира и России

Надежность электроснабжения определяют качество и надежность функционирования связанных энергосистем. В настоящий момент ведется мониторинг состояния окружающей среды и его возможного влияния на режим и оборудование ЭЭС. Источником электромагнитных полей ультранизкой частоты являются ГМБ. Во второй главе приводится статистика возмущений режима ЭЭС и последствий от перерывов электроснабжения. Уточняется понятие ГМБ и даются отличительные характеристики ГМБ как ещё одного типа возмущений природного характера.

1.1 Внешние возмущения как характерная особенность режимов энергосистемы

Характерным свойством режима работы энергосистемы является непрерывный поток различных возмущений, часть из которых представляет угрозу для устойчивой работы ЭЭС. Под возмущением понимается изменение состояние сетевого элемента, которое не могло быть предусмотрено заранее. Разветвлённые мощные энергосистемы с сильными межсистемными связями создавались на протяжении последних 60 лет с целью повышения качества и надежности электроснабжения. Только в 2014 году в ЭЭС России было введено в эксплуатацию 69 линий электропередач с учетом отпаек напряжением 220 кВ и выше [4].

В работе выполнен анализ частоты возникновения энергоаварий в мире за последние 50 лет (рис. 1.1) и связанного с ним ущерба от недоотпуска электроэнергии (рис. 1.2). В данной работе учитывались сбои в электроснабжении, удовлетворяющие следующим критериям:

- а) перерыв в электроснабжении не был запланирован системным оператором;
- б) от недоотпуска электроэнергии пострадали как минимум 1000 потребителей;
- в) перерыв в электроснабжении длился более чем один час.

Рисунок 1.1. Статистика числа системных аварий в ЭЭС мира за последние 50 лет

Рисунок 1.2. Число людей (в миллионах человек), пострадавших от недоотпуска электроэнергии

Аварии могут быть вызваны сбоем в работе оборудования, природными явлением, ошибкой технического персонала или техногенными факторами. Крупнейшая энергоавария в история - блэкаут в Индии 31 июля 2012 года - была вызвана сбоем в работе оборудования вследствие перегруженности сети. В результате аварии 9% мирового населения остались без электричества. Возмущение природного характера (падение дерева на линию электропередач 400 кВ) привело к обрыву связи между ЭЭС Италии и Швейцарии и спровоцировало лавину напряжения, затронувшую ЭЭС Италии, Швейцарии и Франции. Электроснабжение было прервано у 56 миллионов потребителей. Природные явления также привели к авариям в ЭЭС Бразилии в 1999 году (97 миллионов потерпевших) и аварии в Индонезии в 2005 году (100 миллионов потерпевших), и т.д. Ошибкой персонала были вызваны аварии в ЭЭС США и Канады в 2003 году (55 миллионов потерпевших). Суммарная стоимость ущерба оценивается в 8 миллиардов долларов США. ГМБ, инициированные изменением магнито-ионосферной токовой системы, являются одним из возмущений природного характера, приводящих к крупным авариям. Увеличение стоимости ущерба при блэкаутах, вызванных ГМБ, усугублено ошибкой персонала вследствие отсутствии разработанных и внедренных методик предупреждения и ликвидации негативных эффектов.

1.2 Этапы исследования научно-технической проблемы эксплуатации энергосистем во время геомагнитных бурь

Негативные явления в работе технических систем, совпадающие по времени с периодами повышенной геомагнитной активности, стали отмечаться с начала применения систем, имеющих гальваническую связь. Обзор последствий наиболее сильных ГМБ за последние 150 лет приведен в Табл. 1.1. ГМБ оказывают воздействие и на другие технологические системы: радио, системы коммуникации, авиасообщение и прочие. В Табл. 1.1 приведены только примеры воздействий ГМБ непосредственно на ЭЭС и иные токопроводящие системы (без учета транзистивного воздействия на другие инфраструктурные и технические системы).

Дата	Название	Последствия
28.08- 02.09.1859	The Carrington Event	Мощнейшая из когда-либо зареги- стрированных геомагнитных бурь. Отказ телеграфных систем в Аме- рике и Европе. Северные сияния по всему миру, включая Испанию, Францию, Англию и Карибский бассейн
13.05.1921	The New York Railroad Storm	Отказ системы контроля и управ- ления железной дорогой в Нью- Йорке; отказ телеграфа на боль- шей части США и Европы [5].[6]
25.01.1938	The Fatima Storm	Северные сияния в Европе, вклю- чая Сицилию и Португалию, в Америке до территории Бермудов и южной Калифорнии, южной Ав- стралии; сбой в трансатлантиче- ском радиовещании; сбой в систе- ме контроля и управления желез- ной дорогой Англии [7]
25.03.1940 11.02.1958	The Easter Sunday Storm	Колебания напряжения на шинах генераторов 3-х электростанций в энергосистеме штата Нью-Йорк; практически все телефонные и те- леграфные станции США испыта- ли частичный или полный отказ; отказ трансатлантического кабеля между Шотландией и Ньюфаунд- лендом; прекращение работы бере- говых станций [8] Радио блэкаут «отсоединил» США от остального мира. Полярные сияния на территории от Лос-
02.08.1972 21.03.1991	The Space Age Storm	Анджелеса до Ньюфаундленда Сбой в работе телефонных стан- ций США и Канады Ложное срабатывание средств РЗиА в ЭЭС Швеции, приведшее к отключению 9 линий 220 кВ и одного трансформатора [9]

Таблица 1.1. Перечень геомагнитных бурь, приведших к существенным сбоям в работе технических систем

1.2.	Этапы	исследования	научно-	техническо	й проблемы	і эксплуа	тации	энергоси	стем
					Η	во время	геомаг	тнитных	бурь

13-	The	Hydro	Лавина напряжения в ЭЭС Квебека привела к
14.03.1989	Quebe	c Blackout	потере 9,5 МВт нагрузки (40% от суммарной
			нагрузки). Электроснабжение 6 млн. потреби-
			телей было прервано на 9 часов. Около 200
			событий было зарегистрировано в Северной
			Америке, включая отказ повышающего транс-
			форматора на АЭС Салем, США в результате
			термического разрушения [2]. Отключение 5
			линий 130 кВ в ЭЭС Швеции [9]
29-	The	Halloween	ГМБ инициировало лавину напряжения на юге
30.10.2003	blacko	ut	Швеции; потеря спутника Мидри-2 стоимостью
			450 млн. долларов США; сбой в работе системы
			GPS в течении 30 часов [10]; ускоренное старе-
			ние силового трансформатора в ЮАР, привед-
			шее у его разрушению [11]
11.2004-			Во время 7 ГМБ было зарегистрировано недопу-
08.2005			стимое повышение температуры обмоток одно-
			фазных трансформаторов мощностью 750 MBA
			на ПС Шанхэ и Чифенг [12]

Продолжение таблицы 1.1

Качественно новым этапом в решении научно-технической проблемы стали мероприятия, проводимые в рамках 1го международного геофизического года (01.07.1957 – 31.12.1958) [13]. Была создана единая международная сеть геофизических обсерваторий, которая вела непрерывную регистрацию всех мощных ГМБ в 57-58 гг. В то же время были запущены первые искусственные спутники Земли. Это положило начало эры прямых измерений параметров межпланетного пространства (МПП). В 1968 году Электротехнический Институт Эдисона в сотрудничестве с университетом штата Минессота и фирмой Дженерал Электрик начал реализацию программы по регистрации токов, индуцированных ГМБ, в заземленных нейтралях трансформаторных подстанций [14]. В 1975-88 годах в США и Канаде были продолжены теоретические и экспериментальные исследования по оценки влияния ГМБ на режим работы ЭЭС [15]. В 1977 году Финским метеорологическим институтом, Хельсинки, была начата программа исследования влияния ГМБ на системы электроснабжения. Проект существует и в настоящее время [16]. В 1986-86 гг. ВНИИ «Энергосетьпроект» совместно с институтом Физико-технических Проблем Севера (КНЦ РАН, г. Апатиты) осуществила попытку исследования воздействия ГМБ на ЭЭС Севера. К сожалению,

этот проект не получил продолжения. Стационарная система мониторинга ГМБ в России так и не была создана.

К 1989 году мировая энергетика обладала более чем двадцатилетним опытом изучения научно-технической проблемы, но его оказалось недостаточно для предотвращения катастрофических последствий Hydro-Quebec Blackout 13-14 марта 1989 и ряда других ГМБ в 22м солнечном цикле. Hadro-Quebec blackout стала аварией, которая изменила статус исследований о ГМБ с фундаментального на фундаментально-прикладной. В 1992 и 1993 гг. соответственно создаются две рабочие группы под эгидой IEEE: первая группа по изучению влияния Солнца на потребительские коммуникации (Solar Effects on Utility Communications Systems Working Group), а фокусом второй группы стало изучение влияния геомагнитных возмущений на ЭЭС (Working Group on Geomagnetic Disturbances and Power Systems). В 1994 году в США начались комплексные исследования на постоянной основе эффектов влияния ГМБ на ЭЭС.

В 1994 году по инициативе члена-корреспондента РАН, проф. М. В. Костенко была создана неформальная группа по изучению воздействия ГМБ на ЭЭС Северо-Запада России, в которую вошли представители Центра Физико-технических проблем энергетики Севера и Полярного геофизического института Кольского научного центра РАН (г. Апатиты), Арктического и Антарктического научного института, Научно-Исследовательского Центра 26 ЦНИИ МО РФ. В период с 1994 по 2004 год участники группы разрабатывали научно-методические основы оценки воздействий и обеспечения защиты электроэнергетических систем при воздействии ГМБ [17], [18], [19].

В 2003-2007 гг. в рамках программы НИР «Исследование комплексных физикотехнических проблем надёжности эксплуатации и использования высоковольтного оборудования энергосистем с учетом процессов его старения и повышения требований к электромагнитной совместимости» учёными ЦФТПЭС и ПГИ КНЦ РАН были проведены исследования по воздействию ГМБ на электроэнергетические системы. В рамках проекта была разработана и установлена система мониторинга геомагнитных возмущений в электроэнергетической системе Кольского полуострова, не имеющая аналогов в ЕЭС России [20]. Система представляет собой сеть датчиков (рис. 1.3), регистрирующих ток, индуцированный ГМБ и протекающий в глухо заземлённой нейтрали автотрансформатора. Выбор точек измерения был сделан так, чтобы регистрировать развитие ГМБ по широте на магистральной линии, ориентированной с юга на север, а также в линии, направленной с запада на восток.

Рисунок 1.3. Схема расположения точек измерения в ЭЭС Кольского полуострова [21]

В процессе изучения не было зарегистрировано сбоев в оперировании системообразующих сетей напряжением 330 кВ Колэнерго, вызванных воздействием ГМБ [22]. Тем не менее в период 23го солнечного цикла были проведены работы по оценке воздействия ГМБ на железные дороги, которые показали зависимость между сбоями в системах работы автоматики, произошедших без видимой причины и периодами геомагнитной активности [23],[24]. Также были зарегистрированы сбои в работе ЭЭС Хакасии [25].

Полученные данные подтвердили гипотезу о нарушении функционирования ЭЭС во время ГМБ на территории. Важным результатом является факт регистрации нарушений не только в ЭЭС Северо-Запада России, но и в средних широтах.

1.3 Особенности воздействия геомагнитных бурь на режим работы энергосистемы

Солнце - основной источник энергии в Солнечной системе. Его магнитное поле определяет так называемую космическую погоду. Поле генерируется в конвективный зоне потоками плазмы, модифицированными дифференциальным вращением Солнца. Периодичность изменений глобального поля равна 22 года. Солнечный цикл составляет в среднем 11 лет (Приложение В). Максимум активности связан с переплюсовкой поля. Вблизи максимума распределение магнитного поля сильно неоднородно, что приводит к образованию солнечных пятен - меры солнечного цикла. Числа Вольфа R_z (цюрихское число солнечных пятен) определяются как

$$R_z = k(10G + n) \tag{1.1}$$

где k - калибровочный коэффициент, G - число групп солнечных пятен, n - полное число пятен.

В минимуме активности число Вольфа близко к нулю, а в районе максимума активности превышает сотни (рис.1.4).

Рисунок 1.4. Характер изменения числа Вольфа в солнечных циклах [26]

Одним из проявлений роста солнечной активности являются корональные выбросы массы. Магнитные облака, связанные с ними, могут распространяться на фоне спокойного (фонового) солнечного ветра со скоростями до 2000 км/с и иметь сильное и упорядоченное магнитное поле в десятки нТл. Если скорость выброса превышает скорость основного потока на локальную скорость звука, то перед ним образуется ударная волна, в переходной области за которой магнитное поле усилено сжатием. Именно такие образования вызывают самые мощные бури [27].

Варьирующиеся условия в солнечном ветре проявляются на поверхности Земли в виде нерегулярных геомагнитных вариаций. Экстремальные геомагнитные вариации свидетельствуют о магнитных бурях. Наблюдаемые более часто магнитные вариации в полярных широтах названы суббурями. Магнитные бури обладают значительно большей энергией и вызываются солнечным ветром аномально большой скорости. Одним из общепринятых критериев начала бури считается наличие южной компоненты межпланетного магнитного поля более 10 нТл в течение не менее чем 3 ч. Усиленное внешнее воздействие приводит к интенсификации магнитосферных токов и к распространению их влияния вглубь магнитосферы, что проявляется в возрастание суббуревой активности (AE до тысяч нTл). Поэтому во время бурь авроральная зона, в которую проецируются внешние зоны магнитосферы, сдвигается к экватору (до 40–50 ⁰ магнитной широты во время очень сильных событий), что приводит к распространению зоны сияний и авроральных геомагнитных вариаций в умеренные широты [27].

По силе и характеру воздействия вариации классифицируются с помощью систем индексов (Приложение А). Наиболее употребимым является представление силы ГМБ с помощью индекса K_p . Национальное управление океанических и атмосферных исследований, США, предложило ассоциировать характер ГМБ и соответствующих ей сбоев в оперировании ЭЭС, как показано в (Табл. 1.2) [28].

ГМБ оказывают влияние на режим работы ЭЭС за счёт индуцирования так называемых ГИТ. Протекая по сетевым элементам (рис.1.5, 1.6), ГИТ приводят к нарушению симметрии передачи энергии по фазам, появлению ненормированного распределения тока высших гармоник и, соотвественно, дополнительному термическому нагреву сетевого оборудования.

По сравнению с основной частотой ЭЭС, равной 50 Гц, частоты ГИТ малы и находятся в диапазоне (10⁻⁵–10⁰ Гц). Таким образом, квазипостоянные токи, протекая через заземленные обмотки, вызывает дополнительное подмагничивание трансформа-

Величина К-индекса	Степень воздействия	Эффект	Средняя частота
Kp=9	Глубокая (Extreme)	Лавина напряжения на боль- шой территории, сбои в работе РЗиА, термическое разруше- ние трансформаторов, блэка- ут	4дня/цикл
Kp=8	Тяжелая (Severe)	Значительные колебания уровня напряжений в узлах нагрузки, сбои в работе РЗиА	100дней/цикл
Kp=7	Сильная (Storng)	Возможны колебания уровня напряжений в узлах нагрузки, сбои в работе РЗиА	200дней/цикл
Kp=6	Умеренная (Moderate)	ЭЭС, расположенные в высо- ких широтах, могут испыты- вать проблемы с поддержани- ем уровня напряжения в узлах нагрузки, продолжительные ГМБ могут приводить к тер- мическому износу трансфор- маторов	600дней/цикл
Kp=5	Слабая (Minor)	Незначительные колебания параметров режима ЭЭС	1700дней/цикл

Таблица 1.2. Воздействия геомагнитных бурь на режим энергосистемы как функция силы геомагнитных бурь

торов. ГИТ относительно небольшой величины (от долей процентов до нескольких процентов номинального рабочего тока) способен вызвать однополупериодное подмагничивание стального сердечника трансформатора. В результате однополупериодного подмагничивания сердечника амплитуда тока возбуждения трансформатора увеличивается, а форма кривой фазного тока и тока в линейных проводах становится несинусоидальной. Следовательно, штатный режим работы ЭЭС меняется. Наблюдается ряд вторичных эффектов:

- а) рост величины потребляемой трансформатором реактивной мощности;
- б) рост активных потерь трансформаторов;
- в) изменение рабочих характеристик трансформаторов тока;
- г) изменение гармонического состава тока;
- д) изменение режима работы генераторов электростанций и уменьшение их эф-

фективной мощности;

- е) ложное срабатывание средств релейной защиты и автоматики;
- ж) перегрев трансформаторов.

Рисунок 1.5. Пути протекания ГИТ в контурах энергосистемы

Рисунок 1.6. Пути протекания ГИТ в контурах энергосистемы при установке группы однофазных трансформаторов

При значительной интенсивности вторичных электромагнитных эффектов ГМБ могут происходить нестационарные электромеханические процессы в ЭЭС, связанные со снижением частоты генераторов, нарушение динамической и статической устойчивости вплоть до полного развала ЭЭС. Количественный и качественный масштаб вторичных эффектов зависит от совокупности природных (характер ГМБ) и техногенных факторов (параметры ЭЭС).

1.4 Анализ геомагнитных бурь как специфического возмущения режима энергосистемы

В отличие от других возмущений природного характера (молнии, ледяной дождь, землетрясения, итд) современная электроэнергетика имеет малый опыт целенаправленной эксплуатации ЭЭС при воздействии ГМБ, что увеличивает сложность систематического сбора данных для выявления закономерностей. К отличительным чертам ГМБ можно отнести следующие характеристики:

- а) ГМБ оказывают воздействие на ЭЭС на больших расстояниях, меняя параметры геомагнитного поля Земли на больших площадях (сотни километров), что приводит к единовременному отключению нескольких сетевых элементов.
- б) ГМБ не могут быть визуализированы без применения специальных технических средств. Непосредственным сигналом о начале ГМБ являются показания датчиков геомагнитных обсерваторий. Превентивным сигналом являются данные о параметрах солнечного ветра, зарегистрированные спутниками, расположенными в первой точке либрации (L1) [29].
- в) Частота возникновения ГМБ зависит от периода солнечного цикла. В районе солнечного максимума может следовать ряд бурь раз в несколько дней (K_p = 5). Супер ГМБ (K_p = 9) могут возникать несколько раз за солнечный цикл.
- г) ГМБ могут длиться в интервале от нескольких минут до нескольких дней с постоянно изменяющейся амплитудой. Пример изменения параметров ГМБ во время системной аварии в Квебеке 13-14 марта 1989 приведен в [2].
- д) Временной промежуток между моментом изменения геомагнитного поля и началом развития системной аварии недостаточен для применения осмысленных управляющих воздействий (УВ) диспетчерами ЭЭС. Например, временной промежуток при системной аварии в ЭЭС Квебека в 1989 году был равен 92 секундам [2].
- е) Главное отличие ГИТ от постоянной составляющей тока короткого замыкания заключается в длительности протекания. Результаты регистрации величин ГИТ в глухозаземленных нейтралях силовых трансформаторов показал, что величина ГИТ непостоянна и изменяется во время ГМБ. Обычно умеренные ГИТ, равные нескольким Амперам, протекают в период от нескольких минут до нескольких

часов. Всплески ГИТ большой амплитуды (десятки Ампер) регистрируются на промежутках в несколько минут во время периодов протекания умеренных токов. За время регистрации ГИТ в нейтралях трансформаторов ПС ЭЭС Кольского полуострова не наблюдались сильные ГМБ. Ниже приведен график тока в нейтрали трансформатора на ПС Выходной во время ГМБ уровня $k_p = 7$ 1 июня 2013 года. ГМБ протекала в период с 3 часов ночи до 6 утра (рис. 1.7).

Рисунок 1.7. График изменения тока в глухозаземленной нейтрали трансформатора на ПС 330 кВ Выходной 1 июня 2013 года

ж) Частота токов, индуцируемых ГМБ, мала по сравнению с номинальной частотой ЭЭС, равной 50 Гц, что позволяет рассматривать их как квазипостоянные токи. За период регистрации ГИТ в нейтралях трансформаторов в ЭЭС Кольского полуострова регистировался ряд ГМБ по тяжести возмущения до уровня $K_p = 7$ включительно. Для детального анализа гармонического состава ГИТ были выбраны две ГМБ: буря от 16го июля 2012 года силой $K_p = 6$, длившейся с полночи до трёх часов утра, и ГМБ от 1го июня 2013 года силой $K_p = 7$, продолжавшейся с двух по пяти утра. Были обработаны данные регистрации ГИТ на ПС 330 кВ Кондопога с координатами 62⁰22"N 34⁰36'E, ПС 330 кВ Лоухи с координатами 66⁰08"N 33⁰12'E, ПС 330 кВ Выходной с координатами 68⁰83"N 33⁰08'E. Данные анализа гармонического состава сведены в Табл. 1.3.

Порядок гармоники	Частота гармоники, мГц					
1	ПС Ко	ндопога	ПС Лоухи		ПС Выходной	
	17.07.12	01.06.13	17.07.12	01.06.13	17.07.12	01.06.13
1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.2	0.2	0.24	0.2	0.18	0.27
3	0.3	0.3	0.3	0.27	0.24	0.3
4	0.33	0.4	0.36	0.33	0.3	0.4
5	0.4	0.5	0.4	0.5	0.35	0.5

Таблица 1.3. Гармонический состав геомагнитно индуцированных токов в нейтралях сисловых трансформаторов на ПС 330 кВ Кондопога: ПС 330 кВ Лоухи и ПС 330 кВ Выходной во время геомагнитных бурь 17 июля 2012 года и 1 июня 2013 года

Ниже приведен пример анализа гармонического состава ГИТ, зарегистрированного на ПС 330 кВ Лоухи во время ГМБ 16 июля 2012 года (рис. 1.8).

Рисунок 1.8. График тока на ПС 330 кВ Лоухи во время геомагнитной бури 17.07.2012 года (наверху); сигнал после удаления удаления постоянной составляющей (внизу)

На следующем шаге была выполнена интерполяция сигнала. График тока после интерполяции показан на рис. 1.9, а на рис.1.10 приведена кусок предыдущего сигнала в увеличенном масштабе.

Для улучшения частотного спектра на разрыве границ окна было использовано оконное преобразование Фурье, а именно окно Кайзера (рис. 1.11). Апроксимация Кайзера записывается в виде $\omega(n) = \frac{\left|I_0(\beta \sqrt{1-(\frac{1-2n}{N-1})^2}\right|}{|I_0(\beta)|}$, где β - константа, определяющая соотношение между максимальным уровнем боковых лепестков и шириной главного лепестка (доли общей энергии в главном лепестке) частотной характеристики окна [30]. В расчетах β равняется 20.

1.4. Анализ геомагнитных бурь как специфического возмущения режима энергосистемы

Рисунок 1.9. График тока на ПС 330 кВ Лоухи во время геомагнитной бури 17.07.2012 года после интерполяции сигнала

Рисунок 1.10. Оригинал тока после интерполяции: красным цветом обозначены данные измерений, синему цвету соответствуют точки "разглаженного" сигнала

Рисунок 1.11. Функция Кейзера при величине константы β равной 20 (наверху) Оригинал тока после применения оконного преобразования (внизу)

Гармонический спектр ГИТ в нейтрали силового трансформатора на ПС 330 кВ Лоухи представлен на рис. 1.12.

1.5. Анализ современного состояния научно-технической проблемы эксплуатации энергосистем во время появления геомагнитных бурь

Рисунок 1.12. Гармонический спектр тока

1.5 Анализ современного состояния научно-технической проблемы эксплуатации энергосистем во время появления геомагнитных бурь

Наука о физических процессах на поверхности Солнца, магнито-ионосфере является молодой и динамично развивающейся. Развитие этой науки связано с появлением новых технических средства наблюдения за космосом и обработки полученных данных. Несомненно важную роль сыграл фактор смещения приоритетов к мирному освоению космоса, что позволило расширить спектр проводимых исследований. Одновременное развитие теоретической базы и повышение общественной осведомленности расширяет карту зон риска ГМБ. Одновременно, принципы развития и оперирования современных ЭЭС также претерпевают значительные изменения: усложнение архитектуры, применение нового оборудования, и т.д. Риск появления аварии, вызванной ГМБ, обусловлен совокупностью факторов технического и природного характера.

Современные инфраструктуры имеют сильные межсистемные связи, таким образом полная потеря и сбой электроснабжения может привести к снижению качества функционирования сразу нескольких систем. На рис. 1.13 показана упрощенная схема межсистемных взаимодействий инфраструктур. Анализ полной схемы приведен в шестой главы.

На рис. 1.13 показано, что каждая из представленных систем зависит от электроснабжения. Например, нефте-газодобывающая отрасль поставляет топливо для 1.5. Анализ современного состояния научно-технической проблемы эксплуатации энергосистем во время появления геомагнитных бурь

Рисунок 1.13. Схематичное изображение межсистемного характера оперирования энергосистемы

электрических станции, при этом бесперебойное электроснабжение необходимо для функционирования компрессорных станций. Нефте-газодобывающая отрасль контролируется органами государственной власти, работа которых возможна при наличии источников электроснабжения и средств коммуникации, оперирование которых в свою очередь зависит от качества электроэнергии.

Ущерб от авария в ЭЭС США и Канады 2003 года оценивается в величину 8 миллиардов долларов, что соответствует наибольшему ущербу за всю современную мировую историю. Сбой в электроснабжении привел к следующим издержкам во многих отраслях. Ниже приведены некоторые примеры [31]:

- а) Четырнадцать из тридцати одного предприятия автомобильного концерна "Даймлер Крайслер" остались без электроэнергии. Производственный цикл на шести из этих заводах был связан с покраской корпуса и частей автомобилей. Концерн заявил о потере 10 тысяч машин в связи с некачественной покраской.
- б) Перерыв в электроснабжении привел к потере оборудования сталлилитейной фабрики Компании "Форд" в Брук Парк. Огайо.
- в) Компания "Нова Кемикалс" предъявила иск о потере 10 миллионов долларов

прибыли в третьем квартале в связи с вынужденной остановкой производства.

- г) Крупнейшая аптечная сеть Нью-Йорка была вынуждена прекратить обслуживание в 237 магазинах, что привело к потери 3,3 миллионов долларов прибыли.
- д) Суммарно более тысячи полетов были отменены в аэропортах Торонто, Нью-Йорка, Детройта, Монреаля, Оттавы и других городах.
- е) Метрополия Нью-Йорка анонсировала издержки в размере 1 миллиарда долларов. Только закрытие 22 тысяч ресторанов и точек общественного питания стоило бюджету 75 миллионов долларов.

За последние 10 лет в ЕЭС России произошли две крупные энергоаварии, приведшие к деградации связанных систем: энергоавария в Москве 25 мая 2005 года и энергоавария в Санкт-Петербурге 20 августа 2010 года. Подробный анализ последствий этих аварий приведен в шестой главе (Табл. 5.1).

Имеет место тенденция к ужесточению требований по качеству и надежности электроснабжения в связи с повышением стоимости ущерба от недоотпуска электроэнергии. Представляется сложным оценить ущерб от повторения ГМБ, перечисленных в Табл.1.1, в современных условиях в связи с недостаточностью статических данных и невозможностью классификации зависимости - построения кривой f-N (частота последствия).

Несмотря на анализ воздействий ГМБ на режим работы ЭЭС в течение последних 60 лет, специалистам не удалось предотвратить крупные системные аварии 22го и 23го солнечного циклов. Текущий 24й цикл характеризуется как наиболее спокойный за последние 100 лет [32]. На рис. 1.14 показано отношение числа солнечных пятен в предыдущем 23м цикле и текущем 24м. В рамках 23го цикла были зарегистрированы множественные сбои в работе технологических систем.Однако, для предотвращения крупных межсистемных аварийы детальный анализ особенностей функционирования ЭЭС и связанных с ней инфраструктур априори.

1.6 **Выводы**

Анализ литературы и обобщение разрозненных сведений о сбоях в работе ЭЭС показал, что имеет место тренд увеличения числа аварий и связанных с ними издержек от недоотпуска электроэнергии. При этом одним из специфических возмущений,

Рисунок 1.14. График изменения числа солнечных пятен в 23м и 24м солнечных циклах [33]

приводящим к крупным межсистемным авариям, являются ГМБ. Практика ЭЭС имеет малый опыт эксплуатации при ГМБ, что увеличивает сложность анализа их негативных электромагнитных эффектов. В отличие от других возмущений природного характера ГМБ характеризуются низкой вероятностью. Это накладывает ограничения на использования классического метода на базе кривой f - N (частота - последствия).

Известно, что вероятность появления ГМБ выше в периоды максимума солнечного цикла или на спаде, но они могут происходить в любой части солнечного цикла. Например, Hydro Quebec blackout произошел на фазе роста. Величина ГИТ, являющиеся реакцией на изменение магнито-ионосферной системы во времени и пространстве, различна на разных геомагнитных широтах. Протекая по сетевым элементам (рис.1.5), ГИТ приводят к нарушению симметрии передачи энергии по фазам.

Анализ показал, что развитие ЭЭС, связанное с усложнением архитектуры и адаптацией принципов управления ими к условиям либерального рынка, повышает уязвимость ЭЭС к ГМБ. В свою очередь совершенствование теоретической базы о физических процессах на поверхности Солнца и в магнито-ионосфере позволяет получить более точные прогнозы о времени появления и районах воздействия ГМБ. Прямым следствием является повышение общественной осведомленности об эффектах геомагнитных токов на ЭЭС. Постреконструирующий анализ режима ЭЭС в Греции во время Hydro-Quebec blackout, выполненный в 2011 году, показал, что ГИТ повлияли на работу силовых трансформаторов [34]. Таким образом, имеет место расширение карты зон высокого риска негативного воздействия ГМБ на режим и оборудование ЭЭС.

Полная информация о силе и характере ущерба, связанного с ГМБ, возможна только при комплексном анализе совокупности факторов, определяющих уязвимость ЭЭС к негативным электромагнитным эффектам полей ультранизкой частоты. Совокупность факторов природного и техногенного характера можно разделить на четыре группы: параметры ГМБ, параметры ЭЭС, параметры сетевого оборудования и информированность практики ЭЭС.

ГМБ приводят к отключения сразу нескольких сетевых элементов, что делает неэффективными современные методы противоаварийного управления, основанные на методе *N* – 1. Современные инфраструктуры имеют сильные межсистемные связи. Таким образом, полная потеря или сбой в электроснабжении могут привести к полной или частичной деградации сразу нескольких систем (рис. 1.13). Предложено проводить комплексный анализ сложной инфраструктуры с применением методов системного анализа, последовательной декомпозиции.

2 Методика исследования воздействий электромагнитных эффектов от геомагнитных бурь на элементы энергосистемы

Практика ЭЭС имеет малый опыт целенаправленного эксплуатации при ГМБ, что увеличивает сложность анализа и систематизации негативных электромагнитных эффектов ГМБ на режим и оборудование ЭЭС. Данная глава посвящена вопросам разработки методологии анализа влияния ГМБ на протяженные электротехнические системы. В первой части главы будет выбран метод расчета квазипостоянных токов, индуктированных ГМБ в протяженных электротехнических системах. Вторая часть главы посвящена критериям оценки влияния ГМБ на режимы и оборудование ЭЭС.

2.1 Постановка задачи расчета токов малой частоты, индуктированных геомагнитными бурями в протяженных электротехнических системах

В работе задача определения воздействий квазипостоянных токов, наводимых в протяженных электротехнических системах ГМБ на элементы электрической цепи, решается в три этапа 2.1:

- 1. «Геофизический», включающий в себя расчет геоэлектрического поля, вызванного геомагнитной бурей с заданными характеристиками на заданной географии;
- 2. «Электротехнический», состоящий в определении собственно геомагнитных токов, индуцированных геоэлектрическим полем в заданной системе проводников.
- «Системный», на котором оценивается влияние негативных электромагнитных эффектов ГИТ на режим и оборудование ЭЭС.

Первый этап является одной из важных задач прикладной геофизики. Создание

2.1. Постановка задачи расчета токов малой частоты, индуктированных геомагнитными бурями в протяженных электротехнических системах

Рисунок 2.1. Алгоритм расчета ГИТ

полное теоретической модели затруднено значительной вариативностью взаимосвязанных факторов, а именно::

- а) амплитудно-пространственное распределение магнитносферно-ионосферной токовой системы имеет сложный характер. Выбор физико-математической модели для анализа зависит от геомагнитной широты: ГМБ в авроральной зоне лучше всего могут быть представлены линейным током, ГМБ в экваториальной зоне плоским настилом тока.
- б) проводимость подстилающей породы не однородна как в горизонтальном, так и в вертикальном измерении;
- в) токи, индуктируемые в земной коре, создают вторичные электромагнитные поля, определяющиеся характеристиками первичной токовой системы и проводимостью подстилающих пород.

Поскольку прямые измерение величин геоэлектрического поля затруднены

по техническим причинам, обычно для расчетов используют данные измерений геомагнитных обсерваторий. Геоэлектрическое поле вычисляется исходя из данных геомагнитных измерений и электропроводимости грунта исследуемого региона.

ГИТ, наводимые в протяженных электротехнических системах при появлении ГМБ, являются первичным электромагнитным эффектом. На электротехническом этапе непосредственно вычисляются ГИТ в заданной ЭЭС с использованием методов на основе законов электрических цепей. Вторичные негативные электромагнитные эффекты вызваны изменением режима работы оборудования ЭЭС при воздействии ультранизкой кондуктивной помехи. Амплитуда вторичных электромагнитных эффектов и степень их влияния оценивается на третьем этапе.

2.2 Алгоритм расчета геоэлектрического поля на поверхности Земли

Для расчета индуцированного геоэлектрического поля применяют две основные модели:

а) Модель линейного тока, в которой напряженность электрического поля на поверхности Земли вычисляется как производная по времени от векторного потенциала тока электроджета в виде тонкого линейного тока 2.2.

Рисунок 2.2. Модель линейного тока

б) Модель настила тока, в которой источником магнитного поля является плоскостной ток длины L, расположенный на высоте h от поверхности Земли. Магнитное поле представлено плоской волной, падающей на поверхность Земли.

Реальный ток электроджета занимает промежуточное положение между моделями линейного и плоскостного тока. Геоэлектрическое поле, индуктируемое линейным током, будет являться нижним пределом, а индуктируемое плоскостным током верхним пределом при одинаковой скорости изменения магнитносферно-ионосферной токовой системы.

Фактически вариации геомагнитного поля, замеряемые наземными магнитометрами, являются суммой магнитного поля магнитносферно-ионосферной токовой системы и магнитного поля теллурических токов, индуцированных в поверхностных слоях Земли. Большинство ГМБ можно характеризовать как региональное явление. Это позволяет принять допущение о "плоскости"Земли, то есть пренебречь её реальной сферической формой. Принят случай вертикального распространения магнитного поля в декартовой системе координат, где ось X направлена на север, Y - на восток и Z - к центру Земли. Таким образом, решение задачи по расчету геоэлектрического поля производится на основе метода комплексных изображений. Метод комплексных изображений для решения геофизических задач был адаптирован в [35]. В [36] показано, что метод комплексных изображений можно использовать для анализа ГМБ как в высоких, так и в средних и низких широтах.

Сутью метода комплексных изображений является представление вклада Земли в виде идеального проводника, расположенного на глубине p, определяемой по формуле (2.1).

$$p = \frac{Z}{i\omega\mu_0} \tag{2.1}$$

где ω - угловая частота, Z - поверхностный импеданс.

Характер изменения магнитносферно-ионосферной токовой системы влияет на характер индуцированных электрических и магнитных полей. Проводимость подстилающей коры, с другой стороны, определяет характер распределения индуцированных полей в земной коре. Разветвленные ЭЭС с длинными межсистемными связями построены на больших географических территориях, характеризующиеся различными значениями проводимости подстилающей породы. Адекватное моделирование геоэлектрического поля требует представления проводимости подстилающей породы с достаточной точностью. Эквивалентная глубина проникновения δ_e монохроматической электромагнитной волны в толщу проводящего грунта определяется (2.2). В табл. 2.1 представлены полученные автором результаты расчета эквивалентной глубины проникновения как функции частоты волны и величины проводимости.

$$\delta_e = \sqrt{\frac{2}{\omega\mu_0\sigma}} \tag{2.2}$$

Таблица 2.1. Эквивалентная глубина проникновения электромагнитной волны в метрах как функция частоты и проводимости грунта

Проводимость грунта, См			Частота, Гц		
	1	0.1	0.01	0.001	0.0001
1 10 100 1000	$503.29 \\ 159.15 \\ 50.33 \\ 15.92$	$\begin{array}{c} 1591.55\\ 503.29\\ 159.15\\ 50.33\end{array}$	$5032.92 \\ 1591.55 \\ 503.29 \\ 159.15$	$\begin{array}{c} 15915.49\\ 5032.92\\ 1591.55\\ 503.29\end{array}$	$50329.21 \\ 15915.49 \\ 5032.92 \\ 1591.55$

По данным в Табл. 2.1 видно, что важность корректного моделирования проводимости возрастает при анализе волн ультранизкой частоты, распространяющихся в средах с низкой проводимостью. Современные представления о проводимости подстилающей коры на больших глубинах приблизительны, что накладывает ограничения на точность моделирования. Принимается для расчетов следующая модель грунта: блочная 1-D модель, учитывающая изменение проводимости в вертикальном измерении. Изменения проводимости в горизонтальном измерении учитываются в виде дискретных блоков (рис. 2.3).

Модель (рис. 2.3) представляет с собой полусферу z > 0, состоящую из N слоев, каждый из которых характеризуется проводимостью σ_i и толщиной слоя $d_i = z_{i+1} - z_i$, $(z_1 = 0, z_{n+i} = \infty)$. Недостатком этой модели является невозможность точного отраже-

Рисунок 2.3. 1-D модель проводимости подстилающей породы

ния изменения проводимости на границе двух сред (вода-грунт, итд) [37]. Подобная модель проводимости была реализована в рамках проекта EURISGIC. Отличительной чертой этой модели является оценка значения проводимости в вертикальном измерении [38]. На данном этапе развития науки и технологии более точное представление анизотропности проводимости подстилающей породы не требуется. Блочная 1-D модель даёт достаточную адекватность результатов.

Геометрическая модель задачи с землей в виде полупространства со слоистой проводимостью показана на рис. 2.4.

Рисунок 2.4. Геометрическая модель задачи

При допущении о пренебрежении токами смещения (J = 0) выражения для горизонтальных компонент электрического и магнитного полей могут быть записаны

как:

$$\frac{\partial^2 E_x}{\partial z^2} = i\omega\mu\sigma E_x \qquad \frac{\partial^2 H_y}{\partial z^2} = i\omega\mu\sigma H_y \tag{2.3}$$

Решениями в общем виде являются:

$$E = A(e^{-kz} + Re^{kz}) \qquad H = \frac{A}{Z}(e^{-kz} - Re^{kz})$$
(2.4)

где A,R - амплитуда и коэффициент отражения, k - волновое число $(k_z=\sqrt{i\omega\mu_o\sigma_0}),$ Z - импеданс.

Поверхностный импеданс определяется с учетом реальной проводящей структуры подстилающей породы. Импеданс горизонтальной слоистой структуры находится по рекуррентной формуле (2.5) [39].

$$Z_n = i\omega\mu_0 \left(\frac{1 - r_n e^{-2k_n d_n}}{k_n (1 + r_n e^{-2k_n d_n})}\right)$$
(2.5)

где d_n - толщина слоя, r_n - коэффициент отражения слоя n $(r_n = \frac{1 - k_n \frac{Z_n + 1}{l\omega \mu_0}}{1 + k_n \frac{Z_n + 1}{l\omega \mu_0}}).$

Во временной области можно выразить геоэлектрическое поле, используя обратное преобразование Фурье. Адекватный временной интервал принимается в промежутке от 10 секунд до 1 минуты. При расчете вариаций ГМБ методом комплексных изображений удобно разбивка региона ГМБ на квадраты, стороны которых ориентированы строго по сторонам света, размером 50 × 50 км [40]. Следовательно, полученные значения токов могут быть декомпозированы на восточную и северную компоненты.

2.3 Алгоритм расчета геомагнитных токов в наземных электротехнических системах

Электромагнитные поля, проникая вглубь проводящего грунта, создают токи ультранизкой частоты. На поверхности Земли они создают разность электрических

потенциалов между пространственно разнесенными точками. При наличии системы проводников, имеющих кондуктивную связь с грунтом, в ней будет протекать ток, называемый ГИТ. Следующим этапом анализа является определение ГИТ в сетевых элементах. Только один природный параметр определяет величину ГИТ - величина геоэлектрического поля. Топология и параметры наземной электротехнической системы также оказывают влияние на распределение ГИТ. Важным отличием схемы электрической цепи для расчета ГИТ является привязка узлов цепи к географическим координатам с целью учета величины геоэлектрического поля, зависящего от геомагнитной широты и проводимости подстилающей породы.

Метод, используемый для расчета ГИТ, представлен в [41]. Метод позволяет рассматривать воздействие внешних полей на дискретно заземленную сеть. Токи спусков могут быть определены следующим образом (2.6):

$$I_e = (1 + Y_n Z_e)^{-1} J_e \tag{2.6}$$

где 1 - единичная матрица размеров $N \times N$ and R (N - количество узлов рассматриваемой сети), Y_n - матрица проводимостей, Z_e - матрица сопротивлений заземлений, J_e - вектор-столбец источников тока, определяемый как $J_e = \frac{V_0}{Z_e}$, где V_0 - значения геоэлектрического поля вдоль проводника.

Матрица проводимостей Y_n является симметричной, так как узлы находятся на значительном расстоянии друг от друга и их взаимным влиянием можно пренебречь. Критическим расстоянием является дистанция в 50 км [42]. Диагональные элементы матрицы проводимостей Y_n суть сумма собственных проводимостей узла $Y_{ii} = y_i + \sum_{i=1}^{N} y_{ik} (i \neq k)$. Остальные элементы суть взаимные проводимости узлов, взятые со знаком минус $Y_{ij} = -\frac{1}{R_{ij}}$.

Сопротивления сетевых элементов представлены только своей резистивной частью в силу допущения о квазипостоянности ГИТ. Сопротивления многоцепных проводов представляют собой одну треть омического сопротивления провода воздушной линии длиной l_{ij} между точками спусков p_i и p_j (2.7):

$$R_{ij}^{n} = \frac{R_{0}^{n} l_{ij}^{n}}{3N_{i}} \tag{2.7}$$

где R_0^n - погонное омическое сопротивление провода воздушной линии; l_{ij}^n - длина сегмента; N_i - число цепей передачи.

В качестве защитной меры от грозовых перенапряжений устанавливается грозозащитный тросс на линиях класса напряжения 330 кВ и выше. По аналогии с фазными проводами ВЛ грозозащитный тросс является путем для протекания ГИТ. Грозозащитные троссы выполняются из стали и, следовательно, характеризуются большей резистивностью, чем фазные провода. Вклад грозозащитных троссов в распределение ГИТ мал, и им можно пренебречь [43].

Одной из мер повышения статической устойчивости ЭЭС является установка батарей статических конденсаторов (БСК). БСК препятствуют протеканию квазипостоянных ГИТ. Ветви электрической цепи с установленными в них БСК представляют собой разрыв электрической цепи. Следовательно, они не учитываются при составлении матрицы проводимостей.

2.4 Принципы анализа вторичных электромагнитных эффектов от геомагнитных бурь

ГИТ оказывают глубокое и многосторонне воздействие на режим и оборудование ЭЭС. Вторичные электромагнитные эффекты ГМБ могут привести к возникновению функциональных нарушений в работе оборудования ЭЭС и глубоким системным авариям. В свою очередь ЭЭС должна обеспечивать надлежащее качество электроэнергии и уровень надежности электроснабжения при работе оборудования в длительно допустимых режимах, определяемых ограничениями на его технические параметры.

Режим, реализуемый в энергосистеме, характеризуется рядом параметров: активные P_{Γ} и реактивные Q_{Γ} мощности станций и потребителей (P_H , Q_H), перетоки мощностей P_i , Q_i , токи I_i элементов электрической сети, напряжения U_i узлов. Для обеспечения надлежащего уровня надежности электроснабжения, при работе оборудования в длительно допустимых режимах регламентируется набор величин **M** (U, P, I, и т. д.) по числу характерных и наиболее вероятных режимов ЭЭС с учетом технических ограничений эксплуатации. После воздействия аварийного возмущения режим ЭЭС характеризуется новым набором величин **M**' отличного от **M**, часть которых превышает допустимые значения. Наравне с техническими характеристиками оборудования ЭЭС, архитектура ЭЭС также определяет максимально допустимые пределы изменений параметров режима.

Анализ вторичных электромагнитных эффектов основывается на оценке электромагнитных и тепловых нагрузок на оборудование ЭЭС и влияния внештатной работы оборудования на режим ЭЭС. Допустимые величины параметров определены в соответствии с действующими нормативными стандартами.

2.5 **Выводы**

Эффективность моделей исследования электромагнитных эффектов на элементы ЭЭС в значительной степени определяются адекватностью представления физических процессов. Характер распределения магнитносферно-ионосферной системы зависит от геомагнитной широты. Следовательно, способ физико-математического моделирования также зависит от широты, на которой расположена исследуемая электротехническая система. Глубина проникновения поля зависит от частоты и от проводимости земли. Ограничения при создании расчетных моделей на "геофизическом"этапе связаны с объемом обработанной и систематизированной информации, полученной с помощью космических миссий по изучению гелиомагнитосферы.

Основной причиной возникновения ГИТ в ЭЭС является изменение электромагнитного поля Земли во времени. Сопротивление элементов схемы электрической цепи при расчете ГИТ представлены только активной составляющей. ГМБ приводят к изменению параметров геомагнтного поля на больших площадях и, следовательно, оказывают воздействие на элементы электрической цепи географически удаленных друг друга. В связи с этим необходимо выполнять оценку системного эффекта от появления ГМБ и сопоставление фактического режима ЭЭС с нормативными параметрами. Сравнение рекомендуется проводить по таким параметрам режима как, как уровни напряжения в узлах нагрузки U_i , перетоки мощности по сечения ЭЭС P_i , Q_i , токовой нагрузке элементов ЭЭС I_i .

3 Воздействие геомагнитных бурь на режим и оборудование энергосистемы. Оценка надежности

Данная часть диссертации посвящена анализу электромагнитных, и тепловых процессов в обмотках силового и измерительного оборудования ЭЭС. На основе полученных данных предложены рекомендации по учету особенностей режима ЭЭС при наличии ГИТ в вопросах обеспечения статической устойчивости. В заключительной части главы выполнена сравнительная оценка алгоритмов обеспечения устойчивости в ЕЭС России и Объединенной ЭЭС Европы по критерию уменьшения негативного влияния ГИТ на режим и оборудование ЭЭС.

3.1 Задача оценки эффектов от геомагнитных бурь на режим и оборудование энергосистемы

ГИТ, наводимые при воздействии ГМБ, оказывают глубокое и многостороннее воздействие на режим работы наземных электротехнических систем. Принцип воздействий и примеры (Табица 1.1) приведены во второй главе . ГИТ, как правило, не являются самостоятельным фактором, способным вызвать заметные нарушения. Основная опасность заключается в том, что под воздействием ГИТ изменяются характеристики оборудования, содержащего ферромагнитные элементы, что приводит к количественному и качественному изменению режима ЭЭС. Наиболее уязвимы к воздействию ГИТ силовые и измерительные трансформаторы.

Существо процесса состоит в том, что ГИТ, протекая через заземленные обмотки силовых трансформаторов вместе с рабочими токами промышленной частоты (50 Гц), вызывают дополнительное однополупериодное подмагничивание и размагничивание магнитопровода. В зависимости от конструктивных особенностей трансформатора

37

относительно небольшое значение ГИТ, соизмеримое с величиной тока холостого хода $I_{x.x.}$ трансформатора, способно вызвать сильное насыщение стального сердечника. В результате резко возрастает амплитуда тока возбуждения трансформатора, а форма кривой тока в каждой из фаз трансформатора и, следовательно, форма кривой тока в линейных проводах воздушных линий становятся несинусоидальными и содержит в своём составе высшие гармоники (рис. 3.1). На рис. 3.1 принято, что насыщение имеет место в положительной полуволне. Веб-амперные характеристики магнитопроводов сетевого оборудования имеют нелинейный характер. Посколько характеристики ГМБ носят сугубо индивидуальный характер, то получение общего аппарата расчета затруднено.

Рисунок 3.1. Вид магнитной индукции *B* и тока возбуждения *I* силового трансформатора при наличии геомагнитно индуцированного тока [44]

Насыщение магнитопроводов силовых трансформаторов инициирует ряд негативных вторичных электромагнитных эффектов, приводящих к деградации прочего оборудования ЭЭС. К вторичным электромагнитным эффектам относятся:

- а) резкое увеличение тока возбуждения трансформатора. ГИТ, равный по величине току холостого хода однофазного трансформатора напряжением 400 кВ, приводит к скачкообразному росту тока возбуждения трансформатора в 15 раз (до величины в 78 А) [45];
- б) ненормированное распределение высших гармоник. При насыщении однофазного

силового трансформатора напряжением 400 кВ величиной ГИТ, соизмеримой с током холостого хода трансформатора, коэффициент нелинейности равен 71.4 % [46];

- в) рост дефицита реактивной мощности. В частности, в нормальных режимах величина реактивной мощности, в ЭЭС Hydro-Quebec составляет 100 MBAp. Во время энергоаварии 1989 года, вызванной ГМБ, величина реактивной мощности равнялась 8000 MBAp [47];
- г) увеличение активных потерь в трансформаторе. В работе [48] представлены результаты моделирования активных потерь в обмотках однофазного трансформатора при наличии и отсутствии ГИТ. При фазном ГИТ, равному 15 A, рост активных потерь в трансформаторе составляет 31.1 %, а при фазном ГИТ в 50 A - 45,5 %.

При значительной амплитуде и продолжительности негативных электромагнитных эффектов может наблюдаться сбой режима ЭЭС и деградация оборудования ЭЭС.

3.2 Исследование электромагнитных и тепловых процессов в обмотках силового и измерительного оборудования энергосистемы

Оборудование энергосистемы, спроектированное для эксплуатации в номинальном режиме, должны удовлетворять условиям надежной и беспрерывной работы в ряде нормированных режимов, при которых часть или все параметры режима отличны от номинальных. Максимально допустимые отклонения параметров выбираются с учетом нормированного уровня надежности, определяющего объем затрат на проектирование и производство с учетом издержек от недоотпуска электроэнергии в случае потери оборудования. Современная практика ЭЭС не учитывает негативные электромагнитные эффекты ГМБ при проектировании и эксплуатации оборудования ЭЭС, которые способны причинить значительный ущерб, хотя их вероятность возникновения ниже, чем у прочих природных катастроф.

3.2.1 Силовые трансформаторы

С целью передачи электроэнергии на большие расстояния от крупных электростанций к маломощным электроприемникам производится многократная трансформация электроэнергии. Суммарная установленная мощность трансформаторов в ЕЭС составляет почти 900 ГВА, что более чем в четыре раза превышает суммарную установленную генерацию, равную 235 ГВт [49]. Силовые трансформаторы являются ключевым элементом, обеспечивающий качественное и надежное электроснабжения. Требования к надежности трансформатора определяются степенью его влияния на работу конкретной ЭЭС в целом. Особенно высокие требования предъявляются к трансформаторам большой мощности на межсистемных связях и узловых подстанциях, а также к трансформаторам, входящим в блок "генератор трансформатор"мощных электростанций.

Парк трансформаторов в магистральных сетях ЕЭС России представлен трансформаторами мощностью от 63 MBA до 1200 MBA, установленными в сетях напряжением 110 - 1150 кВ (рис. 3.2) [50].

Рисунок 3.2. Количественное распределение трансформаторов в ЕЭС России по классам напряжения

Надежность трансформатора существенно зависит от срока его службы. Срок службы трансформатора определяется ГОСТ 11677-85 и равен 25 годам [51]. В [50] дана характеристика состояния парка трансформаторов на конец 2013 года. Доля основного оборудования ПС, находящегося в эксплуатации более 25 лет в разрезе классов напряжения показана на рис. 3.3.

Рисунок 3.3. Соотношение количества силовых трансформаторов, находящихся в эксплуатации более 25 лет в разрезе классов напряжения

Одним из важнейших критериев выбора нормативного срока службы трансформаторов является возможный тепловой износ витковой изоляции за период эксплуатации. Накопленный опыт показывает, что износ целлюлозной изоляции за номинальный срок службы оказывается существенным [52]. Значительное влияние оказывают фактические условия эксплуатации. Тем не менее проектирование трансформаторов должно быть выполнено также с учетом аварийных воздействий, имеющих низкую вероятность (раз в десятки лет). Таким аварийным возмущением являются ГМБ. На данный момент этот тип возмущения не учитывается в нормах проектирования и эксплуатации.

По конструкции магнитопровода трансформаторы делятся на броневые и стержневые. Меньший расход конструктивных материалов при производстве стержневого трансформатора делает его предпочтительным для средних и больших мощностей [53]. Стоимость активных материалов при производстве стержневого трансформатора на 20-30 % меньше, чем у броневого. В дальнейшем в диссертации рассмотрены однофазные и трёхфазные силовые трансформаторы стержневого типа. Трансформаторы могут быть как однофазного, так и трехфазного исполнения. Магнитопровод однофазного стержневого трансформатора имеет два стержня, на которых размещаются обмотки, и два ярма для создания замкнутого магнитопровода [54]. Стержневые трансформаторы трёхфазного исполнения могут быть трёх- и пятистержневыми.

Устойчивость силовых трансформаторов к геомагнитным бурям определяется совокупностью трёх факторов:

- а) схемой магнитной цепи.
- б) схемой соединения обмоток.
- в) изоляцией трансформаторов.

3.2.1.1 Схема магнитной цепи силовых трансформаторов

Восприимчивость трансформаторов к воздействиям ГИТ в значительное степени определяется схемой магнитной цепи.

Наибольшей уязвимостью к электромагнитным эффектам ГМБ обладают однофазные стержневые трансформаторы. Пути протекания потоков нулевой и прямой последовательности совпадают у однофазных трансформаторов. Магнитный поток полностью замыкается в сердечнике по пути основного потока намагничивания. Магнитное сопротивление нулевой последовательности чрезвычайно мало. Таким образом, ГИТ, равный величине тока намагничивания, может вызвать однополупериодное подмагничивание сердечника.

Наибольшей устойчивостью к негативным эффектам ГИТ обладают трёхфазные трёхстержневые трансформаторы. Постоянные магнитные потоки, индуктируемые ГИТ, компенсируют друг друга в стержнях и прилегающих ярмах. Это соответствует разным путям протекания потоков нулевой и прямой последовательности у трёхфазных трёхстержневых трансформаторах. Поток нулевой последовательности замыкается через воздушный зазор. Следовательно, магнитное сопротивление нулевой последовательности велико. Из этого следует, что однополупериодное подмагничивание такого трансформатора может быть вызвано большим по величине ГИТ. Магнитная цепь трёхфазного трёхстержневого трансформатора показана на рис. 3.4.

Трёхфазный пятистержневой трансформатор занимает промежуточное положение между рассмотренными типами трансформаторов. Хотя токи трёх фаз взаимокомпенсируются в основных стержнях и прилегающих ярмах, они увеличивают друг друга в обратных стержнях, что приводит к насыщению сердечника. У пятистержневых и у трёхстержневых трансформаторов пути потоков нулевой и прямой последовательности не совпадают. Тем не менее поток нулевой последовательности замыкается в сердечнике у пятистержевого трансформатора (с использованием обратных стержней). Магнитная цепь трёхфазного пятисержневого трансформатора показана на рис. 3.5.

Рисунок 3.4. Магнитная цепь трёхфазного трёхстержневого трансформатора

Рисунок 3.5. Магнитная цепь трёхфазного пятисержневого трансформатора

Для аналитического расчета физического процесса однополупериодного подмагничивания трансформаторов требуется заводская информация о габаритах магнитопровода (длина и диаметр сердечников и прилегающих ярм), данные о магнитных свойствах активных материалов и прочая информация, отсутствующая в открытом доступе. В [9] предложена следующая градация относительной восприимчивости различных типов трансформаторов к эффектам ГМБ, который придерживается и автор диссертации (рис. 3.6).

1,0 Однофазный стержневой трансформатор
0,57 Трёхфазный пятистержневой трансформатор
0,05 Трёхфазный трёхстержневой трансформатор

Рисунок 3.6. Относительная восприимчивость силовых трансформаторов к негативным электромагнитным эффектам геомагнитых бурь как функция конструкции

Связь между током возбуждения и током ГИТ для однофазного повышающего трансформатора можно выразить следующим образом. Источник постоянного тока (ток ГИТ) находится на стороне низкого напряжения, так как трансформатор повышающий. Ток намагничивания силового трансформатора в режиме насыщения и в нормальном режиме работы может быть описан как (3.1):

$$I_{\text{HAM}} = \begin{cases} L_k^{-1}(B(t) - B_{\text{H}}) & B > B_{\text{H}} \\ 0 \end{cases}$$
(3.1)

где $B_{\rm H}$ - магнитная индукция, при которой имеет место насыщение; L_k - коэффициент пропорциональности между индукцией и током намагничивания.

При отсутствии тока ГИТ магнитная индукция определяется как (3.2)

$$B(t) = B_m \cos(\omega t), \tag{3.2}$$

С учетом выражения (3.2) система уравнений (3.1) получим

$$I_{\text{Ham}} = \begin{cases} L_k^{-1}(B_m \cos(\omega t) - B_m \cos(\alpha)) & -\alpha < \omega t < \alpha \\ 0 \end{cases}$$
(3.3)

где α - угол насыщения.

Рост магнитной индукции после насыщения моделируется как $\Delta B = B_m cos(\alpha)$, а магнитная индукция, вызванная ГИТ, $B_{\Gamma UT} = B_{\rm H} - B_m + \Delta B$. Так как ток намагничивания при переменном напряжении соответствует току ГИТ, то, интегрируя (3.3), получаем:

$$L_k \frac{I_{\Gamma M T}}{B_m} = \frac{(sin(\alpha) - \alpha cos(\alpha))}{\pi},$$
(3.4)

При расчете угла насыщения α в радианах связь между током возбуждения трансформатора и током ГИТ описывается как

$$I_{\rm B} = L_k^{-1} B_m [1 - \cos(\alpha)] = \frac{\pi (1 - \cos(\alpha))}{\sin(\alpha) - \alpha \cos(\alpha))} I_{\Gamma \rm WT}, \tag{3.5}$$

3.2.1.2 Схема соединения обмоток

При приложении ГИТ к обмоткам низкого напряжения трансформатора, соединенного по схеме Y/Δ , наблюдается следующее распределение токов и магнитных потоков. На стороне низкого напряжения гармоники, кратные трём, будут отсутствовать. Поток будет резко несинусоидальным и будет содержать наравне с основной гармоникой высшие гармоники рис. 3.7. Высшие гармоники потока Φ_Y будут индуцировать во вторичной обмотке, соединенной треугольником ЭДС, равные по значению и совпадающие по фазе ЭДС. Под действием этих ЭДС возникают токи индуктивного характера. Создаваемые этими токами потоки Φ_{Δ} будут почти полностью компенсировать потоки Φ_Y . Результирующий поток будет практически синусоидальным.

Рисунок 3.7. Форма кривой потока

При приложении ГИТк обмотке низшего напряжения, соединенной в треуголь-

ник, в линейных токах гармоники, кратные трём, будут отсутствовать. Токи этих гармоник будут циркулировать внутри замкнутого треугольника, образуя циркуляционный ток. Таким образом, соединение одной из обмоток трансформатора в треугольник позволяет обеспечить разные ЭДС и напряжения практически синусоидальными при насыщении сердечника трансформатора. Магнитные потоки первой и второй гармоник первичной обмотки будут компенсированы магнитными потоками вторичной обмотки.

3.2.1.3 Деградация изоляции силового трансформатора в результате воздействия геомагнитно индуцированных токов

ГМБ могут приводить как к мгновенному выхода из строя трансформатора в результате термического нагрева, так и к кумулятивной деградации его изоляции. Примером первого типа отказа является силовой повышающий трансформатор на АЭС Salem (США) мощностью 406 MBA. Стоимость ущерба аварии составила 10 миллионов долларов. Насышение трансформатора ГИТ привело к разрушению обмоток низшего напряжения, термическому разрушению изоляции всех трех фаз и расплавлению проводников [55].

Главной угрозой для силового оборудования ЭЭС, расположенного в низких геомагнитных широтах, является увеличение уровня частичных разрядов во время ГМБ. Частичный разряд (ЧР) - электрический разряд, который шунтирует лишь часть изоляции между электродами, находящимися под разными потенциалами [56]. Серия ГМБ в конце 2003 года и начале 2004 года привела к разрушению изоляции 4х силовых трансформаторов на напряжение 400 кВ и мощностью 700 MBA трёхфазного исполнения [11]. Результаты последующей диагностики показали повышенное содержание газов с низкой молекулярной массой. Например, концентрация углекислого газа CO_2 , являющегося продуктом разложения целлюлозной изоляции, была превышена в 10 раз. На рис. 3.8 показан процесс деградации повышающего трансформатора в ЮАР [57]. На осях треугольника отложена концентрации низкомолекулярных газов в изоляции трансформатора (водород H_2 , метан CH_4 , монооксид углерода CO), соответствующие ГМБ 23го солнечного цикла. Водород и метан являются продуктами разложения минерального масла во время ЧР. 3.2. Исследование электромагнитных и тепловых процессов в обмотках силового и измерительного оборудования энергосистемы

Рисунок 3.8. Треугольник деградации изоляции трансформатора

3.2.2 Синхронные машины

Синхронная машина (СМ) спроектированная для эксплуатации в номинальном режиме, должна удовлетворять условиям надежной и беспрерывной работы и в ряде нормированных режимов, при которых часть или все параметры режимы отличны от номинальных. В [58] установлен минимальный срок службы турбогенератора в 25 лет. По аналогии с силовыми трансформаторами проектирование СМ должно быть выполнено с учетом воздействий, имеющих низкую вероятность. ГМБ в виде ГИТ оказывают как непосредственное влияние на СМ, так и косвенное за счет изменения параметров режима ЭЭС.

Оценим характер влияния ГИТ, которые могут возникать в отечественных ЭЭС. Для оценочных расчетов примем величину ГИТ, равную 70 A, в соответствии с [59]. Для получения количественных оценок, приведен анализ применительно к отечественному турбогенератору (ТГ) со следующими параметрами: $P_H = 200$ MBt, $I_H = 8.6$ кA.

Анализ прямого влияния ГИТ на режим СМ выполнен при допущении, что индуцированные ГИТ равны пофазно. Это соответствует допущению, что размеры СМ бесконечно малы по сравнению с размерами поля, вызванного геомагнитным возмущением. В этом случае при равенстве ГИТ в фазах обмотки статора результирующая MДС статора будет равна нулю, следовательно, магнитное поле в воздушном зазоре отсутствует, а значит обмотка возбуждения не воспринимает никаких воздействий. Остается только поле рассеяния обмотки статора (фазового и лобового), оказывающее тепловое и механическое воздействие на обмотку статора. Допустим, что по фазной обмотке статора протекает ГИТ $I_{\Gamma NT}$, равный 70 А. С другой стороны, номинальный ток рассматриваемой СМ $I_{\rm HOM}$ равен 8,6 кА. Таким образом, отношение $I_{\rm HOM}/I_{\Gamma NT}$ равно 122. Нормальное значение магнитной индукции в зазоре СМ равно 0,9 Тл, а значение магнитной индукции от ГИТ равно 0,0074 Тл, что позволяет сделать вывод о пренебрежительно малом воздействии ГИТ на работу СМ в случае симметричного распределения ГИТ по фазам статора.

С другой стороны, нелинейное искажение гармонического состава переменного тока приводит к уменьшению допустимой мощности СМ. Величина коэффициента нелинейных искажений регулируется стандартом ГОСТ [58]. Его величина не должна превышать $k_{\rm H,I} < 0.05$. Одним из негативных эффектов однополупериодного насыщения силовых трансформаторов является изменение содержания высших гармоник в сети. На рис. 3.9 показано распределение гармоник при насыщении однофазного стержневого трансформаторы (голубой цвет), а красному цвету соответствует распределение гармоник, нормированное ГОСТ 533-86 [58].

Рисунок 3.9. Распределение высших гармоник при насыщении однофазного стерженового трансформатора

Допустимая мощность $P_{\text{доп}}$ по условиям влияния высших временных гармоник определяется по выражению 3.6:

$$P_{\rm доп} = \sqrt{\frac{K_{F1}}{\sum Q_{\rm och, n}^* + \sum Q_{\rm och, n}^{**}}},$$
(3.6)

где K_{F1} - коэффициент Фильда, $\sum Q_{\text{осн, n}}^*$ - сумма основных потерь, $\sum Q_{\text{осн, n}}^{**}$ - сумма дополнительных потерь.

Анализ выполнен для турбогенератора модели ТВВ-200. Ниже определены основные размеры, электромагнитные нагрузки и обмоточные данные статора. Внешний радиус расточки статора D_1 равен 1295 мм [60]. Число пар полюсов p равно одному. Длина лобовой части стержня

$$l_{s1} = \frac{2,5D_1}{p} = 2,5 * 1295 = 3237.5 \text{ MM}$$
(3.7)

Число последовательно соединенных витков в фазе w_1

$$w_1 = \frac{s_{\pi 1} Z_1}{2ma} = \frac{2*72}{2*3*2} = 12,$$
(3.8)

где s_{n1} - число активных проводников в обмотке, равное дмуч при двухслойной обмотке; Z_1 - число пазов статора, равное 72; m - число фаз; a - число параллельных ветвей, равное двум для СМ с еосвенным охлаждением мощностью 200 МВт.

Обмоточный коэффициент k_{ob1} , определенный по Табл. 5.4 "Обмоточные коэффициенты трехфазных обмоток"для первой гармоники k_{ob1} равен 0.675 [60]. Таким образом, магнитный поток в зазоре при холостом ходе и номинальном напряжении

$$\Phi_0 = \frac{2.6U_{\rm H}}{w_1 k_{\rm o61}} \frac{50}{f_{\rm H}} = \frac{2.6 * 13.4 * 10^3}{12 * 0.675} = 4300 \text{ B6}, \tag{3.9}$$

где $f_{\rm H}$ - номинальная частота, равная 50 Гц.

Полная длина сердечника статора

$$l_1 = \frac{\Phi_0 p}{B_\delta (D_2 + \delta)} - 2\delta = \frac{4.3 * 10^6}{0.9(1000 + 147.5)} - 295 = 3800 \text{ MM}, \tag{3.10}$$

где D_2 - диаметр ротора, равный 1000 мм в соответствии с рис. 3.4 [60]; магнитная

индукция в зазоре B_{δ} равна 0.9 Тл; ширина воздушного зазора $\delta = (D_1 - D_2)/2$ равна 147.5 мм.

Длина витка обмотки статора

$$l_{w1} = 2(l_1 + l_{s1}) = 2(3800 + 326.5) = 14075 \text{ MM}$$
(3.11)

Площадь сечения стержня $q_{a1} = 775 \text{ мм}^2$. На основании рассчитанных значений получаем сопротивление обмотки статора постоянному току при 15 C^0

$$r_{1(15)} = \frac{w_1 l_{w1}}{57 q_{a1} a} = \frac{12 * 14075}{57 * 735 * 2} 10^{-3} = 0.001917 \text{ Om}$$
(3.12)

Сопротивление обмотки статора постоянному току при температуре 75 C^0 $r_{1(75)}=1.24r_{1(15)}=0.0023705$ Ом.

Мощность основных потерь в выражении (3.6) определяется соотношением

$$\sum Q_{\text{och, n}}^* = Q_{\text{och, 1}} + Q_{\text{och, 2}} + Q_{\text{och, 3}} + \dots Q_{\text{och, n}} = \frac{1}{2} m(K_1 I)^2 r_{1(75)} + \frac{1}{2} (K_2 I)^2 r_{1(75)} + \dots + \frac{1}{2} (K_n I)^2 r_{1(75)}, \qquad (3.13)$$

где K_1, K_2, \ldots, K_n - коэффициенты разложения кривой тока в гармонический ряд; *I* - амплитуда тока кривой, содержащей гармоники. В расчетах используется ток обмотки статора на переменном напряжении, так как величина тока ГИТ несоизмеримо мала.

Мощность добавочных потерь в выражении (3.6) определяется соотношением

$$\sum Q_{\text{осн, n}}^{**} = \Delta Q_{\text{осн, 1}} + \Delta Q_{\text{осн, 2}} + Q_{\text{осн, 3}} + \dots \Delta Q_{\text{осн, n}} = \frac{1}{2} m(K_1 I)^2 r_{1(75)} \Delta K_{\Phi 1} + \frac{1}{2} (K_2 I)^2 r_{1(75)} \Delta K_{\Phi 2} + \dots + \frac{1}{2} (K_n I)^2 r_{1(75)} \Delta K_{\Phi n},$$
(3.14)

где $\Delta K_{\Phi 1}, \Delta K_{\Phi 2}, \dots, \Delta K_{\Phi n}$ - коэффициенты добавочных потерь, вызванных явлением поверхностного эффекта в элементарных проводниках обмотки статора. Рассмотрены три варианта коэффициентов ΔK_{Φ} {0.075;0.15;0.25} [61].

Для первых пяти высших гармоник, показанных на рис. 3.9 величины основных и добавочных потерь представлены в (Табл. 3.1).

Основные по тери, ВАр	-	Добавочные потери, ВАр			
T) T	0.075	0.15	0.25		
262000	19650	39300	65500		
640000	48000	96000	160000		
289940	21745	43491	72485		
42000	3150	6300	10500		
16436	1232	2465	4109		

Таблица 3.1. Величины основных и добавочных потерь от высших гармоник

Пример расчета первой строки. Основные потери от тока первой гармоники

$$Q_{\text{OCH}, 1} = \frac{1}{2}m(K_1I)^2 r_{1(75)} = \frac{1}{2} * 3 * 8.6^2 * 0.0023705 * 10^6 = 262000 \text{ BAp},$$
(3.15)

Добавочные потери от тока первой гармоники при ΔK_{Φ} равном 0.075

$$\Delta Q_{\text{OCH}, 1} = \frac{1}{2} m(K_1 I)^2 r_{1(75)} \Delta K_{\Phi 1} = \frac{1}{2} * 3 * 8.6^2 * 0.0023705 * 10^6 * 0.075 = 19650 \text{ BAp}, (3.16)$$

Используя данные (Табл. 3.1), получаем допустимую мощность синхронной машины по выражению (3.6), исходя из потерь в обмотке статора и её перегрева. Мощность СМ следует ограничить на 50 %. Аналогичные соотношения были получены получены для турбогенератора ТВВ-500.

Трёхфазный пятистержневой трансформатор характеризуется большей робастностью к негативным электромагнитным ГМБ. Насыщение его магнитопровода происходит при большей величине ГИТ. Распределение высших гармоник показано на рис. 3.10. По аналогии с рис. 3.9 красный цвет соответствует нормативному распределению гармоник, а голубой реальному распределению. В этом случае в соответствии с выражением 3.6 следует ограничить допустимую мощность СМ на 25 %.

Группы однофазных трансформаторов устанавливаются на выходе крупных электростанций и на межсистемных связях класса напряжения более 500 кВ. В схемах выдачи мощности крупных АЭС и КЭС генератор и соединенный последовательно с ним повышающий трансформатор заведены под общий выключатель на стороне высокого напряжения. В некоторых случаях с целью удешевления конструкции распределительных устройств (РУ) класса напряжения 330-750 кВ применяется 3.2. Исследование электромагнитных и тепловых процессов в обмотках силового и измерительного оборудования энергосистемы

Рисунок 3.10. Распределение высших гармоник при насыщении трёхфазного пятистержневого трансформатора

объединение двух блоков трансформаторов под общий выключатель. Для ГЭС также характерно применение укрупненных блоков, так как они строятся вместе со сложных топографией и ограниченной площадью для сооружения РУ. В [62] внезапное отключение генератора или блока генераторов, подкдюченых к РУ общим выключателем, рассматривается как аварийное возмущение II группы. Нормативные возмущения II группы учитываются при выборе настроек ПА при работе в ремонтных схемах. Таким образом, ограничение мощности СМ, вызванное насыщение силового трансформатора во время ГМБ, является нормативным возмущением, учитываемым действующими стандартами по эксплуатации ЭЭС.

3.2.3 Измерительные трансформаторы

Измерительные трансформаторы применяются для уменьшения первичных тока и напряжения до значений, наиболее удобных для измерительных приборов и реле, а также для гальванического отделения цепей измерения и защиты от первичных цепей высокого напряжения [63]. Существуют измерительные трансформаторы двух типов: тока (TT) и напряжения (TH). Несмотря на то что функциональное предназначение у TT и TH одинаковое, условия работы разняться. Соответственно, TT и TH имеют разную уязвимость к ГМБ.

ТТ характеризуется номинальным коэффициентом трансформации - соотно-

шение между номинальным током первичной обмотки и вторичным номинальным током (3.17).

$$K_I = \frac{I_{1\text{HOM}}}{I_{2\text{HOM}}} \tag{3.17}$$

где $I_{1\text{ном}}$ - номинальный ток первичной обмотки, $I_{2\text{ ном}}$ - номинальный ток вторичной обмотки.

Эквивалентная схема замещения ТТ представлена на рис. 3.11.

Рисунок 3.11. Схема замещения трансформатора тока

Коэффициент трансформации TT (3.17) не является строго постоянной величиной и может отличаться от номинального значения в связи с наличием тока намагничивания ($I_{\text{нам}}$). Токовая погрешность определяется по выражению (3.18):

$$\Delta I_{\%} = \frac{K_I I_2 - I_1}{I_1} 100 \tag{3.18}$$

Погрешность ТТ (3.18) зависит от следующих параметров [64]:

- а) площади поперечного сечения магнитопровода A_{Fe};
- б) магнитной проницаемости материала магнитопровода μ ;
- в) магнитной индукции насыщения $B_{\text{нас}}$;
- г) величины подключенной вторичной нагрузки *R_{Cu}*;
- д) типа возмущения (кратность первичного тока по отношению к номинальному);
- е) средней длины магнитопровода l_{Fe} ;
- ж) угла потерь δ как функции намагничивания;
- з) колебания температур при эксплуатации.

Таким образом, токовая и фазовая погрешности определяются по формулам (3.19) и (3.20) соответственно. Угловая погрешность TT есть угол между вектором

тока первичной обмотки и повернутым на 180 градусов вектором тока вторичной обмотки.

$$tg\phi = \frac{R}{\omega L}\cos\delta \tag{3.19}$$

$$F(I) = -\frac{R}{\omega L} \sin\delta \tag{3.20}$$

при чем $R = R_{CU} + R_B$, $L = N_{\text{втор}}^2(\mu \cdot 12, 57 \cdot \frac{A_{Fe}}{L_{Fe}})$, $\omega = 2\pi f$, где R_B - входное сопротивление.

Выбор материала магнитопровода обусловлен технологической функцией TT. В [65] прописаны классы точности, допускаемые к установке в ЕЭС России, и технологические функции TT в соответствии с классом точности. TT классов точности 0,2S и 0,5S используются для коммерческого учета электроэнергии, а классов точности 0,2; 0,5; 1; 3; 5; 10 для подключения технических измерительных приборов и средств релейной защиты. Указанные цифры являются токовой погрешностью в процентах номинального тока при нагрузке первичной обмотки током в соответствии с Приложением C.

Магнитопровод TT для коммерческого учета электроэнергии классов точности 0,2S и 0,5S изготавливается из сплава Ni - Fe, а магнитопровод TT для подключения средств измерения и релейной защиты выполнен из сплава Si - Fe. ГМБ в виде ГИТ приводит к насыщению TT так же, как и силовых трансформаторов. Кривые намагничивания Ni - Fe и Si - Fe показан на рис. 3.12 и рис. 3.13 соответственно.

Рисунок 3.12. Кривая намагничивания сплава Ni-Fe

Рисунок 3.13. Кривая намагничивания сплава Si-Fe

Как показано на рис. 3.12 и рис. 3.13, ТТ для подключения средств измерения

и релейной защиты насыщается при ГИТ, равном 20А. Величина критического ГИТ для TT классов 0,2S и 0,5S в 10 раз меньше. Насыщение TT приводит к неточному измерению величины тока вторичный обмотки, что влияет на надежность работы последующих средств релейной защиты:

а) Максимальная токовая защита (МТЗ)

Принцип действия МТЗ основан на фиксации увеличения тока защищаемого элемента сверх установленного значения. Структурная схема трёхфазной МТЗ показана на рис. 3.14. Измерительные органы - токовые реле (КА) - предусматриваются в каждой фазе. Они питаются вторичными токами соответствующих фаз ТТ, соединенных в звезду. Сигнал от ТР поступает на логический элемент ИЛИ (DW), передающий команду на реле времени (КТ), создающего выдержку времени (t). РВ обычно устанавливается одно на 3 фазы. Команда с реле времени поступает на сигнальное реле (КН). Исполнительный орган (КL), выполняемый посредством промежуточного реле или тиристорной схемы, передаёт команду на отключение выключателя Q.

Рисунок 3.14. Структурная схема трёхфазной максимальной токовой защиты

Селективность действия МТЗ достигается с помощью выдержки времени. Наиболее удаленный от источника питания сетевой элемент имеет минимальное время срабатывания. Насыщение ТТ (увеличение $I_{\text{нам}}$) приводит к потере координации МТЗ по времени и, следовательно, к отключению больше́го участка ЭЭС, что также приводит к дополнительному нагреву поврежденного сетевого элемента.

б) Дифферинциальная токовая защита
 Наибольшую опасность насыщение TT оказывает на работу дифференциальной

защиты, логика которой построена на законе Кирхгофа. Дифференциальная защита используется для отключения КЗ в пределах всех защищаемой ЛЭП без выдержки времени. Выделяют продольные и поперечные. Принцип действия продольных дифференциальных защит основан на сравнении значений токов и фаз в начале и конце защищаемой ЛЭП (рис. 3.15). Вторичные обмотки TT устанавливаются по концам защищаемой ЛЭП (TT A и TT B). TT имеют одинаковые коэффициенты трансформации. Посредством соединительного кабеля обмотки TT подключаются к дифференциальному реле (ДР). Таким образом, при КЗ вне защищаемой ЛЭП ток, регистрируемый ДР, равен нулю, а при КЗ на защищаемом элементе ток отличен от нуля.

Рисунок 3.15. Структурная схема дифференциальной токовой защиты

Дифференциальное реле включается параллельно вторичным обмоткам TT. В реальных условиях эксплуатации TT работают с погрешностью, поэтому для исключения неселективной работы ток срабатывания защиты $I_{c.3.}$ должен превышать максимальное значение тока небаланса $I_{c.3.} > I_{H6}$. Значение тока небаланса определяется разностью значений токов намагничивания TT A и TT В ($I_{H6} = I_{TTB_{HAM}} - I_{TTA_{HAM}}$). Поперечная дифференциальная защита применяется для защиты параллельных ЛЭП, имеющих одинаковое сопротивление. Принцип работы основан на сравнении значений и фаз токов, протекающих по обеим ЛЭП. Ухудшение работы TT во время ГМБ приводит к неудовлетворительной работе продольной дифференциальной защиты.

в) Дистанционная токовая защита

Дистанционные токовые защиты обеспечивают селективное отключение КЗ в

сложных кольцевых сетях. Их принцип действия основан на контроле изменения сопротивления. Выдержка времени t_3 зависит от дистанции между местом установки реле и местом КЗ $l_{\rm pk}$ - $t_3 = f(l_{\rm pk})$ [66]. Ближайшая к месту повреждения дистанционная защита имеет меньшую выдержку времени, чем более удаленные. В качестве дистанционного измерительного органа используется реле сопротивления (PC). Для контроля сопротивления к зажимам PC подводятся вторичные значения U_p и I_p от установленных TH и TT (рис. 3.16).

Рисунок 3.16. Структурная схема дистанционной токовой защиты

Дистанционная защита выполняется трёхступенчатой. Первая ступень охватывает 85 % длины защищаемой линии. При КЗ в зоне действия защита работает без выдержки времени. Функциональной задачей второй ступени является защита всей линии. Её зона действия попадает на следующую линию. Следовательно, вводится замедление на срабатывание для исключения неселективного срабатывания защиты при КЗ на отходящих линиях. Третья ступень предназначена для ближнего и дальнего резервирования. Время выдержки принимается на Δt больше выдержки второй ступени. Критическим следствием насыщения измерительного трансформатора является ложное срабатывание защиты при КЗ в первой зоне.

Регистрация контролируемых напряжений производится с помощью ТН. Эквивалентная схема ТН представлена на рис. 3.17. Основными параметрами ТН являются [66]:

а) номинальное первичное номинальное напряжение $U_{1 \text{ном}}$, равное номинальному

напряжению контролируемого элемента сети;

- б) номинальное вторичное напряжение $U_{2\text{ном}}$, значение которого обычно принимается раным 100 или $100/\sqrt{3}$ B;
- в) коэффициент трансформации

$$K_U = \frac{U_{1\text{HOM}}}{U_{2\text{HOM}}} \tag{3.21}$$

Рисунок 3.17. Схема замещения трансформатора напряжения

Насыщение TH вызывает рост падения напряжения в обмотках TH, что обуславливает появление погрешности измерения (3.22).

$$\Delta U = I_{\text{HOM}}^2 Z_1' + I_2 \cdot (Z_1' + Z_2) \tag{3.22}$$

Поскольку сопротивления Z_1 и Z_2 определяют конструкцию трансформатора, контроль погрешности трансформатора в эксплуатационных условиях осуществляется с помощью тока вторичной обмотки I_2 и тока намагничивания $I_{\text{нам}}$. Один и тот же TH может работать в разных классах точности в зависимости от значения нагрузки. Классы точности TH определены в [67]. Независимо от класса точности TH изготавливаются из сплава Si - Fe, характеристика намагничивания которого представлена на рис. 3.13.

3.2.4 Прочее оборудование

ГМБ влияют на работу прочего оборудования ЭЭС как непосредственно в виде ГИТ, так и косвенно, в виде вторичных эффектов ГИТ. Шунтирующие реакторы (ШР) и выключатели суть оборудование, содержащее магнитопровод, наравне с силовыми и измерительными трансформаторами. Экстремальные ГМБ могут привести к их нештатной работе. Тем не менее магнитопровод ШР характеризуются большими воздушными промежутками, чем силовые трансформаторы. В [68] выполнен анализ значений ГИТ, способных привести к повреждению ШР. Полученные величины значительно превышают значения ГИТ даже во время экстремальных бурь. Выключатели характеризуются ещё большими воздушными промежутками, что позволяет сделать вывод об их чрезвычайно малой уязвимости к эффектам ГМБ.

В последнее время получило широкое распространение использование вставок постоянного тока (ВПТ) как меры по повышению устойчивости ЭЭС [69].Такие преимущества ВПТ над линиями переменного тока как разделение ЭЭС на несинхронно работающие части, отсутствие тока подпитки КЗ, гибкость управления определили данную тенденцию. С позиции ГИТ, ВПТ не имеют преимуществ над линиями переменного тока: они не являются барьером для протеканием ГИТ в ЭЭС. При этом ГМБ в виде ГИТ не оказывают непосредственного влияния на работу ВПТ. Ток ГИТ (десятки Ампер) несоизмеримо мал по сравнению с номинальным током ВПТ (кА).

Отдельный спектр проблем связан с влиянием высших гармоник на функционирование ВПТ. Распределение высших гармоник при однополуперирдном насыщении однофазного стержневого трансформатора показано на рис. 3.9, а при однополупериодном насыщении трёхфазного пятистержневого трансформатора на рис. 3.10. Из рисунков видно, что наравне с 3й и 5й гармониками тока наблюдаются четные гармоники большой амплитуды. В эксплуатируемых одномостовыз схемах преобразователей предусмотрены меры по компенсации канонических гармоник, то есть гармоник с номерами $m = 6k \pm 1$, где m = 1, 2, 3, Вторичный ток преобразователя i_2 можно разложить на две составляющие как функция угла зажигания, α , и угла коммутации, γ , (3.23) [70].

$$i_2(\alpha,\gamma) = \frac{\sqrt{3}E_{2m}}{2X_{\gamma}}(\cos\alpha - \cos(\alpha + \gamma))$$
(3.23)

С учетом угла сдвига для пятых гармоник получаем, что токи пятых гармоник

равны по величине, но находятся в противофазе. Токи пятый гармоники циркулируют внутри схемы, между двумя трансформаторами преобразователя. Аналогичные соотношения можно получить для токов седьмой гармоники. Для компенсации неканонических гармоник применяются высокочастотные фильтры, который широко применяются на существующих ВПТ для компенсации 2й и 4й гармоники ([71] - [72]).

Батареи конденсаторов (БК) подвержены вторичным эффектам ГМБ, а именно ненормативному распределению высших гармоник напряжений и тока. Уменьшение сопротивления БК при увеличении частоты приводит к росту действующего значения тока. Это может привести к перенапряжениям. БК, включенные по схеме "звезда с изолированной нейтралью"обладают большей устойчивостью к ГМБ за счет блокировки гармоник нулевой последовательности, чем БК с заземленной нейтралью.

В первую очередь, предельный режим линии электропередач (ЛЭП) определяется допустимой термической нагрузкой, а именно величиной "стрелы провеса". В [73] приводятся допустимые токовые нагрузки на провода воздушных линий. Выполненный в работе расчет показал, что отключение ВЛ 330 кВ по термическим условиям может быть вызвано ГИТ, равному 2 кА. Эта величина также значительно превышает возможные величины ГИТ. С другой стороны, однополупериодное подмагничивание и размагничивание сердечника силового трансформатора приводит к генерации высших гармоник. Следствием этого является неравномерное распределение тока в сечение проводника. Другими словами, ток будет стремиться протекать ближе к поверхности проводника. Соответственно, имеет место неравномерное распределение тепла в проводнике. Мощность потока электромагнитной энергии, проникающей внутрь проводника сквозь его поверхность и выделяющейся в проводнике в форме тепла P, можно определить по выражению (3.24) [74]:

$$P = \frac{l}{u} \sqrt{\frac{\omega\mu}{2\gamma}} I^2 \tag{3.24}$$

где l - поверхность проводника, сквозь которую проникает электромагнитная волна, u - периметр сечения проводника, ω - частота гармоники тока, μ - магнитная проницаемость, γ - коэффициент распространения, I - действующее значение тока в

проводе.

На основании полученных данных автором приводится приводится сводная характеристика устойчивости оборудования ЭЭС к первичным и вторичным эффектам ГМБ (Табл. 3.2). Под системным эффектом понимается кумулятивный эффект на режим ЭЭС от потери более чем N-1 элемента одного типа. Параметр "стоимость" учитывает суммарную стоимость ремонта/ замены поврежденного оборудования.

Таблица 3.2. Устойчивость оборудования энергосистемы к эффектам геомагнитных бурь

Устойчивость к ГМБ	Системный эффект	Стоимость	
низкая низкая	большой большой	высокая низкая	
	_		
средняя	большой	высокая	
высокая	большой	высокая	
высокая	средний	средняя	
высокая	большой	высокая	
высокая высокая	оольшой большой	высокая средняя	
	Устойчивость к ГМБ низкая низкая средняя высокая высокая высокая высокая высокая высокая	Устойчивость Системный к ГМБ эффект низкая большой низкая большой средняя большой высокая большой высокая средний высокая большой высокая большой	

3.3 Особенности расчета режима энергосистемы при наличии геомагнитно индуцированных токов

Возбуждение силовых трансформаторов во время ГМБ приводит к росту дефицита реактивной мощности в сети и ненормированному распределению высших гармоник. Оба этих аспекта следует учитывать при расчете режима ЭЭС во время ГМБ.

Связь между между ГИТ $I_{\Gamma UT}$ и реактивной мощностью, потребляемой силовым трансформатором $Q_{\Gamma UT}$, определяется соотношением (3.25):

$$Q_{\Gamma WT} = U_{\rm HOM} K I_{\Gamma WT} \tag{3.25}$$

где $U_{\text{ном}}$ - номинальное напряжение трансформатора, K - коэффициент пропорцио-

нальности, имеющий [MBAp/A], $I_{\Gamma UT}$ - величина ГИТ на фазу.

Коэффициент пропорциональности *К* зависит от конструктивных параметров и магнитных свойств силовых трансформаторов. В [75] приведены величины коэффициента как функция конструкции силового трансформатора: для однофазных стержневых трансформаторов величина *К* равна 1,18; трёхфазных пятистержневых -0,66; трёхфазных трёхстержневых - 0,29.

Уравнение (3.25) было разработано для расчета реактивной мощности потребляемой двухобмоточным силовым трансформатором с заземление "звезда". В этом случае $I_{\Gamma WT}$ соответствует фазному току, регистрируемому на ПС в заземленных нейтралях трансформатора. При анализе трансформаторов, имеющих сложные схемы заземления, и автотрансформаторов ток $I_{\Gamma WT}$ рассчитывается с учетом тока в обоих обмотках:

$$I_{\Gamma WT} = \frac{K_T I_{\rm BH} + I_{\rm HH}}{K_T} \tag{3.26}$$

где K_T - коэффициент трансформации, $I_{\rm BH}$ - постоянный ток, протекающий в обмотке высшего напряжения или совмещенной обмотке автотрансформатора, $I_{\rm HH}$ - постоянный ток, протекающий в обмотке низшего напряжения или совмещенной обмотке автотрансформатора. Таким образом, ток в совмещенной обмотке автотрансформатора $I_{\Gamma WT} = I_{\Gamma WT BH} + I_{\Gamma WT HH}$ [76].

Вторым аспектом одновременно возбуждения мощных трансформаторов является генерация высших гармоник. Гармоническая реакция является сложной функцией конструктивных особенностей трансформатора. Примеры гармонического состава при однополупериодном подмагничивании сердечника магнитопровода одноыазного стержневого и трёхфазного пятистержневого трансформаторов представлены на рис. 3.9 и 3.10 соответственно. С учетом наличия высших гармоник в ЭЭС выражение (3.25) преобразуется в:

$$Q_{\Gamma W T} = U_{\text{HOM}} K (\sum_{i=1}^{n} I_i^2)^{1/2}$$
(3.27)

где I_i - среднеквадратичное значение тока *i*-й гармоники, *i* - номер гармоники.

Совокупность выражений (3.25) и (3.27) позволяет определить амплитуды

возрастающих реактивных нагрузок при ГМБ. При анализе статической устойчивости ЭЭС учет дополнительной реактивной мощности производится за счет учета увеличения реактивной мощности в модели трансформатора. На каждой шине, на которой установлены трансформаторы, уязвимые к ГИТ, изменение нагрузки может быть смоделировано через отношение полной мощности в MBA к постоянному импедансу и квадрату напряжения на шинах. Это соотношение является функцией циркулирующего тока ГИТ.

Регулирование реактивной мощности в ЭЭС осуществляется в том числе за счет регулирования реактивной мощности СМ. В разделе 4.2.2. было показано, что ГМБ накладывают ограничения на величину допустимой мощности СМ. В свою очередь условия эксплуатации СМ накладывают ограничения на величину тока возбуждения СМ i_f в соответствии с допустимыми электромагнитными и термическими нагрузками.

3.4 Анализ эффективности алгоритмов управления энергосистем при появлении геомагнитных бурь

Ранее было показано, что негативными эффектами однополупериодного подмагничивания и размагничивания сердечников трансформаторов токами низкой частоты, ГИТ, являются дефицит реактивной мощности в ЭЭС и рост высших гармоник. При значительной амплитуде и продолжительности негативных электромагнитных эффектов может наблюдаться сбой режима ЭЭС и деградация оборудования ЭЭС. Таком образом, алгоритмы управления ЭЭС должны быть направлены в первую очередь на минимизацию данных эффектов.

Нормативными стандартами регламентируются такие показатели режима как минимальные $U_{\rm H\ min}$ и максимальные $U_{\rm H\ max}$ напряжения в узлах нагрузки, максимально допустимые токовые нагрузки сетевых элементов $I_{\rm доп}$, максимально допустимые перетоки мощности $P_{\rm M}$ и частота f. ГМБ, как возмущение режима ЭЭС, приводит к недопустимому снижению уровня напряжений в узлах нагрузки и росту токовых нагрузок сетевых элементов. Величины допустимых пределов и используемые методы управления определяются архитектурой сети. ЕЭС России представлена длинными линиями электропередач и слабыми межсистемными связями. В свою очередь в ЭЭС Европы (ENTSOE-E) превалируют короткие линии электропередач, что делает возможным использование принципа N-1. Принцип работы ЭЭС N-1 гарантирует, что в случае аварийного отключения одного сетевого элемента устойчивая работа ЭЭС не нарушиться и значения параметров режима не превысят допустимых значений (с учетом возможных управляющих воздействий (УВ)) [77]. Устойчивая работы ЕЭС России основывается на использовании коэффициента запаса по активной мощности K_v и по напряжению K_u [62].

Максимальная токовая загрузка сетевых элементов регламентируется в [78] в ЕЭС России и [77] в Объединенной ЭЭС Европы. Общими параметрами при определении допустимой токовой загрузки силовых трансформаторов в ЭЭС России и Европы являются погодные условия и температура окружающего воздуха. В практике ЭЭС России дополнительно учитываются тип изоляции, температура масла и срок эксплуатации силового трансформатора. В случае недопустимой токовой перегрузки трансформатора предусмотрена команда на отключение перегруженного сетевого элемента в ENTSOE-E. В отечественной практике применяется более гибкое гибкое управление: многоступенчатое устройство противоаварийного управления по контролируемому току и выдержке времени, осуществляющее ввод последующих ступеней по току/времени до достижения по контролируемому элементу сети длительно допустимого значения тока.

Устойчивая работа ЭЭС должна обеспечиваться при воздействии трёх групп нормативных возмущений, которые подразделены на группы исходя из тяжести их воздействия на режим ЭЭС. В нормальном режиме УВ выбираются с целью восстановления сбалансированного режима ЭЭС после трёх групп аварийных возмущений; в ремонтных - только первой и второй группы. В [77] степень тяжести возмущения определяется в соответствии с региональным особенностями ЭЭС и может отличаться отодного Регионального Диспетчерского Управления (РДУ) к другому. Возмущения подразделены на следующие группы: нормативные (normal), особые (exceptional) и ненормативные (out-of-range). Список особых возмущений составляется каждым РДУ в дополнение к перечню нормативных возмущений в соответствии с принципом отсутствии лавины напряжения и частоты за границами зоны диспетчеризации. В Табл. 3.3 приведен сравнительный анализ нормативных возмущений. Зеленым цветом

Возмущения	Группы нормативных возмущений в сетях			
	110-220	330-500	750	1150
	кВ	кВ	кВ	кВ
КЗ на сетевом элементе, кроме системы (секции) шин				
Отключение сетевого элемента ос- новными защитами при однофаз- ном КЗ с успешным АПВ (для се- тей 330 кВ и выше - ОАПВ, 110-220 кВ - ТАПВ)	Ι	Ι	Ι	Ι
То же, но с неуспешным АПВ Отключение сетевого элемента ос- новными защитами при трехфаз- ном КЗ с успешным и неуспешным АПВ	I II	I -	I,II -	II -
Отключение сетевого элемента ре- зервными защитами при однофаз- ном КЗ с спешным и неуспешным АПВ	II	-	-	-
Отключение сетевого элемента ос- новными защитами при двухфаз- ном КЗ на землю с неуспешным АПВ	-	II	III	III
Отключение сетевого элемента действием УРОВ при однофазном КЗ с отказом одного выключателя	II	II	III	III
То же, но при двухфазном КЗ на землю	-	II	III	-
То же, но при трёхфазном КЗ Одновременное отключение двух ВЛ, расположенных в общем кори- доре более, чем на половине длины более короткой линии в результате возмущения группы I	III III	- III	- III	- III

выделены возмущения, которые относятся к особым в [77].

Таблица 3.3. Анализ перечня нормативных возмущений в ЕЭС России и Объединенной энергосистемы Европы

В действующих нормативных стандартах не учитывается сбой режима ЭЭС в результате воздействия ГМБ. Тем не менее, потеря одной единицы трансформаторного оборудования вследствие насыщения сердечника магнитопровода токами ГИТ соответствует следующим нормативным возмущениям "отключение сетевого

3.4.	Анализ эффективности	алгоритмов	управления	энергосистем	при появле	нии
				геом	агнитных б	урь

Возмущения	Группы нормативных возмущений в сетях					
	110-220	330-500	750	1150		
	кВ	кВ	кВ	кВ		
	III	III	III	III		
Возмущения групп I и II с отклю-						
чением элемента сети или генера-						
тора, которые вследствие ремонта						
одного из выключателей, приво-						
дят к отключению другого элемен-						
та или генератора, подключенного						
к тому же РУ						
КЗ на системе (секции) шин						
Отключение СШ с однофазным	Ι	Ι	II	II		
КЗ, не связанное с разрывом свя-						
зей между узлами сети						
То же, но с разрывом связей	III	III	-	-		
Значение аварийного небаланса мощности						
Мощность генератора или блока	II	II	-	-		
генераторов, подключенных к сети						
общими выключателями						
Мощность двух генераторов АЭС,	II	II	-	-		
подключенных к одному реактор-						
ному блоку						
· · ·						

Продолжение Табл. 3.3

элемента сети основными защитами с неуспешным АПВ"и "отключение сетевого элемента действием УРОВ с отказом одного выключателя". Данные возмущения относятся к возмущениям III группы для классов напряжения 750 кВ и выше. Потеря силового трансформатора с полуторной схеме РУ является возмущением III группы. Тем не менее существующие стандарты противоаварийного управления не учитывают потерю более, чем одной единицы трансформаторного оборудования при появлении ГИТ. Рассчитанное ограничение допустимой мощности СМ при воздействии ГМБ соответствует возмущению II группы.

Для обеспечения устойчивой работы ЭЭС используются УВ, влияющие на потокораспределение мощностей в ЭЭС. В практике ENTSO-E используются два вида УВ:

a) Восстанавливающие (curative remedial actions). Объем и место действия восста-

навливающих УВ должны быть определена заранее и их эффективность должна быть обеспечена тестовыми расчетами. Они применяются сразу после воздействия нормативного возмущения с целью восстановления сбалансированного режима ЭЭС. После нормативного возмущения режима N' характерезуется тем, что не все параметры режима находятся в области допустимых значений. По факту применения восстанавливающих УВ регистрируется новый нормальный режим N_{нов}, отвечающий всем требованиям по надежности эксплуатации и качеству электроснабжения.

 б) Предупреждающие (preventive remedial actions), которые применяются в случае неэффективности или невозможности применения восстанавливающих УВ.

В Табл. 3.4 приведен сравнительный анализ УВ, их характеристик и сфер применения. Первая строка соответствует параметрам УВ в Объединенной ЭЭС Европы, а вторая - ЕЭС России. Используются следующие обозначения: **В** соответствует восстанавливающему УВ; **П** - предупреждающему УВ; **A** - автоматической подаче команде на использование УВ; **P** - ручному управлению диспетчера ЭЭС. В последнем столбце Табл. 3.4 указывается параметр сети, который контролируется рассматриваемым УВ.

При выборе УВ необходимо сравнение стоимости реализации УВ и суммарной стоимости ущерба в случае системной аварии. С целью обеспечения качественного электроснабжения сначала необходима реализация УВ наименьшей стоимости. При использовании УВ отключение нагрузки (OH) следует помнить, что это средство является наименее желательным, так как снижает основной показатель надежности электроснабжения потребителей и увеличивает экономический ущерб. Вместе с тем, в современных условиях во многих случаях отказаться от OH практически невозможно. В [77] предусмотрен OH в объеме 50 % от суммарной нагрузки ЭЭС, что равно нагрузке, при которой ЭЭС может функционировать без использования УВ и с обеспечением принципа N-1. В США после блэкаута в 2003 году этот объём нагрузки был снижен до 30 %. Несмотря на то, что вероятность использования полного объема нагрузки, заведенного под OH, низка, возможность его реализации всегда должна быть обеспечена. Для выполнения принципа N-1 в Объединенной ЭЭС Европы используется "циркульная" разгрузка. В ЕЭС России под систему автоматического
3.4. Анализ эффективности алгоритмов управления энергосистем при появлении геомагнитных бурь

Тип УВ	Время действия	B/Π	A/P	Контролируемый параметр сети	
1	2	3	4	5	
Деление сети	Несколько секунд	<u>В/П</u> -	P A/P	Мощность, напряжение	
Фазовое управление мощно-	Несколько	$\mathrm{B}/\mathrm{\Pi}$	A/P	Мощность, напряжение	
менного тока	минут	-	Р	Напряжение	
Форсировка возбуждения	Несколько		Р	. Мошность напряжение	
синхронных машин	минут	-	A/P	мощность, напряжение	
Ввод резерва	Зависит от ти-	П	P	Мошность напряжение	
генерирующей мощности	па генератора	-	A/P	мощность, напряжение	
Отключение генераторов	Несколько	Π	Р	Мошность напряжение	
Orkino lenne reneparopoli	секунд	-	A/P	мощность, напряжение	
Отключение нагрузки	Несколько	B	A/P	Мошность, напряжение	
o mono rome marpy onn	миллисекунд	-	A/P		
	Несколько	Π	Р	Мощность, напряжение	
Ограничение продажи 9/9	минут	-	-	-	
Форсировка устройств					
продольной компенсации	Несколько	П	Р	TT	
ЛЭП,включение/отключение	минут	-	A/P	- Напряжение	
шунтирующих реакторов			·		

Таблица 3.4.	Сравнительный анализ уг	правляющих	воздействий в	в ЕЭС Ро	оссии и
	EN'	TSO-E			

отключения нагрузки заводятся крупные нагрузочные филеры, что понижает гибкость управления.

Анализ зарегистрированных энергоаварий (Табл. 1.1) показал, что существующие меры противоаврийного управления не являются оптимальными при воздействии на режим ЭЭС электромагнитных полей ультранизкой частоты. В Табл. 3.4 показано, что в практике ЕЭС России используется УВ "Деление сети обеспечивающие деление сети на несинхронно работающие части. Представляется целесообразным введения в практику ENTSO-E данного УВ, направленного на выделение электростанции на сбалансированную нагрузку, что позволит локализовать лавину напряжения и снизить экономический ущерб от недоотпуска электроэнергии. Команду на деление сети следует подавать по получению информации от геомагнитных обсерваторий о критическом изменении параметров геомагнитного поля Земли. В дополнении рекомендуется увеличить число генераторов электростанции, находящихся в горячем резерве.

В настоящее время устойчивая работа ЭЭС обеспечивается при потере одного сетевого элемента. При этом в [62] указывается, что допускается неэффективная работа средств противоаварийной автоматики в случае потери двух сетевых элементов. В виду того что ГМБ могут приводить к одновременному отключению нескольких сетевых элементов на больших географических расстояниях, рекомендуется предусмотреть разработку стандартов оперирования, основанного на принципе N-2, как минимум в ЭЭС мегаполисов во время сильных ГМБ.

3.5 **Выводы**

Оборудование энергосистемы, спроектированное для эксплуатации в номинальном режиме, должно удовлетворять условиям надежной и беспрерывной работы в ряде нормированных режимов, при которых часть или все параметры режима отличны от номинальных. Максимально допустимые отклонения параметров выбираются с учетом нормированного уровня надежности, определяющего объем затрат на проектирование и производство и возможный объем издержек от недоотпуска электроэнергии в случае потери оборудования. Оборудование энергосистемы проектируется на длительный срок эксплуатации (нормативный срок равне 25 годам), поэтому должна обеспечиваться устойчивость оборудования и к возмущениям с низкой вероятностью. ГМБ как один из видов аварийных возмущений не учитывается в современной практике ЭС.

Наибольшей уязвимостью к электромагнитным эффектам ГИТ обладают силовые трансформаторы, которые являются ключевым элементов современных ЭЭС. Относительная уязвимость силовых трансформаторов определяется конструктивной схемой магнитной цепи. ИТ, протекая через заземленные обмотки силовых трансформаторов вместе с рабочими токами промышленной частоты (50 Гц), вызывают дополнительное однополупериодное подмагничивание и размагничивание магнитопровода. В зависимости от конструктивных особенностей трансформатора относительно небольшое значение ГИТ (соизмеримое с величиной тока холостого хода $I_{x.x.}$ трансформатора) способно вызвать сильное насыщение стального сердечника. Анализ показал, что наиболее уязвимы однофазные стержневые трансформаторы. Трёхфаз-

ные трёхстержневые трансформаторы характеризуются максимальной устойчивостью к ГИТ. Это объясняется разной конфигурацией контуров протекания магнитных потов нулевой и прямой последовательности.

Прочее оборудование, содержащее магнитопровод, также подвержено электромагнитным эффектам ГИТ. Степень уязвимости определяется конструкцией оборудования и материалом магнитопровода. Материал сердечника является ключевым фактором, определяющим устойчивость ТТ к ГМБ. Шунтирующие реакторы и выключатели характеризуются большими воздушными промежутками в магнитопроводах. Величина ГИТ, необходимая для насыщения данного оборудования, превосходит возможные величины ГИТ даже во время ГМБ уровня $K_p = 9$.

Вторичным следствием насыщения силовых трансформаторов является рост дефицита реактивной мощности и рост амплитуд высших гармоник. Оба этих фактора должны учитываться при анализе статической и динамической устойчивости ЭЭС. Сравнение операционных лимитов и применяемых УВ в ЕЭС России и Объединенной ЭЭС Европы показало, что ЭЭС Европы характеризуется более жесткими нормами эксплуатации, в то время как алгоритмы управления в ЕЭС России характеризуются большей гибкостью. Этот факт упрощает адаптацию алгоритмов управления во время сильных ГМБ.

4 Принципы управления энергосистемой во время сильных геомагнитных бурь

В предложенной главе рассматривается совокупность критических факторов как природного, так и техногенного характера, влияющих на устойчивость ЭЭС к негативным электромагнитным эффектам ГМБ. Выполнен поиск и ранжирование критических факторов. По результатам ранжирования критических факторов приводится методика определения узких мест ЭЭС к негативным эффектам ГМБ и осуществляется моделирование алгоритма. В качестве тестовой схемы выбрана схема ЕЭС России. В заключении рассмотрены методы и меры по уменьшению негативных электромагнитных эффектов ГМБ на режим и оборудование ЭЭС.

4.1 Критические факторы и оценка их влияния на силу воздействия геомагнитных бурь на режим и оборудование энергосистемы

Считается, что ЭЭС, расположенные в северных широтах и состоящие из длинных высоковольтных линий, наиболее подвержены воздействию ГМБ. В действительности анализ энергоаварий показал (Таблица 1.1), что устойчивость ЭЭС к ГМБ обусловлена целым рядом факторов, которые удобно разделить на четыре большие группы (рис. 4.1). Ниже приводится детальный анализ факторов каждой группы.

4.1.1 Параметры геомагнитной бури

4.1.1.1 Характер геомагнитной бури

Каждая ГМБ носит сугубо индивидуальный характер. Изменения магнитного поля зависят от фазы бури (начальная, главная, восстановления), характера

Рисунок 4.1. Группы факторов, определяющих устойчивость энергосистемы к геомагнитным бурям

временных вариаций и энергетического спектра захваченных в магнитосфере и высыпающихся в атмосферу зараженных частиц:

а) При обтекании магнитосферы плазмой солнечного ветра на магнитопаузе и внутри магнитосферы формируются трехмерные токовые системы. При развитии ГМБ развиваются симметричный кольцевой ток, асимметричный частичнокольцевой ток и токи поперек хвоста магнитосферы. Последние два типа поперечных к силовым линиям токов замыкаются продольными токами вдоль силовых линий к авроральному овалу в атмосфере и от него. Продольный ток переносится электронами, провоцирующими авроральную эмиссию. Продольные токи замыкаются в ионосфере, образуя вдоль овала полярных сияний интенсивные восточный (в дневном секторе) и западный (вблизи полуночи) электроджеты. Западный электроджет обычно сильнее ориентированного на восток.

- б) Взрывная вспышка (breackup) суть взрывная вспышка полярных сияний, следующая за быстрым и одновременным ростом потоков электронов и ионов во время суббурь.
- в) Внезапный импульс (Sudden Impulse) соответствует развитию магнитной бури с задержкой после прихода магнитогадродинамической ударной волны.
- г) Пульсации (Pulsations) имеют место в восстановительную фазу бури, когда B_zкомпонента межпланетного магнитного поля (ММП) становится положительной и прекращается поступление энергии из солнечного ветра. Пульсации могут наблюдаться и при отрицательной фазе, что говорит о сложной морфологии процесса [79]. Пульсации суть короткопериодные колебания с квазипериодической структурой.

ГИТ обычно вызваны электроджетами восточного направления [80]. Тем не менее в [81] показано, что ГИТ большой амплитуды не всегда вызваны электроджетом. Согласно систематическим измерениям на геомагнитных обсерваториях в 22м солнечном цикле, наибольшие амплитуды ГИТ были зарегистрированы как следствие высокочастотных вариаций магнитносферно-ионосферной токовой системы. В Табл. 4.1 приведены систематические данные измерений за период 06.1991-05.1992 на геомагнитных обсерваториях Финляндии, отражающие связь между амплитудой ГИТ и типом возмущения магнитносферно-ионосферной токовой системы [59]. Под "прочим"понимается геомагнитное явление, которое не может быть однозначно классифицировано как электроджеты различной направленности, внезапные импульсы, взрывные вспышки или пульсации.

Тип возмущения	ГИТ, А	dX/dt, нТл/с	Количество явлений
Восточный электроджет	50	7.9	12
Западный электроджет	52	5.2	13
Взрывная вспышка	60	8.8	14
Пульсации	49	12.6	6
Внезапный импульс	36	7.8	4
Прочее	74	17.7	6

Таблица 4.1. Наибольшие значения ГИТ за период июнь 1991 - май 1992 на линии 400 кВ Нурмияарви - Ловииса

Современное состояние прикладной геофизики не позволяет дать точные морфологические характеристики разным видам ГМБ. Дополнительной сложностью является отсутствие корреляции между данными измерения магнитного поля Земли, сделанными в 22м солнечном цикле и в текущем, 24м. Это обусловлено развитием магнитометров и внедрением стандартов на ведения измерений с меньшим шагом по времени. Тем не менее данные Табл. 4.1 показывают, что при эксплуатации ЭЭС требуется обеспечить информирование о возможной угрозе не только при высокой вероятности появления электроджета различной направленности.

4.1.1.2 Проводимость подстилающей породы

Распределение электрического поля, индуктированного ГМБ, зависит в том числе от проводимости земной коры в районе развития ионосферных токов. При прочих равных условиях индуктированные поля на поверхности Земли имеют большую величину в регионах с подстилающими породами, имеющими низкую проводимость. В этом случае наведенный потенциал между двумя точками заземления трансформаторов выше. Следовательно, величины ГИТ также выше.

Геомагнитные вариации сильно искажены при береговом расположении в силу разницы в проводимостях подстилающей породы в горизонтальном направлении. Это явление известно как береговой эффект. Наиболее сильно эффект проявляется в изменении вертикальной компоненты магнитного поля. В [82] показан скачок в величине электрического поля на границе "земля/море" при учете 2-D модели проводимости.

4.1.1.3 Геомагнитная широта

Технологические системы, расположенные в высоких геомагнитных широтах, подвергаются воздействию ГМБ чаще, но при высоком уровне геомагнитной активности центр электроджета смещается в более низкие широты. В северном полушарии наиболее подвержены воздействию ГМБ технологические системы центральной и восточной Канады, Скандинавии. В меньшей степени подвержены системы в северовосточной части США и Великобритании. Системы, расположенные на территории РФ, характеризуются ещё меньшей периодичностью воздействия. Такое распределение обусловлено том, что северный геомагнитный полюс находится в Канаде, недалеко от полярного круга. В свою очередь южный магнитный полюс смещен в сторону

Рисунок 4.2. Мировая карта изогон [83]

Рисунок 4.3. Карта вероятности возникновения геомагнитной бури интенсивностью выше 300
н ${\rm Tn}/{\rm muh}$

Австралии. Карта мировых изогон представлена на рис. 4.2.

Специалистами NASA была разработана карта (рис. 4.3) распределения вероятности возникновения супер ГМБ интенсивностью более 300нТл/мин [84]. Тем не менее практика показывает, что данная карта не учитывает особенностей берегового эффекта. Статистика исков страховых компаний говорит о том, что данный эффект оказывает превалирующее влияние над фактором "геомагнитная широта".

С 1970-х годов наблюдается смещение северного магнитного полюса в направлении российского сектора Арктики со скоростью 46 км/год [85]. Экстраполяция координат этого полюса при сохранении существующего тренда предсказывает, что к

2050 году магнитный полюс будет располагается между архипелагом Северная Земля и Новосибирскими островами, что приведет к смещению зоны высокого риска на территорию России. ГИТ большой величины смогут регистрироваться практически на всей территории России вплоть до 40⁰ с.ш. [86].

Одновременное повышение общественной осведомленности и развитие науки о физических процессах воздействия ГМБ на режим ЭЭС позволило зарегистрировать примеры ненормативной работы оборудования ЭЭС в средних и низких широтах. Недопустимые уровни вибрации и нагрева силовых трансформаторах были зарегистрированы на ПС 500 кВ в Китае [12]. ПС находились в диапазоне с 32⁰ по 41⁰ с.ш. Разрушение изоляции силовых трансформаторов в ЮАР в 2003-2004 годах произошло в результате воздействия ГИТ, равных по величине ГИТ, одновременно зарегистрированным в Англии [11]. Аварийные отключения сетевых элементов в результате ГМБ были также зарегистрированы в Новой Зеландии [87]. В разделе 2.3 упоминалось о негативном воздействии ГМБ на системы электроснабжения Октябрьской железной дороги. Это позволяет сделать вывод о превалирующем влиянии параметров ЭЭС и оборудования на устойчивость режима во время ГМБ.

4.1.2 Параметры энергосистемы

4.1.2.1 Топология и режим работы энергосистемы

Такие параметры ЭЭС как длина системообразующих связей, их класс напряжения и географическое расположение оказывают влияние на устойчивость ЭЭС к воздействиям ГМБ. Характер их влияния рассмотрен на примере схемы ЭЭС Скандинавии, которая была выбрана в качестве тестовой схемы исходя из следующих соображений:

а) В ЭЭС Скандинавии накоплен достаточный массив данных о регистрации негативных эффектов ГМБ на режим и оборудование ЭЭС. ЭЭС Скандинавии, представляющая собой объединение ЭЭС Финляндии, Швеции, Норвегии и Северной Дании, находится в зоне высокого риска ГМБ (см. раздел 5.1.1.3. Геомагнитная широта). Параметры ГМБ, имеющей место в ЭЭС Скандинавии, одинаковы или почти одинаковы. Тем не менее анализ зарегистрированных сбоев у работе ЭЭС показал, что наибольшей уязвимостью обладает ЭЭС Швеции, что показывает необходимость учета параметров ЭЭС и выявления критических закономерностей.

б) Открытость информации. Для расчета распределения ГИТ в ЭЭС требуются данные о конфигурации сети, координаты узлов, параметры ВЛ, установленная генерация и параметры установленного оборудования.

Обобщенная модель ЭЭС Скандинавии(рис. 4.4) имеет реалистичное число узлов. Расчетная модель составлена автором на базе модели ENTSO-E 2014 года [88]. Параметры схемы замещения, составленной автором, представлены в Приложении D.

Согласно [42], достоверное распределение ГИТ может быть получено при расчете неполной модели. В модели сделаны следующие допущения:

- а) не все ПС учтены;
- б) учтены все электрические станции;
- в) учтены системообразующие ВЛ 400 кВ и заполярный транзит 150-220 кВ;
- г) при отсутствии точной информации координаты узлов даны с погрешностью ±20 км (0.2⁰);
- д) при отсутствии точной информации принято, что трассы ВЛ являются прямыми. В реальности при выборе трасс ВЛ учитываются особенности рельефа и картографические ограничения. Соответственно, реальные значения ГИТ ниже расчетных, но различия находятся в рамках погрешности;
- е) все узлы достаточно отдалены друг от друга. Их взаимным влиянием друг на друга можно пренебречь [89].

Расчет ГИТ выполнен методом, выбранном в Главе 3 "Анализ методов расчета квазипостоянных токов, индуктированных геомагнитными бурями в протяженных электротехнических системах". Для анализа ГМБ на ЭЭС необходима информация о проводимости подстилающей породы, характере ГМБ и параметры ЭЭС. В рамках проекта EUROHOM была составлена 1-D блочная карта проводимости почв Европы. Значения проводимости подстилающей породы Скандинавии указаны в Приложении Е. Параметры ГМБ определяются её фазой и геомагнитной широтой. Схема ЭЭС Скандинавии, на которой расположение узлов представлено как функция геомагнитной широты, показана на рис. 4.5.

4.1. Критические факторы и оценка их влияния на силу воздействия геомагнитных бурь на режим и оборудование энергосистемы

Рисунок 4.4. Эквивалентная схема ЭЭС Скандинавии

4.1. Критические факторы и оценка их влияния на силу воздействия геомагнитных бурь на режим и оборудование энергосистемы

Рисунок 4.5. Эквивалентная схема ЭЭС Скандинавии как функция геомагнитной широты

Интенсивность магнитной индукции B, [нТл] во время ГМБ силой $K_p = 9$ как функция геомагнитной широты может быть выражена следующим образом. В высоких геомагнитных широтах (около 80^0) представлена значением магнитной индукции равной 1000 нТл. Величина магнитной индукции падает на 250 нТл при уменьшении широты на 20^0 . Магнитная индукция на широте 56^0 снижается до величины 675 нТл и равна 550 нТл на широте 51^0 . Анализ литературы показал, что следует рассматривать интервалы геомагнитных широт в соответствии с иллюстрацией на рис. 4.6. Принятые значения магнитной индукции для каждого интервала также показаны на рис. 4.6.

Рисунок 4.6. И
итенсивность магнитной индукции B, н Тл для ГМБ сило
й $K_p=9$ как функция геомагнитной широты

ЭЭС Скандинавии представлена связями классов напряжений 110-400 кВ. В расчете учитывались системообразующие связи напряжением 400 кВ и полярный транзит напряжением 150-220 кВ. ЭЭС Норвегии и Швеции сбалансированы и характеризуются незначительными перетоками мощности с соседними ЭЭС. ЭЭС Финляндии дефицитна. Недостающую мощность (порядка 25 %) она получает от ЭЭС России, Эстонии и Швеции. Генерация ЭЭС Финляндии представлена АЭС. Общая протяженность ВЛ 14400 км, среди которых ВЛ класса напряжения 400 кВ -4600 км, ВЛ класса напряжения 220 кВ - 2200 км, ВЛ класса напряжения 110 кВ -7600 км. Генерация ЭЭС Швеции и Норвегии представлена в основном ГЭС. С целью эффективного использования водных ресурсов страны, ГЭС ЭЭС Швеции расположены в северной части страны. Для связи центров генерации с крупными узлами нагрузки в южной и центральной части страны построены транзиты напряжением 400 кВ средней протяженности 190 км. Собственная генерация ЭЭС Норвегии покрывает нагрузку на 90 %. 99 % генерирующих мощностей представлены в виде ГЭС. В последние 20 лет ведутся интенсивные работы в ЭЭС Норвегии по строительству транзита 400 кВ, соединяющего крупные ГЭС в береговой части страны. При расчете приняты равными следующие значения сопротивлений $\rho = 0.008$ Ом/км, $\rho = 0.012$ Ом/км и $\rho = 0.016$ для линий 400 кВ, 220 кВ и 150 кВ соответственно [90]. Параметры силовых трансформаторов выбраны в соответствии с [73]. Расчет был выполнен для частот геомагнитного возмущения $10^{-5} - 1\Gamma$ ц силой $K_p = 9$. Величины токов описаны в Приложении F.Результаты расчета для частоты 10^{-3} Гц приведены в Табл. 4.2.

Анализ результатов расчета ГИТ показывает, что распределение ГИТ в большей степени определяется топологией ЭЭС, чем параметрами ГМБ. Наибольшие величины ГИТ были получены на ГЭС Рућа́пselkä и ПС 220 кВ Vajukoski. Обе ПС являются угловыми, и высокие величины ГИТ объясняются ограничениями, наложенными расчетной схемой. Далее следуют токи в нейтрали силовых трансформаторов на ГЭС Midskog и ПС 400 кВ Hallsberg. Данные узлы характеризуется большим числом связей n = 5 и n = 4 соответственно. ПС 400 кВ Hammerfest самого высокого геомагнитного расположения характеризуется только седьмым по величине ГИТ. Большие значения ГИТ также были получены на ПС-ях на юге Финляндии, что обусловлено береговым эффектом. На ПС 400 кВ Rauma был зарегистрирован 24 марта 1991 года наибольший ГИТ в ЭЭС Финляндии, равный 201 А.

Узел	Наим	енован	ние	$I_{\Gamma UT}, A$	Узел	Наименование	$I_{\Gamma HT}, A$
1	ПС	400	κВ	25.38	43	$\Gamma \Theta C$ Fordal in	55.73
	Balsfj	ord				Sogn	
2	ПС	400	κВ	52.63	44	ГЭС Aura	45.23
	Hamr	nerfest					
3	ПС	150	κВ	15.69	45	ГЭС Nea	37.46
	Adam	selv					
4	ПС	220	κВ	23.39	46	ГЭС Midskog	59.81
	Varan	igeboti	n				

Таблица 4.2. Результаты расчета ГИТ в ЭЭС Скандинавии

Продолжение табл. 4.2					
Узел	Наименование	$I_{\Gamma UT}, A$	Узел	Наименование	$I_{\Gamma WT}, A$
5	ПС 220 кВ Utsioki	26.64	47	ПС 400 кВ Hallsberg	53.38
6	ПС 220 кВ Ivalo	27.48	48	ПС 400 кВ Hamra	26.01
7	ПС 220 кВ Vajukoski	63.24	49	ПС 400 кВ Stockholm	16.76
8	ПС 400 кВ Ofoten	14.43	50	TƏC Olkiluoto	9.14
9	ГЭС Ritsem	8.46	51	ПС 400 кВ Huittinen	5.53
10	F PC Viotas	91 91	52	F9C Fidfiord	10.03
10	FOC Porius	21.21	52 53	TC 400 vB Oclo	15.55 17.33
11	TOC TOIJUS	33.04	55	$\Pi C = 400 \text{ kD OSI0}$	10.09
12	Harspranget	41.11	34	Hasle	19.98
13	ГЭС Ligga	41.77	55	ПС 400 кВ Borgvik	10.59
14	Γ ЭС Meassure	40.40	56	ПС 400 кВ Kilanda	15.99
15	ГЭС Letsi	30.55	57	ПС 400 кВ Horred	13.92
16	ГЭС Petäjäskoski	40.88	58	BПТ 400 кВ Barkervd	16.72
17	ГЭС Dentildreadri	33.98	59	ПС 400 кВ Hadenlunda	18.67
18	ГЭС Koblev	5.68	60	ВПТ 400 кВ	7.2
10	F PC Crundfors	16 15	61	nauma TQU Forssa	7 53
20	$\Pi C = 400 \text{ wB}$	8.05	62	$\Pi C 400 \nu B$	0.53
20	Betasen	0.00	02	Hikilä	9.00
21	T'9C Vagtors	1.78	63	BIIT 400 кВ Antilla	16.34
22	ПС 400 кВ Svartbyn	41.67	64	A Э C Lovisa	21.23
23	ПС 400 кВ Keminmaa	58.54	65	ПС 400 кВ Yllikkälä	2.98
24	ПС 400 кВ Pikkarala	35.99	66	ГЭС Saurdal	11.09
25	ПС 400 кВ	95.58	67	$\Gamma \Theta C$ Holen	3.29
26	гупаляенка ГЭС Svartisen	1.81	68	ПС 400 кВ	16.02
27	ГЭС Stornfinforsen	26.76	69	Stenkullen AƏC Ringhalls	13.95

4.1. Критические факторы и оценка их влияния на силу воздействия геомагнитных бурь на режим и оборудование энергосистемы

		1 / /			
Узел	Наименование	$I_{\Gamma И T}, A$	Узел	Наименование	$I_{\Gamma HT}, A$
28	ГЭС Kilforsen	8.31	70	ПС 400 кВ	40.42
				Séderasen	
29	ПС 400 кВ	16.98	71	ПС 400 к B Sege	39.62
	Hjälta				
30	ГЭС	2.35	72	ВПТ 400 кВ	46.39
	Stomorrfors			Hurva	
31	ТЭЦ	41.63	73	АЭС	13.45
	Vaskiliuoto			Oskarshamn	
32	ТЭЦ Seinäjoki	26.69	74	ВПТ 400 кВ	14.89
				Naantali	
33	ПС 400 кВ	27.87	75	ВПТ 400 кВ	32.77
	Alajärvi			Kristiansand	
34	ПС 400 кВ	11.69	76	ВПТ 400 кВ	13.35
~	Vihtavuori	10.10		Lindome	11.01
35	ТЭЦ	19.10	77	ПС 400 кВ	11.81
9.0	Huotokoski	4.15	70	Stromma	
36	T [•] 9 C Rossage	4.15	78	BITT 400 KB	35.08
97		11.04	70	Knuseberg	20.04
37	1 90 Ramsele	11.94	79	BIII 400 KB	39.84
90	$\Pi C = 400 \text{ mP}$	17.05	80	$D\Pi T 400 wP$	19 10
30	IIC 400 KD	17.95	80	Nubro	10.19
30	AQC Foremark	7 38	81	TAII Inkoo	21.82
<i>1</i> 0	AGC Nori Poro	1/ 00	82	$R\Pi T 100 \nu R$	18.02
40	AGO NEILI 010	14.33	02	Espoo	10.92
41	ПС 400 кВ	16.38	83	$\Pi C 400 $ πR	19 99
11	Ulvila	10.00	00	Tammisto	10.00
42	ПС 400 кВ	15.52	84	ВПТ 400 кВ	7.13
	Kangasala		U 1	Vyborg	

Продолжение табл. 4.2

Выполненный анализ показал, что ЭЭС Швеции является наименее устойчивой. Предопределяющим фактором является большая протяженность системных связей. Таким образом, чем выше концентрация протяженных ВЛ, тем выше уязвимость ЭЭС к негативным эффектам ГМБ. Другими словами, топология ЭЭС является доминирующим фактором над геомагнитной широтой. Высоковольтные ВЛ обладают меньшим сопротивлением, что делает их предпочтительным путем протекания ГИТ. Одним из технических решений по повышению устойчивости ЭЭС являются установка статических конденсаторов с целью регулирования перетоков реактивной мощности. Вторичным эффектом этого решения является повышение устойчивости ЭЭС к ГМБ. Статические конденсаторы препятствуют протеанию ГИТ, представляющих собой квазипостоянные токи. Серия батарей статических конденсаторов установлена на системных связях на севере ЭЭС Финляндии. Данное технологическое решение значительно повысило робастность ЭЭС Финляндии.

Режим работы ЭЭС является ещё одним фактором, влияющим на устойчивость ЭЭС к ГМБ. В данной работе приводится сравнительная характеристика режима зимнего максимума и летнего минимума нагрузки Центрального энергорайона ЭЭС Якутии. В энергорайоне присутствует два источника генерации: Каскад Вилийских ГЭС (КВГЭС) с установленной мощностью $P_y = 680$ МВт и Мирнинская государственная районная электрическая станция с установленной мощностью $P_y = 160$ МВт Электрическая схема представлена подстанциями классов напряжений 220 и 110 кВ и связующими их ВЛ. Принципиальные схемы энергорайона, соответствующие зимнему максимуму и летнему минимуму представлены в Приложении G.

Расчет выполнен при следующих принятых допущениях:

- а) Из-за габаритных ограничений на крупных межсистемных ПС-ях классов напряжений 220-330 кВ обычно устанавливаются трёхфазные пятистержневые силовые трансформаторы. В рассматриваемой схеме такими трансформаторами являются трансформаторы на ПС 220 кВ Рабочая, ПС 220 кВ Городская и ПС 220 кВ Сунтар.
- б) В [2] указано, что супер ГМБ может привести к одновременной потере нескольких силовых трансформаторов. Анализ выполнен при допущении, что ГМБ приводит к потере обоих силовых трансформаторов на одной из ПС. Рассматривается воздействие ГМБ, приводящее к потере только трёхфазных пятистержневых трансформаторов, как трансформаторов, обладающих меньшей устойчивостью к ГМБ по сравнению с трёхфазными трёхстержневыми.

Граф схемы электрических соединений центрального энергорайона ЭЭС Якутии в режиме зимнего максимума показан на рис. 4.7. На рис. 4.8, рис. 4.9 и рис. 4.10 показаны графы, характерезующие режимы при потере трансформаторного оборудования на ПС 220 кВРабочая, ПС 220 кВ Городская и ПС 220 кВ Сунтар соответственно. Графы, соответствующие режиму летнего минимума нагрузки 2014

года центрального энергорайона ЭЭС Якутии (рис. 4.11, 4.12, 4.13, 4.14). Узлы графа соотносятся с узлами схемы на рис. G.1 следующим образом (Табл. 4.3).

Таблица 4.3. Характеристики	подстанций	центрального	энергорайона	энергосистемы
	Яку	утии		

Узел	Наименование	Класс напря- жения	Схема распределительного устройства
1	ПС Районная	220 кВ	Две системы шин
2	КВГЭС	220 кВ	Две секционированных системы шин
3	ПС Городская	220/110	Две секционированных системы шин
		кВ	
4	$\Pi C H\Pi C 13$	220 кВ	Секционированная система шин
5	ПС Олекминск	220 кВ	Секционированная система шин
6	ПС Сунтар	220/110	Две секционированных системы шин
		кВ	
7	ПС Элыгяй	110 кВ	Секционированная система шин
8	ПС Кюндядя	110 кВ	Секционированная система шин
9	ПС Нюрба	110 кВ	Секционированная система шин
10	ПС Тайбохой	110 кВ	Секционированная система шин
11	ПС Мурья	110 кВ	Секционированная система шин
12	ПС Сев. Нюя	110 кВ	Секционированная система шин
13	ПС Дорожная	110 кВ	Секционированная система шин
14	ПС Заря	110 кВ	Секционированная система шин
15	ПС Ленск	110 кВ	Секционированная система шин
16	ПС Ярославская	110 кВ	Секционированная система шин
17	ПС Пеледуй	220/110	Две секционированных системы шин
		кВ	
18	ПС Мирный	220/110	Две секционированных системы шин
		кВ	
19	МРГРЭС	110 кВ	Секционированная система шин

Рисунок 4.7. Граф схемы центрального энергорайона ЭЭС Якутии в режиме зимнего максимума нагрузки в 2014 году

Рисунок 4.8. Граф схемы центрального энергорайона ЭЭС Якутии в режиме зимнего максимума нагрузки в 2014 году при потере трансформаторного оборудования на ПС 220 кВ Рабочая

Рисунок 4.9. Граф схемы центрального энергорайона ЭЭС Якутии в режиме зимнего максимума нагрузки в 2014 году при потере трансформаторного оборудования на ПС 220 кВ Городская

Рисунок 4.10. Граф схемы центрального энергорайона ЭЭС Якутии в режиме зимнего максимума нагрузки в 2014 году при потере трансформаторного оборудования на ПС 220 кВ Сунтар

Рисунок 4.11. Граф схемы центрального энергорайона ЭЭС Якутии в режиме летнего минимума нагрузки в 2014 году

Рисунок 4.12. Граф схемы центрального энергорайона ЭЭС Якутии в режиме летнего минимума нагрузки в 2014 году при потере трансформаторного оборудования на ПС 220 кВ Рабочая

Рисунок 4.13. Граф схемы центрального энергорайона ЭЭС Якутии в режиме летнего минимума нагрузки в 2014 году при потере трансформаторного оборудования на ПС 220 кВ Городская

Рисунок 4.14. Граф схемы центрального энергорайона ЭЭС Якутии в режиме летнего минимума нагрузки в 2014 году при потере трансформаторного оборудования на ПС 220 кВ Сунтар

В режиме летнего минимума нагрузки часть параллельных связей отключена в связи со сниженными перетоками мощности. Это позволяет использовать отключенные трансформаторные единицы в качестве замены поврежденных ГМБ. Такое возмущение соответствует нормативному - потеря одного сетевого элемента (например, силового трансформатора). На ПС-ях 35 кВ и выше обычно устанавливаются два трансформатора, мощность которых выбирается из следующего условия $S = 0,6 \div 0,7S_{max}$. Это позволяет обеспечить питание всех потребителей в нормальном режиме при оптимальной загрузке трансформатора $60 \div 70\%$. В аварийном режиме оставшийся в работе трансформатор обеспечивает питание потребителей с учетом допустимой аварийной и систематической перегрузки.

До полного восстановления парка трансформаторов в режиме зимнего макси-

мума схема будет иметь вид как на рис. 4.11 при авариях на ПС 220 кВ Районная и ПС 220 кВ Городская. В случае аварии на ПС 220 кВ Сунтар схема имеет следующий вид (рис. 4.14). При этом электроснабжение энергорайона будет ограничено на период проведения восстановительных работ. По [91] нормируется допустимая аварийная перегрузка силовых трансформаторов на период не более суток.

Возмущения приводят к изменению схемы электрических соединений системы и, как следствие, к изменению параметров сети. Основными параметрами узла являются степень вершины k_i , кластерный коэффициент C, дистанция d_{ij} . При уменьшению степени узла и коэффициента связности уменьшается эффективность сети. Коэффициент связности может варьироваться от нуля до единицы. При чем коэффициент связности, равной нулю, соответствует схеме "звезда а равный единице соответствует схеме "клика. "Анализируемая схема является звездой, что соответствует коэффициенту связности C, равному нулю (4.1).

$$C = \frac{1}{N} \sum_{N} C_{i} = \frac{1}{N} \sum_{N} \frac{e_{i}}{k_{i}(k_{i}-1)},$$
(4.1)

где N - общее число узлов; i - рассматриваемый узел; k_i - степень узла; e_i - число непосредственных связей соседей i-го узла.

Параметры графа, соответствующего нормальной схеме режима зимнего максимума, представлены в Табл. 4.4.

Узел	Степень узла	Коэффициент связности	Узел	Степень узла	Коэффициент связности
1	7	0	10	1	0
2	2	0	11	3	0
3	6	0	12	2	0
4	2	0	13	2	0
5	2	0	14	3	0
6	4	0	15	1	0
7	2	0	16	1	0
8	2	0	17	3	0
9	1	0	18	4	0
			19	2	0

Таблица 4.4. Параметры графа нормальной режима зимнего максимума нагрузки 2014 года

Оценка эффективности сети была впервые предложена в [92]. Эффективность сети *E* определяется в соответствии с выражением (4.2).

$$E = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{d_{ij}}$$
(4.2)

В Табл. 4.5 приведены значения эффективности рассматриваемых схем центрального энергорайона ЭЭС Якутии.

Схема	Зимний макси- мум нагрузки	Летний минимум нагрузки
Нормальная схема Потеря оборудования на ПС 220 кВ Рабо-	$0.20245 \\ 0.16496$	0.19362 0.18370
чая Потеря оборудования на ПС 220 кВ Город-	0.162016	0.158690
ская Потеря оборудования на ПС 220 кВ Сунтар	0.162037	0.149867

Таблица 4.5. Эффективность схемы сети центрального энергорайона ЭЭС Якутии

Отключение узла электрической сети вследствие аварийного возмущения приводит к уменьшению эффективности сети. Каждый узел сети характеризуется своим уникальным удельным вкладом. Уязвимость электрической сети V_E в результате отключения узла сети l определяется выражением (4.3).

$$V_E(l) = \frac{E - E_l}{E} \tag{4.3}$$

Наибольшая уязвимость имеет место при потере трансформаторного оборудования в режиме летнего минимума ($V_E(6) = 0.225$). Это объясняется тем, что в режимах минимальных нагрузок в эксплуатации находится оборудование, составляющее "хребет"системы генерация - передача - распределение. В рассматриваемой схеме ГМБ в период летнего минимума нагрузки приводит к большим прямым и "отложенным"потерям от недоотпуска электроэнергии. Ремонт силового трансформаторы не может быть произведен на месте. Суммарная длительность производства новой трансформаторной единицы с учетом транспортировки составляет срок порядка 18 месяцев при условии наличия свободных производственных мощностей [93].

4.1.2.2 Схемы заземления

По требования безопасности электроснабжения высоковольтное оборудование ЕЭС должны быть эффективно заземлено [94]. Обратным эффектом данного технологического решения является уязвимость силового оборудования ЭЭС во время ГМБ в результате возникновения контуров ГИТ. В качестве меры по ограничению ГИТ в обмотках силовых трансформаторов возможна установка в нейтрали трансформатора токоограничивающего резистора или конденсатора, что приводит к перераспределению ГИТ в ЭЭС.

Рассмотрены два варианта установки токоограничивающих резисторов в нейтралях силовых трансформаторов. Величина сопротивления резистора принята, равной 1 Ом в соответствии с [95].

- а) Вариант I. Токоограничивающие резисторы установлены в десяти узлах с наибольшим расчетными значениями ГИТ. Таким узлами являются ГЭС Pyhänselkä, ПС 220 кВ Vajukoski, ГЭС Midskog, ПС 400 кВ Keminmaa, ГЭС Fordal in Sogn, ПС 400 кВ Hallsberg, ПС 400 кВ Hammerfest, ППТ 400 кВ Hurva, ГЭС Aura, ГЭС Ligga.
- б) Вариант II. Токоограничивающие резисторы установлены в восьми узлах с наибольшим числом связей. Таким узлами являются ГЭС Aura, ГЭС Midskog, ПС 400 кВ Kangasala, ГЭС Ramsele, ПС 400 кВ Ulvila, ПС 400 кВ Oslo, ПС 400 кВ Stömna, ППТ 400 кВ Barkeryd.

Результаты оценочного расчета представлены в Табл. 4.6.

Резисторы, устанавливаемые в нейтралях трансформаторов, суть дорогое техническое решение. По данным Табл. 4.6 видно, что места установки и величины резисторов должны выбираться на базе анализа N характерных режимов ЭЭС и M характерных сценариев ГМБ. Поиск оптимального расположения должен быть выполнен с помощью аналитических зависимостей параметров режима (у) от параметров управления (х) по критериям недопустимых для электрооборудования режимов [96] и [97].

Узел	ГИТ, А			
	Эффективное	Вариант І	Вариант II	
	заземление			
ПС 400 к В Hammerfest	52.6	13.7	52.6	
$\Gamma \Theta C$ Porjus	33.6	37.7	34.3	
ГЭС Petäjäskoski	40.9	54.2	40.9	
ГЭС Pyhänselkä	95.6	13.3	95.6	
ПС 400 к B Hjalta	17.0	14.7	13.0	
ПС 400 к B Vihtavuori	11.7	12.0	10.1	
ПС 400 к B Stackbo	17.9	17.9	17.1	
Γ ЭС Aura	45.2	6.7	38.7	
$\Gamma \ni C$ Midskog	53.4	6.6	51.3	
ПС 400 к B Oslo	17.3	16.4	1.6	
ГЭС Saurdal	11.0	14.3	10.4	

Таблица 4.6. Значения ГИТ в нейтралях силовых трансформаторов как функция места установки токоограничивающего резистора

4.1.2.3 Параметры сетевого оборудования

Устойчивость ЭЭС к ГМБ как целого зависит от устойчивости оборудования ЭЭС к ГМБ как частного. Уязвимость сетевого оборудования к воздействиям ГИТ определяется в первую очередь его конструктивными особенностями. Сравнительный анализ сетевого оборудования разных типов был приведен в Табл. 3.2. Первичный анализ воздействий ГМБ в целом выполняется методом критической компоненты при допущении, что надежность системы в целом зависит от надежности наиболее уязвимого элемента - критической компоненты (рис. 4.15).

Рисунок 4.15. Графическое представление метода критической компоненты

4.1.3 Информированность практики энергосистем

Информированность практики ЭЭС о процессах солнечно-земной физики включает в себя два аспекта: информированность как общественная осведомленность и информированность как прогнозирование изменениямагнитносферноионосферной токовой системы.

Прогнозирование космической погоды подразделяется в зависимости от временного интервала, на который делается прогноз [98]:

- а) Текущая диагностика. Осуществляется в реальном масштабе времени с целью идентификации событий. Прогноз на 3-7 дней выполняется с помощью сведений о видимой в данной момент поверхности Солнца, полученной с помощью спутников. Активные пятна живут на Солнце больше, чем один оборот, поэтому на основании наблюдений составляется карта пятен на последующие 1-2 оборота.
- б) Краткосрочный прогноз. Выполняется за 1-3 дня до эмиссии заряженных частиц, которые могут представлять угрозу режиму ЭЭС.
- в) Предупреждение. Оценивается вероятность события в период одного дня. Определяется доза заряженных частиц.

Прогнозирование осуществляется методом экспертных оценок, так как отсутствует определенная функциональная зависимость между магнитносферно-ионосферными токовыми вариациями геомагнитного поля, индуктируемыми электрическими полями в Земле и электрофизическими характеристиками структурных элементов земной коры. Прогнозирование выполняется экспертами Центра прогнозов космической погоды (ИЗМИРАН) на основе данных, полученных со спутников NASA и Европейского Космического Агенства (ESA). На рис. 4.16 показаны текущие и планируемые миссии по прогнозированию и исследованию космической погоды. Для оценки космической погоды используются наблюдения спутников GOES, ACE, SDO, STEREO-A и STEREO-B, материалы Центра прогнозирования космической погоды Национального управления океанических и атмосферных исследований (SWPC/NOAA) и европейского Центра влияния Coлнца (Solar Influence Data Center).

Рисунок 4.16. Текущие и планируемые космические миссии по прогнозированию и изучению космической погоды [99]

1 января 2009 года был запущен отечественный спутник КОРОНАС-ФОТОН с космодрома Плесецк с установленным на нём комплексом космических телескопов для исследования структуры и динамики солнечной короны (ТЕСИС) [100]. Через 11 месяцев была выключена аппаратура спутника. 18 апреля 2010 года Лаборатория рентгеновской астрономии Солнца констатировала его окончательную потерю [101].

Краткосрочный прогноз выполняется, используя данные спутника ACE (Advanced Composition Explorer), расположенного в точке либрации L1, в которой гравитационные силы притяжения к Солнце и к Земле раны и противоположно направлены. Спутник ACE способен предупреждать о надвигающихся магнитосферно-ионосфреных возмущениях за 40-60 минут до их возникновения на Земле. Практика показывает, что, во-первых, не все потоки заряженных частиц, зарегистрированных ACE, достигают Земли, во-вторых, временной промежуток может быть и меньше. В целом информация доступная практике ЭЭС о состоянии космической погоды выглядит следующим образом (рис. 4.17).

Вторым фактором обеспечения надежной работы ЭЭС во время ГМБ наравне с прогнозированием является повышение общественной осведомленности о характере влияния ГМБ на ЭЭС и другие сферы. Космическая погода оказывает воздействие не только на ЭЭС в виде ГИТ, но и на авиасообщение и космическую технику в виде радиации. В то время как последние две технологии подвержены непрерывному

Рисунок 4.17. Пример представления данных о состоянии космической погоды, представляемой ИЗМИРАН [102]

воздействию космической погоды, возможные последствия воздействий космической погоды прописаны в нормативных стандартах и учитываются при проектировании и эксплуатации (single event effect) [103]. Эпизодическое воздействие космической погоды на ЭЭС смещает фокус при разработке планов противоаварийного управления в сторону природных явлений большей периодичности (молнии, землетрясения, ледяной дождь, итд).

Европейское космическое агенство сотрудничает с диспетчерами Европейской ЭЭС (ENTSO-E) в рамках двух программ:

- а) SSA (Space Situational Awareness), обеспечивающей корректной и своевременной информацией о состоянии магнито-ионосферы и представляющей информацию о возможных угрозах [104]. Данные об изменении геомагнитного поля Земли и о возможном уровне ГИТ рассчитываются экспертами в Финском Метеорологическом институте (Finish Meteorological Institute) и геофизической лабораторией Тромсё (Tromso Geophysical Laboratory). В рамках программы также проводятся ежегодные обучающие семинары для практики ЭЭС [105].
- б) AFFECTS, позволяющей получать своевременную информацию о космической

погоде или на сайте программы (http://www.affects-fp7.eu) или в мобильном приложении [106]. Целью программы обеспечение легкого доступа к корректной и своевременной информации о космической погоде для группы потребителей, выходящей за рамки практики ЭЭС.

ЭЭС США и Канады организуют взаимодействие между центрами прогнозирования космической погоды и практикой ЭЭС в рамках программы Solar Schield [107]. Целью программы является не только обеспечения своевременной и корректной информацией о состоянии космической погоды, но и разработка базы решений по защите ЭЭС США от ГИТ разной интенсивности. Программа основана совместно NASA и Electric Power Research Institute. В настоящее время ЕЭС России на настоящий момент не сотрудничает с Центром прогнозов космической погоды (ИЗМИРАН).

4.2 Анализ уязвимости Единой Энергосистемы России к воздействиям геомагнитных бурь

На базе результатов анализа совокупности факторов, определяющих устойчивость ЭЭС к воздействиям ГМБ далее выполнен поиск узких мест в ЕЭС России. Разработанный алгоритм представлен на рис. 4.18. Подробное описание алгоритма приведено ниже.

ЕЭС России состоит из шести параллельно работающих объединенных энергетических систем (ОЭС): ОЭС Северо-Запада, ОЭС Сибири, ОЭС Урала, ОЭС Средней Волги, ОЭС Юга, ОЭС Центра и ОЭС Востока. В электроэнергетический комплекс ЕЭС России входит около 700 электростанций единичной мощностью свыше 5 МВт. На конец 2015 года общая установленная мощность электростанций ЕЭС России составила 235 305,56 МВт [108]. Параллельная работа электростанций в масштабе единой ЭЭС позволяет оптимизировать регулирование суточных графиков нагрузки потребителей. Существует возможность максимального использования источников энергии, имеющих территориальную привязку (ГЭС), и увеличения единичной мощности агрегатов электростанций. Электроснабжение центров нагрузки, географически удаленных от центров генерации, осуществляется с использованием межсистемных высоковольтных линий классов напряжений 220-750 кВ.

ОЭС Северо-Запада располагается на территории 10 субъектов РФ: г. Санкт-

4.2. Анализ уязвимости Единой Энергосистемы России к воздействиям геомагнитных бурь

Рисунок 4.18. Алгоритм поиска узких мест энергосистемы к негативным электромагнитным эффектам геомагнитных бурь

Петерубрг, Мурманской, Калининградской, Новгородской, Псковской, Архангельской и Ленинградской областей, республи Кареллии и Коми и Ненецкого автономного округа. Суммарная площадь территории составляет 1708 км². Электроэнергетический комплекс образуют 104 электростанции мощностью 5 МВт и выше, имеющие суммарную установленную мощность 23,143 ГВт (по данным на 01.01.2016), Связь осуществлена 1476 линиями электропередач 110-750 кВ, общей протяженностью 44209,2 км. (по данным на 01.01.2016) в одноцепном исполнении [109]. Суммарная нагрузка составляет 17 ГВт.

ОЭС Сибири располагается на территории Сибирского Федерального округа площадью 5 миллионов км². Тем не менее площадь территории ОЭС Сибири 4944,3 тысяч км². ОЭС Сибири занимает первое место по величине установленной мощности (51808,33 МВт по данным от 1 января 2016 г.). Портфель генерации представлен 102 станциями мощностью 5 МВт и выше. Доля ГЭС составляет 47 %. Прочая генерация представлена ТЭС. Основная электрическая сеть ОЭС Сибири сформирована на базе линий электропередачи в габаритах класса напряжения 110, 220, 500 и 1150 кВ. Общая протяженность линий электропередачи составляет 97 350 км (по состоянию на 01.01.2016). Нормальный режим работы ОЭС Сибири в составе ЕЭС России достигается за счет перетоков мощности в размере до 2 млн кВт по транзиту Сибирь — Урал — Центр [110].

ОЭС Урала располагается на территории Уральского и части Приволжского Федеральных округов общей площадью 2,8 миллионов км². ОЭС Урала занимает четвертое место по установленной мощности генерации. Генерация представлена 171 электростанциями мощностью 5 МВт и выше преимущественно ТЭС. Электроэнергетический комплекс соединен 1919 линиями электропередач 110-1150 кВ, общей протяженностью более 100 тыс. км. Архитектура ОЭС Урала суть кольцевая схема, представленная ВЛ 500 кВ.

ОЭС Средней Волги располагается на большей части Приволжского Федерального округа (Пензенская, Самарская, Саратовская, Ульяновская и Нижегородская области, республики Чувашии, Марий Эл, Мордовии и Татарстана) общей площадью 379 тысяч км². Генерация представлена 64 электростанциями с суммарной установленной мощностью 27 ГВт. Передача электроэнергии осуществляется с помощью 1105 линий электропередачи 110-500 кВ, общей протяженностью 35911 км.

ОЭС Юга располагается на территории Южного и Северо-Кавказского федеральных округов. Энергетический комплекс образует 129 электростанций, суммарной установленной мощностью 20,117 тыс. МВт (по данным на 01.01.2016), 1591 электри-

ческих подстанций 110 – 500 кВ и 1940 линий электропередачи 110-500 кВ общей протяженностью 56412,9 км [111].

ОЭС Центра располагается на территории 19 субъектов Российской Федерации: г. Москва, Белгородская, Владимирская, Вологодская, Воронежская, Ивановская, Костромская, Курская, Орловская, Липецкая, Брянская, Калужская, Смоленская, Тамбовская, Тверская, Тульская, Ярославская и Московская области. ОЭС Центра является крупнейшим районом энергопотребления. В состав ОЭС входит узел Московской энергосистемы, имеющий стратегическое значение. Кроме того, в ОЭС присутствуют узлы нагрузки, в которых размещены предприятия черной металлургии и крупные промышленные городские центры (Вологодско-Череповецкий, Липецкий, Белгородский). Электроэнергетический комплекс образуют 136 электростанций мощностью 5 МВт и выше, имеющие суммарную установленную мощность 53306,92 МВт (по данным на 01.01.2016), 2233 электрических подстанции 110-750 кВ и 2670 линий электропередачи 110-750 кВ, общей протяженностью 87798 км [112].

ОЭС Востока располагается на территории Дальневосточного Федерального округа, а именно на территории следующих субъектов: Приморского и Хабаровского края, Еврейская автономная область и южная часть Республики Саха. В ОЭС Востока работают 19 электростанции мощностью 5 МВт и выше с суммарной установленной мощностью 9,2 МВт. Общая протяженность линий электропередач 110-500 кВ 25407 км. Основные генерирующие источники размещены в северо-западной части, а основные районы потребления — на юго-востоке ОЭС, что обуславливает большую протяженность линий электропередачи [113].

В разделе 5.1.2. "Параметры энергосистемы" показано, что в значительной степени уязвимость ЭЭС к воздействиям ГМБ определяется архитектурой рассматриваемой ЭЭС. ЭЭС, преимущественно состоящие из длинных межсистемных связей высокого напряжения, являются предпочтительным путем протекания ГИТ. Дополнительно длинные ВЛ оказываются под воздействием нескольких локальных возмущений геомагнитного поля разной интенсивности. Протяженность ВЛ по классам напряжений по территориям ОЭС показана в Табл. 4.7 [114].

Наибольшая протяженность линий электропередач класса напряжения 500 кВ в ОЭС Сибири (почти 15,5 тысяч км.). На втором месте находится ОЭС Центра с

ОЭС	750-1150 кВ	500 кВ	330-400 кВ	220 кВ
ОЭС Центра	2448 км	8681 км	1792 км	20687 км
ОЭС Северо-Запада	799 км	74 км	6569 км	6597 км
ОЭС Юга	206 км	2127 км	2698 км	4607 км
ОЭС Волги	-	3798 км	-	7839 км
ОЭС Урала	130 км	6100 км	-	12213 км
ОЭС Сибири	818 км	$15644 \ {\rm Km}$	-	32033 км
ОЭС Востока	-	2998 км	-	15196 км

Таблица 4.7. Протяженность ВЛ по классам напряжений в ОЭС по состоянию на 31 декабря 2008 года

8681 км ВЛ класса напряжения 500 кВ. С другой стороны, в ОЭС Центра также эксплуатируется 2448 км ВЛ классов напряжений 750-1150 кВ против 818 км в ОЭС Сибири. Несмотря на это, архитектура ОЭС Центра представлена в основном короткими линиями. Средняя протяженность ВЛ в ОЭС Центра всех классов напряжений 60 км.

Режиму ОЭС Сибири характерны перетоки мощности по сечениям, близким к предельно допустимым. Недостаточная пропускная способность электрических связей между ОЭС Сибири и европейской частью России не обеспечивает полноценное использование мощности генерации. Внешние электрические связи Саяно-Шушенской ГЭС с ОЭС Сибири представлены четырьмя ВЛ 500 кВ, которые не обеспечивают выдачу в систему полной располагаемой мощности ГЭС. Величина "запертой"мощности ГЭС составляет порядка 2400 МВт. Транзит 500 кВ Гусиноозерская ГРЭС - Чита в различных режимах работает с пониженным запасом устойчивости [115].

Ещё одним фактором, определяющим силу воздействия ГМБ, является проводимость подстилающей породы. В Едином государственном реестре почвенных ресурсов России приведен оценка почвенных ресурсов с привязкой к административным субъектам России. Трассы межсистемных связей ОЭС связи проложен на территориях с преобладанием подзолистых, дерново-подзолистых и мерзлотных почв. Подстилающая кора в регионе ОЭС Центра также представлена дерново-подзолистыми почвами, а в ОЭС Северо-Запада - подзолистой почвой. Трассы ВЛ в ОЭС Сибири пролегают вдоль или через водные артерии России, что повышает влияние берегового эффекта. В Табл. 1.1 указано, что во всех этих регионах регистрировались сбои в работе электротехнических систем, вызванные ГМБ.

Ранее было показано, что наибольшей уязвимостью к воздействию ГИТ обладают однофазные трансформаторы. Относительно небольшое значение ГИТ (соизмеримое с величиной тока холостого хода $I_{x.x.}$) способно вызвать сильное насыщение магнитопровода сердечника однофазного силового трансформатора. Ниже приведен перечень однофазных трансформаторов, допущенных к применению на объектах ЕЭС России:

- а) Силовые трансформаторы производства "Электрозавод г. Москва, моделей АОДЦТ-417000/750/500, АОДЦТ-167000/500/220, АОДЦТ-267000/500/220;
- б) Силовые трансформаторы Запорожского трансформаторного заводы "Запорожтрансформатор" моделей АОДТН-333000/750/330, АОДЦТН-26700075007220, АОДЦТН-167000/500/220;
- в) Однофазный автотрансформатор модели АОДЦТН-167000/500/220 производства ООО "Тольятинский трансформатор".

На базе совокупности факторов для последующего анализа выбрана ОЭС Сибири, а именно сеть класса 500 кВ. Также рассмотрена уязвимость сети 220 кВ Ямало-Ненецкого автономного округа, расположенная на 57-й геомагнитной широте. Полный список факторов, учитываемых для оценки узких мест ОЭС Сибири и энергосистемы Ямало-Ненецкого автономного округа, с учетом ранжирования по степени значимости приведен ниже:

- а) класс напряжения;
- б) длина линии;
- в) степень износа оборудования;
- г) режим работы энергообъекта;
- д) трасса ВЛ;
- е) географическое расположение объекта.

Длины и координаты наиболее протяженных связей показаны в Табл. 4.8. Трансформаторный парк рассматриваемых энергорайонов представлен преимущественно оборудованием, находящегося в эксплуатации более нормированного срока в 25 лет. Процент износа трансформаторного парка ОЭС Сибири более 50 % [114]. В период до 2021 года планируется ввести в эксплуатацию следующие ПС:

- а) ПС 500 кВ Святогор ($60^{0}29'41''N 72^{0}31'26''E$);
- б) ПС 500 кВ Усть-Кут (56⁰48'17"N 105⁰56'17"E);
- в) ПС 500 кВ Озерная (55⁰59'24"N 98⁰6'14"E);
- г) ПС 500 кВ Володино (57⁰67'0''N 83⁰54'10''E);
- д) ПС 500 кВ Витязь (56⁰9'35''N 69⁰30'28''E);
- e) ПС 220 кВ Салехард (66⁰1'58"N 78⁰4'52"E);
- ж) ПС 500 кВ Нижнеангарск (координаты не известны).

Оборудование части подстанций и электростанций, расположенных в высоких геомагнитных широтах, была введена в эксплуатацию относительно недавно (после 2006 года). Этот фактор повышает их кумулятивную устойчивость к ГМБ. Такими узлами являются:

- а) ПС 220 кВ Надым (65⁰18'38"N 73⁰2'42"Е), введена в эксплуатацию в 2015 году;
- б) ПС 500 кВ Пересвет (61⁰36'7"N 72⁰18'21"Е), введена в эксплуатацию в 2010 году;
- в) Уренгойская ГРЭС (66⁰1'58"N 78⁰52'0"Е), введена в эксплуатацию в 2012 году;
- г) Няганская ГРЭС (62⁰12'20''N 65⁰31'22''E), введена в эксплуатацию в 2013 году;
- д) Сургутская ГРЭС (61⁰16'46"N 73⁰29'12"Е), введена в эксплуатацию в 2006 году.

Также на транзите 500 кВ Холмогорская (63⁰7'52"N 74⁰36'54"E) - Тарко-Сале (64⁰26'26"N 76⁰24'19"E) - Муравленская (63⁰59'22"N 64⁰26'26"E), введеного в эксплуатацию в начале 80-х годов, была завершена реконструкция в 2015 году.

Начальный узел	Координаты	Конечный узел	Координаты	Длина, км
ПС 500 кВ Чита	52 ⁰ 4'34"N 113 ⁰ 13'58"E	Гусиноозерская ГРЭС	51 ⁰ 17'57"N 106 ⁰ 29'7"E	480 км
ПС 500 кВ	61 ⁰ 2'38"N	ПС 500 кВ Тю-	57 ⁰ 12'1"N	450 км
Нелым	69 ⁰ 3'14"E	мень	65 ⁰ 37'30"E	
ПС 500 кВ Луго-	59 ⁰ 35'1"N	ПС 500 кВ Тю-	57 ⁰ 12'1"N	370 км
вая	65 ⁰ 49'9"E	мень	65 ⁰ 37'30"E	
ПС 220 кВ На-	65 ⁰ 18'38''N	ПС 220 кВ Сале-	66 ⁰ 32'1"N	358 км
дым	73 ⁰ 2'42''E	хард	66 ⁰ 45'31"E	
ПС 500 кВ Заря	55 ⁰ 2'14''N 83 ⁰ 27'34''E	ПС 500 кВ Бара- бинская	55 ⁰ 26'21''N 78 ⁰ 25'27''E	340 км

Таблица 4.8. Протяженность связей в ОЭС Сибири, Ханты-Мансийском и Ямало-Ненецком энергорайонах

4.2. Анализ уязвимости Единой Энергосистемы России к воздействиям геомагнитных бурь

Начальный узел	Координаты	Конечный узел	Координаты	Длина, км
Саяно-	52 ⁰ 49'36''N	ПС 500 кВ Ново-	53 ⁰ 53'55"N	330 км
Шушинская	91 ⁰ 22'21"E	кузнечная	86 ⁰ 50'2"E	
ГЭС		·		
ПС 500 кВ Вос-	55 ⁰ 0'28''N	ПС 500 кВ Ви-	56 ⁰ 9'35''N	320 км
ход	74 ⁰ 9'59''E	ТЯЗЬ	69 ⁰ 30'28''E	
ПС 500 кВ Бар-	53 ⁰ 35'23''N	ПС 500 кВ Руб-	51 ⁰ 18'35''N	310 км
наульская	83 ⁰ 45'39"E	цовская	81 ⁰ 7'46''E	
ПС 500 кВ Иль-	61 ⁰ 33'50''N	ПС 500 кВ Пере-	61 ⁰ 36'7''N	307 км
КОВО	66 ⁰ 28'49"E	СВЕТ	72 ⁰ 18'21"E	
Няганская ГРЭС	62 ⁰ 12'20''N	ПС 500 кВ Луго-	59 ⁰ 35'1''N	300 км
	65 ° 31'22"E	вая	65 ⁰ 49'9''E	
ПС 500 кВ Анга-	58 ⁰ 1'58''N	ПС 500 кВ Кама-	56 ⁰ 6'18''N	300 км
pa	113 ⁰ 13'58''E	ла	94 ⁰ 30'6''E	
ПС 500 кВ Бара-	55 ⁰ 26'21''N	ПС 500 кВ Вос-	55 ⁰ 0'28''N	280 км
бинская	78 ⁰ 25'27''E	ход	74 ⁰ 9'59''E	
ПС 500 кВ Итат-	55 ⁰ 26'9''N	ПС 500 кВ Том-	56 ⁰ 40'23"N	270 км
ская	89 ° 4'23''E	ская	85 ⁰ 20'28''E	
ПС 500 кВ Итат-	55 ⁰ 26'9"N	ПС 500 кВ Аба-	53 ⁰ 37'52"N	270 км
ская	89 ° 4'23''E	канская	91 ⁰ 10'53"E	
ПС 500 кВ Ви-	56 ⁰ 9'35''N	ПС 500 кВ Ир-	58 ⁰ 15'50"N	250км
ТЯЗЬ	69 ⁰ 30'28"E	тыш	68 ⁰ 20'5''E	
Ново-зиминская	54 ° 1'58''N	Братская ГЭС	56 ⁰ 17'25''N	250км
ТЭЦ	102 ⁰ 2'6''E		101 ⁰ 46'5"E	
Братская ГЭС	56 ⁰ 17'25''N	ПС 500 кВ Тай-	55 ⁰ 54'39"N	240 км
	101 ⁰ 46'5''E	шет	98 ° 3'32"E	
ПС 500 кВ Кама-	56 ⁰ 6'18''N	ПС 500 кВ Тай-	55 ⁰ 54'39''N	240 км
ла	94 0 30'6''E	шет	98 ⁰ 3'32''E	
Братская ГЭС	56 ⁰ 17'25''N	ПС 500 кВ Озер-	55 ⁰ 59'24''N	235 km
	101 ⁰ 46'5''E	ная	98 ⁰ 6'14''E	
ПС 500 кВ Анга-	58 ⁰ 1'58"N	ПС 500 кВ Озер-	55 ⁰ 59'24''N	230 км
pa	113 ⁰ 13'58"E	ная	98 ⁰ 6'14''E	

Продолжение табл. 4.8

Ранее показано, что устойчивость ЭЭС к негативным электромагнитным эффектам ГМБ определяется группой факторов разной природы. Классические методы анализа устойчивости ЭЭС с использованием параметров режима ЭЭС (P_{Γ} , Q_{Γ} активная и реактивная мощность генерации, $P_{\rm H}$, $Q_{\rm H}$ - активная и реактивная мощность нагрузки, $U_{\rm H}$ - напряжения в узлах нагрузки, I_i - токи в сетевых элементах) недостаточны в данном случае. Комплексная оценка может быть выполнена в гео-
информационной системе (ГИС).

ГИС позволяет комбинировать слои различных классов, что делает возможным одновременный анализ геоинформационных данных о состоянии технологических систем и данных бизнес-аналитики. Для работы выбран программный продукт ArcGIS Map, который обеспечивает полный набор необходимых инструментов. В рассматриваемой задаче учитываются такие слои как:

- а) физическая карта рассматриваемого региона;
- б) схема соединений энергорайона;
- в) расположение и параметры узлов нагрузки;
- г) расположение и параметры узлов генерации;
- д) карта проводимости подстилающей породы;
- е) параметры ГМБ.

Вследствие ограниченности информации в свободном доступе в примере, приведенной в данной диссертации, не активированы слои с картой проводимости подстилающей породы и параметров ГМБ. Учет данных параметров произведен в рамках аналитического изучения. На рис. 4.19 представлен список использованных слоев. Интерфейс, представляющий схему слоёв и географическую визуализацию в программе ArcGIS Map отображен на рис. 4.20.

Рисунок 4.19. Описание структуры слоев

Результат графической визуализации в программном продукте ArcGIS Мар показан на рис. 4.21. Градация цвета от красного до оранжевого соответствует уменьшению риска негативного воздействия ГМБ на оборудование узлов. Голубым цветом отмечены проектируемые узлы.

4.2. Анализ уязвимости Единой Энергосистемы России к воздействиям геомагнитных бурь

Рисунок 4.20. Описание структуры слоев и графической визуализации

Создание подобных моделей (рис. 4.21) позволяет при проектировании ЭЭС учитывать уязвимость энергорайона не только с позиции обеспечения статической и динамической устойчивости режима при заданных параметрах нагрузки и генерации, но и с позиций изменения состояния экономических показателей узлов нагрузки, физических параметров трассы ВЛ, физических параметров узлов нагрузки и генерации. Такой подход позволяет обоснованно рассчитать и снизить затраты на проектирование и эксплуатацию устойчивой к ГМБ ЭЭС.

Рисунок 4.21. Графическая визуализация узких мест ОЭС Сибири при воздействии сильных геомагнитных бурь

4.3 Меры и средства защиты электротехнических систем от воздействий геомагнитных бурь

Методы и средства, предназначенные для защиты электротехнических систем от воздействий полей ультранизкой частоты можно разделить на три группы в соответствии с предлагаемым автором соотношением "риск-инвестиция" (рис. 4.22). К первой группе относятся меры так называемые "Предупреждение". Такие меры включают выбор конструкции, монтажной схемы и технологии изготовления элементов сети и выбор архитектуры сети, при которой достигается максимальная устойчивость энергосистемы в целом и оборудования в частности к электромагнитным эффектам ГМБ. Внедрение этих мер сводит риск ГМБ к минимально возможному, но требует максимальный уровень инвестиций. Важно отметить, что существует точка насыщения, при достижении которой увеличение уровня инвестиций не уменьшает риск. Ко второй группе - "Принятие" - относятся пассивные и активные технические решения, связанные с внедрением специальных изменений в традиционных принципиальных схемах отдельных узлов сети. В третью группу, "Ликвидация", требующую минимальный уровень инвестиций, но сохраняющую высокий риск негативного воздействия ГМБ на режим ЭС, входят меры, направленные на адаптацию алгоритмов управления функциональных узлов и электрооборудования для уменьшения негативных электромагнитных эффектов ГМБ.

Рисунок 4.22. Диаграмма мер защиты энергосистем от воздействий геомагнитных бурь

Силовые трансформаторы являются ключевым элементом, обеспечивающим качественное и надежное электроснабжение. Особенно жесткие требования предъявляются к надежности трансформаторов большой мощности на межсистемных связях и повышающим трансформаторам большой мощности. В данной работе показано, что ГМБ в виде ГИТ оказывают как прямое, так и косвенное влияние на режим ЭЭС. Прямые эффекты выражены в однополупериодном подмагничивании электрооборудования, содержащего магнитный сердечник. Частным следствием такого эффекта является мгновенный или отложенный выход оборудования из строя вследствие недопустимой электромагнитной и термической нагрузки. Системными (косвенными) эффектами являются рост дефицита реактивной мощности и ненормированное распределение гармоник. Таким образом, меры защиты протяженных электротехнических систем от негативных эффектов ГМБ должны быть направлены в первую очередь на защиту парка трансформаторов.

Мера из первой группы направлена на выбор силовых трансформаторов с конструкцией магнитной цепи, имеющей наименьшую уязвимость к эффектам ГИТ. Исследование показало. что максимальную относительную уязвимость имеют однофазные силовые трансформаторы. Подобные трансформаторы используются для составления трёхфазных трансформаторных групп на мощных электростанциях и ключевых узловых ПС-ях. Внедрение этой меры имеет не только экономические, но и технические ограничения. Производство трёхфазных трёхстрежневых трансфоматоров, имеющих наилучшую устойчивость к воздействиям ГИТ, невозможно на напряжения выше 500 кВ. Вторым ограничением являются габаритные размеры узловых ПС-ций. В этом случае существует практика установки трёхфазных пятистержневых трансформаторов. В прочих случаях автор рекомендует предусмотреть к установке трёхфазные трёхстержневые трансформаторы особенно в регионах, имеющих высокий риск негативного воздействия ГМБ, найденных с помощью методики, описанной в предыдущем разделе. В первую очередь, это относится к проектируемым подстанциям.

При анализе уязвимости оборудования уже существующих ПС следует руководствоваться следующими принципами. Замена парка трансформаторов, в первую очередь, рекомендуется в узлах, обеспечивающих электроснабжение потребителей первой категории и особой группы первой категории. Потеря электроснабжения в этих узлах приводит к значительному экономическому ущербу. Электроснабжение потребителей этой категории предусматривает два независимых источника питания. С позиции защиты потребителей первой категории от ГМБ следует исполнение схемы электрических соединений по крайней мере одного из источников питания с применением оборудования, устойчивого к ГМБ. Вторыми по значимости ПС-ми, в которых должна производиться ревизия трансформаторного оборудования, являются ключевые узловые ПС. Предлагается выделить ряд ПС-ий, замена оборудования в которых приведет к адекватному повышению устойчивости системы в целом.

При невозможности установки трансформаторного оборудования с максимальной относительной устойчивостью к ГМБ по техническим ограничениям возможно использование ещё одной меры из первой группы - изменение архитектуры сети за счет установки устройств продольной компенсации реактивной мощности. В разделе 5.1.2 "Параметры энергосистемы"показано, что ёмкостная компенсация, установленная на связях на севере ЭЭС препятствует протеканию ГИТ в ЭЭС, тем самым уменьшая суммарный риск.

Установки поперечной компенсации не препятствуют протеканию ГИТ по проводам линий электропередач и обмоткам силового оборудования. В то же время установки продольной компенсации блокируют возможность протекания ГИТ. Hydro-Qeubec блэкаут 1989 года был спровоцирован ложным отключением устройств поперечной компенсации. Под влиянием наведенных ГИТ в сети появились гармоники высоких порядков, что привело к токовой перегузке цепей токовой защиты статических конденсаторов. Меньше чем за 1 одну минуту произошло отключение 7 статических конденсаторов, что привело к развалу ЭЭС по условиям статической устойчивости. Во время мошной бури 1991 года также имело место ложное отключение одной батареи статических конденсаторов. По результатам детального анализа было принято решение о смене архитектуры ЭЭС путем замены устройств поперечной компенсации на продольные. Проект был выполнен АВВ. Реализованная схема показана на рис. 4.23. Мощность установленных устройств компенсации варьируется от 240 до 400 МВАр. Степень компенсации находится в пределах от 16 до 44 %. Интеграция такой меры требует пересчет N нормальных и N' аварийных режимов ЭЭС по условиям статической и динамической устойчивости в новом состоянии.

Ко второй группе относятся меры, направленные на повышение устойчивости ЭЭС к эффектам ГМБ за счет полного или частичного устранения ГИТ в узлах ЭЭС. Эта группа мер не предусматривает замены парка электроооборудования или 4.3. Меры и средства защиты электротехнических систем от воздействий геомагнитных бурь

Рисунок 4.23. Общая схема размещения устройств продольной компенсации на линиях 735 кВ системы Hydro Quebec [116]

изменение архитектуры ЭЭС. Такой мерой является установка токоограничивающего реактора в нейтралях силовых трансформаторов. Повсеместная установка ограничивающих резисторов в нейтралях трансформаторов нецелесообразна. Рекомендуется выделить оптимальный сценарий. В разделе 5.1.2.2 "Схемы заземления"показано, что применение этой меры приводит к перераспределению ГИТ в ЭЭС. Одновременно с полным или частичным блокированием ГИТ в нейтралях определенных трансформаторов они вызывают рост амплитуд ГИТ в других. Решение о местах установки и величинах резисторов должны приниматься на базе анализа N характерных режимов ЭЭС и M характерных сценариев ГМБ. В табл. 4.1 приведена зависимость между типом геомагнитного сценария и величиной индуцируемых ГИТ. Теоретические знания о моделирования ГИТ в различных ионосферных сценариях постоянно пополняются. Следовательно, принятая схема установки токоограничивающих резисторов может быть не эффективна при прочих ионосферных условиях. Ещё одним недостатком такого технологического решения является высокая стоимость эксплуатации токоограничивающих резисторов. В третьей группе находятся меры алгоритмического характера. Так как насыщение трансформатора приводит к росту реактивной мощности и высших гармоник, меры защиты должны быть направлены на соответствующую адаптацию алгоритмов управления и логики релейной защиты. Список возможных управляющих воздействий включает в себя:

- а) уменьшение величины перетока мощности по сечениям, работающих в режимах,
 близких к предельно допустимых по условиям статической устойчивости;
- б) отключение шунтирующих реакторов с целью увеличения запаса реактивной мощности;
- в) отключение уязвимых силовых трансформаторов;
- г) включение батарей статических кондесаторов.

Алгоритмы управления ЭЭС во время ГМБ различной интенсивности должны быть прописаны в руководствах по эксплуатации электротехнических систем. Особо требуется прописать детальный алгоритм применения такой меры как отключение ЭЭС или части ЭЭС, так как применение данной меры связано со значительными прямыми и косвенными издержками от перерыва электроснабжения. Реализация данной меры возможно только при наличии адекватной точности прогноза о состоянии магнито-ионосферы. Дополнительно требуется организация и проведение испытаний электроооборудования на устойчивость к воздействиям ГИТ. На базе результатом испытаний составляются руководства по эксплуатации агрегатов ЭЭС во время ГМБ разной интенсивности.

Поскольку действие ГИТ на трансформаторы зависит от их конструктивного исполнения, то невозможно рекомендовать общую логику элементов РЗиА. Независимо от конструктивного исполнения трансформатора рекомендуется к установке газовые реле Бухольца, которые срабатывают при появлении горячих зон в сердечнике трансформатора. Горячие зоны зарождаются в местах пробоя масляной изоляции. Постреконструирующий анализ выявил, что срабатывание реле Бухольца предотвратило потерю силового трансформатора на напряжение 150 кВ в ЭЭС Греции во время ГМБ, приведшей к Hydro-Quebec blackout [34].

4.4 Выводы

Устойчивость ЭЭС к ГМБ обусловлена рядом факторов, которые автор предложил разделить на 4 группы: параметры ГМБ, параметры ЭЭС, параметры сетевого оборудования и информированность практики ЭЭС. Параметры ГМБ включают в себя характер ГМБ, проводимость подстилающей породы и геомагнитная широта. При существующем географическом расположении северного магнитного полюса ЕЭС России не находится в зоне высокого геомагнитного риска. Тем не менее анализ групп факторов "Параметры ЭЭС"и "Параметры сетевого оборудования"на примере схемы ЭЭС Скандинавии показал, что они имеют детерминирующее значение при оценке устойчивости ЭЭС, расположенных в высоких и средних геомагнитных широтах. ЕЭС России представлена в основном длинными межсистемными связями высокого напряжения (220-500 кВ). В главе было показано, что именно такие электрические цепи имеют наибольшую уязвимость к ГМБ. Дополнительным критерием, уменьшающим робастность таких электрических цепей к ГМБ, является применение силовых трансформаторов на классах напряжения 220 кВ, имеющих относительно высокую восприимчивость к ГИТ.

На базе выполненного анализа автор разработал методику поиска "узких мест"к негативным эффектам ГМБ. Полностью детерминированный алгоритм определения узких мест невозможно представить в связи с отсутствием представительной выборки. Ниже приводятся рекомендации по последовательности действий и по возможным критериям оценки:

- Анализ представленных классов напряжений в рассматриваемого энергообъекта. Рекомендуется проведение последующего анализа при наличии оборудования напряжением выше чем 330 кВ.
- Анализ конструктивных схем оборудования ЭЭС. В первую очередь требуется экспертиза парка трансформаторов. Наличие однофазных стержневых и трёхфазных трёхстержневых трансформаторов, обладающих низкой относительной устойчивостью к ГМБ, является основанием для последующего анализа.
- Анализ степени износа оборудования ЭЭС. Оборудование, отработавшее или почти отработавшее нормативный срок эксплуатации, более подвержено негативным эффектам ГМБ.

- 4. Анализ топологии ЭЭС. Определение протяженностей длинных линий, оценка средней длины линии.
- Анализ установленных средств регулирования реактивной мощности. Продольные средства ёмкостной компенсации блокируют протекание ГИТ, что повышает устойчивость энергообъекта.
- 6. Сбор информации о сбоях в работе энергообъекта, вызванных ГИТ, и данных регистрации ГИТ в глухозаземленных нейтралях силовых трансформаторов. Согласно результатам лабораторных испытаний Siemens, ГИТ, равный 5 А на фазу приводит к увеличению температуры пластин на 15⁰C. Деградация трансформатора в ЮАР была вызвана ГИТ величиной в 16,7 А на фазу. При высоком уровне общественной осведомленности и развитой системе регистрации этот пункт является первым шагом алгоритма оценки.
- Анализ возможных геомагнитных сценариев. В настоящее время превалирует версия, что сильные ГИТ имеют место во время электроджетов восточного направления.
- 8. Анализ трасс ВЛ, включающий в себя данные о проводимости подстилающей породы, степень влияния берегового эффекта, геомагнитная широта.

Точное определение узких мест ЭЭС к воздействиям ЭЭС является базой для организации мер по защите ЭЭС от негативных электромагнитных эффектов ГМБ. По факту определения "узких мест"выполняется расчет режимов ЭЭС по известным методам анализа статической и динамической устойчивости по заданным параметрам ГМБ. Другими словами, предложенный алгоритм позволяет пересмотреть методы и алгоритмы обеспечения устойчивости ЭЭС с учетом воздействий, имеющих высокий риск, но низкую вероятность. Автором описаны группы мероприятий по предотвращению системных аварий от ГМБ, в соответствии с тремя соотношениями пропорции "риск-инвестиции".

5 Методы межсистемного взаимодействия для предупреждения и ликвидации последствий геомагнитных бурь

Современные инфраструктуры имеют сильные межсистемные связи, таким образом, полная потеря или сбой в электроснабжении в результате ГМБ может привести к деградации сразу нескольких систем. С другой стороны, устойчивость ЭЭС к негативным электромагнитным эффектам ГМБ определяется рядом критических факторов разной природы. В связи с этим в данной части диссертации предлагается комплекс мероприятий и рекомендаций по обеспечению коммуникационного взаимодействия между организациями, работающими в разных предметных технических областях. Предварительно выполнен анализ связей между критическими инфраструктурами при потере или сбое в электроснабжении. Приводится возможный сценарий энергоаварии в случае появления сильной ГМБ.

5.1 Анализ энергосистемы как критической инфраструктуры

До настоящего времени в практике отечественной и мировой энергетики не проводились достаточные исследования в области межсистемных аварий при воздействии природных явлений (катастроф). В [117] Чарльз Перров вводит термин «нормативная авария», относящийся к систематической уязвимости технологий высокого риска (атомные электростанции, технологии генной инженерии, авиасообщение итд). Ключевой характеристикой определения, введенного Перровым, является отрицание возможности межсистемной аварии, когда сбой в оперировании одной системы приводит к аварии в другой взаимозависимой системе. Стремительное развитие инфраструктурных систем и опыт их эксплуатации потребовали ревизии подхода по оценке их надежности. В 1996 году была создана Комиссия при Президенте США по анализу межсистемных аварий (President's Comission on Critical Infrastructure Protection). Год спустя вводится понятие критических систем жизнеобеспечения и приводится их перечень в [118]:

- а) системы телекоммуникации;
- б) энергосистемы;
- в) системы водоснабжения;
- г) системы по добыче, транспортировке и переработке нефти и газа;
- д) банковские и финансовые системы;
- е) системы органов государственной власти;
- ж) системы предотвращения и ликвидации чрезвычайных ситуаций.

Впоследствии этот список был расширен [119]. В 2008 году Организация Экономического Сотрудничества и Развития дала наиболее полное определение критической инфраструктуры, использующееся по настоящее время [120]. Позднее профессор В.А. Васенин, МГУ, дал своё определение понятию критической инфраструктуры [121]. В отечественной практике отсутствует нормативное определение этого понятия. Ниже автор приводит своё определение, являющееся совокупностью определений [120], [121].

Критическая инфраструктура – набор взаимодействующих элементов, поддерживающих национальную экономику и общественную безопасность, частичная или полная деградация которых способна повлиять на состояние национальной безопасности, привести к чрезвычайным ситуациям определенного уровня и масштаба.

Основополагающими документами, определяющими политику России в области обеспечения национальной безопасности являются: Стратегия национальной безопасности [122], Указ об утверждении приоритетных направлений развития науки, техники и технологии в Российской Федерации и перечня критических технологий Российской Федерации [123]. Перечень системообразующих предприятий [124]. На основании вышеуказанных документов автор предлагает следующий состав критических инфраструктур России:

- а) инфраструктура органов государственной власти;
- б) инфраструктура органов финансов-кредитной и банковской деятельности;

- в) инфраструктура по предупреждению и ликвидации чрезвычайных ситуаций;
- г) географическая и навигационная инфраструктура;
- д) инфраструктура водоснабжения;
- е) энергосистема;
- ж) инфраструктура добычи, транспортировки и переработки нефти, нефтепродуктов и газа;
- з) инфраструктура управления транспортным сообщением (наземным, воздушным, морским);
- и) сельскохозяйственная инфраструктура;
- к) машиностроение;
- л) инфраструктура обеспечения продовольствием;
- м) инфраструктура горнодобывающей/горнообрабатывающей отрасли;
- н) инфраструктура целлюлозно-бумажной отрасли;
- о) фармацевтические технологии;
- п) железные дороги;
- р) инфраструктура золотодобычи;
- с) инфраструктура Почты России;
- т) Радио и телевидение;
- у) сотовая и магистральная связь.

Первичная оценка предлагаемых критических инфраструктур показывает, что их бесперебойное функционирование возможно только при наличии качественного и надежного электроснабжения. Иначе говоря, энергосистема суть хребет критических инфраструктур. В предыдущих главах было показано, что в зависимости от характера ГМБ, свойств подстилающей породы и совокупных характеристик ЭЭС возможен один из трёх вариантов энергоаварии:

- а) системная авария с повреждением сетевого оборудования;
- б) системная авария без повреждения сетевого оборудования;
- в) повреждение сетевого оборудования, не сопровождающееся развитием системной аварии.

Таким образом, ГМБ оказывают косвенное воздействие на оперирование критических инфраструктур. Методика количественной оценки косвенного ущерба яв-

Рисунок 5.1. Характер и степень косвенного воздействия геомагнитных бурь на критические инфраструктуры

ляется одной из наиболее важных и сложных проблем управления рисками. Ущерб от косвенного воздействия может быть соизмерим или даже превышать ущерб от непосредственного воздействия ГМБ на ЭЭС. В первом приближении необходимо составить каталог критических систем, взаимозависимых с ЭЭС. На рис. 5.1 графически показан возможный характер ущерба критических инфраструктур при потери электроснабжения. Рассмотрены 2 временных промежутка: мгновенное воздействие и состояние инфраструктур спустя сутки после ГМБ. Принято допущение, что ГМБ приводит к единовременному отключению и повреждению больше, чем N-1 сетевого элемента. Следовательно, мгновенная замена оборудования невозможна в связи с ограниченностью запаса и необходимостью производства и транспортировки новых единиц. Также на рис. 5.1 показана тяжесть воздействия: малиновый цвет соответствует повсеместному отказу, розовый цвет – локализованному отказу, оранжевый – повсеместной деградации функций, желтый цвет – локальной деградации. В последнее десятилетие в ЕЭС России произошли две крупные энергоаварии, имевшие серьёзный межсистемный резонанс: авария в энергосистеме Москвы 25 мая 2005 года и авария в энергосистеме Санкт-Петербурга 20 августа 2010 года. Ниже приводится характеристика межсистемных последствий этих двух аварий (Таблица 5.1).

Таблица 5.1. Сравнительная характеристика воздействия	энергоаварий в Москве 25
мая 2005г и Санкт-Петербурге 20 августа 2010г на взаим	юзависимые критические
инфраструктуры	

Параметр	Авария в Москве 25.05.2005	Авария в Санкт-Петербург 20.08.2010
Предпосылка аварии	Термическое разрушение 6 силовых трансформаторов на ПС 500 кВ Чагино [125]	Отключение 6 секций шин на ПС 330кВ Восточная из-за нештатных действий дифференциальной защи- ты шин [126]
Пораженная террито- рия	5 административных окру- гов Москвы, ряд райо- нов южного Подмосковья, Тульской, Рязанской, Смо- ленской и Калужской обла- сти [125]	Выборгский, Приморский, Петроградский, Василеост- ровский и Центральный районы СПб, часть Лен. об- ласти
Число отключенных по- требителей	7 миллионов потребителей [125]	40% жителей СПб (2,2 мил- лиона), 350 тыс. жителей Лен. области [127]
Медицинское обслужи- вание	Отключения электроэнер- гии произошли в 28 мед- учреждениях, включая 3 родильных дома, онкологи- ческий центр, центр перели- вания крови и морг. Были задействованы автономные источники питания [125]	Отключения электроэнер- гии произошли в 19 мед- учреждениях, включая фе- деральные. Были задей- ствованы автономные ис- точники питания [128]
Система добычи, транс- портировки и перера- ботки нефти и газа	Отключение электроснаб- жения на Московском НПЗ в Каптоне [129]	нет данных
Интернет	Отключился российский узел обмен интернет- траффика М9 [129]	нет данных
Радио и телевидение	Нет данных	Не работали телеканалы, в эфире отсутствовали FM- радиостанции [130]

Продолжение Табл. 5.1

Транспорт	Сбой в движении метро и наземного электрического транспорта. Только на участке "Серпуховская - бульвар Дмитрия Донского"встали 43 состава с 20000 пассажирами. Тяжелая дорожная обстановка, вызванная отключением светофоров [131], [129]	Сбой в движении метро и наземного электрическо- го транспорта; тяжелая до- рожная обстановка, вызван- ная отключением светофо- ров [132], [133]
Система органов гос.	нет данных	нет данных
Водоснабжение / кана- лизация	Остановлена работы Запад- ной водопроводной станции, Люберецкой, Курьяновской и Южно-Бутово станций аэрации. Был несанкцио- нированный сброс сточных вод в Москва реку [125]	Были обесточены во- донапорные станции "Главная"и "Северная про- блемы с водой испытывали жители Северных районов города; возникли очереди за водой в продуктовых магазинах [134]
Ж/д сообщение	На железных дорогах Кур- ского, Павелецкого, Киев- ского, Рижского и Рязан- ского направлений остано- вились 37 пассажирских, 700 пригородных и 125 то- варных поездов [125]	Были обесточены Финлянд- ский, Московский и Ладож- ский вокзалы СПб и вок- зал г. Выборг, что привело к остановке поездов на соотв. направлениях; были задер- жаны 6 пассажирских по- ездов дальнего следования [135]
Снабжение продоволь- ствием	На птицефабриках Пете- лино и Тульская погибли более 1 млн кур [125]. Были обесточены холо- дильные установки на складах и магазинах Юга Москвы [136]. Были остановлены Таганский мясоперерабатывающий завод, Микояновский мясо- комбинат, Сервис-Ходл и Нидан-Гросс [137]	нет данных

Продолжение Табл. 5.1

Промышленность	Не работало производство ЗИЛ и Московского под- пипникового завода [138]. В доменных печах Сту- пинского металлургическо- го комбината из-за обес- точивания застыл расплав- ленный никель (стоимость	Были обесточены пред- приятия промзоны "Парнас"[130]. На несколь- ко часов было остановлено производство на заводе Форд [139]
	ремонта печей позднее бы-	
	ла оценена в 1 млн долла- ров) [125]	
Мобильная связь	Проблемы коснулись 30% клиентов Московского ре- гиона [137]	нет данных
МЧС	Задействованы резервные источники питания [137]	Задействованы резервные источники питания [140]
Финансово-банковская	Центральный Банк Росси	Привело к отключению 17%
система	сместил время транзакций,	банкоматов [141]
	биржи РТС и ММВБ при-	
	остановили торги, так как	
	80% участников торгов не	
	имели доступ к интернету	
	[137]	

Необходимо отметить, что одним из следствий глобализации рынка является глобализация последствий энергоаварии - сбой или перерыв в производственном процессе на предприятии, расположенном вне зоны поражения. Характерным примером такого рынка является рынок автомобилестроения, характеризующийся логистической концепцией "точно в срок". В [142] показано распределение производителей автодеталей как по странам, так и по типу производимого товара.

5.2 Фазы энергоаварии

Энергоавария суть чрезвычайная ситуация - обстановка на определенной территории, сложившиеся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей среде, значительные материальные потери и нарушение условий жизнедеятельности людей [143]. Геомагнитные бури имеет природный характер. В [144] приводятся источники природного характера, учитываемые при разработке планов по обеспечению надежной работы критических инфраструктур. Анализ показал, что геомагнитные бури не учитываются в действующих нормативных документах. Ранее было показано необходимость в обратном. Ниже приводится возможный сценарий энергоаварии, вызванной ГМБ, в густонаселенном районе.

Четыре основных параметра определяют тяжесть последствий энергоаварии: частоты явления, время происшествия, зона поражения и принятые алгоритмы по предупреждению и ликвидации. В зависимости от характера последствий, обобщенную энергоаварию А можно разделить на 5 фаз: зарождение, инициализация, насыщение, кульминация и затишье. На рис. 5.2 приводится обобщенная диаграмма фаз энергоаварии с указанием временных промежутков.

Первая фаза - фаза зарождения - характеризуется ущербом, связанным с непосредственным отказом энергетического оборудования. Фаза зарождения длиться первые два часа с момента энергоаварии и описывается как начальный хаос. Сбой в электроснабжении потребителей III категории [145] происходит незамедлительно, что в том числе приводит к тяжелой дорожной обстановке вследствие отключения светофоров, прекращения водоснабжения из-за потери электропитания насосных станций. В первый момент времени парализовано движение составов на железной дороге и в метро. Несмотря на наличие резервных источников питания на системах связи, наблюдается сбой их функционирования в связи с лавинообразным ростом нагрузки. Тем не менее сохраняется электроснабжения потребителей первой и второй категории.

Вторая фаза, фаза инициализации, длиться последующие 6 часов. С одной стороны, имеет место некоторая нормализация ситуации, а, с другой, граждане допускают мысль о возможности длительной энергоаварии. На протяжении первой и второй фаз органы государственной власти и МЧС предпринимают действия в соответствии с планом ликвидации чрезвычайных ситуаций [146], при этом эффективность этих действий уменьшается в связи с односторонним характером связи. Резервные источники питания, установленные сотовыми и телекоммуникационным операторами, не функционируют к концу второй фазы. В обеспечении резервными ис-

Рисунок 5.2. Диаграмма развития фаз энергоаварии

точниками питания нуждаются не только операторы связи, но и прочие критические инфраструктуры. Наряду с этим имеет место веерное отключение автозаправок, что затрудняет логистические процессы. Дополнительная нагрузка ложится на больницы ввиду двух основных причин:

- а) Возросшего числа жерт аварий.
- б) Перевода пациентов из медицинских учреждений III категории. аварии.

В [147] нормированы степени надежности электроснабжения медицинских помещений. К особой I категории относится электрооборудования системы безопасности, прекращение (сбой) электроснабжения которых представляет опасность для жизни пациента и электроприемники систем пожарной безопасности. К I группе относится прочее оборудование. В целом автономные источники электроэнергии должна поддерживать электропитание в течение 24 часов. Требование поддерживать электропитание в течение 24 ч может быть уменьшено до минимального, равного 3 ч, если специфика медицинского учреждения позволяет в течение этого времени закончить все необходимые процедуры и провести эвакуацию.

Во время второй фазы имеет место отказ или деградация взаимозависимых критических инфраструктур (рис. 5.1), который усугубляется в рамках третей фазы, фазы насыщения. Завершение третей фазы соответствует окончанию первых суток после энергоаварии. Большинство критических инфраструктур испытывают нехватку топлива для резервных дизель-генераторов. Органы государственной власти и МЧС определяют ключевые автозавправки, которые снабжаются резервными источниками питания с целью возобновления их работы и, как следствие, продолжения работы прочих объектов инфраструктур. К концу первых суток приходит понимание, что энергоавария имеет статус чрезвычайной ситуации федерального уровня [148] и необходима помощь международных организаций для ликвидации её последствий.

Четвертая фаза, фаза кульминации, является фазой, во время которой наступает конечное состояние в соответствии с рис. 5.1. Из сектора здравоохранения только больницы продолжают своё функционирование, хотя они и испытывают нехватку в медикаментах и операционных материалах. Запас фармацевтических средств у потребителей рассчитан на 2 недели. Тяжелая логистическая обстановка и деградация фармацевтической отрасли в районе энергоаварии усложняют ситуацию. Схожая ситуация у системы обеспечения населения питьевой и производственной водой и продовольствием. Централизованная подача воды прекратилась ещё во время фазы зарождения. Запас продовольствия потребителей в больших городах рассчитан на период от двух до пяти дней. Фермерские хозяйства деградируют локально или полностью в связи с отсутствием электроснабжения для обеспечения технологических процессов (охлаждение, обогрев, итд). В тяжелой ситуации находится и система розничной торговли. Кумулятивным результатом может являться спекуляция на рынке товаров жизнеобеспечения. Дополнительной сложностью является нехватка денежных знаков в обращении в следствии сбоя в работе банкоматов.

В пятой фазе, фазе затухания, производиться локализация ситуации и ликвидация её прямых и косвенных последствий. Продолжительность фазы различна и может варьироваться от нескольких дней до десятилетий.

5.3 Принципы организации межсистемного взаимодействия во время геомагнитных бурь

Практика ЭЭС имеет значительный опыт обеспечения оптимальных и близких к оптимальным алгоритмов управления при воздействии аварийных возмущений, имеющих высокую периодичностью (молнии, ошибка персонала, и т.д.).Аналогично разработаны рекомендации по усилению современных ЭЭС с целью уменьшения ущерба от энергоаварий, вызванных этими воздействиями. Мировые страховые компании оценивают возможные убытки от сильных ГМБ в районе 4 % от ВВП [149]. При этом ежегодные инвестиции на проектирование и строительство ЭЭС, устойчивой к ГМБ, оцениваются в 0,16% в год. Предполагаемая программа рассчитана на 20 лет. Согласно [50], при эксплуатации ЭЭС необходимо руководствоваться следующими критериями:

- а) надежность ЭЭС должна обеспечивать выдачу мощности электрических станций, передачу электрической энергии и снабжение потребителей в нормальной и основных ремонтных схемах при воздействии нормативных аварийных возмущений;
- б) доступность электрическая сеть должна обеспечивать доступ всех субъектов рынка к электрической энергии;
- в) экономичность должна обеспечиваться максимальная экономичность при заданном уровне надежности;
- г) необслуживаемость минимизация участия персонала в процессах эксплуатации и управления;
- д) гибкость ЭЭС должна иметь достаточную гибкость к адаптации при изменениях внешних условий;
- е) эффективность развитие и эксплуатация ЭЭС должны осуществляться с достижением наилучших экономических показателей и при оптимальном использовании имеющихся активов;
- ж) инновационность проектирование и эксплуатация ЭЭС осуществляеться с учетом последних достижений науки и техники;

- з) экологичность проектирование и эксплуатация ЭЭС должны соответствовать требованиям минимизации воздействия объектов ЭЭС на окружающую среду;
- и) безопасность проектирование и эксплуатация ЭЭС должна выполняться с учетом обеспечения энергобезопасности ЕЭС России.

Анализ перечня показал, что достижение вышеуказанных критериев достигается путем одностороннего взаимодействия между операторами ЭЭС и потребителями, регулируемого нормативными актами и техническими условиями. В классической схеме отсутствует обратная связь от потребителя.

Обратная ситуация имеет место при определении алгоритмов управления во время ГМБ. ГМБ оказывают равное воздействие на всех участников рынка (рис. 5.3). Элементами системы являются:

- а) практика ЭЭС расчет наведенных ГИТ в ЭЭС и анализ их воздействий на режим и оборудование ЭЭС;
- б) центры прогнозирования космической погоды моделирование процессов в магнитно и ионосфере, определение силы и зоны поражения ГМБ;
- в) промышленность проектирование оборудование устойчивого к воздействиям
 ГИТ в соотвествии с нуждами ЭЭС;
- г) нормативные стандарты разработка норм по управлению ЭЭС во время ГМБ
 с учетом вышеуказанных требований оперирования ЭЭС;
- д) потребители повышение информированности об эффектах ГМБ (учитываются потребители мощностью как более, так и менее 50 МВт).

Ключевым элементом систем являются "нормативные стандарты". Рекомендуется создание такой структуры взаимодействия между прочими элементами системы, чтобы она удовлетворяла следующим условиям. Система не должна быть строго иерархальной, а должна обеспечивать равный обмен информацией как в горизонтальном, так и в вертикальном направлениях. На базе нормативных стандартов корректируются алгоритмы управления в нормальном и аварийном режиме ЭЭС с целью:

- a) сохранение сечений, отключение которых приводит к полному разделению ЭЭС на изолированные части;
- б) сохранение генераторных узлов большой мощности с учетом типа электростан-

Рисунок 5.3. Звезда выбора алгоритма управления энергосистемой во время геомагнитных бурь

ции. Доля вырабатываемой электроэнергии на ТЭС составляет в России 67 %. Запас топлива на ТЭС регламентируется [150]. Запас топлива обычно рассчитан на период до 1 месяца, что позволяет использовать генераторы ТЭС для горячего старта после ГМБ. ГЭС также робастны. Эксплуатация современных ПГТУ и АЭС осуществляется с использованием электронных схем контроля, что делает их работу менее предпочтительной в период ликвидации последствий ГМБ.

- в) сохранение каналов связи и управления. Наиболее важным является сохранение каналов связи между географически удаленными операторами диспетчерских узлов, обеспечивающих ручное восстановление ЭЭС. Далее следуют системы обеспечения автоматического контроля генерации, нагрузки и перетоков мощности.
- г) обеспечение запасов резервных единиц оборудования в географических районах,
 где влияние ГМБ значительно для проведения ремонтно-восстановительных работ;
- д) уточнение при необходимости нормативных запасов топлива на электростанциях;
- е) разработку стандартов и процедур по полевому тестированию устойчивости

оборудования ЭЭС к ГМБ;

ж) проведение обучающих практик с привлечением всех пятерых участников.

Так как ГМБ приводят к деградации или сбою нескольких критических инфраструктур одновременно, взаимодействие между элементами системы управления (рис. 5.3) должно быть выполнено с учетом эффектов на взаимосвязанные критические инфраструктуры, вызванные сбоем в электроснабжении. Первоочередным является организация надежного управления для сохранения узлов нагрузки, в которых присоединены потребители, для которых потеря электроснабжения приводит к повсеместному отказу или деградации в соответствии с рис. 5.1.

Постреконструирующий анализ энергоаварий в России должен выполняться в соответствии с правилами, прописанными в [151]. Правилами предусмотрено расследование аварий, вызванных рядом техногенных и природных возмущений, включая:

- а) массовые отключения или повреждения объектов электросетевого хозяйства (высший класс напряжения 6-35 кВ), вызванные неблагоприятными природными явлениями, если они привели к прекращению электроснабжения потребителей общей численностью 200 тыс. человек и более;
- б) разделение энергосистемы на части, выделение отдельных энергорайонов РФ на изолированную от Единой энергетической системы России работу (при отключении всех электрических связей с Единой энергетической системой России;
- в) применение графиков временных отключений суммарным объемом 100 МВт и более или прекращение электроснабжения на величину 25 и более процентов общего объема потребления в операционной зоне диспетчерского центра;
- г) внеплановое ограничение выдачи мощности электростанцией на срок более 1 суток на величину 100 МВт и более;
- д) отключение объектов электросетевого хозяйства (высший класс напряжения 110 кВ и выше), генерирующего оборудования мощностью 100 МВт и более на 2 и более объектах электроэнергетики, вызвавшее прекращение электроснабжения потребителей электрической энергии, суммарная мощность потребления которых составляет 100 МВт и более, продолжительностью 30 минут и более;
- е) нарушения в работе противоаварийной или режимной автоматики, в том числе

обусловленные ошибочными действиями персонала, вызвавшие отключение объекта электросетевого хозяйства (высший класс напряжения 110 кВ и выше), отключение (включение) генерирующего оборудования, суммарная мощность которого составляет 100 МВт и более, или прекращение электроснабжения потребителей электрической энергии, суммарная мощность потребления которых составляет 100 МВт и более;

- ж) нарушение в работе электрических сетей, приведшее к отклонению частоты на шинах распределительного устройства атомной электростанции (высший класс напряжения 110-750 кВ) от пределов нормальной эксплуатации, установленных технологическим регламентом эксплуатации атомных электростанций (49,0 -50,5 Гц);
- з) нарушение работы средств диспетчерского и технологического управления, приводящее к прекращению связи (диспетчерской связи, передачи телеметрической информации или управляющих воздействий противоаварийной или режимной автоматики) между диспетчерским центром субъекта оперативнодиспетчерского управления в электроэнергетике, объектом электроэнергетики и (или) энергопринимающей установкой продолжительностью 1 час и более.

ГМБ, как возмущение природного характера, может являться причиной любого из вышеперечисленных сценариев аварийного режима ЭЭС. Комиссия по расследованию причин катастрофы состоит из представителей: уполномоченного органа в сфере энергетики, федерального органа исполнительной власти, осуществляющего выработку и контроль нормативно-правового регулирования по защите населения и территорий от чрезвычайных ситуаций, организации по управлению ЕЭС, генерирующих компаний, субъекта оперативно-диспетчерского управления в электроэнергетике, потребителей электрической энергии, присоединенная мощность которых превышает 50 МВт. Автор рекомендует включение в этот список представителей центров космической погоды и промышленности и других инфраструктур, испытавших полную или частичную деградацию, при расследовании последствий энергоаварий, вызванных ГМБ.

5.4 **Выводы**

Надежное и качественное электроснабжение является краеугольным камнем функционирования современного общества. Потеря или сбой в электроснабжении в результате ГМБ может приводить к деградации сразу нескольких систем, которые автор называет критическими. В существующей нормативной базе РФ отсутствует понятие критическая инфраструктура и их перечень. Автор вводит своё определение критической инфраструктуры как набора взаимодействующих элементов, поддерживающих национальную экономику и общественную безопасность, частичная или полная деградация которых способная повлиять на состояние национальной безопасности, привести к чрезвычайным ситуациям определенного уровня и масштаба. На основании свода нормативных документов автором был составлен перечень национальных критических инфраструктур и рассмотрен сценарий межсистемной аварии, вызванной потерей электроснабжения в результате ГМБ при отключении более чем N-1 сетевого элемента. Рассмотрено мгновенное состояние инфраструктур после потери электроснабжения и спустя 24 часа. На основании полученных данных разработана подробная модель энергоаварии с указанием её фаз (зарождение, инициализация, насыщение, кульминация, затухание) и соответствующих временных промежутков.

Тяжесть энергоаварии, вызванной электромагнитными полями ультранизкой частоты, определена в первую очередь низкой информированностью общества и практики ЭЭС. В существующих правовых нормах отсутствуют требования по учету эффектов ГМБ при планировании и диспетчиризации режимов ЭЭС. Тем не менее ГМБ могут приводить к авариям, прямой и косвенный ущерб от которых соизмерим с ущербом от прочих природных катастроф, учет которых предусмотрен существующими нормами. В главе определены меры межорганизационного взаимодействия с учетом эффектов на взаимосвязанные критические инфраструктуры. Специфическим свойством данных мер является их равноправная координация между пятью участниками рынка.

Заключение

В диссертационной работе исследованы негативные электромагнитные эффекты ГМБ на режим и оборудование ЭЭС. Предложены и рассмотрены мероприятия по предотвращению системных аварий от ГМБ. ГМБ, обусловленные изменением магнитносферно-ионосферной токовой системы, оказывают воздействие на протяженные электротехнические системы путем создания кондуктивной помехи ультранизкой частоты. В работе рассмотрены три сценария воздействий:

- a) ГМБ, приводящие к системным авариям и повреждению высоковольтного оборудования ЭЭС (Hydro Quebec blackout, 1989 г.);
- б) ГМБ, приводящие к системным авариям, но не приводящие к повреждению высоковольтного оборудования ЭЭС (Halloween blackout, 2003 г.);
- в) ГМБ, не приводящие к системным авариям, но приводящее к повреждение высоковольтного оборудования ЭЭС (деградация силового трансформатора в ЮАР, 2003-2004 гг.).

Анализ литературы и обобщение разрозненных сведений о сбоях в работе ЭЭС показал, что имеет место тренд увеличения числа аварий и связанных с ними издержек от недоотпуска электроэнергии. При этом одним из специфических возмущений, приводящим к крупным межсистемным авариям, являются ГМБ. Практика ЭЭС имеет малый опыт эксплуатации при ГМБ, что усложняет анализ их негативных электромагнитных эффектов. В отличие от других возмущений природного характера ГМБ характеризуются низкой вероятностью. Это накладывает ограничения на использования классических методов анализа на базе кривой f - N (частота - последствия). Анализ показал, что развитие ЭЭС, связанное с усложнением архитектуры и адаптацией принципов управления ими к условиям либерального рынка, повышает уязвимость ЭЭС к ГМБ. В свою очередь совершенствование теоретической базы

о физических процессах на поверхности Солнца и в магнито-ионосфере позволяет получить более точные прогнозы о времени появления и районах воздействия ГМБ. Прямым следствием этого является повышение общественной осведомленности об эффектах геомагнитных токов на ЭЭС, возможность проведения постреконструирующих анализов режимов ЭЭС во время сильных ГМБ. Показано, что имеет место расширение карты зон высокого риска негативного воздействия ГМБ на режим и оборудование ЭЭС.

Полная информация о силе и характере ущерба, связанного с ГМБ, возможна только при комплексном анализе совокупности факторов, определяющих уязвимость ЭЭС к негативным электромагнитным эффектам полей ультранизкой частоты. Автором определена совокупность факторов различной природы, определяющих устойчивость ЭЭС к воздействиям ГМБ. Факторы удобно разделить на четыре группы: параметры ГМБ, параметры ЭЭС, параметры оборудования, информированность. По результатам расчета схемы ЭЭС Скандинавии и некоторых схем энергорайонов ЕЭС России выполнено ранжирование критических факторов разной природы. Показано, что факторы техногенной природы (параметры ЭЭС и параметры оборудования) имеют доминирующее значение при оценке уязвимости ЭЭС. Несмотря на то, что ЕЭС России не находится в зоне высокого геомагнитного риска, её структура представлена в основном длинными (более 150 км) межсистемными связями высокого напряжения (220-500 кВ), что понижает её устойчивость к эффектам ГМБ. Дополнительным критерием, уменьшающим робастность ЕЭС России, является применение силовых трансформаторов на классах напряжения 220 кВ и выше, имеющих относительно высокую восприимчивость к ГИТ.

На основании данных анализа был предложен качественно новый метод анализа устойчивости ЭЭС к ГМБ. Метод позволяет выполнить поиск «узких мест» в ЭЭС с позиции трёх возможных сценариев воздействия ГМБ на ЭЭС. Метод был апробирован на актуальной схеме ЕЭС России. Были выявлены географические области, в которых влияние ГМБ значительно.

По результатам проведенных исследований был разработан комплекс мер и рекомендаций по уменьшению негативных эффектов ГМБ. Комплекс мер направлен на решение трёх уровней проблемы, обусловленной ГМБ:

- а) внешний меры, связанные с коррекцией архитектуры ЭЭС и заменой силового оборудования ЭЭС на модели, обладающие большей устойчивостью к ГМБ ;
- б) внутренний меры, направленные на повышение общественной осведомленности;
- в) эксплуатационный рекомендации по корреляции алгоритмов управления с нормированными методами контроля режима ЭЭС.

Отличительной особенностью предложенных мер и рекомендаций является межорганизационный характер их применения. В работе предложены методы коммуникационных взаимодействий между организациями, работающими в разных предметных технических областях при решении проблем ГМБ. Система взаимодействия построена с учетом возможности равного обмена информацией как в вертикальном, так и горизонтальном направлениях. Результаты выполненного исследования являются хорошей базой для практики при планировании, расчете и диспетчеризации ЭЭС во время мировых ГМБ.

По результатом данной диссертационной работы выполнены следующие публикации, в том числе в изданиях, рекомендованных ВАК и состоящих в международных базах цитирования Scopus и Web of Science:

- Методика оптимизации управляющих воздействий в послеаварийных режимах энергосистемы мегаполиса / Волков А.И., Коровкин Н.В., Соколова О.Н., Сорокин Е.В., Фролов О.В. // Электрические станции : ежемесячный производственно-технический журнал / Министерство промышленности и энергетики РФ [и др.]. — М., 2010. — №11. — С. 33-36.
- Method for Optimizing Control Actions Following Emergencies in Large-city Electric Power Systems / Oleg V. Frolov, [et. all.] // Power Technology and Engineering. — Springer. — 2011. – Vol. 45 No. 1 — pp. 50-52
- О.Н. Соколова. Сравнение эффективности методов управления в энергосистемах России и Европы при геомагнитных бурях // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета, — СПб., 2016. — № 12(243). — С. 88-98.
- 4. O. Sokolova, P. Burgherr, W. Collenberg, "Solar Storm Impact on Critical Infrastructure", Safety and Reliability: methods and applications, CRS Press, 2014, pp. 1515-1521
- 5. O. Sokolova, P. Burgherr, W. Collenberg, A. Schwerzmann, The Impact of Solar Storms

on Power Systems, Swiss Re, 2014

- 6. Соколова О.Н. Оптимизация управления режимом энергосистемы по критериям качества и надежности электроснабжения. // Сборник научных трудов 1-й Международной научно-практической конференции «Научные и технические средства обеспечения энергосбережения и энергоэффективости в экономике РФ». – СПб.: Изд-во Политехн. Ун-та, 2011. С. 15-22
- 7. Principles of the Control Action Optimization for the Emergency Control System [Электронный ресурс] / Oleg V. Frolov [et. all.] // 3d International Scientific and Technical Conference «Actual in Development of Power System Protection and Automation» 30.05 – 03.06.2011. — St.-Petersburg, 2011. — электрон. опт. диск (CD-ROM).
- Sokolova O. N., Korovkin N.V. Optimization Principles of the Control Actions in the Postemergency State of the Power System [Электронный ресурс] / Olga Sokolova, Nikolay Korovkin, // SDPS 2012, 10-14.06.2012. – Berlin, Germany, 2012— электрон. опт. диск (CD-ROM).
- 9. Sokolova O. N. The comparison of Principles of Security Ensuring in ENTSOE and UPS of Russia [Электронный ресурс] / Olga Sokolova, Nikolay Korovkin, Rachid Cherkaoui // IEEE 7th International Workshop on Deregulated Electricity Market Issues in South-Eastern Europe. 20-21.09.2012. – Bucharest, Romania, 2012 электрон. опт. диск (CD-ROM).
- O. Sokolova. An analytical method for evaluation of solar impact on power system operation [Электронный ресурс] / Olga Sokolova, N. Korovkin, V. Popov // 12th European Space Weather Week. 23-27.11.2015. – Oostende, Belgium, 2015— электрон. опт. диск (CD-ROM).
- O. Sokolova. Assessing the impact of space weather on the large-scale power grid [Электронный ресурс] // 2015 Annual conference SCCER-FURIES Shaping the Future Swiss Electrical Infrastructure. November 25th 2015. – Lausanne, Switzerland, 2015— электрон. опт. диск (CD-ROM).
- O. Sokolova, N. Korovkin. Power grid sustainability to solar storm effects as a function of state parameters [Электронный ресурс] // IEEE Workshop on Complexity in Engineering COMPENG 2016. July 4th-7th 2016. – Catane, Italy, 2016— электрон.

опт. диск (CD-ROM).

Список сокращений

АПВ	Автоматическое повторное включение
АЭС	Атомная электростанция
БК	Батарея конденсаторов
ВЛ	Воздушная линия
ВПТ	Вставка постоянного тока
ГИТ	Геомагнитно индуцированный ток
ГИС	Географическая информационная система
ГМБ	Геомагнитная буря
ЕЭС	Единая Энергосистема России
КЗ	Короткое замыкание
ЛЭП	Линия электропередач
МДС	Магнитодвижущая сила
ММП	Межпланетное магнитное поле
МТЗ	Максимальная токовая защита
МЧС	Министерство Чрезвычайных ситуаций
ОАПВ	Однофазное автоматическое повторное включение
ОДУ	Объединенное диспетчерское управление

ПС Подстанция РДУ Региональное диспетчерское управление ΡУ Распределительное устройство РΦ Российская Федерация СШ Система шин США Соединенные Штаты Америки ТАПВ Трёхфазное автоматическое повторное включение THТрансформатор напряжения TTТрансформатор тока Управляющее воздействие УΒ ЧΡ Частичный разряд ШР Шунтирующий реактор ЭС Энергосистема ЮАР Южно-Африканская республика ACE Advanced Compositon Explorer ENTSO-E European Network of Transmission System Operators for Electricity ESA European Space Agency EURISGIC European Risk from Geomagnetically Induced Currents GOES Geostational Operational Environmental Satellite NASA National Aeronautics and Space Administration National Oceanic and Athmospheric Administration NOAA SOHO Solar and Heliospheric Observatory

- STEREO Solar Terestrial Relations Observatory
- SWPC Space Weather Prediction Center

Словарь терминов

Авроральная зона (Auroral zone) область атмосферы, в которой наиболее часто наблюдаются ночные полярные сияния

Геомагнитная буря (Geomagnetic disturbance) представляют собой возмущение геомагнитного поля, охватывающее всю магнитосферу и длящееся несколько суток, приводящее в частности в низких широтах на поверхности Земли к уменьшению магнитной индукции на 50нТл и больше (по ГОСТ25645.109-84)

Геомагнитные вариации (Geomagnetic variations) представляют собой изменение магнитного поля Земли во времени под действием различных факторов

Корональные выбросы массы (Coronal mass ejection) - выбросы больших объемов солнечного вещества в межпланетное пространство из атмосферы Солнца в результате происходящих в ней активных процессов

Кластерный коэффициент (Claster coefficient) характеризует степень взаимодействия между собой ближайших соседей. Другими словами, кластерный коэффициент есть вероятность того, что два ближайших соседа узла сами есть ближайшие соседи

Космическая погода (Space weather) - это изменение условий на Солнце, в солнечном ветре, магнитосфере и иноносфере, которые могут повлиять на работу и надежность бортовых и наземных технологических систем и угрожать здоровью и жизни людей

Магнитосферная суббуря (Magnetospheric substorm) - возмущение гео-
магнитного поля длительностью 1-2 часа, связанное с усиленной диссипацией энергии в магнитосфере > 10¹¹ Вт

Природная катастрофа (Natural hazard) - это событие, вызываемое природными причинами, разрушительное действие которого проявляется в рамках достаточно обширных пространственно-временных параметров и вызывает гибель и/или ранение людей, а также существенные временные или постоянные изменения в живых сообществах, которые оно поражает

Сечение - совокупность таких сетевых элементов одной или нескольких связей, отключение которых приводит к полному разделению ЭЭС на две изолированные части

Солнечный ветер (Claster coefficient) - поток плазмы, истекающей из солнечной короны в межпланетное пространство и состоящий в основном из электронов, протонов и ядер гелия

Солнечные пятна (Sunspot) - это области на поверхности Солнца, которые темнее окружающей их фотосферы, за счет подавления конвекции плазмы сильным магнитным полем, что приводит в свою очередь к снижению температуры примерно на 2000 К

Степень вершины (Node degree) - это количество ребер, выходящих из этой ребер

Точки Либрации (Точки Лагранжа) - точки в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, не испытывающее воздействие никаких других сил, кроме гравитационных, со стороны первых двух тел, может оставаться неподвижным относительно этих тел.

Литература

 Towsend L.W. Carrington flare of 1859 as a prototypical worst-case energetic particle event / L.W. Towsend [et al.] // IEEE Transactions on Nuclear Science. - 2003. -50(6). P.2307-2309

[2] Kappenman J. Geomagnetic storms and their impacts on the US power grid. – CA, 2010.

[3] Tretkoff E. Legislation seeks to protect power grid from space weather // Space Weather. - 2010. - 8(5)

[4] Отчет о функционировании ЕЭС России в 2014 году [Электронный ресурс]. – Режим доступа: http://www.so-ups.ru (30.03.2016).

[5] Sunspot aurora paralyzes wires // New York Times. – 1925. – 15 мая.

[6] Sunspot credited with rail tie-up // New York Times. – 1921. – 16 мая.

[7] Aurora borealis startles Europe // New York Times. – 1938. – 26 января.

[8] New York Times. – 1940. – 25 марта.

[9] Geomagnetically induced currents in the Nordic power system and their effects on equipment, control, protection and operation / J. Elovaara [et al.] // Theses of international conference on large high voltage electric machines. – 1992. – Vol. 2. – P. 36–301.

[10] Severe Space Weather Events – Understanding Societal and Economic Impacts:
 A Workshop Report. – National Academies Press. – 2008.

[11] Gaunt C. T. Transformer failures in regions incorrectly considered to have low GIC-risk / C. T. Gaunt, G. Coetzee // IEEE Lausanne Power Tech. – 2007. – P. 807-812.

[12] Chun-Ming Liu. Geomagnetically induced currents in the high-voltage power grid in China / Chun-Ming Liu, Lian-Guang Liu, Risto Pirjola // IEEE Transactions on Power Delivery. – 2009. – 24(4). – P. 2368–2374.

[13] Барсуков О. М. Советские станции земных токов / О. М. Барсуков, В. А.

Троицкая. – Москва : Изд-во АН СССР. – 1959. – 24 с.

[14] Гершенгорн А. И. Воздействие геомагнитных бурь на электроэнергетические системы // Энергохозяйство за рубежом. – 1974. – № 3. – С. 1–5.

[15] Гершенгорн А. И. Исследование нарушений в электроэнергетических системах, называемые геомагнитными бурями // Энергохозяйство за рубежом. – 1982. – № 5 – С. 28–35.

[16] Kikuchi H. Environmental and space electromagnetic / H. Kikuchi. – Tokyo : Springer. – 2012. – 615 p.

[17] Гизлер В. А. Магнитно-ионосферные возмущения в высших широтах и их воздействие на наземные технические коммуникации/ В. А. Гизлер, О. А. Трошичев// Тез. докл. 3-й науч.-техн. конф. «Электромагнитная совместимость технических средств» 8-10 сентября 1994 г., Санкт-Петербург. — 1994. — С. 30–31.

[18] Остафийчук Р. М. Классификация методов и средств защиты систем электрооборудования от воздействия электромагнитных полей УНЧ / Р. М. Остафийчук, А. А. Бригадир, С. А. Блинов // Тез. докл. 3-й науч.-техн. конф. «Электромагнитная совместимость технических средств» 8-10 сентября 1994 г., Санкт-Петербург. – 1994. – С. 34–35.

[19] Научные и технические аспекты обеспечения электромагнитной совместимости электроэнергетических систем при воздействии мировых геомагнитных бурь / M. B. Костенко [и др.] // Тез. 4-й рос. науч.-техн. конф. «Электромагнитная совместимость технических средств» ЭМС-96, 18-20 сентября 1996 г., Санкт-Петербург. – 1996. – С. 116–117.

[20] Система регистрации геоиндуцированных токов в нейтралях силовых автотрансформаторов / Ю. В. Катькалов [и др.] // Приборы и техника эксперимента. – 2012. – № 1. – С. 118–123.

[21] Ефимов Б. ГЕОМАГНИТНЫЕ ШТОРМЫ.. Исследование воздействий на энергосистемы Карелии и Кольского полуострова / Б. Ефимов. Я. Сахаров. В. Селиванов // Новости электротехники . – 2016. – № 80(2). –С. 5-29.

[22] Исследование влияния геомагнитных возмущений на гармонический состав токов в нейтралях автотрансформаторов / В. Н. Селиванов [и др.] // Тр. Кольского науч. центра РАН. – 2012. – № 4 (1). – С 60-68. [23] Effects of strong geomagnetic storms on northern railways in Russia / E. A. Eroshenko [et al.] // Advances in Space Research. – 2010. – N 46 (9). –P.1 102–1110.

[24] Effects of geomagnetic disturbances on Oktyabrskaya railway in Russia / Y.
 Yaroshenko [et al.] // Proceedings of ESWW7, 15-19 November 2010. – Brugge, Belgium, 2010.

[25] Разработка системы мониторинга геомагнитоиндуцированных токов в магистральных линиях 330 кВ «Колэнерго» / Я. А. Сахаров [и др.] // Тр. Кольского научного центра РАН. – 2004. – С. 7-8.

[26] Solar cycles, sunspots, solar flares, the global climate & the evaluation of human consciousness [Электронный ресурс]. – Режим доступа: http://www.lunarplanner.com/SolarCycles.html (30.03.2016).

[27] Плазменная гелиофизика / под ред.: Зеленого Л. М., Веселовского И. С. – Москва : Физматлит. – 2008. – 490 с.

[28] Dorman L. I. Space weather and dangerous phenomena on the earth: principles of great geomagnetic storms forcasting by online cosmic ray data // Annales Geophysicae. - 2005. - Vol. 23. - P. 2997-3002.

[29] Influence of the interplanetary driver type on the durations of the main and recovery phases of magnetic storms / Y. I. Yermolaev [et al.] // Journal of Geophysical Research: Space Physics. – 2014. – Vol. 119(10). – P. 8126–8136.

[30] Рабинер Л. Теория и применение цифровой обработки сигналов / Л. Рабинер, Б. Гоулд. - Рипол Классик, 1978. - 848с.

[31] The economic impacts of the august 2003 blackout [Электронный ресурс] / Electricity Consumers Resource Council. – Washington, 2004. – Режим доступа: http://www.elcon.org/Documents/Profiles20and20Publications/Economic20Impacts20of20 August20200320Blackout.pdf (22.09.2016).

[32] Jiang J. The cause of the weak solar cycle 24 / J. Jiang, R. H Cameron, M. Schuessler // The Astrophysical Journal Letters. – 2015. – № 808 (1). – L28 (arXiv: 1507.01764).

[33] The solar cycle is crashing [Электронный ресурс]. – Режим доступа: http://news. spaceweather.com/ the-solar-cycle-is-crashing/ (30.03.2016).

[34] Zois I.A. Solar activity and transformer failures in the Greek national electric

grid // Journal of Space Weather and Climate. - 2013. - 3(A32).

[35] Thomson D.J. The complex image approximation for induction in a multilayered Earth / D.J. Thomson, J.T. Weaver // Journal of Geophysical Research. - 1975. - 80(1). -P.123-129

[36] Pulkkinen A. Electromagnetic source equivalence and extension of the complex image method for geophysical applications / A. Pulkkinen [et al.] // Progress in Electromagnetic Research B. - 2009. - 16. - P.57-84

[37] Pirjola R. Practical model applicable to investigating the coast effect on the geoelectric field in connection with studies of geomagnetically induced currents // Advances in Applied Physics. – 2013. – N 1(1). – P. 9–28.

[38] Adam A. Estimation of the electric resistivity distribution (EURHOM) in the European lithosphere in the frame of the EURISGIC WP2 project / A. Adam, E. Pracser, V. Wesztergom // Acta Geodaetica et Geophysica Hungarica. – 2012. – 47 (4). – P. 377–387.

[39] Weaver J. T. Mathematical methods for geo-electromagnetic induction / J. T. Weaver. – Taunton : Research studies, 1994. – 316 p.

[40] Stone W. R. Review of Radio Science: 1999-2002 URSI. – John Wiley & Sons, 2002. – 978 p.

 [41] Lehtinen M. Currents produced in earthed conductor networks by geomagneticallyinduced electric fields / M. Lehtinen, R. Pirjola // Annales Geophysicae. – 1985. – Vol. 3.
 – P. 479–484.

[42] Pirjola R. Study of effects of changes of earthing resistances on geomagnetically induced currents in an electric power transmission system // Radio Science. – 2008. – \mathbb{N}^{2} 43(1). – P. 1-13.

[43] Pirjola R. Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modeling // Journal of atmospheric and solar-terrestrial physics. – 2007. – $N_{\rm P}$ 69(12). – P. 1305–1311.

[44] Girgis R. Effects of GIC on power transformers and power systems / R. Girgis,
 K. Vedante // Transmission and Distribution Conference and Exposition (T&D). – IEEE,
 2012. – P. 1–8.

[45] Mousavi S. A. Comprehensive study on magnetization current harmonics of power transformers due to GICs / S. A. Mousavi, C. Carrander, G. Engdahl // International Conference on Power Systems Transients (IPST2013), Vancouver, Canada, July 18-20, 2013. – 2013.

[46] Patel J. A. Analysis of geomagnetically induced current in transformer / J.
 A. Patel [et al.] // International conference on electrical, electronics and optimization techniques (ICEEOT). – IEEE, 2016.

[47] Schrijver C. J. Heliophysics: Space Storms and Radiation: Causes and Effects /
 C. J. Schrijver, G. L. Siscoe. – Cambridge University Press, 2010.

[48] Girgis R. Methodology for calculating the impact of GIC and GIC capability for power transformer design / R. Girgis, K. Vedante // IEEE Power & Energy Society General Meeting, 21-25 July 2013. – 2013.

[49] Отчет о функционировании ЕЭС России в 2015 году [Электронный ресурс]. – Режим доступа: http://www.so-ups.ru (30.03.2016).

[50] Козулин В. С. Положение ОАО «Россети» о единой технической политике в электросетевом комплексе / В. С. Козулин, Л. Д. Рожкова. – Москва : Энерго, 1980.

[51] ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия. – Минск, 2001.

[52] Львов М. Силовые трансформаторы на 110 кВ и выше. Будущее определит диагностика // Новости электротехники. – 2003. – № 6 (24).

[53] Бальман Р.Х. Трансформаторы малой мощности. - Судпромгиз, 1961

[54] Вольдек А. И. Электрические машины. Введение в электромеханику. Машины постоянного тока. Трансформаторы / А. И. Вольдек, В. В. Попов. – Москва : Питер, 2008. – 319 с.

[55] Electric utility experience with geomagnetic disturbances / P. R. Barnes [et al.]. – Tennessee: Oak Ridge, 1991.

[56] ГОСТ 20074-83. Электроооборудование и электроустановки. Метод измерения характеристик частичных разрядов. – Москва, 1983. – 22 с.

[57] Moodley N. Developing a power transformer low energy degradation assessment triangle / N. Moodley, C. T. Gaunt // Power Engineering Society Conference and Exposition in Africa (PowerAfrica), 2012. – 2012. – P. 1–6. [58] ГОСТ 533-85. Машины электрические (вращающиеся). Турбогенераторы. Общие технические условия. – Москва, 1985. – 16 с.

[59] Viljanen A. Modeling geomagnetically induced currents during different ionospheric situations / A. Viljanen, O. Amm, R. Pirjola // Journal of Geophysical Research: Space Physics. – 1999. – № 104. – P. 28059–28071.

[60] Хуторецкий Г. М. Проектирование турбогенераторов / Г. М. Хуторецкий,
 М. И. Токов, Е. В. Толвинская. – Ленинград : Энергоатомиздат, 1987. – 256 с.

[61] Рихтер Р. Электрические машины. Т. 1 / Р. Рихтер, Ю. С. Чечет. – Рипол Классик, 2013.

[62] Методические указания по устойчивости энергосистем. Правила и инструкции. – 2004. – 14 с.

[63] Электрооборудование станций и подстанций / ОАО "Россети". – Москва, 2013.

[64] Ozgonenel O. Correction of saturated current from measurement current transformer // Electric Power Applications, IET. – 2013. – № 7. – P. 580–585.

[65] ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия. – Минск, 2001.

[66] Чернобровов Н. В. Релейная защита. – Москва : Энергия, 1971. – 624 с.

[67] ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия. – Минск, 2001.

[68] Behaviour of transformers under dc/gic excitation: Phenomenon, impact on design/design evaluation process and modelling aspects in support of design / T. Ngnegueu [et al.] // Proceedings of the CIGRE, 2012. – 2012.

[69] Tagare D. M. Electricity Power Generation: The Changing Dimensions. – Hoboken : Wiley, 2011. – 374 p.

[70] Поссе А.В. Схема и режимы электропередач постоянного тока. - Москва: Энергия, 1973.

[71] Hammad A.E. Analysis of second harmonic instability for the Chateaguay HVDC/SVC scheme // IEEE Transactions on Power Delivery. - 1992. - 7(1). - P.410-415

[72] Chen S. HVDC converter transformer core saturation instability: a frequency domain analysis / S. Chen [et al.] // IEEE Proceedings on Generation, Transmission and

Distribution. - 1996. - 143(1).- P.75-81

[73] Карапетян И. Справочник по проектированию электрических сетей / И. Карапетян, Д. Файбисович, И. Шапиро. – Изд. 4-е, перераб. и доп. – Москва : Энас, 2012. – 377 с.

[74] Нейман Л.Р. Теоретические основы электротехники / Л.Р. Нейман, П.Л. Колонтаров ю / Москва: Госэнергиздат, 1948.

[75] Dong X. Comparative analysis of exciting current harmonics and reactive power consumption from GIC saturated transformers / S. Chen, Y. Liu, J.G. Kappenman // IEEE 2001 Power Engineering Society Winter Meeting. - 2001. - 1. - P.318-322.

[76] Power grid sensitivity analysis of geomagnetically induced currents / T. J.
 Overbye [et al.] // IEEE Transactions on Power Systems. - 2013. - № 28. - P. 4821-4828.

[77] UCTE Operation Handbook final v. 2.5 E, 24.06.2004. [Электронный ресурс]. Режим доступа: http://www.ucte.org (20.05.2016)

[78] Автоматическое противоаварийное управление режимами энергосистем. Противоаварийная автоматика жнергосистем. Условия организация процесса. Условия организация объекта. Нормы и требования: стандарт организации ОАО "CO EЭC"от 19 апреля 2011 года CTO 59012820.29.240.001.2011. – Москва, 2011.

[79] Клейменова Н. Г. Проникновение геомагнитных пульсаций РС5 на необычно низкие широты во время восстановительной фазы суперсильной магнитной бури 31 октября 2003 г. / Н. Г. Клейменова, О. В. Козырева // Солнечно-земная физика. – 2008. – № 1(12).

[80] Beggan C. D. Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models // Earth, Planets and Space. -2015. $-\mathbb{N}_{2}$ 67 (1). $-\mathbb{P}$. 1–12.

[81] Viljanen A. The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks // Geophysical research letters. – 1997. – N_{24} (6). – P. 631–634.

[82] Boteler D. H. Coast effect on electric fields [Электронный ресурс]. – Режим доступа: http://goo.gl/COcNv8 (30.03.2016).

[83] Энциклопедия Кольера. Геомагнетизм [Электронный ресурс]. – Режим доступа: http://goo.gl/cl6zMY (30.03.2016).

[84] Molinski T. Solar storms / T. Molinski, W. E. Feero, B. Damsky. – IEEE Spectrum, 2000. – November.

[85] Mandea M. Assymetric behaviour of magnetic dip poles / M. Mondea, E. Dormy // Earth, Planets and Space. - 2003. - 55(3). - P.153-157

[86] Влияние магнитных бурь на аварийность систем электроэнергетики, автоматики и связи / Воронин Н. А. [и др.] // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. – 2012. – № 2. – С. 253-266.

[87] Geomagnetically induced currents in the New Zealand power network / R. A. Marshall [et al.] // Space Weather. $-2012. - N_{\rm P} 10$ (8).

[88] Svenska Kraftnat. Statnett: Swedish Norwegian grid development – three scenarios. – News archive. – 2010.

[89] Pirjola R. Effects of interactions between stations on the calculation of geomagnetically induced currents in an electric power transmission system // Earth, planets and space. -2008. - N = 60(7). - P. 743-751.

[90] Continental scale modelling of geomagnetically induced currents / A. Viljanen [et al.] // Journal of Space Weather and Space Climate. -2012. - № 2.

[91] ГОСТ 14209-85. Трансформаторы силовые масляные общего назначения. Допустимые нагрузки (с изменением n1). – Москва, 1985

[92] Latora V. Efficient behavior of small-world networks / V. Latora, M. Marchiori // Physical review letters. - 2001. - № 87 (19).

[93] Sokolova O. Safety and reliability: Methodology and applications / O. Sokolova,P. Burgherr, W. Collenberg. - 2014.

[94] Правила технической эксплуатации электроустановок потребителей : приказ Мин-ва энергетики РФ от 13 января 2003 года № 6. – Москва, 2003.

[95] Power world grid modeling with gic and neutral blocking [Presentation at Powerworld client conference, January 22, 2013] [Электронный ресурс]. – Режим доступа: http://www.powerworld.com/files/06Emprimus.pdf

[96] Method for optimizing control actions following emergencies in large-city electric power systems / A .I. Volkov [et al.] // Power Technology and Engineering [formerly Hydrotechnical Construction]. $-2011. - N^{\circ} 45$ (1). - P. 50-52.

[97] Методика оптимизации управляющих воздействий в послеаварийных режимах энергосистемы мегаполиса / Коровкин Н. В. [и др.] // Электрические станции. – 2010. – № 11. – С. 33-36.

[98] Мониторинг и прогнозирование космической погоды [Электронный ресурс]. – Режим доступа: http://nuclphys.sinp.msu. ru/cosmw/cosmw4.htm (30.03.2016).

[99] ТЕСИС [Электронный ресурс]. – Режим доступа: http://www.tesis.lebedev.ru/ about_tesis.html (30.03.2016).

[100] Солнце не смогло оживить научный спутник "Коронас-Фотон"[Электронный pecypc]. – Режим доступа: http://ria.ru/ science/20100418/223944222.html (30.03.2016).

[101] Baker D. N. Predicting and mitigating socio-economic impacts of extreme space weather: benefits of improved forecasts / D. N. Baker, J. M. Jackson, L. K. Thompson // Extreme Natural Events, Disaster Risks and Societal Implications. – 2014. – P. 113–125.

[102] Центр прогнозов космической погоды (ИЗМИРАН) [Электронный ресурс]. – Режим доступа: http://forecast.izmiran.ru (30.03.2016).

[103] Single event effect [Электронный ресурс]. – Режим доступа: http://radhome. gsfc.nasa.gov/radhome/see.htm (30.03.2016).

[104] Space situational awareness, esa [Электронный ресурс]. – Режим доступа: http://www.esa.int/Our_Activities/Operations/ Space_Situational_Awareness (30.03.2016).

[105] Review of mitigation technologies for terrestrial power grids against space weather effects / M. Johnson [et al.] // International Journal of Electrical Power & Energy Systems. $-2016. - N_{\rm e} 82. - P. 382-391.$

[106] Affects [Электронный ресурс]. – Режим доступа: http://www.affects-fp7.eu (30.03.2016).

[107] Solar shield: forecasting and mitigating space weather effects on high-voltage power transmission systems / A. Pulkkinen [et al.] // Natural hazards. – 2010. – № 53 (2).
– P. 333–345.

[108] Единая энергетическая система России [Электронный ресурс]. – Режим доступа: http://so-ups.ru/index.php?id=ees (30.03.2016).

[109] Объединенная энергосистема Северо-Запада [Электронный ресурс]. – Режим доступа: http://so-ups.ru/index.php?id= oes_northwest (30.03.2016).

[110] Объединенная энергосистема Сибири [Электронный ресурс]. – Режим

доступа: http://so-ups.ru/index.php?id=oes_siberia (30.03.2016).

[111] Объединенная энергосистема Юга [Электронный ресурс]. – Режим достуna: http://so-ups.ru/index.php?id=oes_south (30.03.2016).

[112] Объединенная энергосистема Центра [Электронный ресурс]. – Режим доступа: http://so-ups.ru/index.php?id=oes_center (30.03.2016).

[113] Объединенная энергосистема Востока [Электронный ресурс]. – Режим доступа: http://so-ups.ru/index.php?id=oes_east (30.03.2016).

[114] Функционирование и развитие электроэнергетики Российской Федерации в 2008 году. – Москва, 2009. – 329 с.

[115] Характеристика ограничений передачи электрической мощности в ЕНЭС [Электронный pecypc]. – Режим доступа: http://www.fsk-ees.ru/media/File/evolution/Pril1. doc (30.03.2016).

[116] Improved availability of 735 kV transmission system by means of series capacitors [Электронный ресурс]. – Режим доступа: https://library.e.abb.com/public/ab1c 846e5c820bf2c1256fda003b4d51/ A02-01460E_HQ_LR.pdf

[117] Perrow C. Normal accidents / C. Perrow. – 1999. – 464 p.

[118] Clinton W. J. Executive order 13010-critical infrastructure protection //
 Federal Register. - 1996. - № 61 (138). - P. 37347-37350.

[119] Pursiainen C. The challenges for European critical infrastructure protection // European Integration. – 2009. – № 31 (6). – P. 721–739.

[120] Gordon K. Protection of critical infrastructure and the role of investment policies relating to national security. Investment Division, Directorate for Financial and Enterprise Affairs, Organisation for Economic Co-operation and Development / K. Gordon, M. Dion. – Paris, 2008.

[121] Васенин В.А. Критическая энергетическая инфраструктура: кибертерростическая угроза и средства противодействия. [Электронный ресурс]. Режим доступа: http://www.iisi.msu.ru/UserFiles/File/bayern2009/vasenin_pres.ppt (20.05.2016)

[122] О Стратегии национальной безопасности Российской Федерации до 2020 года : указ Президента РФ от 12.05. 2009 № 537 // Российская газета. – 2009. – № 19.

[123] Об утверждении приоритетных направлений развития науки, технологий и техники в Российской Федерации и перечня критических технологий Российской Федерации : указ Президента РФ от 7 июля 2011 г. № 899. – Москва, 2011.

[124] Перечень системообразующих предприятий от 8 февраля 2015 / Минэкономразвития России. – Москва, 2015.

[125] Авария в энергосистеме Москвы 25 мая 2005 года. Досье [Электронный pecypc]. – Режим доступа: // http://tass.ru/info/1992764 (23.09.2016).

[126] Энергоколлапса, подобного пятничному, в России еще не было [Электронный ресурс]. – Режим доступа: http://goo.gl/Vctxff (30.03.2016).

[127] Отключение электроэнергии затронуло 40% территории Петербурга. [Электронный ресурс]. – Режим доступа: http://goo.gl/OMrfk9l (30.03.2016).

[128] Отключения электроэнергии произошли в 19-ти медучреждениях [Электронный pecypc]. – Режим доступа: http://goo.gl/6rfjKi (30.03.2016).

[129] Техногенная катастрофа в Москве - отключилось все электричество [Электронный pecypc]. – Режим доступа: http://www.newsru.com/russia/25may2005/mnpz.html (30.03.2016).

[130] В Санкт-Петербурге произошел масштабный блэкаут [Электронный реcypc]. – Режим доступа: https://www.vedomosti.ru/library/articles/2010/08/20/v_sankt peterburge_proizoshel_masshtabnyj_ blekaut (30.03.2016).

[131] В Москве на регулирование дорожного движения выведен весь личный состав ГИБДД [Электронный ресурс]. – Режим доступа: http://www.newsru.com/russia/ 25may2005/gibdd.html (30.03.2016).

[132] Отключение электричества в Петербурге вызвало сбой в работе метро [Электронный ресурс]. – Режим доступа: http://ria.ru/incidents/20100820/267351546. html (30.03.2016).

[133] Санкт-Петербург остался без электричества [Электронный ресурс]. – Режим доступа: http://lenta.ru/news/2010/08/20/ piter/ (30.03.2016).

[134] Питьевая вода в Петербурге стала дефицитом из-за энергетического коллапса [Электронный ресурс]. – Режим доступа: http://www.gazeta.ru/news/lenta/2010/ $08/20/n_1536745.html$ (30.03.2016).

[135] Из-за энергетической аварии в Петербурге было задержано 68 электричек и 6 поездов [Электронный ресурс]. – Режим доступа: http://www.baltinfo.ru/2010/08/21/ Iz-za-energeticheskoi-avarii-v-Peterburge-bylo-zaderzhano-68-elektrichek-i-6-poezdov-158829 (30.03.2016).

[136] На юге Москвы начали таять промышленные "холодильники"с продовольствием [Электронный ресурс]. – Режим доступа: http://www.newsru.com/russia/25 may2005/meat.html (30.03.2016).

[137] Конец света [Электронный ресурс]. – Режим доступа: http://www.newizv.ru/ accidents/2005-05-26/24973-konec-sveta.htm (30.03.2016).

[138] Пояков А. 10 лет после Чагино // Корпоративный бюллетень ОАО Системный оператор Единой энергетической системы. – 2015. – № 17 (1). – С. 1–7.

[139] Блэкаут унес миллионы. [Электронный ресурс]. – Режим доступа: http://www.gazeta.ru/business/2010/08/23/3409948. shtml (30.03.2016).

[140] Взаимодействие диспетчеров Ленинградского РДУ с региональным подразделением МЧС в ходе устранения последствий аварии на ПС Восточная осуществлялось в полном соответствии с действующими регламентирующими документами [Электронный pecypc]. – Режим доступа: http://www.so-ups.ru/index.php?id=odu_northwest _news_view&tx_ttnews5Btt_news5D=2094 (30.03.2016).

[141] Энергосбой в Петербурге затронул 300 банкоматов Сбербанка [Электронный ресурс]. – Режим доступа: http://www.gazeta.ru/news/lenta/2010/08/22/n_1537164. shtml (30.03.2016).

[142] Worldwide index of the automotive industry [Электронный ресурс]. – Режим доступа: http://www.automotive-index.com (30.03.2016).

[143] О внесении изменений в статью 16 Федерального закона «Об охране окружающей среды» и отдельные законодательные акты Российской Федерации : указ Президента РФ. Федеральный закон от 30.12.2008 № 309-ФЗ. – Москва, 2008.

[144] ГОСТ Р22.0.06-95. Безопасность в чрезвычайных ситуациях. Источники природных чрезвычайных ситуаций. Поражающие факторы. Номенклатура параметров поражающих воздействий. – Москва, 1996.

[145] Правила устройства электроустановок / Минэнерго России. – 7-е изд. – Москва : Изд-во НЦ ЭНАС, 2002.

[146] О единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций : постановление от 30 декабря 2003 г. № 794. – Москва, 2003.

[147] Проектирование зданий медицинских учреждений : приказ Минрегио-

нразвития России : СНиП 2.08.02-89. – Москва, 2011.

[148] О классификации чрезвычайных ситуаций природного и техногенного характера : постановление Правительства РФ от 21 мая 2007 г. № 304. – Москва, 2007.

[149] Maynard T. Solar storm risk to the North American electric grid / T. Maynard [et al.] // Lloyd's, 2013

[150] Об утверждении порядка создания и использования тепловыми электростанциями запаса топлива, в том числе в отопительный сезон : приказ Минэнерго РФ от 22 августа 2013 года № 469. – Москва, 2013.

[151] Об утверждении правил расследования причин аварий в электроэнергетике : постановление Правительства РФ от 28 октября 2009 г. № 846. – Москва, 2009.

Список иллюстраций

1.1	Статистика числа системных аварий в ЭЭС мира за последние 50 лет .	8
1.2	Число людей (в миллионах человек), пострадавших от недоотпуска	
	электроэнергии	8
1.3	Схема расположения точек измерения в ЭЭС Кольского полуострова [21]	13
1.4	Характер изменения числа Вольфа в солнечных циклах [26]	14
1.5	Пути протекания ГИТ в контурах энергосистемы	17
1.6	Пути протекания ГИТ в контурах энергосистемы при установке группы	
	однофазных трансформаторов	17
1.7	График изменения тока в глухозаземленной нейтрали трансформатора	
	на ПС 330 кВ Выходной 1 июня 2013 года	19
1.8	График тока на ПС 330 кВ Лоухи во время геомагнитной бури 17.07.2012	
	года (наверху); сигнал после удаления удаления постоянной составляю-	
	щей (внизу)	20
1.9	График тока на ПС 330 кВ Лоухи во время геомагнитной бури 17.07.2012	
	года после интерполяции сигнала	21
1.10	Оригинал тока после интерполяции: красным цветом обозначены дан-	
	ные измерений, синему цвету соответствуют точки "разглаженного"сигнала	21
1.11	Функция Кейзера при величине константы β равной 20 (наверху) Ори-	
	гинал тока после применения оконного преобразования (внизу)	21
1.12	Гармонический спектр тока	22
1.13	Схематичное изображение межсистемного характера оперирования	
	энергосистемы	23
1.14	График изменения числа солнечных пятен в 23м и 24м солнечных	
	циклах [33]	25

2.1	Алгоритм расчета ГИТ	28
2.2	Модель линейного тока	29
2.3	1-D модель проводимости подстилающей породы	32
2.4	Геометрическая модель задачи	32
3.1	Вид магнитной индукции B и тока возбуждения I силового трансфор-	
	матора при наличии геомагнитно индуцированного тока [44]	38
3.2	Количественное распределение трансформаторов в ЕЭС России по	
	классам напряжения	40
3.3	Соотношение количества силовых трансформаторов, находящихся в	
	эксплуатации более 25 лет в разрезе классов напряжения	41
3.4	Магнитная цепь трёхфазного трёхстержневого трансформатора	43
3.5	Магнитная цепь трёхфазного пятисержневого трансформатора	43
3.6	Относительная восприимчивость силовых трансформаторов к нега-	
	тивным электромагнитным эффектам геомагнитых бурь как функция	
	конструкции	44
3.7	Форма кривой потока	45
3.8	Треугольник деградации изоляции трансформатора	47
3.9	Распределение высших гармоник при насыщении однофазного стерже-	
	нового трансформатора	48
3.10	Распределение высших гармоник при насыщении трёхфазного пяти-	
	стержневого трансформатора	52
3.11	Схема замещения трансформатора тока	53
3.12	Кривая намагничивания сплава Ni-Fe	54
3.13	Кривая намагничивания сплава Si-Fe	54
3.14	Структурная схема трёхфазной максимальной токовой защиты	55
3.15	Структурная схема дифференциальной токовой защиты	56
3.16	Структурная схема дистанционной токовой защиты	57
3.17	Схема замещения трансформатора напряжения	58
4.1	Группы факторов, определяющих устойчивость энергосистемы к гео-	
	магнитным бурям	72

4.2	Мировая карта изогон [83]	75
4.3	Карта вероятности возникновения геомагнитной бури интенсивностью	
	выше ЗООнТл/мин	75
4.4	Эквивалентная схема ЭЭС Скандинавии	78
4.5	Эквивалентная схема ЭЭС Скандинавии как функция геомагнитной	
	широты	79
4.6	Иитенсивность магнитной индукци и $B,$ н Тл для ГМБ силой $K_p=9$ как	
	функция геомагнитной широты	80
4.7	Граф схемы центрального энергорайона ЭЭС Якутии в режиме зимнего	
	максимума нагрузки в 2014 году	86
4.8	Граф схемы центрального энергорайона ЭЭС Якутии в режиме зим-	
	него максимума нагрузки в 2014 году при потере трансформаторного	
	оборудования на ПС 220 кВ Рабочая	86
4.9	Граф схемы центрального энергорайона ЭЭС Якутии в режиме зим-	
	него максимума нагрузки в 2014 году при потере трансформаторного	
	оборудования на ПС 220 кВ Городская	86
4.10	Граф схемы центрального энергорайона ЭЭС Якутии в режиме зим-	
	него максимума нагрузки в 2014 году при потере трансформаторного	
	оборудования на ПС 220 кВ Сунтар	87
4.11	Граф схемы центрального энергорайона ЭЭС Якутии в режиме летнего	
	минимума нагрузки в 2014 году	87
4.12	Граф схемы центрального энергорайона ЭЭС Якутии в режиме лет-	
	него минимума нагрузки в 2014 году при потере трансформаторного	
	оборудования на ПС 220 кВ Рабочая	87
4.13	Граф схемы центрального энергорайона ЭЭС Якутии в режиме лет-	
	него минимума нагрузки в 2014 году при потере трансформаторного	
	оборудования на ПС 220 кВ Городская	88
4.14	Граф схемы центрального энергорайона ЭЭС Якутии в режиме лет-	
	него минимума нагрузки в 2014 году при потере трансформаторного	
	оборудования на ПС 220 кВ Сунтар	88
4.15	Графическое представление метода критической компоненты	92

4.16	Текущие и планируемые космические миссии по прогнозированию и
	изучению космической погоды [99] 94
4.17	Пример представления данных о состоянии космической погоды, пред-
	ставляемой ИЗМИРАН [102] 95
4.18	Алгоритм поиска узких мест энергосистемы к негативным электромаг-
	нитным эффектам геомагнитных бурь
4.19	Описание структуры слоев
4.20	Описание структуры слоев и графической визуализации 106
4.21	Графическая визуализация узких мест ОЭС Сибири при воздействии
	сильных геомагнитных бурь 107
4.22	Диаграмма мер защиты энергосистем от воздействий геомагнитных бурь108
4.23	Общая схема размещения устройств продольной компенсации на линиях
	735 кВ системы Hydro Quebec [116]
5.1	Характер и степень косвенного воздействия геомагнитных бурь на
	критические инфраструктуры
5.2	Диаграмма развития фаз энергоаварии
5.3	Звезда выбора алгоритма управления энергосистемой во время геомаг-
	нитных бурь
E.1	Блочная модель проводимости подстилающей породы в Европе 169
G.1	Схема Центрального энергорайона ЭЭС Якутии в режиме зимнего
	максимума нагрузки в 2014 году
G.2	Схема Центрального энергорайона ЭЭС Якутии в режиме летнего
	0014

Список таблиц

1.1	Перечень геомагнитных бурь, приведших к существенным сбоям в	
	работе технических систем	10
1.2	Воздействия геомагнитных бурь на режим энергосистемы как функция	
	силы геомагнитных бурь	16
1.3	Гармонический состав геомагнитно индуцированных токов в нейтралях	
	сисловых трансформаторов на ПС 330 кВ Кондопога: ПС 330 кВ Лоухи	
	и ПС 330 кВ Выходной во время геомагнитных бурь 17 июля 2012 года	
	и 1 июня 2013 года	20
2.1	Эквивалентная глубина проникновения электромагнитной волны в мет-	
	рах как функция частоты и проводимости грунта	31
3.1	Величины основных и добавочных потерь от высших гармоник	51
3.2	Устойчивость оборудования энергосистемы к эффектам геомагнитных	
	бурь	61
3.3	Анализ перечня нормативных возмущений в ЕЭС России и Объединен-	
	ной энергосистемы Европы	65
3.4	Сравнительный анализ управляющих воздействий в ЕЭС России и	
	ENTSO-E	68
4.1	Наибольшие значения ГИТ за период июнь 1991 - май 1992 на линии	
	400 кВ Нурмияарви - Ловииса	73
4.2	Результаты расчета ГИТ в ЭЭС Скандинавии	81
4.3	Характеристики подстанций центрального энергорайона энергосистемы	
	Якутии	85

4.4	Параметры графа нормальной режима зимнего максимума нагрузки
	2014 года
4.5	Эффективность схемы сети центрального энергорайона ЭЭС Якутии . 90
4.6	Значения ГИТ в нейтралях силовых трансформаторов как функция
	места установки токоограничивающего резистора
4.7	Протяженность ВЛ по классам напряжений в ОЭС по состоянию на 31
	декабря 2008 года
4.8	Протяженность связей в ОЭС Сибири, Ханты-Мансийском и Ямало-
	Ненецком энергорайонах
5.1	Сравнительная характеристика воздействия энергоаварий в Москве 25
	мая 2005г и Санкт-Петербурге 20 августа 2010г на взаимозависимые
	критические инфраструктуры 119
A.1	Хронология 11-летних циклов солнечной активности
C.1	Пределы допускаемых погрешностей вторичных обмоток для измерения
	и учета в рабочих условиях при установившихся режимах 162
D.1	Параметры схемы замещения энергосистемы Скандинавии 163
E.1	Параметры блоков
F.1	Геомагнитно индукцированные токи в энергосистеме Скандинавии при
	различных геомагнитных сценариях

Солнечные циклы

Количественные данные о солнечной активности стали фиксироваться около 1750 года. Отчет первого солнечного цикла ведется с 1755 года. Средняя продолжительность цикла принята, равной 11 годам. Мерой оценки фазы солнечного цикла являются солнечные пятна – числовой показатель солнечной активности, введённый Рудольфом Вольфом, профессором Высшей Технической школы Цюриха, Швейцария, в 1848 году. Таким образом, характер и интенсивность появления и исчезновения солнечных пятен является основой для отсчета солнечных циклов. Цикл характеризуется быстрым (около 4 лет) увеличением числа солнечных пятен, и последующим его уменьшением.

№ цикла	Начало	Конец	№ цикла	Начало	Конец
1	1755	1766	13	1887	1898
2	1766	1777	14	1898	1909
3	1777	1788	15	1909	1920
4	1788	1799	16	1920	1931
5	1799	1810	17	1931	1942
6	1810	1821	18	1942	1953
7	1821	1832	19	1953	1964
8	1832	1843	20	1964	1975
9	1843	1854	21	1975	1986
10	1854	1865	22	1986	1997
11	1865	1876	23	1997	2008
12	1876	1887	24	2008	2019

Таблица А.1. Хронология 11-летних циклов солнечной активности

В Система геомагнитных индексов

Каждая ГМБ по своим основным характеристикам является сугубо индивидуальной по силе и характеру воздействия. Для оценки возмущения используется система индексов, так называемые магнитные индексы. Наиболее популярными из них являются следующие.

К-индекс, логарифмически ранжированный от 1 до 9 на подобии шкалы Рихтера, используемой для оценки силы землетрясения. Индекс соответствует отклонению (среднего за 3-часовой период) *Н*-компоненты магнитного поля от некоторого среднего значения в спокойных условиях.

 K_p - индекс, планетарное представление *K*-индекс, получаемое осреднением значений, измеренных на 13 выбранных геомагнитных станциях (11 в северном полушарии и 2 в южном). Индекс вычисляется с 1932 года в Институте Геофизики в Геттингене (Германия).

 D_{st} , индекс, характеризующий меру интенсивности кольцевого тока, проявляющегося во внутренней магнитосфере только во время ГМБ. Индекс вычисляется ежечасно в университете Киото (Япония) по данным вариации Н-компоненты магнитного поля, на четырёх станциях в низкоширотной зоне. Он показывает уменьшение горизонтальной составляющей магнитного поля.

AE – индекс, характеризующий силу авроальных токов (электроджет), также вычисляемый в университете Киото

С Пределы допустимых погрешностей трансформаторов тока

Таблица С.1. Пределы допускаемых погрешностей вторичных обмоток для измерения
и учета в рабочих условиях при установившихся режимах

Класс точно-	Переменный ток, % номинального	Предел допускаемой погрешности						
сти	значения							
		Токовой %	овой					
0.1	5	± 0.4	±15′	±0.45 срад				
	20	± 0.2	$\pm 8'$	±0.24 срад				
	100-120	± 0.1	$\pm 5'$	±0.15 срад				
0.2	5	± 0.75	$\pm 30'$	±0.9 срад				
	20	± 0.35	$\pm 15'$	±0.45 срад				
	100-120	± 0.2	$\pm 10'$	±0.3 срад				
0.2S	1	± 0.75	$\pm 30'$	±0.9 срад				
	5	± 0.35	$\pm 15'$	±0.45 срад				
	20	± 0.2	$\pm 10'$	±0.3 срад				
	100	± 0.2	$\pm 10'$	±0.3 срад				
	120	± 0.2	$\pm 10'$	±0.3 срад				
0.5	5	± 1.5	$\pm 90'$	±2.7 срад				
	20	± 0.75	$\pm 45'$	±0.35 срад				
	100-120	± 0.5	$\pm 30'$	±0.9 срад				
0.5S	1	± 1.5	$\pm 90'$	±2.7 срад				
	5	± 0.75	$\pm 45'$	±1.35 срад				
	20	± 0.5	$\pm 30'$	±0.9 срад				
	100	± 0.5	$\pm 30'$	±0.9 срад				
	120	± 0.5	$\pm 30'$	±0.9 срад				
1	5	± 3.0	$\pm 180'$	±5.4 срад				
	20	± 1.5	$\pm 90'$	±2.7 срад				
	100-120	± 1.0	$\pm 60'$	±1.8 срад				

D Параметры схемы замещения энергосистемы Скандинавии

Номер узла	Наимено- вание	Коорди- наты	Номер узла	Наимено- вание	Коорди- наты	Длина линии,	Сопротив-
						KM	ление, Ом
1	ПС 400 кВ	69 ⁰ 32'02''N	2	ПС 400 кВ	70 ⁰ 66'94"N	367	2.936
	Balsfjord	19 ⁰ 32'86''E		Hammerfest	23 ⁰ 68'26''E		
2	ПС 400 кВ	70 ⁰ 66'94''N	3	$\Pi C 150 \ \kappa B$	70 ⁰ 36'12''N	300	4.8
	Hammerfest	23 ⁰ 68'26''E		Adamselv	26 ⁰ 49'99''E		
3	ПС 150 кВ	70 ° 36'12''N	4	$\Pi C 150 \ \kappa B$	70 ⁰ 17'58''N	100	1.6
	Adamselv	26 ⁰ 49'99''E		Varngebotn	28 ⁰ 55'89''E		
4	ПС 150 кВ	70 ⁰ 17'58''N	5	ПС 220 кВ	69 ⁰ 72'95''N	90	1.08
	Varngebotn	28 ⁰ 55'89"E		Utsjoki	26 ⁰ 71'87''E		
5	ПС 220 кВ	69 ⁰ 72'95''N	6	ПС 220 кВ	68 ⁰ 75'62''N	130	1.56
	Utsjoki	26 ⁰ 71'87"E		Ivalo	27 ⁰ 54'27''E		
6	ПС 220 кВ	68 ⁰ 75'62''N	7	ПС 220 кВ	67 ⁰ 78'43''N	120	1.44
	Ivalo	27 ⁰ 54'27''E		Vajukoski	26 ⁰ 88'35''E		
1	ПС 400 кВ	69 ⁰ 32'02''N	8	ПС 400 кВ	68 ⁰ 24'11''N	153	1.224
	Balsfjord	19 ⁰ 32'86''E		Ofoten	17 ⁰ 44'26''E		
8	ПС 400 кВ	68 ⁰ 24'11''N	9	$\Gamma \Im C$ Ritsen	67 ⁰ 71'95''N	80	0.64
	Ofoten	17 ° 44'26"E			17 ⁰ 47'90''E		
9	$\Gamma \Im C$ Ritsen	67 ⁰ 71'95"N	10	$\Gamma \Im C$ Vietas	67 ⁰ 52'30''N	52	0.416
		17 ° 47'90''E			18 ⁰ 37'90''E		
10	$\Gamma \Im C$ Vietas	67 ⁰ 52'30''N	11	ГЭС Porjus	66 ⁰ 95'91"N	85	0.68
		18 ° 37'90''E			19 ⁰ 85'72"E		
11	ГЭС Porjus	66 ⁰ 95'91"N	12	ГЭС	66 ⁰ 89'43''N	8	0.064
	-	19 ⁰ 85'72''E		Harspranget	19 ⁰ 83'37"E		
12	ГЭС	66 ⁰ 89'43''N	13	ГЭС Ligga	66 ⁰ 82'54"N	5	0.04
	Harspranget	19 ⁰ 83'37"E		~~	19 ⁰ 88'01"E		
13	ГЭС Ligga	66 ⁰ 82'54''N	14	ГЭС	66 ⁰ 75'10''N	27	0.216
	~~	19 ⁰ 88'01"E		Messaure	20 ⁰ 19'96''E		

Таблица D.1. Параметры схемы замещения энергосистемы Скандинавии

Номер узла	Наимено- вание	Коорди- наты	Номер узла	Наимено- вание	Коорди- наты	Длина линии,	Сопротив-
						KM	ление, Ом
14	ГЭС	66 ⁰ 75'10''N	15	ГЭС Letsi	66 ⁰ 43'14"N	45	0.36
10	Messaure	20°19′96″E	1 -	TOCI	20°60′67″E	50	0.4
12	ГЭС	66°89'43″N	15	T'9C Letsi	66°43′14″N	50	0.4
_	Harspranget	19°83′37″E	1.0	TD C	20°60′67″E	110	1.0.0
7	ПС 220 кВ	67°78'43"N	16	ГЭС	64°25′99″N	410	4.92
-	Vajukoski	26°88′35″E	1 🗖	Petäjäskoski	24°59′28″E	150	- 1
7	ПС 220 кВ	67°78'43"N	17	T9C	64°41′21″N	450	5.4
1.0	Vajukoski	26°88′35″E	1 🗖	Pirttikoski	24°31′01″E	22	0.104
16	19C	64°25′99″N	17	T9C	64°41′21″N	23	0.184
0	Petajaskoski	24°59′28″E	10	Pirttikoski	24°31'01"E	150	1.0
8	ПС 400 кВ	68°24'11''N	18	19C Koblev	67°59′66″N	150	1.2
11	Utoten	1/°44′20″E	10	FDO	15°95'21''E	205	9.6
11	I 90 Porjus	00°95'91''N	19		04°90'58'IN	325	2.0
15	DOCI at at	$19^{\circ}85'/2'E$	20	Grundiors	$17^{\circ}02^{\circ}11^{\circ}E$	450	2.6
10	I SC Letsi	$00^{\circ}45$ 14 N 20060'67''E	20	IIC 400 KD	16090/01/	400	3.0
19		$20^{\circ}0007 \text{ E}$	01	Detasen	$10^{\circ} 80 01 E$	<u>102</u>	1 694
19	I SC Ligga	100 82 34 IN	21	190 Varafora	$10^{0}62^{\circ}06^{\circ}F$	205	1.024
17	ГЭС	$19\ 86\ 01\ E$ $66^{0}75'10''N$	າາ	$\Pi C 400 \text{ wB}$	19 03 00 E	140	19
14	Mossauro	20070100		Svarthyn	20 ⁰ 20 ⁰ 20 ¹ N	140	1.2
<u> </u>	$\Pi C 400 \text{ wB}$	$65^{0}80'20''N$	94	$\Pi C 400 \nu B$	$64^{0}01'40''N$	100	0.8
20	Kominmaa	$24^{0}54'50''E$	24	Pikkarala	$25^{0}76'43''E$	100	0.0
24	$\Pi C 400 \text{ kB}$	$64^{0}01'40''N$	25	$\Pi C 400 \text{ kB}$	$62^{0}/3'36''N$	350	28
21	Pikkarala	$25^{0}76'43''E$	20	Pyhänselkä	29 ⁰ 97'01''E	000	2.0
16	ГЭС	$64^{0}25'99''N$	25	ПС 400 кВ	$62^{0}43'36''N$	46	0.368
10	Petäjäskoski	$24^{0}59'28''E$	20	Pyhänselkä	$29^{0}97'01''E$	10	0.000
17	ГЭС	$64^{0}41'21''N$	24	ПС 400 кВ	$64^{0}91'40''N$	80	0.64
	Pirttikoski	$24^{0}31'01''E$		Pikkarala	$25^{0}76'43''E$	00	0.01
18	ГЭС Koblev	67 ⁰ 59'66''N	26	ГЭС	$66^{0}73'55''N$	200	1.6
		15 ⁰ 95'21"E	_ •	Svartisen	13 ⁰ 91'41"E		
19	ГЭС	64 ⁰ 96'58''N	27	ГЭС	63 ⁰ 60'19''N	320	2.56
-	Grundfors	17 ⁰ 62'11''E		Stornfinnforse	en16 ⁰ 13'41"E		
20	ПС 400 кВ	63 ⁰ 55'31''N	28	ГЭС	63 ⁰ 56'49''N	3	0.024
	Betasen	16 ⁰ 80'01''E		Kilforsen	16 ⁰ 75'28"E		
21	ГЭС	65 ⁰ 04'51''N	29	ПС 400 кВ	63 ⁰ 20'21''N	280	2.24
	Vargfors	19 ⁰ 63'06''E		Hjalta	17 ⁰ 15'03"E		
22	ПС 400 кВ	66 ⁰ 26'20''N	30	ГЭС	63 ⁰ 86'06''N	310	2.48
	Svartbyn	22 ⁰ 85'42''E		Stomorrfors	20 ⁰ 05'17"E		
65	ПС 400 кВ	61 ⁰ 01'77''N	84	ВПТ 400 кВ	60 ⁰ 68'10''N	60	0.48
	Yillikàlà	27 ⁰ 68'98"E		Vyborg	28 ⁰ 83'05"E		

Продолжение Табл. D.1

Номер узла	Наимено- вание	Коорди- наты	Номер узла	Наимено- вание	Коорди- наты	Длина линии,	Сопротив-
			0			KM	ление, Ом
28	ГЭС	63 ⁰ 56'49''N	29	ПС 400 кВ	63 ⁰ 20'21''N	55	0.44
	Kilforsen	16 ⁰ 75'28''E		Hjalta	17 ⁰ 15'03"E		
29	ПС 400 кВ	63 ⁰ 20'21''N	30	ГЭС	63 ⁰ 86'06''N	187	1.496
	Hjalta	17 ⁰ 15'03"E		Stomorrfors	20 ⁰ 05'17"E		
24	ПС 400 кВ	64 ⁰ 91'40''N	33	ПС 400 кВ	63 ⁰ 00'97''N	240	1.76
	Pikkarala	25 ° 76'43''E		Alajärvi	23 ⁰ 81'52"E		
31	ТЭС	63 ⁰ 09'00''N	32	ТЭС	62 ⁰ 79'59''N	55	0.44
	Vaskiliuoto	21 ⁰ 57'79''E		Seinäjoki	22 ⁰ 83'33"E		
32	ТЭС	62 ⁰ 79'59''N	33	ПС 400 кВ	63 ⁰ 00'97''N	55	0.44
	Seinäjoki	22 ⁰ 83'33"E		Alajärvi	23 ⁰ 81'52"E		
33	ПС 400 кВ	63 ⁰ 00'97"N	34	ПС 400 кВ	62 ⁰ 36'90"N	125	1
	Alajärvi	23 ⁰ 81'52"E		Vihtavuori	25 ⁰ 90'23"E		
34	ПС 400 кВ	62 ⁰ 36'90''N	35	ТЭС	62 ⁰ 24'71''N	100	0.8
	Vihtavuori	25 ⁰ 90'23"E		Huutokoski	27 ⁰ 50'44"E		
26	ГЭС	66 ⁰ 73'55''N	36	ГЭС	66 ⁰ 19'60''N	150	1.2
	Svartisen	13°91'41"E		Rossaga	13°79'88"E		
27	ГЭС	63°60'19"N	37	ГЭС	63 ⁰ 53'27''N	15	0.12
	Stornfinnforse	en16°13'41"E		Ramsele	16°46'21"E		
19	ГЭС	64 ⁰ 96'58''N	37	ГЭС	63°53'27"N	310	2.48
	Grundfors	17°62'11"E		Ramsele	16°46'21"E		
29	ПС 400 кВ	63°20'21"N	38	ПС 400 кВ	61°80'68"N	473	1.892
	Hjalta	17°15'03"E		Stackbo	14°76'56"E		
38	ПС 400 кВ	61°80'68''N	39	АЭС	60°24'12"N	73	0.584
	Stackbo	14°76'56"E		Forsmark	18°10'0''E		
40	AGC Meri-	61°370'54"N	N41	ПС 400 кВ	61°43'09"N	20	0.16
	Poro	21°24'24''E		Ulvila	21°87'48"E		
31	ТЭС	63°09'00''N	41	ПС 400 кВ	61°43'09"N	190	1.52
22	Vaskiliuoto	21°57″79″E	4.4	Ulvila	21°87′48″E	1 = 0	1.00
32	ТЭС	62°79′59″N	41	ПС 400 кВ	61°43′09″N	170	1.36
4.4	Seinäjoki	22°83′33″E	10	Ulvila	21°87′48″E	100	1 0 0 0
41	ПС 400 кВ	61°43′09″N	42	ПС 400 кВ	61°46′45″N	129	1.032
22	Ulvila	21°87′48″E	10	Kangasala	24°07′21″E	220	1 50
33	ПС 400 кВ	63°00′97″N	42	ПС 400 кВ	61°46′45″N	220	1.76
9.4	Alajarvi	23°81′52″E	40	Kangasala	24°07′21″E	150	1.0
34	IIC 400 KB	62°36'90"N	42	ПС 400 кВ	61°46′45″N	150	1.2
49	Vihtavuori	25°90′23″E	4.4	Kangasala	24°07′21″E	100	9.0
43	TOC Fordal	61°19′35″N	44	TOC Aura	62°67′64″N	400	3.2
0.0	in Sogn	7°02′02″E			8°55′14″E	790	0.70
36	ГЭС	66°19′60″N	44	T O C Aura	62°67′64″N	730	3.76
	Kossaga	13°79'88''E			8°55′14″E		

Продолжение Табл. D.1

Номер узла	Наимено- вание	Коорди- наты	Номер узла	Наимено- вание	Коорди- наты	Длина линии,	Сопротив-
-			•			KM	ление, Ом
44	ГЭС Aura	62 ⁰ 67'64"N 8 ⁰ 55'14"E	45	ГЭС Nea	63 ⁰ 19'41"N 11 ⁰ 86'88"E	200	1.84
45	ГЭС Nea	63 ⁰ 19'41"N 11 ⁰ 86'88"E	46	ГЭС Midskog	63 ⁰ 24'83"N 15 ⁰ 21'75"E	240	1.92
27	ГЭС Stornfinnforse	63 ⁰ 60'19"N en16 ⁰ 13'41"E	46	ГЭС Midskog	$63^{0}24'83''N$ $15^{0}21'75''E$	65	0.52
37	ГЭС Bamsele	63 ⁰ 53'27"N 16 ⁰ 46'21"E	46	ГЭС Midskog	$63^{0}24'83''N$ $15^{0}21'75''E$	75	0.6
46	ГЭС Midskog	$63^{0}24'83"N$ $15^{0}21'75"E$	47	ПС 400 кВ Hallsberg	$59^{0}06'98''N$ $15^{0}10'02''E$	570	2.28
20	ПС 400 кВ Betasen	63 ⁰ 55'31"N 16 ⁰ 80'01"E	47	ПС 400 кВ Hallsberg	$59^{0}06'98''N$ $15^{0}10'02''E$	535	4.28
38	ПС 400 кВ Stackbo	$61^{0}80'68"N$ $14^{0}76'56"E$	48	ПС 400 кВ Hamra	$61^{0}65'90"N$ $15^{0}08'86"E$	190	1.52
39	A O Forsmark	$60^{0}24'12"N$ $18^{0}10'0"E$	49	ПС 400 кВ Stocholm	59 ⁰ 34'27"N 18 ⁰ 07'01"E	145	1.16
41	ПС 400 кВ Ulvila	$61^{0}43'09"N$ $21^{0}87'48"E$	50	A9C Olkiluoto	$61^{0}23'8"N$ $21^{0}47'57"E$	40	0.16
50	A Olkiluoto	$61^{0}23'8"N$ $21^{0}47'57"E$	51	ПС 400 кВ Huitinnen	61 ⁰ 17'71''N 22 ⁰ 69'82''E	80	0.32
42	ПС 400 кВ Kangasala	$61^{0}46'45''N$ $24^{0}07'21''E$	51	ПС 400 кВ Huitinnen	$61^{0}17'71"$ N $22^{0}69'82"$ E	85	0.68
43	Γ O C Fordal in Sogn	$61^{0}19'35"N$ $7^{0}02'02"E$	52	ГЭС Fidsfiord	$60^{0}47'34"N$ $7^{0}07'52"E$	120	0.96
52	П Sogn ГЭС Fidsfiord	$60^{0}47'34''N$ $7^{0}07'52''F$	53	ПС 400 кВ	59 ⁰ 88'89"N	230	1.84
44	ГЭС Aura	62 ⁰ 67'64"N 8 ⁰ 55'14"F	53	ПС 400 кВ	59 ⁰ 88'89''N	260	2
52	ПС 400 кВ	59 ⁰ 88'89"N	54	ПС 400 кВ	10 71 71 E 59 ⁰ 30'97"N	80	0.64
54	ПС 400 кВ	10 71 71 E 59 ⁰ 30'97"N	55	Пазіе ПС 400 кВ	11 15 25 E $59^{0}36'83''N$ $19^{0}2292''E$	140	1.2
46	Паsie ГЭС Midskog	$11^{-15}25^{-16}E$ $63^{0}24'83''N$ $15^{0}21'75''E$	55	ПС 400 кВ Borgvik	12 93 28 E 59 ⁰ 36'83''N 12 ⁰ 93'28''E	450	3.6
55	ПС 400 кВ Borgvik	59 ⁰ 36'83"N 12 ⁰ 93'28"E	56	ПС 400 кВ Kilanda	12 [°] 93 [°] 20 [°] E 57 [°] 93 [°] 42 [°] N 12 [°] 21 [°] 66 [°] E	150	1.2
56	ПС 400 кВ Kilanda	57 ⁰ 93'42"N 12 ⁰ 21'66"F	57	ПС 400 кВ Horred	$57^{0}35'36''N$ $12^{0}47'61''F$	80	0.64
57	ПС 400 кВ Horred	57 ⁰ 35'36"N 12 ⁰ 47'61"E	58	BПТ 400 кВ Barkervd	57 ⁰ 72'16"N 14 ⁰ 53'86"E	140	0.96

Продолжение Табл. D.1

вание наты vзла вание наты vзла линии, $\mathbf{K}\mathbf{M}$ ление, Ом 59⁰06'98"N 58 57⁰72'16"N ПС 400 кВ ВПТ 400 кВ 471771.416 Hallsberg 15°10'02"E Barkervd 14⁰53'86"E 57⁰72'16"N 59 58⁰98'52"N 190 58ВПТ 400 кВ ПС 400 кВ 1.5214⁰53'86"E 16⁰59'12"E Barkervd Hadenlunda 59⁰06'98"N 59 58⁰98'52"N ПС 400 кВ ПС 400 кВ 90 0.724715⁰10'02"E 16⁰59'12"E Hallsberg Hadenlunda 58⁰98'52"N 330 61⁰65'90"N 59 ПС 400 кВ ПС 400 кВ 2.644815⁰08'86"E 16⁰59'12"E Hamra Hadenlunda 49ПС 400 кВ 59⁰34'27"N 59 ПС 400 кВ 58⁰98'52"N 110 0.88 Stocholm 18⁰07'01"E Hadenlunda 16⁰59'12"E АЭС 61⁰23'8''N 60 ВПТ 400 кВ 61⁰13'20''N 18 500.07221⁰47'57"E 21⁰50'61"E Olkiluoto Rauma 61⁰17'71"N 61 60⁰81'40"N 63 51ПС 400 кВ **TЭ**C Forssa 0.504Huitinnen 22⁰69'82"E 23⁰62'11"E **TЭ**C Forssa 60⁰81'40"N 62 ПС 400 кВ 60⁰75'83"N 75 0.6 61 23⁰62'11"E Hikliä 24⁰91'91"E 61⁰46'45"N 62 42 ПС 400 кВ ПС 400 кВ 60⁰75'83"N 100 0.824⁰07'21"E 24⁰91'91"E Hikliä Kangasala 60⁰75'83"N 63 60⁰38'37''N ПС 400 кВ ВПТ 400 кВ 62500.424⁰91'91"E 25⁰39'38''E Hikliä Antila 60⁰38'37"N 64 60[°]22'20''N 40 ВПТ 400 кВ A₉C Lovisa 63 0.3225⁰39'38"E 26⁰20'50''E Antila A**J**C Lovisa 60⁰22'20"N 65 ПС 400 кВ 61°01'77"N 134 64 1.0426⁰20'50"E 27⁰68'98"E Yillikàlà 62⁰24'71"N 65 61⁰01'77"N 153 ТЭС 35ПС 400 кВ 0.627⁰50'44"E 27⁰68'98"E Huutokoski Yillikàlà 60⁰47'34"N 66 59⁰46'50"N 120 52ГЭС ГЭС 0.96 7⁰07'52"E 6⁰68'24"E Eidsfjord Saurdal 59⁰88'89"N 66 ГЭС 59⁰46'50''N 260 53ПС 400 кВ 2.08Oslo 10⁰71'71"E Saurdal 6⁰68'24"E ГЭС 59°46'50"N 67 59⁰34'71''N 50 66 ГЭС Holen 0.47⁰28'94"E 6⁰68'24"E Saurdal 59⁰30'97"N 67 59⁰34'71"N 230 54ПС 400 кВ ГЭС Holen 1.8411⁰15'25"E 7⁰28'94"E Hasle 58⁰15'11"N 67 59⁰34'71"N 230 ГЭС Holen 75ВПТ 400 кВ 1.84

Продолжение Табл. D.1

Номер Наимено-

Коорди-

7⁰28'94"E

12⁰31'70"E

12⁰24'95"E

57⁰80'11"N 20

57°24'62"N 20

ПС 400 кВ

Stenkullen

Ringhalls

АЭС

Длина

Сопротив-

Коорди-

7⁰99'32"E

12⁰21'66"E

12⁰47'61"E

57⁰93'42"N 68

57⁰35'36"N 69

Kristiansand

ПС 400 кВ

ПС 400 кВ

Kilanda

Horred

56

57

Номер Наимено-

0.16

0.08

Номер узла	Наимено- вание	Коорди- наты	Номер узла	Наимено- вание	Коорди- наты	Длина линии,	Сопротив-
-						KM	ление, Ом
57	ПС 400 кВ Horred	57 ⁰ 35'36"N 12 ⁰ 47'61"E	70	ПС 400 кВ Söderasen	56 ⁰ 04'20"N 13 ⁰ 25'23"E	160	1.28
70	ПС 400 кВ Söderasen	56 ⁰ 04'20''N 13 ⁰ 25'23''E	71	ПС 400 кВ Sege	55 ⁰ 65'89''N 13 ⁰ 12'86''E	45	0.36
71	ПС 400 кВ	55 ⁰ 65'89"N	72	ВПТ 400 кВ Нигио	$55^{0}80'08''N$ $13^{0}44'62''F$	25	0.2
71	ПС 400 кВ	$55^{0}65'89''N$ $13^{0}12'86''F$	78	BПТ 400 кВ Kpuseborg	$13^{0} 44^{0} 02^{0} \text{E}$ $55^{0} 50' 53'' \text{N}$ $13^{0} 10' 05'' \text{F}$	25	0.2
72	BIIT 400 кВ	$55^{0}80'08''N$ $13^{0}44'62''F$	73	A Gekershown	57 ⁰ 26'89''N	245	1.96
60	ВПТ 400 кВ	$61^{0}13'20"N$	74	T9C	$60^{0}46'66''N$	88	0.704
68	ПС 400 кВ	21 50 01 E 57 ⁰ 80'11''N 19 ⁰ 21'70''E	76	ВПТ 400 кВ	22 02 40 E 57 ⁰ 57'55''N	30	0.24
76	BПТ 400 кВ	$12^{\circ}5170 E$ $57^{0}57'55''N$	77	ПС 400 кВ	57 ⁰ 46'12''N	30	0.24
68	ПС 400 кВ	12°07 90 E 57 ⁰ 80'11''N	77	ПС 400 кВ	$12^{\circ}30 51^{\circ}E$ $57^{\circ}46'12''N$	45	0.36
69	A ЭC	12°31'70'E 57°24'62''N	77	Stromna ПС 400 кВ	12°36'51''E 57°46'12''N	40	0.16
70	Ringhalls ПС 400 кВ	12°24'95'E 56°04'20''N	77	Stromna ПС 400 кВ	12°36'51''E 57°46'12''N	200	1.6
58	Soderasen BПТ 400 кВ Parkerud	13°25'23'E 57 ⁰ 72'16''N 14052'86''E	79	Stromna ВПТ 400 кВ Stämpä	$12^{\circ}30^{\circ}51^{\circ}E$ $56^{0}15'10''N$ 14085'05''E	180	1.44
72	ВПТ 400 кВ Нигуэ	$14^{\circ} 55^{\circ} 80'08''N$ $13^{\circ} 44'62''E$	79	BПT 400 кВ Stärnö	$14^{0}85'05'E$ $56^{0}15'10''N$ $14^{0}85'05''E$	95	0.76
80	нигуа ВПТ 400 кВ Nybro	15 ⁴⁴ 02 ¹ E 56 ⁰ 74'76"N 15 ⁰ 90'87"E	79	BПT 400 кВ Stärnö	$56^{0}15'10"N$ $14^{0}85'05"E$	95	0.76
80	BIIT 400 кВ Nybro	56 ⁰ 74'76''N 15 ⁰ 90'87''F	73	AƏC Oskarshavn	57 ⁰ 26'89''N 16 ⁰ 88'44''E	70	0.28
74	TƏC Naantali	$60^{0}46'66''N$ $22^{0}02'48''F$	81	TƏC Inkoo	$60^{0}04'67"N$ $24^{0}00'47"F$	121	0.964
81	TƏC Inkoo	$60^{0}04'67"N$ $24^{0}00'47"F$	82	ВПТ 400 кВ Еѕрос	$60^{0}23'38''N$ $24^{0}65'19''F$	45	0.36
62	ПС 400 кВ Hilliö	$60^{0}75'83''N$	82	Espoo BIIT 400 кВ	$60^{0}23'38''N$ $24^{0}65'12''F$	68	0.544
82	ВПТ 400 кВ	24 9191 E $60^{0}23'38''\text{N}$ $24^{0}65'19''\text{E}$	83	ПС 400 кВ	240012 E $60^{0}27'49''\text{N}$ $24^{0}07'06''\text{E}$	80	0.64
61	цяроо ТЭС Forssa	$24^{\circ}00^{\circ}12^{\circ}E$ $60^{\circ}81'40''N$ $22^{\circ}60'11''E$	83	ПС 400 кВ	$24^{\circ}97^{\circ}00^{\circ}E$ $60^{\circ}27'49''N$ $24^{\circ}07'06''E$	105	0.84
83	ПС 400 кВ Tamisto	23°62'11'E 60 ⁰ 27'49''N 24 ⁰ 97'06''E	84	таmisto ВПТ 400 кВ Vyborg	24°97'06''E 60°68'10''N 28°83'05''E	220	1.76

Продолжение Табл. D.1

Е Данные о проводимости подстилающей породы в Скандинавии

В рамках Европейского проекта EURISGIC по комплексному изучению вопросов влияния космической погоды на энергосистемы группой ученых была составлена карта проводимости почв Европы (рис. Е.1). В Табл. Е.1 приведены параметры блоков, расположенных на территории Скандинавии.

Рисунок Е.1. Блочная модель проводимости подстилающей породы в Европе

№ блока	Проводимость, Ом
24	5000
25	5000
26	5000

Таблица Е.1. Параметры блоков

F Результаты расчета геомагнитно индуцированных токов в энергосистеме Скандинавии

Таблица F.1. Геомагнитно индукцированные токи в энергосистеме Скандинавии при различных геомагнитных сценариях

Номер	Кр	9	8	7	6	5			
узла	<i>ω, pad/c</i>			~ 1					
	10-1	253.8	196.134	143.319	101.518	60.9133			
	10 ⁻²	80.2586	62.0229	45.3216	32.1029	19.2625			
1	10-3	25.38	19.6134	14.3319	10.1518	6.09133			
	10-4	8.02586	6.20229	4.53216	3.21029	1.92625			
	10 ⁻⁵	2.538	1.96134	1.43319	1.01518	0.60913			
		ПС	<u>400 кВ Натт</u>	erfest					
	10 ⁻¹	526.313	405.425	295.011	210.525	126.315			
	10 ⁻²	166.435	128.207	93.2907	66.5737	39.9444			
2	10 ⁻³	52.6313	40.5425	29.5011	21.0525	12.6315			
	10 ⁻⁴	16.6435	12.8207	9.32907	6.65737	3.99444			
	10 ⁻⁵	5.26313	4.05425	2.95011	2.10525	1.26315			
		Π	C 150 кВ Adam	nselv					
	10 ⁻¹	156.975	120.933	88.0106	62.7898	37.674			
	10 ⁻²	49.6398	38.2423	27.8314	19.8559	11.9136			
3	10 ⁻³	15.6975	12.0933	8.80106	6.27898	3.7674			
	10 ⁻⁴	4.96398	3.82423	2.78314	1.98559	1.19136			
	10 ⁻⁵	1.56975	1.20933	0.88011	0.6279	0.37674			
		ПС	220 кВ Varang	gebotn					
	10 ⁻¹	233.909	180.238	131.205	93.5638	56.1383			
	10 ⁻²	73.9687	56.9963	41.4905	29.5875	17.7525			
4	10 ⁻³	23.3909	18.0238	13.1205	9.35638	5.61383			
	10 ⁻⁴	7.39687	5.69963	4.14905	2.95875	1.77525			
	10 ⁻⁵	2.33909	1.80238	1.31205	0.93564	0.56138			
		I	IC 220 кВ Utsj	oki					
	10 ⁻¹	266.443	205.471	149.73	106.577	63.9463			
	10 ⁻²	84.2565	64.9756	47.3489	33.7026	20.2216			
5	10 ⁻³	26.6443	20.5471	14.973	10.6577	6.39463			
	10 ⁻⁴	8.42565	6.49756	4.73489	3.37026	2.02216			
	10 ⁻⁵	2.66443	2.05471	1.4973	1.06577	0.63946			

			ПС 220 кВ Іуа	10					
	10 ⁻¹	274 827	212 674	155 684	109 931	65 9589			
	10-2	86 9079	67 2536	193.004	34 7632	20.858			
6	10-3	27 4827	21 2674	15 5684	10 9931	6 59589			
Ū	10-4	8 69079	6 72536	4 92317	3 47632	2 0858			
	10-5	2 74827	2 12674	1 55684	1 09931	0.65959			
	10	<u></u> П	C 220 KB Vaiuk	roski	1.07751	0.05757			
10 ⁻¹ 632 432 490 243 359 67 252 973 151 785									
	10 ⁻²	199 992	155.028	113 738	79 997	47 9986			
7	10-3	63 2432	49 0243	35 967	25 2973	15 1785			
,	10-4	19 9992	15 5028	11 3738	7 9997	4 79986			
	10-5	6 32432	4 90243	3 5967	2 52973	1 51785			
	10	0.52152	ПС 400 кВ Обо	ten	2.02) + 0	1.01700			
	10 ⁻¹	144.352	112.952	83.8684	57,7363	34,6478			
	10 ⁻²	45.6481	35.7184	26.5215	18.2578	10.9566			
8	10 ⁻³	14 4352	11 2952	8 38684	5 77363	3 46478			
Ũ	10-4	4.56481	3.57184	2.65215	1.82578	1.09566			
	10 ⁻⁵	1.44352	1.12952	0.83868	0.57736	0.34648			
			ГЭС Ritsem						
	10 ⁻¹	84.6175	68.3484	52.7605	33.8369	20.312			
	10 ⁻²	26.7584	21.6137	16.6843	10.7002	6.42323			
9	10-3	8.46175	6.83484	5.27605	3.38369	2.0312			
	10-4	2.67584	2.16137	1.66843	1.07002	0.64232			
	10-5	0.84617	0.68348	0.52761	0.33837	0.20312			
			ГЭС Vietas						
	10 ⁻¹	212.112	168.752	127.916	84.8269	50.9126			
	10 ⁻²	67.0756	53.3642	40.4507	26.8246	16.1			
10	10 ⁻³	21.2112	16.8752	12.7916	8.48269	5.09126			
	10 ⁻⁴	6.70756	5.33642	4.04507	2.68246	1.61			
	10-5	2.12112	1.68752	1.27916	0.84827	0.50913			
			ГЭС Porjus						
	10 ⁻¹	336.488	271.862	209.923	134.552	80.7699			
	10 ⁻²	106.407	85.9704	66.3834	42.5492	25.5417			
11	10 ⁻³	33.6488	27.1862	20.9923	13.4552	8.07699			
	10 ⁻⁴	10.6407	8.59704	6.63834	4.25492	2.55417			
	10 ⁻⁵	3.36488	2.71862	2.09923	1.34552	0.8077			
	1 1	1	ГЭС Harsprang	get					
	10 ⁻¹	411.111	338.685	267.48	164.4	98.6863			
	10 ⁻²	130.005	107.102	84.5847	51.988	31.2074			
12	10-3	41.1111	33.8685	26.748	16.44	9.86863			
	10-4	13.0005	10.7102	8.45847	5.1988	3.12074			
	10 ⁻⁵	4.11111	3.38685	2.6748	1.644	0.98686			
	10-1	445 500	T'HC Ligga	0.50 505	1 (= 0 1 =	100.054			
	10 1	417.722	344.728	272.787	167.045	100.274			
12	10 ⁻²	132.095	109.013	86.2628	52.8242	31.7093			
13	10 -4	41.//22	54.4/28	27.2787	16./045	10.0274			
	10	13.2095	10.9013	8.62628	5.28242	5.17093			
	10 5	4.1//22	5.44/28	2.12181	1.6/045	1.002/4			
	10-1	404.010	1 JC Messaur		161 56	06 0007			
	10	404.018	333.283	200.9/9	51 0000	20.208/			
14	10	12/./02	100.020	04.4202	31.0899	30.0703 0.60007			
14	10	40.4010	10.6026	20.09/9	5 10200	3.02007			
	10-5	<u>12.7702</u> <u>4.04018</u>	3 35285	0.44202	1 6156	0.06/05			
	10	T.UTU10	5.55205	2.00773	1.0130	0.70707			

			F PC Letsi			
	10 ⁻¹	305 533	262 224	216 494	122 152	73 3536
	10-2	96.618	82 9226	68 4614	38.628	23 1964
15	10 ⁻³	30 5533	26 2224	21 6494	12 2152	7 33536
	10 ⁻⁴	9 6618	8 29226	6 84614	3 8628	2 31964
	10 ⁻⁵	3 05533	2 62224	2 16494	1 22152	0 73354
	10	5.05555	CPC Petäjäskos		1.221.52	0.75554
	10 ⁻¹	408 8892	298 4762	201.41	163 5557	98 12747
	10 ⁻²	129 3021	94 38646	63 69142	51 72084	31.03063
16	10 ⁻³	40 88892	29 84762	20 141	16 35557	9 812747
10	10 ⁻⁴	12 93021	9 438646	6 369142	5 172084	3 103063
	10-5	4 088892	2 984762	2 0141	1 635557	0.981275
	10	1.000072	EPC Perttikos	ki	1.0555557	0.901270
	10 ⁻¹	339 8681	246 8433	165 3069	135 9473	81 56096
	10 ⁻²	107 4757	78.0587	52 27464	42,9903	25 79184
17	10 ⁻³	33 98681	24 68433	16 53069	13 59473	8 156096
1,	10^{-4}	10 74757	7 80587	5 227464	4 29903	2 579184
	10-5	3 398681	2 468433	1 653069	1 359473	0.81561
	10	0.070001	ГЭС Kobbely	/	1.009 170	0.01001
	10 ⁻¹	56.8627	46.2065	35.9219	22,7428	13.6554
	10 ⁻²	17.9816	14.6118	11.3595	7.1919	4.31822
18	10 ⁻³	5.68627	4.62065	3.59219	2.27428	1.36554
	10 ⁻⁴	1.79816	1.46118	1.13595	0.71919	0.43182
	10 ⁻⁵	0.56863	0.46206	0.35922	0.22743	0.13655
			ГЭС Grundfor	S S		
	10 ⁻¹	161.577	162.642	154.797	64.3878	38.8258
	10 ⁻²	51.095	51.4319	48.951	20.3612	12.2778
19	10 ⁻³	16.1577	16.2642	15.4797	6.43878	3.88258
	10 ⁻⁴	5.1095	5.14319	4.8951	2.03612	1.22778
	10 ⁻⁵	1.61577	1.62642	1.54797	0.64388	0.38826
		I	IC 400 кВ Beta	sen		
	10 ⁻¹	80.5643	69.212	57.0398	31.6574	19.5207
	10 ⁻²	25.4767	21.8867	18.0376	10.011	6.17299
20	10 ⁻³	8.05643	6.9212	5.70398	3.16574	1.95207
	10 ⁻⁴	2.54767	2.18867	1.80376	1.0011	0.6173
	10 ⁻⁵	0.80564	0.69212	0.5704	0.31657	0.19521
			ГЭС Vargfor	8		
	10 ⁻¹	17.8569	14.0519	10.4777	7.03609	4.33736
	10 ⁻²	5.64685	4.44359	3.31333	2.22501	1.37159
21	10 ⁻³	1.78569	1.40519	1.04777	0.70361	0.43374
	10 ⁻⁴	0.56469	0.44436	0.33133	0.2225	0.13716
	10 ⁻⁵	0.17857	0.14052	0.10478	0.07036	0.04337
	1 1	Π	IC 400 кВ Svart	byn		1
	10 ⁻¹	416.763	346.766	276.918	166.637	100.088
	10 ⁻²	131.792	109.657	87.5693	52.6954	31.6507
22	10 ⁻³	41.6763	34.6766	27.6918	16.6637	10.0088
	10 ⁻⁴	13.1792	10.9657	8.75693	5.26954	3.16507
	10 ⁻⁵	4.16763	3.46766	2.76918	1.66637	1.00088
	1 4 - 1	Π	C 400 кВ Kemii	nmaa		
	10-1	585.465	462.181	347.015	234.186	140.522
	10 ⁻²	185.14	146.155	109.736	74.0561	44.4368
23	10-3	58.5465	46.2181	34.7015	23.4186	14.0522
	10-4	18.514	14.6155	10.9736	7.40561	4.44368
	10-5	5.85465	4.62181	3.47015	2.34186	1.40522

		Г	IC 400 re Dikk	arala						
	10 ⁻¹	350.063	207 643	236.058	1/3 085	86.400				
	10	112.82	04 122	230.038	145.505	27 2240				
24	10^{-3}	35 0063	20 7643	23 6058	14 3085	8 6400				
24	10	11 383	0 /123	7 4648	4 55321	2 73240				
	10-5	3 50063	2 976/3	2 36058	1 / 3085	0.86409				
	10		C 400 vB Pyhän	2.50050 selkä	1.45705	0.00407				
	10 ⁻¹ 055 8488 750 600 560 0256 282 2205 220 2002									
	10^{-2}	302 2659	237 3010	177.0956	120 9064	72 54208				
25	10^{-3}	95 58/88	75 0699	56 00256	38 23305	72.34208				
23	10^{-4}	30 22659	23 73919	17 70956	12 09064	7 254208				
	10 ⁻⁵	9 558488	7 50699	5 600256	3 823395	2 293982				
	10	7.556466	TPC Svartise	n <u>5.000250</u>	5.825575	2.275782				
	10 ⁻¹	18 15847	6 267567	2 82313	7 266465	4 327116				
	10 ⁻²	5 742213	1 981979	0.89275	2 297858	1 368354				
26	10-3	1 815847	0.626757	0.28231	0.726646	0.432712				
20	10-4	0 574221	0.198198	0.08928	0.720040	0.136835				
	10 ⁻⁵	0.181585	0.062676	0.02823	0.072665	0.043271				
	10	0.101505	$\frac{10002070}{1000}$	0.02023	0.072005	0.045271				
	10 ⁻¹	267 653	226.072	183 336	106 371	64 3308				
	10 ⁻²	84 6392	71 4904	57 976	33 6376	20 3432				
27	10 ⁻³	26 7653	22.6072	18 3336	10 6371	6 43308				
27	10 ⁻⁴	8 46392	7 14904	5 7976	3 36376	2 03432				
	10 ⁻⁵	2 67653	2 26072	1 83336	1.06371	0.64331				
	10	2.07033	EPC Kilforse	n	1.00571	0.01551				
	10 ⁻¹	83 1161	71 3862	58 8242	32 6875	20 1247				
	10 ⁻²	26 2836	22 5743	18 6019	10 3367	6 364				
28	10^{-3}	8 31161	7 13862	5 88242	3 26875	2 01247				
	10^{-4}	2 62836	2 25743	1 86019	1 03367	0.6364				
	10 ⁻⁵	0.83116	0.71386	0.58824	0.32687	0.20125				
			ПС 400 кВ Ніä	lta						
	10 ⁻¹	169.8458	140.7139	111.9673	68.37008	40.55214				
	10 ⁻²	53.70996	44.49765	35.40717	21.62052	12.82371				
29	10 -3	16.98458	14.07139	11.19673	6.837008	4.055214				
	10 ⁻⁴	5.370996	4.449765	3.540717	2.162052	1.282371				
	10 -5	1.698458	1.407139	1.119673	0.683701	0.405521				
	•	•	ГЭС Stomorrfo	ors		•				
	10 ⁻¹	23.57851	19.61167	15.7383	9.71381	5.342331				
	10 ⁻²	7.456179	6.201755	4.976886	3.071777	1.689393				
30	10 ⁻³	2.357851	1.961167	1.57383	0.971381	0.534233				
	10 ⁻⁴	0.745618	0.620176	0.497689	0.307178	0.168939				
	10 ⁻⁵	0.235785	0.196117	0.157383	0.097138	0.053423				
			ТЭЦ Vaskiliuo	oto						
	10 ⁻¹	416.319	346.829	277.373	166.527	99.9718				
	10 ⁻²	131.651	109.677	87.713	52.6606	31.6138				
31	10 ⁻³	41.6319	34.6829	27.7373	16.6527	9.99718				
	10 ⁻⁴	13.1651	10.9677	8.7713	5.26606	3.16138				
	10 ⁻⁵	4.16319	3.46829	2.77373	1.66527	0.99972				
			ТЭЦ Seinäjok	<u>xi</u>		1				
	10 ⁻¹	266.973	222.312	177.704	106.789	64.1421				
	10 ⁻²	84.4244	70.3014	56.1949	33.7698	20.2835				
32	10 ⁻³	26.6973	22.2312	17.7704	10.6789	6.41421				
	10 ⁻⁴	8.44244	7.03014	5.61949	3.37698	2.02835				
	10 ⁻⁵	2.66973	2.22312	1.77704	1.06789	0.64142				

				•		
	10-1	0.70 51 5	IIC 400 кВ Alaj	arvı	111 405	<i>((</i>))
	10-1	278.717	231.923	185.237	111.487	66.9958
	10-2	88.1381	73.3406	58.5772	35.2552	21.1859
33	10-3	27.8717	23.1923	18.5237	11.1487	6.69958
	10-4	8.81381	7.33406	5.85772	3.52552	2.11859
	10-3	2.78717	2.31923	1.85237	1.11487	0.66996
	1 1	П	C 400 кВ Vihta	vuori		
	10-1	116.982	97.3753	77.803	46.7929	28.4317
	10-2	36.993	30.7928	24.6035	14.7972	8.99088
34	10-3	11.6982	9.73753	7.7803	4.67929	2.84317
	10 ⁻⁴	3.6993	3.07928	2.46035	1.47972	0.89909
	10-5	1.16982	0.97375	0.77803	0.46793	0.28432
			ТЭЦ Huotokos	ski		-
	10 ⁻¹	191.032	159.15	127.282	76.4128	46.3032
	10 ⁻²	60.4096	50.3277	40.2501	24.1639	14.6423
35	10 ⁻³	19.1032	15.915	12.7282	7.64128	4.63032
	10 ⁻⁴	6.04096	5.03277	4.02501	2.41639	1.46423
	10 ⁻⁵	1.91032	1.5915	1.27282	0.76413	0.46303
	•		ГЭС Rossage	2		·
	10 ⁻¹	41.4899	52.4472	57.7585	16.5887	10.0406
	10 ⁻²	13.1202	16.5853	18.2648	5.24579	3.17512
36	10 ⁻³	4.14899	5.24472	5.77585	1.65887	1.00406
	10 ⁻⁴	1.31202	1.65853	1.82648	0.52458	0.31751
	10-5	0.4149	0.52447	0.57758	0.16589	0.10041
		1	ГЭС Ramsele	e		
	10 ⁻¹	119.423	102.321	84.1588	47.1663	28.8146
	10 ⁻²	37.765	32.3566	26.6134	14.9153	9.11196
37	10-3	11.9423	10.2321	8.41588	4.71663	2.88146
	10 ⁻⁴	3.7765	3.23566	2.66134	1.49153	0.9112
	10 ⁻⁵	1.19423	1.02321	0.84159	0.47166	0.28815
	- •	1	ПС 400 кВ Stac	kho		
	10 ⁻¹	179 579	150 4574	121 4178	72 99663	43 94713
	10 ⁻²	56 78785	47 5788	38 39569	23 08356	13 8973
38	10^{-3}	17 9579	15 04574	12 14178	7 299663	4 394713
20	10 ⁻⁴	5 678785	4 75788	3 839569	2 308356	1 38973
	10-5	1 79579	1 504574	1 214178	0.729966	0.439471
	10	1.75575	A C Forsmar	k	0.729900	0.137171
	10 ⁻¹	73 80317	62 91945	52 08569	31 23947	18 82022
	10-2	23 33861	19 89688	16 47094	9 878787	5 951477
39	10-3	7 380317	6 291945	5 208569	3 123947	1 882022
57	10-4	2 333861	1 989688	1 647094	0.987879	0 595148
	10-5	0.738032	0.629194	0.520857	0.312395	0.188202
	10	0.750052	A C Neri Por	0.520057	0.512575	0.100202
	10 ⁻¹	149 9323	124 9796	100.0155	59 9729	35 90293
	10-2	<u>47 41274</u>	30 522	31 62767	18 9651	11 3535
40	10-3	1/ 00222	12 /0706	10 00155	5 00720	3 500202
40	10-4	<u>17.77323</u> <u>A 741274</u>	3 9522	3 162767	1 80651	1 1 2 5 2 5
	10 ⁻⁵	1 /00222	1 2/0706	1 000155	0 500770	0 350020
	10	1.+77323	$\frac{1.247790}{\Pi C 400 \text{ mB IIIm}}$	r.0001 <i>33</i>	0.377/27	0.339029
	10-1	162 8070	126 5645	100 2005	65 52000	30 22470
	10	51 20672	130.3043	24 56006	20 72260	12 40207
4.1	10	16 29272	43.1834/	10 02005	20.72209	12.40397
41	10	10.38272	13.03043	10.92883	0.333089	3.922479
	10	3.1800/2	4.31834/	3.430000	2.0/2209	1.24039/
	10	1.038272	1.303043	1.092883	0.033309	0.392248

		п	C 400 vD Vana	agala		
	10 ⁻¹	155 2490	120 A207	asala 102 6001	62 00056	37 10071
	10	135.2489	129.438/	103.0081	02.09930	37.19071
42	10^{-3}	49.09401	40.93212	32./03/0	19.03/01	11./60/4
42	10	15.52489	12.94387	10.36081	0.209956	3./190/1
	10	4.909401	4.093212	3.2/03/0	1.963/61	1.1/60/4
	10	1.552489	1.29438/	1.036081	0.620996	0.3/190/
	10-1	557 2517	JC Fordar In S	ogn	222.0924	124 6226
	10	337.3317	404.3069	3/1.322/	222.9834	134.0330
42	10	1/0.2301	140.8207	11/.4220	70.31334	42.3/488
43	10	55./351/	46.43069	37.13227	22.29834	13.40330
	10	5 572517	14.08207	11./4220	7.051354	4.25/488
	10	5.575517	4.043009	3./1322/	2.229834	1.340330
	10-1	452.28	1 JC Aula 277 075	202 228	100.95	100 763
	10	432.38	110 526	05 9901	57 1909	24.71
4.4	10^{-3}	145.055	119.320	20 2229	12 025	34./1 10.0762
44	10	43.238	37.7973	0.5228	18.083 5.71909	10.9703
	10	14.5055	2 77075	9.30091	3./1090	3.4/1
	10	4.3238	5.77975	3.03228	1.8085	1.09/03
	10 ⁻¹	374 602	312 805	250 734	1/0 588	00 3227
	10^{-2}	118 450	08 0176	70 2801	149.388	28 5625
45	10^{-3}	37 4602	31 2805	25.0734	1/ 0588	0.03227
43	10	11 8450	0.80176	7 02801	14.9388	2 85625
	10	3 74602	3.12805	2 50734	1 /0588	0.00323
	10	5.74002	Γ 3 C Midsko	2.30734	1.49300	0.90323
	10 ⁻¹	598 165	499 961	5 401.027	238 372	143 974
	10	189 156	158 101	126.816	75 3797	45 5287
46	10-3	59.8165	49 9961	40 1027	23 8372	14 3974
40	10	18 9156	15 8101	12 6816	7 53797	4 55287
	10-5	5 98165	4 99961	4 01027	2 38372	1 43974
	10	<u> </u>	С 400 кВ Halls	herg	2.30372	1.43774
	10 ⁻¹	533 8342	449 0168	364 4125	218 8023	131 8463
	10 ⁻²	168 8132	141 9916	115 2374	69 19136	41 69346
47	10 ⁻³	53 38342	44 90168	36 44125	21 88023	13 18463
.,	10-4	16 88132	14 19916	11 52374	6 919136	4 169346
	10-5	5 338342	4 490168	3 644125	2 188023	1 318463
	10	5.550512	ПС 400 кВ Наг	nra	2.100025	1.510105
	10 ⁻¹	260.151	214.637	169.081	101.566	61.3634
	10 ⁻²	82.2671	67.8741	53.468	32.1181	19.4048
48	10 ⁻³	26.0151	21.4637	16.9081	10.1566	6.13634
	10 ⁻⁴	8.22671	6.78741	5.3468	3.21181	1.94048
	10 ⁻⁵	2.60151	2.14637	1.69081	1.01566	0.61363
		П	C 400 KB Stock	holm		
	10 ⁻¹	167.6986	144.0179	120.3815	71.88948	43.51878
	10 ⁻²	53.03096	45.54246	38.06796	22.73345	13.76185
49	10-3	16.76986	14.40179	12.03815	7.188948	4.351878
	10-4	5.303096	4.554246	3.806796	2.273345	1.376185
	10-5	1.676986	1.440179	1.203815	0.718895	0.435188
	·	•	ТЭЦ Olkiluot	0	•	•
	10 ⁻¹	91.46408	76.24978	61.0261	36.58563	21.86099
	10 ⁻²	28.92348	24.1123	19.29815	11.56939	6.913051
50	10 ⁻³	9.146408	7.624978	6.10261	3.658563	2.186099
	10-4	2.892348	2.41123	1.929815	1.156939	0.691305
	10 ⁻⁵	0.914641	0.762498	0.610261	0.365856	0.21861
		П	С 400 кВ Ниіт	inen		
----	------------------	----------	----------------------------	-----------------	----------	----------
	10 ⁻¹	55.31979	46.12926	36.92944	22.12792	13.17733
	10 ⁻²	17 49365	14 58735	11 67811	6.997462	4,167037
51	10 ⁻³	5 531979	4 612926	3 692944	2 212792	1 317733
01	10^{-4}	1 749365	1 458735	1 167811	0.699746	0.416704
	10-5	0 553198	0.461293	0 369294	0.221279	0.131773
	10	0.000170	ГЭС Eidfiord	0.507271	0.221279	0.131775
	10 ⁻¹	199.334	166.16	132.951	79.6677	48.1762
	10 ⁻²	63.035	52.5443	42.0428	25.1931	15.2347
52	10-3	19.9334	16.616	13.2951	7.96677	4.81762
	10 ⁻⁴	6.3035	5.25443	4.20428	2.51931	1.52347
	10 ⁻⁵	1.99334	1.6616	1.32951	0.79668	0.48176
			ПС 400 кВ Os	lo		
	10 ⁻¹	173.3556	144.4311	115.5747	69.54287	41.9362
	10 ⁻²	54.81986	45.67311	36.54792	21.99139	13.26139
53	10 ⁻³	17.33556	14.44311	11.55747	6.954287	4.19362
	10 ⁻⁴	5.481986	4.567311	3.654792	2.199139	1.326139
	10 ⁻⁵	1.733556	1.444311	1.155747	0.695429	0.419362
	1		ПС 400 кВ Ная	sle		
	10-1	199.804	166.7529	133.7515	80.36539	48.52928
	10-2	63.18356	52.7319	42.29594	25.41377	15.3463
54	10-5	19.9804	16.67529	13.37515	8.036539	4.852928
	10-4	6.318356	5.27319	4.229594	2.541377	1.53463
	10 5	1.99804	1.667529	1.337515	0.803654	0.485293
	10-1	105.0925	IC 400 KB Borg	3V1K	42.06000	26 60259
	10^{-2}	105.9825	89.4/331	/3.055/6	43.96909	26.60258
55	10^{-3}	33.31401	28.29393	23.10220	13.90423	8.412474
55	10	10.39823	8.94/331	7.303370	4.390909	2.000238
	10	1.050825	2.829393	2.310220	0.430601	0.841247
	10	1.039823	0.894755 IC 400 кВ Kila	0.750558 nda	0.439091	0.200020
	10 ⁻¹	159 969	137 6986	115 4622	68 89539	41 77367
	10 ⁻²	50 58664	43 54412	36 51236	21 78664	13 20999
56	10-3	15.9969	13.76986	11.54622	6.889539	4.177367
	10 ⁻⁴	5.058664	4.354412	3.651236	2.178664	1.320999
	10 ⁻⁵	1.59969	1.376986	1.154622	0.688954	0.417737
]	ПС 400 кВ Ног	red		
	10 ⁻¹	139.2186	117.5116	95.82812	57.40099	34.70191
	10 ⁻²	44.02478	37.16042	30.30351	18.15179	10.97371
57	10 ⁻³	13.92186	11.75116	9.582812	5.740099	3.470191
	10 ⁻⁴	4.402478	3.716042	3.030351	1.815179	1.097371
	10 ⁻⁵	1.392186	1.175116	0.958281	0.57401	0.347019
		BI	IT 400 кВ Bark	teryd		
	10 ⁻¹	167.287	146.0475	124.861	74.3434	45.08809
	10 ⁻²	52.90078	46.18427	39.48452	23.50945	14.25811
58	10-3	16.7287	14.60475	12.4861	7.43434	4.508809
	10 ⁻⁴	5.290078	4.618427	3.948452	2.350945	1.425811
	10-5	1.67287	1.460475	1.24861	0.743434	0.450881
			2 400 кВ Haden	lunda	06.00007	50.00000
	10-1	186.7614	165.8242	144.9658	86.09297	52.28092
50	10^{-2}	59.05915	52.43821	45.8422	27.22499	16.53268
59	10 -4	18.6/614	16.58242	14.49658	8.609297	5.228092
	10 -5	5.905915	5.243821	4.58422	2.722499	1.653268
	10 5	1.86/614	1.658242	1.449658	0.86093	0.522809

		B		11119		
	10 ⁻¹	T2 00258	60 07864	48 0/63/	28 80103	17 18/157
	10 ⁻²	72.00238	18 08272	15 10350	0 107686	5 /3/237
60	10^{-3}	7 200258	6.002864	13.19339	2 880103	1 718457
00	10	7.200238	1 808272	1 510350	2.880103	0.543424
	10	0.720026	0.600286	0.480463	0.910709	0.171846
	10	0.720020	TƏLI Forssa	0.480403	0.28801	0.171040
	10 ⁻¹	75 30788	62 77432	50 23515	30 12315	18 09277
	10 ⁻²	23 81444	19 85098	15 88575	9 52 57 76	5 721436
61	10 ⁻³	7 530788	6 277432	5 023515	3 012315	1 809277
01	10^{-4}	2 381444	1 985098	1 588575	0.952578	0.572144
	10-5	0.753079	0.627743	0.502352	0.301232	0.180928
-			ПС 400 кВ Нік	ilä		
-	10 ⁻¹	95.32626	79.45825	63.58401	38.13051	22.93294
	10 ⁻²	30.14481	25.1269	20.10703	12.05792	7.252033
62	10 ⁻³	9.532626	7.945825	6.358401	3.813051	2.293294
	10 ⁻⁴	3.014481	2.51269	2.010703	1.205792	0.725203
	10 ⁻⁵	0.953263	0.794582	0.63584	0.381305	0.229329
		E	вПТ 400 кВ Ап	tilla		
	10 ⁻¹	163.4506	136.2217	108.9887	65.38023	39.43693
	10 ⁻²	51.68761	43.07707	34.46526	20.67504	12.47105
63	10 ⁻³	16.34506	13.62217	10.89887	6.538023	3.943693
	10 ⁻⁴	5.168761	4.307707	3.446526	2.067504	1.247105
	10 ⁻⁵	1.634506	1.362217	1.089887	0.653802	0.394369
	1		AЭC Lovisa	1		
	10 ⁻¹	212.3622	176.98	141.5942	84.94486	51.26936
	10 ⁻²	67.15481	55.96598	44.77601	26.86192	16.2128
64	10-3	21.23622	17.698	14.15942	8.494486	5.126936
	10-4	6.715481	5.596598	4.477601	2.686192	1.62128
	10-3	2.123622	1.7698	1.415942	0.849449	0.512694
	10-1		<u>C 400 кВ Yllik</u>	kälä	11.05044	
	10^{-1}	29.87603	24.91582	19.94956	11.95041	7.154427
65	10 -	9.44763	7.879073	6.308606	3.779052	2.262429
65	10 5	2.98/603	2.491582	1.994956	1.195041	0.715443
	10	0.944/63	0.787907	0.630861	0.377905	0.226243
	10	0.29876	0.249158	0.199496	0.119504	0.071544
	10 ⁻¹	110 0006	1 9C Saurdar	72 0692	11 11622	26 02706
	10^{-2}	35 07271	92.42749	73.9083	44.44022	20.82780
66	10^{-3}	11 00006	9 2/27/19	7 39683	14.05515	2 682786
00	10^{-4}	3 507271	2 922814	2 339083	1 405513	0.848371
	10 ⁻⁵	1 109096	0.924275	0.739683	0 444462	0.268279
	10	1.107070	ГЭС Holen	0.757005	0.111102	0.200217
	10 ⁻¹	32,90532	27.45281	22.01907	13.26153	7,995245
	10 ⁻²	10.40558	8.681342	6.96304	4.193665	2.528318
67	10 ⁻³	3.290532	2.745281	2.201907	1.326153	0.799524
	10 ⁻⁴	1.040558	0.868134	0.696304	0.419367	0.252832
	10 ⁻⁵	0.329053	0.274528	0.220191	0.132615	0.079952
		П	C 400 кВ Stenk	ullen		
	10 ⁻¹	160.2669	137.3935	114.5544	68.41214	41.44267
	10 ⁻²	50.68084	43.44763	36.2253	21.63382	13.10532
68	10 ⁻³	16.02669	13.73935	11.45544	6.841214	4.144267
	10 ⁻⁴	5.068084	4.344763	3.62253	2.163382	1.310532
	10 -5	1.602669	1.373935	1.145544	0.684121	0.414427

			A C Ringhall	s		
	10 ⁻¹	139,5163	117.4784	95,46296	57.20928	34,57588
	10 ⁻²	44.11892	37,14993	30,18804	18.09116	10.93385
69	10 ⁻³	13 95163	11 74784	9 546296	5 720928	3 457588
0,5	10 ⁻⁴	4 411892	3 714993	3 018804	1 809116	1 093385
	10-5	1.395163	1.174784	0.95463	0.572093	0.345759
		П	C 400 KB Söder	asen		
	10 ⁻¹	404.2936	326.4858	248.6902	150.3862	90.35898
	10 ⁻²	127.8489	103.2439	78.64274	47.55629	28.57402
70	10 ⁻³	40.42936	32.64858	24.86902	15.03862	9.035898
	10 ⁻⁴	12.78489	10.32439	7.864274	4.755629	2.857402
	10 ⁻⁵	4.042936	3.264858	2.486902	1.503862	0.90359
	•		ПС 400 кВ Seg	ge		•
	10 ⁻¹	396.2772	319.5809	242.8952	146.9297	88.26144
	10 ⁻²	125.3139	101.0603	76.81022	46.46324	27.91072
71	10 ⁻³	39.62772	31.95809	24.28952	14.69297	8.826144
	10 ⁻⁴	12.53139	10.10603	7.681022	4.646324	2.791072
	10 ⁻⁵	3.962772	3.195809	2.428952	1.469297	0.882614
]	ВПТ 400 кВ Ни	irva		
	10 ⁻¹	463.904	374.3473	284.8046	172.2576	103.4831
	10 ⁻²	146.6993	118.379	90.06311	54.47264	32.72423
72	10 ⁻³	46.3904	37.43473	28.48046	17.22576	10.34831
	10 ⁻⁴	14.66993	11.8379	9.006311	5.447264	3.272423
	10 ⁻⁵	4.63904	3.743473	2.848046	1.722576	1.034831
		•	AGC Oskarsha	nn		
	10 ⁻¹	134.5767	111.9262	89.29564	53.65829	32.35938
	10 ⁻²	42.55688	35.39417	28.23776	16.96824	10.23294
73	10 ⁻³	13.45767	11.19262	8.929564	5.365829	3.235938
	10-4	4.255688	3.539417	2.823776	1.696824	1.023294
	10 ⁻⁵	1.345767	1.119262	0.892956	0.536583	0.323594
	1	В	ПТ 400 кВ Naa	ntali		I
	10 ⁻¹	148.9638	124.1502	99.33222	59.58554	35.89323
	10-2	47.1065	39.25974	31.41161	18.8426	11.35044
74	10-3	14.89638	12.41502	9.933222	5.958554	3.589323
	10-4	4.71065	3.925974	3.141161	1.88426	1.135044
	10-5	1.489638	1.241502	0.993322	0.595855	0.358932
		ВП	Т 400 кВ Kristi	ansand		
	10-1	327.756	273.1444	218.5414	131.1476	79.2273
	10 2	103.6455	86.37585	69.10884	41.47/251	25.05387
75	10^{-4}	32.7756	27.31444	21.85414	13.11476	7.92273
	10	10.36455	8.637585	6.910884	4.147251	2.505387
	10 5	3.27756	2.731444	2.185414	1.311476	0.792273
	10-	B.	III 400 кВ Linc	lome	56 100 40	24.004(1
	10	133.3698	113.7493	93.95461	56.18049	34.00461
76	10	42.23849	35.97067	29./1106	1/./6583	10./532
/0	10 -4	13.33098	11.3/493	9.393461	5.018049	3.400461
	10	4.223849	3.39/00/	2.9/1100	1.//0383	1.0/332
	10	1.333098 T	1.13/493	0.939340	0.301803	0.340046
	10 ⁻¹	110,0000	10400 KB SIIOI	02 10551	10 95720	20 1929
	10	110.0989	21.9560	03.40331	47.83/37	<u> </u>
77	10	11 20020	31.0309 10.07404	20.37314	13.70029	3.01820
//	10	3 72/616	3 18560	0.340331	4.703/37	0.0511620
	10-5	1 180080	1.007404	0.83/055	0.408574	0.334404
1	10	1.100707	1.00/404	0.034033	0.4203/4	0.301020

		BI	IT 400 vB Knus	ehera		
	10 ⁻¹	350.8500	282 8205	21/ 70	120 0/28	78.05205
	10^{-2}	110 0517	282.8203 80.4357	67.02257	129.9428	78.03203
78	10-3	35 08599	28 28205	21 479	12 99428	7 805205
70	10^{-4}	11 00517	8 9/357	6 702257	12.77428	2 468223
	10 ⁻⁵	3 508500	2 828205	2 1/79	1 200/28	0.780521
	10	<u> </u>	<u>2.828285</u> ЗПТ 400 кВ Stä	rmö	1.277420	0.700321
	10 ⁻¹	398 4532	322 7634	247 0912	149 3175	89 74799
	10 ⁻²	126.002	102.0667	78.1371	47.21833	28.38081
79	10 ⁻³	39.84532	32.27634	24.70912	14.93175	8.974799
	10-4	12.6002	10.20667	7.81371	4.721833	2.838081
	10 ⁻⁵	3.984532	3.227634	2.470912	1.493175	0.89748
	1]	ВПТ 400 кВ Ny	bro	I	I
	10 ⁻¹	181.9102	149.0096	116.125	70.00239	42.13637
	10 ⁻²	57.52506	47.12097	36.72195	22.1367	13.32469
80	10 ⁻³	18.19102	14.90096	11.6125	7.000239	4.213637
	10 ⁻⁴	5.752506	4.712097	3.672195	2.21367	1.332469
	10 ⁻⁵	1.819102	1.490096	1.16125	0.700024	0.421364
			ТЭЦ Inkoo			
	10 ⁻¹	218.2684	181.8995	145.5278	87.30735	52.68951
	10 ⁻²	69.02252	57.52169	46.01993	27.60901	16.66189
81	10 ⁻³	21.82684	18.18995	14.55278	8.730735	5.268951
	10 ⁻⁴	6.902252	5.752169	4.601993	2.760901	1.666189
	10 ⁻⁵	2.182684	1.818995	1.455278	0.873074	0.526895
]	ВПТ 400 кВ Esj	роо		
	10 ⁻¹	189.2897	157.7523	126.2115	75.71589	45.68301
	10 ⁻²	59.85867	49.88567	39.91158	23.94347	14.44624
82	10 ⁻³	18.92897	15.77523	12.62115	7.571589	4.568301
	10-4	5.985867	4.988567	3.991158	2.394347	1.444624
	10 ⁻⁵	1.892897	1.577523	1.262115	0.757159	0.45683
	1 1	П	C 400 кВ Tamn	nisto	1	
	10 ⁻¹	199.9031	166.5964	133.2864	79.96125	48.25202
	10 ⁻²	63.21492	52.68241	42.14886	25.28597	15.25863
83	10-3	19.99031	16.65964	13.32864	7.996125	4.825202
	10-4	6.321492	5.268241	4.214886	2.528597	1.525863
	10-5	1.999031	1.665964	1.332864	0.799613	0.48252
	,	E	ВПТ 400 кВ Vyl	oorg		
	10 ⁻¹	71.36661	59.48472	47.59886	28.54664	17.20049
	10 ⁻²	22.5681	18.81072	15.05208	9.027241	5.439271
84	10-3	7.136661	5.948472	4.759886	2.854664	1.720049
	10-4	2.25681	1.881072	1.505208	0.902724	0.543927
	10-5	0.713666	0.594847	0.475989	0.285466	0.172005

G Схема Центрального энергорайона ЭЭС Якутии

Рисунок G.1. Схема Центрального энергорайона ЭЭС Якутии в режиме зимнего максимума нагрузки в 2014 году

Рисунок G.2. Схема Центрального энергорайона ЭЭС Якутии в режиме летнего минимума нагрузки в 2014 году

Н Данные о параметрах графа схемы центрального энергорайона ЭЭС Якутии

Ниже приведены кратчайшие длины пути d_{ij} для графов схем центрального энергорайона ЭЭС Якутии для следующих режимов: вариант I - нормальная схема сети режима зимнего максимума нагрузки 2014 года; вариант II - схема сети в режиме зимнего максимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Рабочая; вариант III - схема сети режиме зимнего максимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Городская; вариант IV - схема сети режиме зимнего максимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Сунтур; вариант V - нормальная схема сети режима летнего минимума нагрузки 2014 года; вариант VI - схема сети в режиме летнего минимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Рабочая; вариант VII - схема сети в режиме летнего минимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Рабочая; вариант VII - схема сети в режиме летнего минимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Рабочая; вариант VII - схема сети в режиме летнего минимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Рабочая; вариант VII - схема сети в режиме летнего минимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Городская; вариант VIII - схема сети в режиме летнего минимума нагрузки при потере трансформаторного оборудования на ПС 220 кВ Сунтур.

	Ι	II	III	IV	V	VI	VII	VIII
d_{1-2}	1	-	1	1	1	1	1	1
d_{1-3}	1	-	-	1	1	1	-	1
d_{1-4}	2	-	3	2	2	2	3	2
d_{1-5}	3	-	2	3	2	3	2	3
d_{1-6}	1	-	1	-	1	3	1	-
d_{1-7}	2	-	2	-	2	4	2	-
d_{1-8}	3	-	3	-	3	5	3	-
d_{1-9}	4	-	4	-	4	6	4	-
d_{1-10}	2	-	2	2	2	2	2	2
d_{1-11}	2	-	6	2	2	2	6	2
d_{1-12}	3	-	5	3	3	3	5	3
d_{1-13}	4	-	4	4	4	4	4	4
d_{1-14}	3	-	3	3	3	3	3	3
d_{1-15}	3	-	7	3	2	3	7	3
d_{1-16}	3	-	8	3	3	4	8	4
d_{1-17}	2	-	9	2	4	5	9	5
d_{1-18}	1	-	1	1	1	1	1	1
d_{1-19}	2	-	2	2	2	2	2	1

	Ι	Π	III	IV	V	VI	VII	VIII
d_{2-3}	2	-	-	2	2	2	-	2
d_{2-4}	3	-	4	3	3	3	4	3
d_{2-5}	4	-	3	4	3	4	3	4
d_{2-6}	5	-	2	-	2	4	2	-
d_{2-7}	3	-	3	-	3	5	3	-
d_{2-8}	4	-	4	-	4	6	4	-
d_{2-9}	5	-	5	-	5	7	5	-
d_{2-10}	3	-	3	3	3	3	3	3
d_{2-11}	3	-	$\overline{7}$	3	3	3	7	3
d_{2-12}	4	-	6	4	4	4	6	4
d_{2-13}	5	-	5	5	5	5	5	5
d_{2-14}	4	-	4	5	4	4	4	4
d_{2-15}	4	-	8	4	5	4	8	4
d_{2-16}	4	-	9	4	6	5	9	5
d_{2-17}	3	-	10	3	7	6	10	6
d_{2-18}	2	-	2	2	2	2	2	2
d_{2-19}	3	-	3	3	3	3	3	3

	Ι	II	III	IV	V	VI	VII	VIII
d_{3-4}	1	1	-	1	1	1	-	1
d_{3-5}	2	2	-	2	2	2	-	2
d_{3-6}	2	2	-	-	2	2	-	-
d_{3-7}	3	3	-	-	3	3	-	-
d_{3-8}	4	4	-	-	4	4	-	-
d_{3-9}	5	5	-	-	5	5	-	-
d_{3-10}	1	1	-	1	1	1	-	1
d_{3-11}	1	1	-	1	1	1	-	1
d_{3-12}	2	2	-	2	2	2	-	2
d_{3-13}	3	3	-	3	3	3	-	3
d_{3-14}	4	4	-	4	4	4	-	4
d_{3-15}	2	2	-	2	2	2	-	2
d_{3-16}	2	2	-	2	3	3	-	3
d_{3-17}	1	1	-	1	4	4	-	4
d_{3-18}	2	6	-	2	2	2	-	2
d_{3-19}	3	5	-	3	3	3	-	3

	Ι	Π	III	IV	V	VI	VII	VIII
d_{4-5}	2	1	1	1	1	1	1	1
d_{4-6}	2	2	2	-	2	2	2	-
d_{4-7}	3	3	3	-	3	3	3	-
d_{4-8}	4	4	4	-	4	4	4	-
d_{4-9}	5	5	5	-	5	5	5	-
d_{4-10}	2	2	3	2	2	2	3	2
d_{4-11}	2	2	9	2	2	2	9	2
d_{4-12}	3	3	8	3	3	3	8	3
d_{4-13}	4	4	$\overline{7}$	4	4	4	7	4
d_{4-14}	5	5	6	5	4	5	6	5
d_{4-15}	3	3	10	3	3	3	10	3
d_{4-16}	3	3	11	3	4	4	11	4
d_{4-17}	2	2	12	2	5	5	12	5
d_{4-18}	3	7	4	3	3	3	4	3
d_{4-19}	4	6	5	4	4	4	5	4

	Ι	II	III	IV	V	VI	VII	VIII
d_{5-6}	1	1	1	_	1	1	1	_
d_{5-7}	$\overline{2}$	2	2	_	$\overline{2}$	2	2	_
d_{5-8}	3	3	3	_	3	3	3	_
d_{5-9}	4	4	4	_	4	4	4	_
d_{5-10}	2	2	2	3	2	2	2	3
d_{5-11}	3	4	8	3	3	3	8	3
d_{5-12}	4	5	7	4	4	4	7	4
d_{5-13}	5	6	6	5	5	5	6	5
d_{5-14}	6	7	5	6	5	6	5	6
d_{5-15}	4	4	9	4	4	4	9	4
d_{5-16}	4	4	10	4	5	5	10	5
d_{5-17}	3	3	11	3	6	6	11	6
d_{5-18}	4	8	3	4	3	4	4	4
d_{5-19}	5	7	4	5	4	5	5	5
	Ι	II	III	IV	V	VI	VII	VIII
d_{6-7}	1	1	1	1	1	1	1	-
d_{6-8}	2	2	2	2	2	2	2	-
d_{6-9}	3	3	3	3	3	3	3	-
d_{6-10}	1	1	1	-	1	1	1	-
d_{6-11}	2	3	7	-	3	3	8	-
d_{6-12}	3	4	6	-	4	4	6	-
d_{6-13}	5	5	5	-	5	5	5	-
d_{6-14}	4	6	4	-	4	6	4	-
d_{6-15}	4	4	8	-	4	4	8	-
d_{6-16}	4	4	9	-	5	5	9	-
d_{6-17}	3	3	10	-	6	6	10	-
d_{6-18}	2	8	2	-	2	4	2	-
d_{6-19}	3	7	3	-	3	5	3	-
	т	TT	TTT	117	V	VI	VII	VIII
	1	11	111	1 V	V 1	V I 1	V 11	V 111
a_{7-8}	1	1	1	1	1	1	1	1
a_{7-9}	2	2	2	2	2	2	2	2
a_{7-10}	2	2	2	-	2	2	2	-
a_{7-11}	კ ⊿	4 5	8 7	-	4 5	4 5	8 7	-
a_{7-12}	4	5 C	(C	-	5 C	5 C	(C	-
a_{7-13}	5 F	07	0 F	-	0 F	0 7	0 F	-
a_{7-14}	D F	(F	C C	-	D F	(F	о С	-
a_{7-15}	C F	D F	9 10	-	0 6	Э С	9 10	-
u_{7-16}	G ⊿	O ⊿	1U 11	-	0 7	0 7	1U 11	-
a_{7-17}	4	4	11 ว	-	(2	(F	11 9	-
u_{7-18}	う ⊿	9 0	う 1	-	ঠ 1	о С	ろ イ	-
a_{7-19}	4	8	4	-	4	0	4	-

	Ι	Π	III	IV	V	VI	VII	VIII
d_{8-9}	1	1	1	1	1	1	1	1
d_{8-10}	3	3	3	-	3	2	3	-
d_{8-11}	4	5	9	-	5	5	9	-
d_{8-12}	5	6	8	-	6	6	8	-
d_{8-13}	6	7	$\overline{7}$	-	7	$\overline{7}$	7	-
d_{8-14}	6	8	6	-	6	8	6	-
d_{8-15}	6	6	10	-	6	6	10	-
d_{8-16}	6	6	11	-	7	7	11	-
d_{8-17}	5	5	12	-	8	8	12	-
d_{8-18}	4	10	4	-	4	6	4	-
d_{8-19}	5	9	5	-	5	$\overline{7}$	5	-

	Ι	Π	III	IV	V	VI	VII	VIII
d_{9-10}	4	4	4	-	4	4	4	-
d_{9-11}	5	6	10	-	6	6	10	-
d_{9-12}	6	7	9	-	7	7	9	-
d_{9-13}	7	8	8	-	8	8	8	-
d_{9-14}	7	9	$\overline{7}$	-	7	9	7	-
d_{9-15}	7	$\overline{7}$	11	-	7	$\overline{7}$	11	-
d_{9-16}	7	7	12	-	8	8	12	-
d_{9-17}	6	6	13	-	9	9	13	-
d_{9-18}	5	11	5	-	5	$\overline{7}$	5	-
d_{9-19}	6	10	6	-	6	8	6	-

	Ι	Π	III	IV	V	VI	VII	VIII
d_{10-11}	2	2	8	2	2	2	8	2
d_{10-12}	3	3	7	3	3	3	7	3
d_{10-13}	4	4	6	4	4	4	6	4
d_{10-14}	5	5	5	5	5	5	5	5
d_{10-15}	3	3	9	3	3	3	9	3
d_{10-16}	3	3	10	3	4	4	10	4
d_{10-17}	2	2	11	2	5	5	11	5
d_{10-18}	3	7	3	3	3	3	3	3
d_{10-19}	4	6	4	4	4	4	4	4

	Ι	II	III	IV	V	VI	VII	VIII
d_{11-12}	1	1	1	1	1	1	1	1
d_{11-13}	2	2	2	2	2	2	2	2
d_{11-14}	3	3	3	3	3	3	3	3
d_{11-15}	1	1	1	1	1	1	1	1
d_{11-16}	2	2	2	2	2	2	2	2
d_{11-17}	2	3	3	3	3	3	3	3
d_{11-18}	4	5	5	3	3	3	3	3
d_{11-19}	3	4	4	4	4	4	4	4

	Ι	II	III	IV	V	VI	VII	VIII
d_{12-13}	1	1	1	1	1	1	1	1
d_{12-14}	2	2	2	2	2	2	2	2
d_{12-15}	2	2	3	3	2	2	2	3
d_{12-16}	3	3	3	3	3	3	3	3
d_{12-17}	3	3	4	3	4	4	4	4
d_{12-18}	4	4	4	4	4	4	4	4
d_{12-19}	3	3	3	3	3	3	3	3

	Ι	Π	III	IV	V	VI	VII	VIII
d_{13-14}	1	1	1	1	1	1	1	1
d_{13-15}	3	3	3	3	2	3	3	3
d_{13-16}	4	4	4	4	4	4	4	4
d_{13-17}	4	4	5	4	5	5	5	5
d_{13-18}	3	3	3	2	3	3	3	3
d_{13-19}	2	2	2	3	2	2	2	2

Ι	II	III	IV	V	VI	VII	VIII
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
5	5	6	4	6	6	6	6
2	2	2	3	2	2	2	2
1	1	1	2	1	1	1	1
	I 4 5 5 2 1	I II 4 4 5 5 5 5 2 2 1 1	I II III 4 4 4 5 5 5 5 5 6 2 2 2 1 1 1	I II III IV 4 4 4 4 5 5 5 5 5 5 6 4 2 2 2 3 1 1 1 2	I II III IV V 4 4 4 4 4 5 5 5 5 5 5 5 6 4 6 2 2 2 3 2 1 1 1 2 1	I II III IV V VI 4 4 4 4 4 5 5 5 5 5 5 5 6 4 6 2 2 2 3 2 2 1 1 1 2 1 1	I III IV V VI VII 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 4 6 6 6 2 2 2 3 2 2 2 1 1 2 1 1 1

	Ι	Π	III	IV	V	VI	VII	VIII
d_{15-16}	1	1	1	1	1	1	1	1
d_{15-17}	2	2	2	2	2	2	2	2
d_{15-18}	4	6	6	4	4	4	6	4
d_{15-19}	5	5	5	5	5	5	5	5

	Ι	II	III	IV	V	VI	VII	VIII
d_{16-17}	1	1	1	1	1	1	1	1
d_{16-18}	4	7	$\overline{7}$	4	5	5	7	5
d_{16-19}	5	6	6	5	6	6	6	6

	Ι	II	III	IV	V	VI	VII	VIII
$d_{17-18} \ d_{18-19}$	$\frac{3}{4}$	7 6	8 7	$\frac{3}{4}$	$\begin{array}{c} 6 \\ 7 \end{array}$	$6 \\ 7$	8 7	$\begin{array}{c} 6 \\ 7 \end{array}$

	Ι	II	III	IV	V	VI	VII	VIII
<i>d</i> ₁₈₋₁₉	1	1	1	1	1	1	1	1