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INTRODUCTION 

This tutorial is based on a course of lectures on "Superconductivity," that the author delivered 

over the years for senior students of the Institute of Physics, Nanotechnology and 

Telecommunications (IFNIT) in Peter the Great St.Petersburg Polytechnic University. 

The increased interest in the physics of superconductivity in recent years is due to the 

discovery in 1986 high-temperature superconductors, which on one hand made it possible for 

cooling of the superconducting transition to forgo expensive liquid helium but replace it with cheap 

liquid nitrogen, while on the other hand, raised hopes of observing superconductivity at room 

temperature. 

Experimental and theoretical studies of the physics of superconductivity have not only laid the 

foundation for creating superconductors with necessary technical properties but also have led to a 

better understanding of different branches of physics. These studies highlighted a number of  

phenomena, not directly associated with a loss of resistance, such as Meissner and Josephson  

effects, Shapiro steps, magnetic flux quantization, macroscopic coherence of wave functions, etc. 

They have given rise to new physical images and concepts: Cooper pairs, Abrikosov vortices, 

intermediate state, Shubnikov phase –just to name a few. 

When creating this course the author has aimed to introduce future physicists to these original 

ideas and images that have enriched not only solid state physics, but all branches of fundamental 

physics. 

All measurements are presented using the International System of Units (SI). In some graphs, 

taken from the original works, there are also the units used in electromagnetism CGS, in particular 

Gauss and Oersted. Their conversion to the SI is based on the ratio of 1 G =10-4 Tl; 1 Oe=80A / m. 

It should be borne in mind that most of the formulas in the CGS system have a different appearance. 
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CHAPTER 1.  SOME BASIC FACTS 

 

§1.1. The absence of electrical resistance 

In 1908, the Dutch physicist Heike Kamerlingh Onnes managed to liquefy the last inert gas - 

helium. This opened up to him the opportunity to study the properties of materials at temperatures 

near absolute zero. The most interesting results were obtained in the study of electrical resistance. 

There were many gaps in the understanding of the mechanism of conductivity at that time. 

However, it was known that charge transfer is caused by the movement of electrons. The 

temperature dependences of the electrical resistance of many metals were measured. It was found 

that at room temperatures, the resistance is directly proportional to temperature. It was also possible 

to come to the conclusion that at lower temperatures the resistance falls more slowly. In principle, 

one could assume three possible options: 

1. When the temperature decreases the resistance gradually decreases to zero (Figure 1.1, 

curve 1). 

2. Resistance tends to some finite value (Figure 1.1, curve 2). 

3. Resistance passes through a minimum, and at very low temperatures becomes infinite. 

(Figure 1.1, curve 3). 

                                R  

      
T(K)

 
Fig. 1.1. The temperature dependence of the electrical resistance 

 

The first option is based on the experimentally observed rapid decrease in resistance with 

cooling. The third option corresponds to the notion that at low temperatures, all electrons should 

have a foothold near their atoms and cease to be free. The second variant was confirmed by Onnes’ 

experiments with different samples of platinum and gold (Fig.1.2), these metals at the time were in 

a sufficiently pure form. When the temperature approaches absolute zero the resistance tended 

towards the so-called residual value and depended on the purity of the sample. Onnes concluded 

that pure platinum and gold should have negligibly small resistance at temperatures close to 

absolute zero.  

However, in 1911 when experimenting with mercury (it can be obtained in a purer form), he 

found that the observed effect had nothing to do with a gradual decrease in resistance with 

temperature - the change was abrupt (Figure 1.3). Onnes himself pointed out that the mercury 

moved to a new state and named it superconducting. The significance attached to this discovery, is 

evidenced by the fact that in 1913 Kamerlingh Onnes was awarded the Nobel Prize in Physics. 
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T(K) 

Fig. 1.2. The electrical resistance of various metals 

 

Looking at Figure 1.3 brings forth a natural question: what is the value of the jump of 

resistance, in other words, to what extent it is correct to speak about the disappearance of electrical 

resistance? 

T(K) 

Fig. 1.3. The superconductivity of mercury 

 

To answer this question it was necessary to find a sufficiently accurate method of measuring 

the resistance. In the first experiments, measurements were made on the basis of Ohm's law. Thus it 

was possible to consider only the fact that the resistance decreases abruptly, more than one thousand 

times, and becomes lower than the detection limit. In 1914 Onnes used a more precise method to 

measure extremely low resistance values. He measured the attenuation of the current in a 

superconducting ring. If the resistance exists, current should decrease with time due to the Joule 

losses. 

 
Fig. 1.4. The emergence of the persistent current in a superconducting ring. 
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The principle of the method is shown in Figure 1.4. Suppose that a ring of superconducting 

material (for example, lead) is in the normal state, i.e. it has a temperature above the transition 

temperature Tc. The magnet creates a magnetic field in a ring. Then the ring is cooled to a 

temperature at which it becomes superconducting. The magnetic field is not affected. Now remove 

the magnet. According to the law of electromagnetic induction an induction current arises in the 

ring. The speed of its decay allows one to find the magnitude of the resistance. A drop in the current 

of 1% per hour would correspond to a drop of 8 orders of magnitude in the resistance during the 

transition to the superconducting state. Nowadays, there are experiments with no change in the  

current for decades, which says that a drop in resistance is not less than 15 orders of magnitude. All 

these data allow us to legitimately assume that in the superconducting state, the electrical resistance 

really disappears. 

Soon after the discovery of superconductivity in mercury, Onnes was able to show that other 

metals may become superconducting. Their transition temperatures turned out to be very low - a 

few Kelvins. For decades, scientists were searching for materials with higher transition 

temperatures. It turned out that a lot of metals, semiconductors and alloys have superconducting 

properties. However, the maximum found critical temperature was only 23 K - the alloy Nb3Ge. 

Theoretical studies began immediately after the discovery of the phenomenon. Scientists 

proposed different mathematical approaches to calculate the distribution of currents, magnetic field 

configuration, etc. But  the microscopic theory explaining the nature of the phenomenon of 

superconductivity was created only 46 years after the discovery of the phenomenon. In 1957 

American physicists Bardeen, Cooper and Schrieffer showed that at temperatures below the critical 

value, the conducting electrons are bonded in pairs and explained the nature of this bonding. Later 

we will discuss the general provisions of this theory - the so-called BCS theory, as well as consider 

other theoretical approaches which existed before its conception and continue to be useful today. 

After the creation of the BCS theory, when the physical processes responsible for 

superconductivity became clear, experiments were begun for the creation of artificial materials with 

high transition temperatures. Substances with complex structures consisting of planes, one-

dimensional filament structures and so forth were proposed. But all attempts were unsuccessful, 

although the problems of high-temperature superconductivity, as well as the creation of fusion 

reactors, was considered the most important applied problem of modern physics. 

In 1986, when scientists had already begun to lose faith in the fact that high-temperature 

superconductivity could exist, there was an article by Johannes Georg Bednorz (Germany) and Karl 

Alexander Muller (Swiss) about the discovery of superconductivity in a new class of materials - 

ceramics - at a temperature of 35 K! It was a breakthrough; the critical temperature jumped 1.5 

times after decades, when an increase of 0.1 K was considered a great success. The rapid 

investigation of a new class of substances ensued. Every month, each week brought new results: 40 

K, 60 K, 90 K, 100 K. Nowadays, the reliable record critical temperature is 135 K. 

One may ask why this phenomenon is called high temperature superconductivity, when 

temperatures lie between -150  and -180 C. In any case, for the existence of superconductivity 

materials have to be very much cooled. The important difference is that earlier cooling to the 

desired temperature could be achieved only by using helium, - as long as it remained liquid in 

desired temperature range. Helium is very expensive and its amount in nature is not very large. At 

temperatures above 77 K, i.e. the boiling point of nitrogen, liquid nitrogen can be used for cooling, 
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and in nature there is a lot of nitrogen (let’s recall the composition of the air), therefore it is very 

inexpensive. 

We will mainly discuss issues concerning the ordinary (not high-temperature) 

superconductivity. The fact is that the theory of high-temperature superconductors (HTSC) is not 

yet established, due to the complexity of their crystalline structure. Most phenomena observed in 

ordinary superconductors, occur in high-temperature superconductors, so that the differences relate 

only to the temperature values. Therefore, the analysis of these phenomena in conventional 

superconductors allows one to enter into a wide array of problems and to understand the nature of 

the processes. HTSC and specific phenomena occurring in them will be discussed only in the last 

chapter of the book.   

§1.2. Expelling the magnetic field from superconductors. 

The magnetic properties of superconductors are as nontrivial as the electric ones. In 1933, 

Meissner and Ochsenfeld found that a superconductor in a magnetic field behave as a perfect 

diamagnet, inside which the magnetic induction is zero. In other words, the magnetic field is 

expelled from bulk superconductors. This is due to the appearance of the screening currents on the 

surface whose magnetic field completely compensates the external field throughout the volume of 

the sample. This phenomenon is called the Meissner effect.  

At first glance it may seem that the perfect diamagnetism of superconductors is a consequence 

of zero resistance. Indeed, if we carry a sample in a magnetic field, as a result of electromagnetic 

induction, the induction currents arise. In normal metals they would decay with time because of 

Joule heating. In superconductors the resistance is zero and the currents do not decay with time and 

continue to provide further screening. 

 

Fig. 1.5. Meissner effect in a superconducting ball, cooled in an external magnetic field 

 

However, this explanation is not always applicable. Consider the case when the sample is 

carried into the magnetic field above the critical temperature, i.e., it does not possess 

superconducting properties. Then the lines of induction permeate it, as shown in Figure 1.5a. Now, 

if we cool the sample below the transition point СТ , the induction lines should be pushed out of it 

(Figure 1.5b). This important result can not be obtained by simply assuming the resistance to be 

zero. Ohm’s law, jE


 , shows that when 0  an electric field is absent. From Maxwell 

equation  ErottB


 , it follows that the magnetic field should remain constant and can not be 

changed during the transition to the superconducting state. The Meissner effect contradicts this 

result, which gives reason to believe that the perfect diamagnetism and the lack of resistance are 

essentially two independent properties of the superconducting state.  
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§1.3. The destruction of superconductivity by a magnetic field 

Superconductivity is destroyed by sufficiently strong magnetic field. The threshold, or critical 

magnetic field СН , necessary to destroy superconductivity, depends on temperature. Figure 1.6 

shows the dependence of the critical field on temperature for some superconductors. At the critical 

temperature, СТ , the critical field, СН , is zero. With decreasing temperature it increases, and for 

the sample in the shape of a long cylinder is approximately described by the relation 

                                         














2

2
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C

CC T

T
HTH                              (1.1) 

The difference between the free energy per unit volume in the normal and superconducting 

state can be obtained from the following considerations. The superconducting sample in an external 

magnetic field, еН , less than critical СН  (the external field is the field generated by external 

sources in the absence of a superconducting medium), is in the Meissner state where, due to the 

screening currents, the external magnetic field is expelled from it. This means that, according to the 

principle of superposition, the magnetic field created by screening currents at all points is exactly 

equal to the external field and is directed opposite to it. The energy density of this field is 

22

0 eH , and the total free energy per unit volume is 22

0 eHFS  . When the external field is 

equal to the critical СН , the sample returns to the normal state, because, at this point, the energies 

of the superconducting state and the normal state are equal, i.e., 22

0 CSN HFF  , which 

implies 

                                           22

0 CSN HFF            (1.2) 

                           B(G) 

T(K) 

Fig. 1.6. Field dependence of the critical temperature for some superconductors. 

§1.4. Type of phase transition 

In the absence of the external magnetic field the superconducting transition is a phase 

transition of the second type, i.e., it occurs without the liberation or absorption of heat. At the same 

time, in full accordance with the theory of this transition, the specific heat at the transition point is 

discontinuous. 

The situation is different if the process takes place in an external magnetic field. In this case, 

during the transition from the superconducting state to the normal some heat must be absorbed and 

vice versa. In other words, in a magnetic field a phase transition is of the first type. 
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§1.5. Three types of superconductors  

The behavior of superconductors in a magnetic field allows one to divide them into three main 

types. It should be noted that behavioral differences in a magnetic field testify to essential 

distinctions in the physics of the microprocesses happening within samples. 

In type I superconductors the Meissner state, when the magnetic field is pushed out from the 

volume of the superconductor and is other than zero only in a thin near-surface layer, exists up to 

some critical field CH . If the external field exceeds this value, the sample passes into the normal 

state.  

The effect of pushing out a magnetic field from a sample can be presented as follows. The 

shielding currents completely compensating an external magnetic field in a sample give it a 

magnetic moment. Formally we can speak about the magnetization, M


, being equal to the 

magnetic moment per unit volume of a sample. The magnetic induction in a sample is defined by 

the expression )(0 MHB e


 . Often the behavior of a superconductor is characterized by the 

dependence of magnetization M on an external magnetic field. Such a curve for a type I 

superconductor is shown in fig. 1.7. 

 
 Fig. 1.7. Curves of magnetization of I and II type superconductors having a shape  

of a  long cylinder in a longitudinal field 

In the same figure, the continuous line represents a curve of magnetization of a type II 

superconductor. In this case, the value СН corresponds to the equality of free energies of the 

normal and superconducting states, i.e. this is the value of the external field at which it would be 

energetically favorable for the sample to pass into its normal state. Comparing curves, we can see 

that in type II superconductors there exists some critical value 1СН  (less than СН ) such that if the 

external magnetic field exceeds this value it starts penetrating the sample. With further increase of 

the magnetic field, the magnetic moment of the sample gradually decreases, i.e. the field gets into 

the sample more strongly. When the external field еН  achieves the value 2СН , greater than СН , 

the magnetic moment becomes equal to zero, i.e. the external magnetic field completely suppresses 

superconductivity. Thus, it is possible to draw the conclusion that the behavior of type II 

superconductors isn't guided by simple energy reasons as type I superconductors are. 
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In type III superconductors, or as they are also called, rigid type II superconductors, the curve 

of magnetization has completely different appearance (a curve 2 in Fig. 1.8). The hysteretic 

character of the curve is obviously visible. After the removal of the external field the magnetic flux 

remains “frozen” in the sample. 

 

Fig. 1.8. Curves of magnetization of an alloy Nb0,55Ta0,45 

1 - a well annealed sample, 2 - a sample with a big amount of structural defects. 

 

Crystal lattices of type III superconductors contain a large amount of defects which obstruct 

the movement of vortex threads (we will in detail talk about them later). At careful annealing these 

defects can be eliminated and the curve of magnetization becomes almost reversible and 

corresponds to a type II superconductor (the curve 1 in Fig. 1.8). 

§1.6. Energy gap 

Various experiments, such as the tunneling effect, absorption of light and ultrasound, etc., 

show that upon transition of a substance to its superconducting state, a gap arises in its energy 

spectrum. The value of the gap is related to the critical temperature by the following approximate 

formula  

cg kTE 5,32  ,                                                        (1.3) 

where   is the so-called half-width of the gap. 

We will discuss this situation in more detail. 

At first, let’s consider a normal metal. In the main state at 0Т , electrons fill all states in 

Fermi sphere. In order to get to an excited state, it is enough to move one electron from an 

originally occupied state ( Fkk  ) into an empty one ( Fkk ' ). Thus two quasi-particles are 

formed – an electron with a momentum Fkk '  and a hole in the place where it was earlier. It is 

natural to measure the energy of excitations (quasi-particles) from Fermi energy:  

                            )'(
2

)'( 2222

' FF
F kkk

mm
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k
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

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      at     Fkk '                 (1.4)    



 

 

 

11 

                            )(
2

)( 2222

kkk
mm

kk
FF

F
k 





      at      Fkk                 (1.5) 

If both moments lie close to the Fermi surface, the energy 
'kk

   necessary for their 

creation is small. In other words, in a metal an excitement can exist with an arbitrarily small energy. 

The dependence )(k
k
 , described by (1.4) and (1.5), is shown in Fig. 1.9 by straight lines.  

In a superconductor the situation is different. Formulas (1.4) and (1.5) are already unsuitable. 

The energy necessary for the creation of a couple of excitations has to exceed some value called 

"the energy gap", and the energy of each of the arisen two excitations is described by a formula  

                                                                
2/122 )(  kk                                           (1.6) 

and can't be less than a half-width of a gap  . The dependence )(kk  described by (1.6) is shown 

in Fig. 1.9. 

 

Fig. 1.9. Energy of excitements in normal and superconducting states as function of a wave vector. 

 

Let us consider a crystal lattice with a mass, M. The superconducting current can be 

considered to be the collective movement of electronic gas in the lattice. It is possible to tell that the 

lattice moves with a velocity v


 relative the electronic gas. "Friction" will reduce this velocity, only 

if in this gas some excitements arise and the kinetic energy of the lattice turns into their energy. Let 

there be one excitement with energy 
k
E  and momentum k


 . From the conservation laws of 

energy and momentum we have 

   
k
EMvMv  22 '

2

1

2

1
  ,  kvMvM





 '                         (1.7) 

 

From these two formulae we obtain 

  
k
E

M

k
vk 

2
0

22
                                           (1.8) 

Believing the mass of a crystal, M, infinitely large, we will come to the conclusion that there 

is a minimum critical value of velocity at which the condition (1.8) can be satisfied  
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c 
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If a gap exists within the spectrum of excitations then 0
k

E , and therefore 0Cv . The 

inclined straight line in fig. 1.10 has the slope FCFvk / . Thus, in a superconductor the currents 

with velocities less than Cv  proceed without energy loss, i.e. without attenuation. Knowing Cv , we 

can calculate the critical current density. It can be considerable. 

§1.7. One-particle tunneling 

Research of the tunnel effect gives important information about the energy spectrum of 

carriers of current. The features of this spectrum in superconductors noted in the previous 

paragraphs couldn't but affect the tunnel characteristics. Analyzing the results of tunneling 

experiments, Norwegian physicist  I. Giaever, in 1961, for the first time, proved the existence of a 

gap in an energy spectrum of superconductors, for which, in 1973, he was awarded a Nobel Prize in 

physics.  

The technique is based on the supervision of a tunnel current through a thin nonconducting 

layer dividing two samples. The quantity of the electrons passing through a barrier depends on the 

number of electrons falling on the barrier, probabilities of tunneling and number of free states on 

another party of a barrier. We will exclude probability of tunneling from the analysis because it 

depends on barrier parameters, and not on the characteristics of the samples. The value of the 

tunneling current will then be defined by the density of occupied states on one side of the barrier 

and the density of free states on the other.  

 

 

Fig. 1.10. One-particle tunneling between a normal metal and a superconductor. 
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In Fig. 1.10 we can see the one-particle tunneling between a normal metal and a 

superconductor when a voltage, U , is applied between them. We note that far from Fk  the curve is 

defined by the formula mkEFk 2/22 . In the top drawing, an electron, which was in a 

state k


 below the Fermi surface in a normal metal, tunnels through an oxide film into a state 

'k


 above the Fermi surface in a superconductor. Thus, at the left there is a hole corresponding to 

the energy of the excitement,  . Additionally, placing a particle in a state 'k


, we receive in the 

superconductor an excitement with the energy 
22

'  k  . 

Another process is shown in the lower drawing, it coincides with the previous one except that 

the quasi-particle is initially located in a state ''k


 below the Fermi level. 

Both of these processes can occur if energy is conserved: eU   , i.e. at eU / . 

At the contact of two normal metals the current exists at arbitrarily small voltage.                  

The V-A characteristics for metal-metal and metal-superconductor are shown in Fig. 1.12 

(curves 1 and 2).  

 

Fig. 1.11. Tunneling between a normal metal and a superconductor at T=0 (semiconductor model). 
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When considering the phenomenon of tunneling, "the semiconductor model" of the excitation 

spectrum is often useful (Fig. 1.11). However, it is necessary to use it with care since the states 

"above the energy gap" in this model are actually linear combinations of the quasi-particle states 

above and below the Fermi surface. As we will see later, the states of single electrons also exist 

inside the gap. In the case of semiconductors, one-particle states are absent inside the gap.  

In this model, it is possible to discribe the events as follows. In Fig. 1.11a we can see a contact 

at zero voltage. The occupied states are shown by shading. The density of states is plotted on the 

horizontal axis. The equilibrium state is established at identical Fermi levels in both parts. The 

transition of electrons from one part into the other is absent. The general current is equal to zero. Up 

to voltage eU   the tunnel current is absent as electrons belonging to the normal metal can't 

find suitable states in the superconductor. At eU   the current abruptly increases on a vertical 

tangent (the curve 2 in Fig. 1.12). This sharp rise is caused by the high density of states within the 

superconductor. As the voltage increases the curve approaches that of the tunneling characteristic 

between two normal metals (the curve 1). At nonzero temperatures, in metal there is a quantity of 

electrons with energy higher than the Fermi level, plus the gap in the superconductor decreases. In 

this case the curve assumes an air of the curve 3 (Fig. 1.12).   

The V-A graph for contact of two superconductors is schematically shown in Fig. 1.13. 

  

Fig. 1.12. Volt-Ampere characteristics of tunnel contacts.  

1 - normal metal / normal metal; 2 - normal metal / superconductor, T=0;  

3 - normal metal / superconductor, 0<Т<Тс. 

 

Fig. 1.13. Tunneling between two superconductors. 
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§1.8. Stationary and non-stationary Josephson effects   

In the previous paragraph we considered tunneling of individual electrons through an 

insulating layer. But, as we will see later, in a superconductor electrons exist as Cooper pairs. 

Therefore, it is natural to assume that, in the case of a contact between two superconductors, pairs 

of electrons can tunnel through a rather thin layer of dielectric. B. Josephson was the first to 

consider this effect in 1962. For these works, in 1973, he was awarded the Nobel Prize. He showed 

that the tunneling of Cooper pairs becomes essential at a thickness of barrier of 10-20 angstrom.  He 

also predicted some unusual and interesting phenomena taking place when electrons tunnel in pairs. 

Subsequently all his predictions were excellently confirmed by experiments. Apart from their basic 

role in the understanding of superconductivity, the Josephson effects (as it is accepted to call this 

group of phenomena) give opportunities for carrying out the most precise measurements. We will 

emphasize that they play a particularly important role in the processes occurring in the high 

temperature ceramic superconductors (HTSC) because, in them, Josephson contacts already exist 

naturally (contacts between granules). For this reason these substances are sometimes called 

Josephson media.  

The stationary effect of Josephson is a percolation of not fading superconducting current 

through a thin insulating layer at a zero voltage at the contact. The magnitude of such a current can 

not exceed some critical value, CI . 

The non-stationary Josephson effect appears at a nonzero voltage, SU , at the contact. In this 

case, a high-frequency alternating current percolates through the contact which frequency,  , is 

proportional to the voltage:  

                                              
h

eUS2
                                                 (1.10) 

To understand a practical situation, consider the circuit represented in Fig. 1.14. When a 

constant superconducting current flows through the contact (stationary effect of Josephson) the 

voltage at the contact is equal to zero, i.e. all SU  falls on the resistance R. This situation can exist if 

the current (equal to RU S ) does not exceed the critical value CI . Thus, the stationary effect of 

Josephson takes place if RIU CS  . If RIU CS  , the generation of a high-frequency current 

begins. Then the mathematical description of the circuit becomes very difficult. 

 
 

Fig. 1.14. The scheme for demonstration of Josephson effects. 
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§ 1.9. The magnetic flux quantization  

Let us consider a superconducting ring. It is possible to generate a current within it by 

electromagnetic induction (for example, as shown in Fig. 1.4). This current will remain perpetually 

constant. It would seem that adjusting the magnetic field magnitude we can receive any value of the 

induced current. It would seem that the corresponding selection of a magnetic field magnitude gives 

the chance to receive any value of the induced current. However, it is not so. The current in the ring 

can only have discrete values. This situation was formulated clearly by F.London. He came to the 

conclusion that the magnetic flux penetrating a superconducting ring has to be equal to an integer of 

a so-called magnetic flux quantum, 0 . The situation is similar to the Bohr model of an atom in 

which the possible electronic states correspond to the values of angular moments equal to an integer 

of Planck constants. 

The magnetic flux quantum, 0 , according to London, is equal to eh / , where h  is the 

Planck constant, and e  - the elementary charge. This conclusion was based on the assumption that 

an electric current is transferred by individual electrons. However, subsequently, it appeared that the 

current is transferred by Cooper pairs, i.e. particles with a charge of 2e. Therefore, the magnetic 

flux quantum is halved:         Wb
ee

h 15
0 102

2



                                (1.11) 

The predictions of London were excellently confirmed by experiment. 

It is important to note that the condition of flux quantization formulated above is applicable 

regardless of, whether the magnetic flux penetrating the ring is created by an external magnetic field 

or by the current in the ring itself. In the presence of an external field, the superconducting currents 

in the ring will be distributed so that the total magnetic flux through the ring is equal to an integer of 

flux quanta. 

The magnetic flux quantization,  as well as the Josephson effects, considered in the previous 

paragraph, are a consequence of the so-called “phase coherence” of all Cooper pairs. From the point 

of view of quantum mechanics all pairs are in one quantum state, i.e. are coordinated among 

themselves in all physical parameters, in particular, in phases. This phase correlation extends over 

very large (practically unlimited) distances. Thus, all these effects are purely quantum phenomena, 

but, unlike the majority of such phenomena which manifest in a microcosm (atoms, molecules, 

etc.), they take place in macroscopic systems. 

§1.10. Isotopic effect 

In search of an explanation of the effect of superconductivity experimenters investigated the 

dependence of the critical temperature on various parameters. In particular, the question of, whether 

a crystal lattice influences superconductivity or if it is only dependent on its system of  electrons, 

started being investigated in 1922 by Onnes. An ingenious idea was the basis for research: various 

isotopes of the same element, having different masses, have the same electronic structure. Therefore 

detection of the dependence of the critical temperature on a type of an isotope would prove that the 

lattice also participates in the creation of the phenomenon of superconductivity. The initial 

experiments didn't show such dependence, but as a result of development in physics, there appeared 

the possibilities of receiving, in sufficient quantities, isotopes with noticeably differing masses. In 

1950, such a dependence was discovered by several groups of physicists. A change in the mass of 

atom of an isotope of mercury from 199.5 to 203.4 a.m.u. the critical temperature changed from 

4.185 K to 4.146 K.  
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Already the elementary qualitative arguments made by Fröhlich allowed one to expect that the 

critical temperature had to be inversely proportional to the square root of an atom’s mass:  

         Тс 5,0M                                                        (1.12) 

Later the theory of BCS confirmed this result. However, accounting for thinner effects can 

lead to deviations from this formula.  

The discovery of the isotopic effect has confirmed the influence of fluctuations of the lattice 

on superconductivity and has directed research in the theory of superconductivity to electron - 

phonon interactions that, finally, led to the creation of BCS theory. 

§1.11. Application of superconductors 

The questions of probable uses of superconducting materials began to be discussed practically 

right after the discovery of the phenomenon of superconductivity. Already Kamerling Onnes 

considered thatm, by means of superconductors, it was possible to create economic installations for 

receiving strong magnetic fields. However, actual uses of superconductors began in the late 1950s− 

early 1960s. Now, superconducting magnets of various sizes and shapes exist. Their application is 

beyond purely scientific researches and today they are widely used in laboratory practice, - 

accelerating equipment, tomographs, installations for the operated thermonuclear reaction. By 

means of superconductivity it has become possible to sufficiently increase the sensitivity of many 

measuring devices. Such devices are called SQUID (from English “Superconducting Quantum 

Interference Devices”). It is especially necessary to emphasize the introduction of SQUID in 

techniques and in modern medicine. 

Today, the greatest application of superconductors is in the creation of strong magnetic fields. 

The modern industry makes, from type II superconductors, the various wires and cables used in the 

production of windings of superconducting magnets. This results in the creation of magnets capable 

of producing much stronger fields (more than 20 T) than their iron magnets counterparts. 

Superconducting magnets are also more economic. For example, for the maintaining a magnetic 

field of 100 kG in a 10 cm long copper solenoid (coil) with an internal diameter of 4 cm, an electric 

power not less than 5100 kW is required. And all the generated heat has to be taken away with the 

water cooling. It means that through the magnet, it is necessary to pump more than 1 m
3
 of water 

per minute, and then still to cool water down. On the other hand, for a superconducting magnet to 

create a magnetic field of similar strength only the construction of the helium cryostat is necessary 

for the cooling of the windings, but that is a simple technical task. 

Other advantage of superconducting magnets is that they can work autonomously, without 

external sources.  

One more application of superconductors is the creation of bearings and supports without 

friction. If we place a superconducting sphere over a metal ring with current, due to the Meissner 

effect, on the surface of the sphere a superconducting current appears. As a result, some forces of 

repulsion between the ring and the sphere emerge, and the sphere can hover over the ring. A similar 

effect can be observed if a permanent magnet is placed over a superconducting ring. The creation, 

for example, of a new means of transport based on this effect is one possible application. It permits 

for the creation of a train on a magnetic pillow in which there are no energy losses due to friction on 

a road track. A 400 m long model of such a superconducting road was constructed in Japan in the 

1970s. Calculations show that a train on a magnetic pillow will be able to gather speed of up to 500 
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km/h. Such a train will "hover" over the rails at a height of 2−3 cm, which will give it the chance to 

move with such speed.  

Today, superconducting volume resonators with Q-factor of  are widely used.  

The use of superconductivity can lead to the creation of superfast electronic computers. It is 

about so-called cryotrons − the switching superconducting elements. Such devices can easily be 

combined with the superconducting memorable elements. An important advantage of cryotrons in 

comparison with ordinary semiconductor devices is the absence of a need for energy in a steady 

state. After creation of Josephson contacts it was offered to replace cryotrons by them, and it 

appeared that time of switching of such systems makes about 10
-12

 seconds. It opens up wide 

prospects for creation of the most powerful computers.  

The most promising areas for the wide use of high-temperature superconductors are in 

cryoenergetics and cryoelectronics engineering. In cryoenergetics a method of manufacturing 

sufficiently long (up to several kilometers) wires and cables based on bismuth HTSC materials has 

been developed. It is already enough for production of small engines with a superconducting 

winding, superconducting transformers, inductance coils etc. 

In cryoelectronics the technique of producing SQUID films which, according to the 

characteristics, practically are not worse than helium analogs is developed. The technique of 

producing perfect magnetic screens from HTSC, particularly, for research in biomagnetic fields has 

been mastered. Many different electronic devices, such as antennas, transferring lines, resonators, 

filters, frequency mixers etc. are created with use of HTSC.  

 

CHAPTER 2. THEORIES OF SUPERCONDUCTIVITY 

§2.1. Bardin-Cooper-Schrieffer (BCS) theory 

2.1.1. Main ideas and results. 

As stated in chapter 1, the microscopic theory explaining the nature of the phenomenon of 

superconductivity was created in 1957 only, in 46 years after the discovery of superconductivity. 

The main result on which this theory was based - the effect of grouping the electrons in pairs - 

was proposed by L. Cooper in 1956. 

Cooper considered behavior of two electrons that are attracted to each other when all other 

electrons form the main state, i.e. like in a normal metal, according to the Pauli principle, fill the 

Fermi sphere.  

Calculation showed that in this case the behavior of the two interacting electrons sharply 

differs from the behavior of these electrons if they are isolated from the others. In the presence of a 

filled Fermi sphere, at arbitrarily small attraction, these two electrons form the bound state which 

has  a lower energy and is separated from the main state of the normal metal by an energy gap. The 

connected pair possesses the lowest energy (i.e. a gap is maximal) when the electrons have anti-

parallel spins and equal, but oppositely directed momenta. 

Bardin, Cooper and Schrieffer generalized Cooper's results for the case when all electrons are 

connected in pairs. Then each electron plays a double role. On one hand, owing to Pauli principle it 

creates restrictions on the possible values of wave vectors of other electrons that gives them the 

chance to be grouped in pairs. On the other hand, the electron itself is a part of one of the pairs. 

Thus, for an explanation for the grouping of electrons in pairs it is necessary to find a possible 

reason for this attraction between electrons. The theoretical analysis showed that this attraction can 
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be realized due to an exchange of phonons, i.e. due to the interaction of electrons with a crystal 

lattice. Such an interaction can be presented as follows. In the nodes of a lattice there are positively 

charged ions. An electron attracts them to itself. Thus, in the area surrounding the electron there is 

the polarization of the lattice which is expressed in a congestion of the positive charges. The second 

electron, which is nearby, is attracted to this build up, and therefore to the first electron. 

Considering a picture in dynamics, it is possible to say that one electron, in the process of its 

movement, creates a path on which it is favorable for a second electron to move. It explains why 

most obviously the effect is shown for oppositely moving electrons - each of them moves on the 

track left by the other one. 

At first glance, there can be doubts as to what the polarization can do. It is possible to 

understand that it reduces a force of repulsion, but can it replace repulsion with an attraction? For an 

assessment of its opportunities we consider the interaction of a point charge with a not charged 

sphere. It is clear that the polarization connected with the redistribution of charges on the sphere 

will lead to an attraction. For compensation of this force it is necessary to place on the sphere some 

charge, of the same sign as the point charge. Since the charge of the sphere is less than this value, 

an attraction of two electric charges of one sign takes place! 

According to the theory of BCS, the half-width of the energy gap at zero temperature is 

defined by the expression 


















)(

1
exp2)0(

F

D
ENU

 ,                           (2.1) 

where U >0 – the potential of  electron-lattice interaction, )(
F

EN  - the density of electronic 

states at the level of Fermi, D  - the Debye frequency of the crystal. 

From expression (2.1) it is clear, why the theory of superconductivity took so long to b 

created. This expression can't be expanded in a power series with reference to small interaction U. 

Therefore the perturbation theory, which is usually used at calculation of changes in an electronic 

energy spectrum, couldn't lead to the correct results, namely the emergence of a gap. 

From (2.1) and (2.2) an interesting conclusion can be made. In normal metals, the stronger the 

interaction of electrons of conductivity with a lattice, i.e. the higher U, the higher the resistance. In 

superconductors, the greater U, the higher the critical temperature. Thus, the greater a metal’s 

resistance in its normal state, the more easily it passes into the superconducting state. However this 

regularity takes place only for metals with a comparable concentration of electrons.   

 From detailed calculations it follows that the critical temperature is connected with the half-

width of an energy gap by the formula 

                  25,3 CВTk ,                               (2.2) 

where Bk  is the Boltzmann constant.  (2.2) confirms the experimentally deduced equation (1.3).  

The BCS theory shows that in order to create in a superconductor two unconnected electrons, 

i.e. two excited states, it is necessary to break a Cooper pair, i.e. to spend a minimum energy of 

2 . It means that a minimum energy of one excitement (quasi-particle) is equal to  . Detailed 

calculation gives an expression for the energy of a quasi-particle with a momentum р to be 
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where F  - Fermi energy. 

Theoretically derived expression (2.3) coincides with formula (1.6) on the basis of which the 

existence of perpetual superconducting currents was proven in chapter 1. The same fact can be 

explained in a different way. Unlike electrons, which are fermions, i.e. having half-integer spins, a 

Cooper pair is a new particle having spin equal to zero. Particles with integer spins are called 

bosons and governed by Bose-Einstein statistics. For them, there is no Pauli ban. Moreover, all 

bosons seek to be in the same state. There is a so-called Bose-condensation - all Cooper pairs drop 

out in "condensate", i.e. have all identical parameters. In particular, all Cooper pairs have an 

identical momentum. It would seem that there is nothing special in this fact, because every pair 

contains two electrons with oppositely directed momenta and therefore the momentum of each pair 

is equal to zero. However the situation changes if the entire set of pairs starts moving, for example, 

in an electric field. All pairs seek to have an identical momentum. It means that none of them can be 

braked, thereby transferring energy to the lattice, i.e. the transfer of a charge through a lattice goes 

without resistance.    

The BCS theory explains the electronic spectrum of superconductors, on the basis of which it 

is possible to predict practically all features of behavior of superconductors. It should be noted that 

in the case of "low-temperature" superconductivity there is not only qualitative, but also 

quantitative consistency of the theory and experiment. In the frame of this theory many properties 

of high-temperature superconductors can be explained as well, though the quantitative match is not 

so good.   

2.1.2. Cooper effect. Cooper pairs. 

Let us consider the interaction of two electrons at completely filled Fermi sphere.  

We will apply the concept of quasi-particles used in normal metals to this case. Electronic 

states near the Fermi level are similar to usual particles. Therefore it is natural to count the energy 

from the Fermi level. We have already spoken about it in §1.6. 

We write down Schrödinger's equation for two interacting quasi-particles with identical k


:           

                          );();();()()( 2121212010 rrErrrrUrHrH


                 (2.4) 

Here )( 10 rH


 is the Hamiltonian of one free particle 
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where the wave function for a free particle has the form  

)exp()( 1

2/1

1 rkiVr
k




 . 

In the main state the total momentum and the spin have to equal to zero. Therefore we 

construct a wave function in the form 
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Substituting (2.5) into (2.4), we obtain     
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We consider the simple model:                    



 

 

 

21 

           



 


rangethebeyond

vkkkvkif
U

FDFFDF

kk 0

/',/
'


                       (2.7)  
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Substituting (2.9) into (2.8), we come to an equation of self-consistence  
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We are looking for the main state with negative energy. Having introduced the notation 

 2E  and transforming the sum to the integral, we obtain 


 D

F
EN




2
ln)(1 , 

whereby we come to the relation 
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We see that 0  at any force of attraction.  

2.1.3. Energy spectrum. 

In the Cooper effect, two interacting electrons differ from all others as they change state and 

are grouped in pair. Other electrons remain in their initial state. In fact, it is necessary to consider 

reorganization of the states of all electrons. Each of them, on one hand, owing to Pauli’s principle, 

creates restrictions on possible values of wave vectors of the other electrons, which gives them the 

chance to be grouped in pairs. On the other hand, this electron itself is a part of one of the pairs. 

For calculation of the energy spectrum we will use the method of secondary quantization, i.e. 

we will apply the occupation-number representation. We should minimize the free energy. We will 

calculate the energy of the main state for the case of an attraction between electrons. To avoid the 

additional condition of constancy of number of particles, we will count their energies from the 

chemical potential  , i.e.  
m

k
k 2

22
 .  

As a model Hamiltonian of N electrons in a volume of V we will accept  
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where 
a  and  a  - operators of the creation and annihilation, 

'kk
U   - the matrix element of the 

energy of interaction of two electrons. The first term is the self energy of the electrons. The second 

one is the energy of interaction between electrons caused by the exchange of virtual phonons. In 

each term  of  the  sum  a  pair  of  electrons  with  opposite  spins  (  and  )  and  momenta   

( k


 and k


 ) is destroyed and another pair with 'k


 and 'k


  is created.  
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The terms, differing only in values of spin, give an identical contribution in (2.12), therefore 

we can write down  
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The task of finding the ground state and the spectrum of excitations for the system with this 

Hamiltonian can be solved in different ways: Bogolyubov transformation, summation of Feynman 

diagrams, method of spin analogy, etc. We will solve it by means of Bogolyubov canonical 

transformation - we will define quasi-particle operators 
10

,
kk

AA   by the following relations: 
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where 
k

u   and 
k

v   are real functions, symmetric with respect to the transformation kk


 . 

For all Fermi operators the commutation relations for anti-commutators have to be satisfied: 

ikki aa  }{ , 0}{ kiaa , 0}{ 

ki aa , and similarly for A. All of them are satisfied, if the 

functions 
k

u   and 
k

v   meet the conditions: 
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To check it, let us calculate, for example, the anti-commutator: 
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Then (2.13) will be transformed to the form: 

21

0

00 HHHEH   

where     
kk

kk
kkkk

k
kk

vuvuU
V

vE 





  



,',

'''

2

0

1
2   -                          (2.16) 

a constant, not depending on Fermi-operators and corresponding to the energy of the ground state; 
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the diagonal part of the Hamiltonian; 
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the off-diagonal part of the Hamiltonian containing the product of two Fermi-operators. The 

operator 2H  contains the product of four new Fermi operators. In the study of low-energy excited 

states it can be omitted. 

So far the functions 
k

u   and 
k

v   were arbitrary, on condition of (2.15). We will choose them 

so that the operator in (2.18) becomes zero. For this purpose it is sufficient to require the equality 
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It is possible to show that this equality, when (2.15) is satisfied, is at the same time a condition of a 

minimum of energy of the main state (2.16).  
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We introduce the notation:        
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Then it is possible to express from (2.15) and (2.19) required 
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Substituting (2.21) into (2.20), we find the nonlinear equation defining
k
 :  
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Substituting (2.20) and (2.21) into (2.17), it is possible to transform the diagonal part of a 

Hamiltonian to give 
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Thus, owing to the interaction of electrons with each other the spectrum of elementary 

excitations has the form: 
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Each value of the quasi-momentum k


 corresponds to two types of excitations relating to the 

operators of creation 
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0k
A  and 
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A . 

Changing the single-particle spectrum, due to the interaction, is determined by the value 
k
  

that is the root of the equation (2.22).  

Let us turn to the study of this equation. It has a trivial solution 0
k
  corresponding to the 

normal state. Consider other options for the simplest case 

                           



 


rangethebeyond

qkkkqkif
U

FF

kk 0

',
'


        (2.25) 

In this case, it follows from (2.22) that within the specified interval, the value 
k
  is also 

constant ( 
k
 ), and the equation (2.22) becomes: 
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We replace the sum with an integral according the rule kdV
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Further we substitute dkkkd F

23 4


, and the equality (2.26) takes the form: 
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Calculating the integral and solving the equation for  , we obtain 
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where  
222

)(

F

F

mk
EN   is the density of electronic states at the Fermi level (without taking into 

account spin). 

The maximum change in the electron wave vector corresponds to the maximum (Debye) 

frequency of the virtual phonon D :  FD vq / . In the weak-coupling approximation 

( 1)(  FEN ) we finally obtain 

     ))(/1exp(2)0( FD EN                    (2.29) 

It becomes clear why the theory of superconductivity could not be created on the basis of the 

perturbation theory for the accounting of interaction. The perturbation theory gives the corrections 

to the energy in the form of degrees of small interaction energy  , and the obtained value   tends 

to zero as ))(1exp( FEN , and for small values of   can not be expanded in a power series.  

To clarify the physical meaning of    we will find the ground-state energy 0Е  . Substituting 

(2.20) and (2.21) to (2.16), we obtain 

                                               





k
kk

kkkkk
E





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222

0

2/)(




                   (2.30) 

In the case of the trivial solution 0
k
 , corresponding to the normal state, we have 

00 E . If, however, 0
k
 , then 00 E . Thus, this solution is energetically more favorable 

than the normal state. Replacing the sum by an integral and calculating it, we find that the energy 

decreases by 2/)( 2FEN . 

When 0
k
  the functions 

k
u   and  

k
v   are both 

different from zero, therefore, the new Fermi operators 



0А  and 


1А  correspond to the creation of new 

elementary excitations (quasi-particles) each of which is 

a superposition of the electron and hole states. Values 
k

u   

and  
k

v   characterize probabilities of different states: 
2

k
u   

is the probability that, when the excitations are absent, 

the electron states with k


 and k


  are not 

Fig.2.1. 
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simultaneously occupied,  and 

















22

2 1
2

1

kk

k

k
v










 - that both are occupied.  

It allows for the question of how the electrons are distributed by momentum and energy to be 

answered. Indeed, upon the transition from the normal state to the superconducting one in a sample, 

there is the same quantity of electrons, but they don't fill the Fermi sphere any more.  

Figure 2.1 shows the graphs 

a) the probability of filling the one-electron states with energy E in the normal metal,                                                                             

b) 
2

k
v   - the probability that the one-electron states k


 and k


  are filled in the ground state of 

a superconductor.  

Graph 2.1b shows that, as mentioned in §1.7, the one-electron states in the gap are occupied. 

The energy gap exists in the energy of elementary excitations, but not in the one-electron energy 

states.  

We find the density of states in the spectrum of excitations of the superconductor, i.e., the 

number of states per unit energy. The states of excitements that existed in the normal metal are 

reordered because of the gap. Since the quantity of states remains constant, we can write down 

kSkn dNdN     , hence, using (2.24) and taking into account that the density of states in the 

normal metal near the Fermi level is constant, we obtain 

22
)()(







 FS ENN    (2.35) 

This expression was used in plotting the density of states in the superconductor in Fig. 1.11. 

These results explain the process of single-particle tunneling, shown in Fig. 1.10.  

 
Figure 2.2. Tunneling of electron pairs. 
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But pairs of electrons can tunnel as well. On the scheme of Fig. 2.2 the superconducting 

electrons (which are parts of Cooper pairs) are located at zero level. After the breaking of a pair, 

two excitements (two quasi-particles) are formed. All pairs form so-called "condensate" (no real 

condensate is present; this term is introduced only in the energy space). In fig. 2.2 possible 

processes of tunneling of pairs of electrons between two superconductors are represented. The first 

process is shown in fig. 2.2a: a pair of superconducting electrons leaves the left superconductor, 

without leaving excitations in it, and occupies quasi-particle states in the right one. In the second 

process (fig. 2.2b) two superconducting electrons leave the left sample, however two quasi-particles 

remain in it. Electrons tunnel into the right sample where they drop out in the condensate so in the 

right superconductor excitements don't arise. 

As mentioned above, we have neglected the operator 2H , containing the product of four 

Fermi quasi-particle operators. This is acceptable for a small quantity of excitations. At nonzero 

temperatures, the operator 2H  must be taken into account. That is why the notation  (0) in (2.29) 

indicates that the determined value of   corresponds to 0Т . Rigorous calculation leads to 

expressions 

 )(2 22

kkkkk
vuvu                       (2.36) 
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nnvu 


         (2.37) 

Formula (2.37) shows that the value of the gap depends on the number of quasi-particles and 

their energy distribution. 

Let us calculate the temperature dependence. Quasi-particles are distributed according to 

Fermi-Dirac law: 

       
1)/exp(

1




Tk
n

Bk

k 




                     (2.38)  

Substituting (2.36) and (2.38) into (2.37) and converting to the integral, we obtain  
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The dependence of the half-width of the energy gap on temperature obtained as a result of 

calculations is given in fig. 2.3.  

 

Figure 2.3. The dependence   on temperature. 
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We considered the situation when electrons interacted only through the exchange of virtual 

phonons, which provided an attraction, and did not take into account the Coulomb repulsion.  

Rigorous calculation shows that the Coulomb repulsion does not very effectively prevent the 

manifestation of superconductivity. In particular, it can sometimes happen that, even at resulting 

repulsion, superconductivity, nevertheless, is retained. 

The explanation can be found if we consider that the electron moves leaving behind a 

positively charged "track", which disappears in a finite time.  

§2.2. Magnetic field inside superconductors 

The BCS theory explains the reasons for the restructuring of the energy spectrum of the metal, 

causing it to become superconducting. This theory is not directly involved in the calculation of the  

distribution of the fields and currents in a superconducting sample, depending on its shape and the 

character of the external magnetic field. In the following sections various theoretical descriptions, in 

which the superconductor is the macroscopic environment, are stated. In these descriptions, the 

main equations come from a condition of a minimum of some thermodynamic potential. These 

equations allow for calculation of the coordinate dependence of magnetic fields, superconducting 

currents and the value of the energy gap.  

The present section contains some data on the electrodynamics of a continuous medium which 

will be used later. In particular, concepts of the macroscopic characteristics of a magnetic field are 

introduced, and the possibility of use of the various thermodynamic potentials is justified. 

 As a characteristic of the magnetic field in a superconductor, we can take the microscopic 

field strength h


 at each point. In a steady state this field satisfies the Maxwell equations 

0hdiv


 and Sjhrot


  where Sj


 is the superconducting current density. When the currents 

are macroscopic quantities (for example the Meissner state), we can allocate them as separate 

sources of the field, while neglecting the diamagnetism of the substance, i.e., considering the 

magnetic permeability of the medium equal to unity. In this case, the magnetic induction is linked to 

the strength of the microscopic field by the relation hB


0 .  

In those situations where there are microscopic currents and the field varies considerably over 

short distances, it makes sense to forgo the microscopic analysis and move on to the macroscopic 

characteristics of the field. These are the macroscopic induction, B


, and macroscopic field 

strength, H


. The vector of magnetic induction in the medium is defined as the average by the 

volume (smaller than the typical sample size, but larger than the characteristic length of the field 

changes) of the field strength multiplied by the magnetic permeability of a vacuum: hB


0
 . 

At points where there are no external sources of a field (a wire, a coil, etc.), the vector B


 satisfies 

the equations 

                        0Bdiv


,     
S
jBrot


0 ,                                (2.40) 

where 
S
j


 is the average density of the superconducting current. 

We define the vector of macroscopic field strength, H


, by the relation 
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                                       )(0 MHB


  ,                                                 (2.41) 

where M


 is the magnetization vector equal to the magnetic moment per unit volume of the 

sample. Then the vector of field strength H


 satisfies the equation 

                                                      0Hrot


.                                            (2.42) 

It can be shown that the field strength H


 can be found as a partial derivative of the free 

energy density with regard to magnetic induction: 

                                         
B

F
H




                                                     (2.43) 

In a vacuum, we have the relations 

                                          hHBhH


00,                            (2.44) 

From (2.42) and the first equation of (2.40), it follows that on the interface of two different 

environments the following boundary conditions have to be satisfied              

                                2121 , HHBB nn                                     (2.45) 

If the sample has the  shape of a long rod and placed in an external field, eH


, parallel to its 

axis (by the external field, we mean a field generated by an external source in the absence of a 

superconducting medium), the magnetic field, H


, near the surface outside of the sample equals 

the external field. From the condition of continuity of the tangential components of the vector H


 

(2.45) it follows that the field H


 inside the sample at the border is equal to eH


 as well. Then 

from (2.42) it follows that everywhere in the sample the field H


 is uniform and equal to eH


. It 

explains the use of the relation )(0 MHB e


   instead of (2.41) in the curves in Figures 1.7. 

and 1.8. 

 In thermodynamics, it is proven that the magnetic field distribution at the given external 

currents corresponds to the minimum not of the free energy F, but of the Gibbs thermodynamic 

potential G, related to the free energy by the formula 

                                    dVHBFG 


                                     (2.46) 

The integral in (2.46) is calculated over the entire space, i.e. over the area outside the sample 

as well. But as shown above, in the case of samples, infinite along the direction of the external field, 

the field strength at all points of the sample is equal to the external, i.e. the energy of the field in this 

region does not depend on the current distribution in the sample. Therefore, this part of the energy 

can be excluded from consideration in minimizing the Gibbs potential, thus the integration in (2.46) 

has to be carried out only over the sample volume. 

We emphasize once again that the case when the sample has the shape of a rod, endless along 

the direction of the external field, is special. As stated above, at this geometry the magnetic field 

strength at any point outside of the sample is equal to the external, i.e. to the field strength which 

would be at this point in the absence of the sample. Therefore, carrying out the integration in the 

Gibbs potential before its minimization we can restrict ourselves to the volume of the sample. 
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Furthermore, as shown above, in this case the macroscopic magnetic field strength H


 at all points 

within the sample is also equal to the external field eH


. In other words, the field is uniform 

throughout the space. This fact often simplifies the search for solutions. In later consideration we 

will deal most often with this particular geometry. In cases of other geometries the possibility of 

excluding from consideration the integral over the region outside of the sample will be analyzed 

specifically. The same applies to the assertion of the homogeneity of the field. 

§2.3. Equation of F. and G. London 

In 1935, brothers F. and G. London showed that when all fields and currents are weak and 

slowly change in space, the condition of minimum of free energy leads to a simple relation between 

fields and currents.  

Brothers London based their theory on the "two-fluid" model of a superconductor proposed a 

year earlier by Gorter and Cazimir. This model assumes the existence of two types of electrons 

within the superconductor - "normal" with concentration )(Tnn  and "superconducting" with 

concentration )(Tn S . The total concentration of the conducting electrons is  given by 

Sn nnn  . The concentration of superconducting electrons decreases with increasing 

temperature and vanishes at CTT  . When 0T  it tends to the total concentration of electrons. 

The superconducting current is provided by the perpetual movement of superconducting electrons, 

while the normal ones behave in the usual way. 

We will consider a pure metal with a parabolic conduction band; the effective mass of the 

electrons equals to m . Free energy is as follows: 

mk EEdVFF S  ,                                (2.47) 

where SF  is the energy of electrons per unit volume in the condensed state in a system at rest, mE  

and kE  are the magnetic and the kinetic energy connected with persistent currents. The drift 

velocity of electrons v


 at the point  r


 is associated with the current density 
Sj


  

  )()( rjrven SS


 ,                                        (2.48) 

where е–  the electron charge, Sn  – the concentration of "superconducting" electrons. 

The kinetic energy can be written as: 

     dVmvnE Sk

2

2

1
,                                    (2.49) 

where the integral is taken over the sample volume. Expression (2.49) is valid provided that the 

velocity )(rv


 is a slowly changing function of the coordinates.  

The energy associated with a magnetic field )(rh


 is 

                                             dVhEm
20

2


.                                       (2.50) 

We consider the magnetic permeability of the medium to be equal to 1, and take into account 

the superconducting currents explicitly. 

The field )(rh


 is related to the current density by the Maxwell equation: 
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                                             Sjhrot


                                                       (2.51) 

Using (2.49)-(2.51), we present the free energy in the form 

                                      dVhrothFF L )(
2

2
220

0  





                        (2.52) 

where dVFF S0 , and a quantity 
L

 , having the dimension of length, is defined as follows: 

                                                  
2

0 en

m

S

L 
                                           (2.53) 

Note that the Londons believed that the current is carried by individual electrons. At T = 0 all 

the electrons are "superconducting" and nnS  . In fact, the electrons are grouped in pairs, so the 

values m, e and Sn  in (2.53) should be changed by 2/,2,2 nem . It is easily seen that the 

formula (2.53) will not change, only Sn  will be replaced by n. For simple metals such as Al, Sn 

etc., in which the mass m is close to the mass of a free electron, we find L 0.05 microns. 

Let us consider a sample, infinite in the direction of the applied magnetic field. As shown in 

§2.2, in this case it is possible to minimize the integral calculated over only the sample volume 

without taking into account the area outside it. 

Strictly speaking, as mentioned above, at constant external current producing the field, it is 

necessary to minimize the Gibbs potential. However, it can be shown that in this situation the 

minimization of the free energy leads to the same result. Later we will see that the London equation 

can be obtained in a more general case of other considerations. 

We minimize F  from (2.52) with respect to the distribution of the field )(rh


. If we change 

the field )(rh


 by )(rh


  the energy F  will get the increment  F :  

dVhhrotrothdVhrothrothhF
LL


    )()( 2

0

2

0
         (2.54) 

(We have integrated the second term by parts, using the formula of vector analysis 

brotaarotbbadiv


 )(  for hrotbha


 , ). Consequently, the configuration of 

the field inside the sample, giving minimum to the free energy, must satisfy the equation  

                                                       02  hrotroth L


                                             (2.55) 

Using Maxwell's equation (2.51) we can write the equation (2.55) in the form  

                                                  
2

L

h
jrot






                                               (2.56) 

Equation (2.55) or (2.56) is called the London equation. Together with the Maxwell equation 

(2.51), it allows one to find the distributions of the field and currents. From it, in particular, it 

follows that the field inside a superconductor can not be uniform: constrh )(


. Let us consider 

some more consequences of the London equation. 
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2.3.1. The Meissner effect 

Now we apply the London equation (2.55) to the problem of the magnetic field penetration 

into a superconductor. Choose a simple geometry: the sample surface coincides with the plane xy , 

the region 0z  is empty (Fig.2.4). Then the field strength h


 and the superconducting current 

density Sj


 depend only on z.  

In addition to equation (2.55), there are, as usual, the Maxwell equations  

            Sjhrot


                                                      (2.57)  

           0hdiv


                                                        (2.58) 

From formula (2.56) it follows that 0zh  (as j


 is independent of x and y). 

  
                                             vacuum               superconductor 

Fig.2.4. Penetration of a weak magnetic field into a superconductor. 

 

We choose the x axis along the direction of the field h


. Equation (2.58) is automatically 

satisfied, and equation (2.57) shows that the current density 
Sj


 is directed along the y axis: 

                                                        
Sj

dz

dh
                                                        (2.59) 

Finally, equation (2.55) takes the form 

                                                       
22

2

L

h

dz

hd


                                                      (2.60) 

The solution, finite inside the superconductor, is exponentially decreasing:  

                                              )/exp()0()( Lzhzh                                    (2.61) 

i.e. the field penetrates the superconductor only at a depth of L . This result, obtained for the half-

space, can be easily generalized to the case of a sample of arbitrary shape. The depth of penetration, 

L , is small, so it can be said that a weak magnetic field does not penetrate the macroscopic 

sample, or in other words, the magnetic field is expelled from the sample. As was mentioned earlier, 

this result was found in the experiments of Meissner and Ochsenfeld in 1933, before the creation of 

the London theory. 
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2.3.2. Thin films in the longitudinal magnetic field 

Consider a sample in the shape of a thin film (Figure 2.5). It is infinite along the axes x and y, 

so that edge effects can be neglected. The field inside the sample is described by the same equation: 

                                                         
22

2

L

h

dz

hd


                                                (2.62) 

Now, however, the boundary conditions are 

                                           0)2/()2/( hdhdh                                      (2.63) 

 

Figure 2.5. The distribution of the magnetic field inside the thin superconducting film. 

 

The general solution can be written as: 

                                      )/exp()/exp()( 21 LL zCzCzh                   (2.64) 

From the symmetry of the problem on z it follows that 21 CC  . Satisfying the boundary 

conditions (2.63), we finally obtain 

                                                      
)2/(

)/(
)( 0

L

L

dch

zch
hzh




                                    (2.65) 

Dependence (2.65) is shown in Figure 2.5. By decreasing the film thickness, d, the efficiency 

of weakening of the field decreases. When Ld   the field almost uniformly permeates the 

superconducting film. The energy expended on ejecting the external field is small, and therefore, 

the external magnetic field required for the destruction of superconductivity is more than its value 

for a bulk superconductor. 

§2.4. The Pippard relation 

In deriving the London equation we assumed that the velocity )(rv


, or, which is the same, 

the superconducting current density )(rj


, changes slowly in space. Let us specify what is meant 

by "slowly." 

In a condensed system velocities of two electrons - 1 and 2 - are correlated if the distance 

between them is less than a certain value. We denote it 0 . Our conclusion is valid if the velocity 
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)(rv


 varies slightly over distances of the order of 0 . To evaluate 0 , we note that the scope of 

the essential values of the momenta of the electrons is given by the inequality 

                                                    FF E
m

p
E

2

2

                                 (2.66) 

where FE - the Fermi energy,   - the half-width of the energy gap. 

The corresponding variation in momentum is Fvp /2  where mpv FF / - Fermi 

electron velocity. Because of the uncertainty relation we estimate the width of the corresponding 

wave packet to be px  / , which allows us to introduce the characteristic length, called the 

coherence length of the superconductor (sometimes referred to as the Cooper pair length): 

                                                             





 Fv
0  .                                               (2.67) 

(Factor 1  is introduced for reasons of convenience). 

From the  London equation it follows that the characteristic length of the changes of the field, 

currents and velocity is the length L , so this equation is valid only on the condition 0 L . 

In the simple (non-transitive) metals the penetration depth L  is small (hundreds 
ο

A ). And the 

Fermi velocity is high (thousands of km/s), therefore the parameter 0  is large (for Al 

4

0 10
ο

A ). It means that the London equation is not suitable to describe the process in such 

metals. In this case, the London equation (2.56) has to be replaced by another one, that is more 

complicated. Its form was proposed by Pippard. We will call such superconductors the type I 

superconductors. Those superconductors, to which the London equation is applicable, i.e., the 

condition 0 L  is valid, are called type II superconductors. We will discuss it in detail later. 

Historically, it happened that in the 20 years following the discovery of the Meissner effect, 

experiments were carried out mainly on type I superconductors, and only later the study of type II 

superconductors began. It is interesting to note that the theory developed in the reverse order: the 

theory of London was established in 1935, and its modifications to the type I superconductors were 

offered by Pippard but before 1953.  

To complete the picture it is worth mentioning the superconducting alloys in which the 

coherence length 0  and the penetration depth L  depend on the mean free path of the electrons. 

As it decreases 0  decreases and L  increases. Therefore it often turns out that the addition of 

impurities into a type I  superconductor  turns it into a type II superconductor. 

Pippard’s idea can be explained as follows. 

Using instead of the field strength )(rh


vector potential, )(rA


, associated with the field by  

                                                  hBArot


0                                         (2.68)   

we can write the London equation (2.56)  
2

L
hjrot 


  in the form 

                                                   
2

0 L

A
j






                                                 (2.69) 
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We note that (2.68) defines the vector potential )(rA


 ambiguously. In the derivation of 

(2.69), we chose it so that 0Adiv


 (it is called the London calibration). 

The relation (2.69) is applicable only when both j


 and A


 vary slowly in space. In general, it 

can be assumed that the current density, )(rj


, at a point, r


, depends on the vector potential, A


, 

in all adjacent points r 


 satisfying the condition 0 rr


. Pippard proposed the following 

phenomenological expression: 

                ,)exp(
)(

)(
0

4
Vd

R

R

RRrA
Crj 
















  where rrR

               (2.70) 

Later, on the basis of the microscopic BCS theory it has been shown that the exact relationship 

between the current and the field is very similar to (2.70), but the mathematical expression is much 

more complicated. Therefore, the approximate result of Pippard still has not lost its value. 

 

§2.5. Ginzburg – Landau theory 

2.5.1. Basic equations 

London theory is applicable only to those systems in which the concentration of the 

superconducting charge carriers is constant throughout the sample volume. In 1950, Soviet 

physicists V.L. Ginzburg and L.D. Landau published a theory that does not require a constant 

concentration Sn . This theory is based on the fact that the transition from the normal (N) to the 

superconducting (S) state is a phase transition of type II, i.e. not accompanied by the release or 

absorption of heat. 

The theory of such transitions was created by Landau earlier. A parameter, called the order 

parameter, was introduced, which in the new phase (in this case - in the superconducting phase) is 

equal to zero at CTT   and increases with decreasing temperature. As such an order parameter in 

the superconductor Ginzburg and Landau considered the wave function )(r


 , so that 
2

)(r


  

equals the concentration of superconducting carriers. 

Note that the conditions of applicability of the Ginzburg-Landau theory is the proximity of the 

temperature of the sample to the critical temperature. 

a) Let us first consider the simplest case when there is no magnetic field and the parameter   

is independent of the coordinates. Since the value of    in the superconducting phase should 

gradually drop to zero when the temperature approaches CT , the free energy SF  near CT  can be 

expanded in a power series in  : 

                                           ...
2
1 42

 NS FF                          (2.71) 

where NF  is the free energy of the normal state. 

Let us discuss expression (2.71). 

At CTT  , i.e. when 0 , the energy of the superconducting state is equal to the energy 

of the normal, and it explains the appearance of  the term NF  in (2.71). The absence of a linear 
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term in   is due to the symmetry consideration; we will not discuss this situation and just take it 

on faith. 

We now show that the coefficient   should equal zero at CTT  . Since at CTT   the 

energy of the superconducting state must be less than the energy of normal, the coefficient   

should be negative. At CTT  , i.e. after transition, it should be positive. So, at the transition point 

it becomes zero and in the lowest order in ( CTT  ) we obtain 

                                                      )(
C

TTk                             (2.72) 

The coefficient k  is positive. 

The point of transition must be stable, i.e. at 0 , the function )(F  should have 

minimum at 0 . Thus, the third order term must be equal to zero, and the fourth-order term 

should be positive. Hence it follows that the coefficient   is positive. 

Near CT  we keep only two terms of the expansion. In this case the coefficients   and   are 

quite simply related to the thermodynamic critical field, CB , and the equilibrium density of the 

Cooper pairs at arbitrarily large distance from the border 
2

)(


 
s
n . Indeed, taking into 

account (1.2)  22

0 CSN HFF   , we obtain the following relation 

                             
2
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2
1

2
1

CNS BFF


 





             (2.73) 

The second equation for   and   is obtained from the condition of minimum SF  at 

equilibrium, i.e. 0
)(
2







SF , whence we have 

                                                   0
2




                                        (2.74) 

Solving the system of equations (2.73), (2.74), we find 

                                                 
)(

1 2

0 
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C
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
                                         (2.75) 

                                                
)(2

2

0

1




S

C

n

B


                                            (2.76) 

b) Now we assume that the order parameter varies slowly from point to point. One can show 

that in this case the magnetic field effect on free energy SF  will manifest itself in the addition of 

two terms: 
2

)'(
'2

1
Aei

m


   and  

0

2

2
B

, where mm 2' and ee 2'  -  the mass and the 

charge of the particle, i.e. Cooper pair; A


- the vector potential of the magnetic field. Note that 

when creating their theory the authors, not knowing about the existence of Cooper pairs, thought 

that the charge carriers were unpaired electrons and believed mm '  and ee ' . 
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The first of these terms is usually obtained in quantum mechanics from the kinetic energy 

when replacing the momentum of a particle by the generalized momentum in a magnetic field. It 

describes the energy of the superconducting currents, as well as the energy associated with the 

spatial inhomogeneity of the distribution of the Cooper pairs. The second term corresponds to the 

energy of the magnetic field. 

As mentioned in §2.2, the magnetic field distribution at the given external currents should be 

found of the minimum condition not for the free energy, F , but for the Gibbs thermodynamic 

potential, G . To find the value SG  of the sample one should subtract from the total value of 

potential )( BHFG S   the potential of the external field  

0

2

0

2

22 
e

ee
e B

HB
B

 . Let the 

sample be a core, endless along the external field (§2.2). In this case, the macroscopic magnetic 

field H


 is equal to the external field eH


. Taking this into account, we get 

         
  2

0

2

42
)'(

'2

1

22

1



 Aei

m

BB
FG e
NS


 


              (2.77) 

The physical meaning of the term 
 

0

2

2

eBB
is that it corresponds to the energy necessary for 

the magnetic field, which in the absence of the superconductor equals eB


, accepts the current value 

B


. When 0B


 (Meissner phase) this term is equal to the full magnetic energy. 

The Gibbs potential of the sample is obtained by integrating (2.77) over the whole volume. 

Minimizing the resulting expression by   and A


 by means of the variational method and taking 

into account (2.40), we obtain the two Ginzburg-Landau equations: 

                                  0'
'2

1 2
2

  Aei
m


                            (2.78) 
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'
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)**(

'2

'
                            (2.79) 

where   is the complex conjugate function of  . 

From the requirement of vanishing of the current component perpendicular to the border 

superconductor-vacuum (or insulator), we get the following boundary conditions for this system of 

equations 

                                        0)'(  Aein





                                               (2.80) 

where n


 is the normal to the boundary. In the case of the superconductor-normal metal the right 

side of (2.80) takes the form i  where   is a nonzero real constant. 

Solving the system of equations (2.78) - (2.80), together with the Maxwell equations, one can 

find )(r


  and )(rj


, and then )(rB


. 
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We note that (2.79) is identical to the expression for the current density, introduced in 

quantum mechanics. Thus, the applicability of the second Ginzburg-Landau equation is not limited 

by a condition of closeness to the critical temperature. 

2.5.2. Two characteristic lengths 

We will show that the Ginzburg - Landau equations (2.78) - (2.79) contain two characteristic 

lengths. 

a) First, consider the case where the magnetic fields and currents are absent. Select the 

calibration, in which the function )(r


  is real and, for simplicity, we confine ourselves to the one-

dimensional case. Then (2.78) is noticeably simplified: 

                                             0
2

3

2

2

'

2

 

dx

d

m


                             (2.81) 

This equation has two obvious solutions: 1) 0 , relating to a normal state; 2) 0  , 

where  2

0
, describing the ordinary superconducting state. The second solution exists and 

corresponds to a lower energy when 0 ; i.e. when CTT  . However, we would like to review 

the solutions of a more general type, such as when, under the influence of an external factor, the 

order parameter )(x  at some point has a value other than 0 . How does )(x  behave in the 

vicinity of this point? 

Let us turn to the reduced variable 0/f  and introduce the notation )(
'2

2
2

T
m







 

where the parameter )(T has the dimension of length. Equation (2.81) takes the form 

                                            0)( 3

2

2

2  ff
dx

fd
T                                  (2.82) 

It follows that the parameter  )(T  is the natural unit of measurement of distance, at which 

the function f  can change. We will call it the coherence length at a given temperature, T . It can 

be shown that for pure metals 

                                                  0

5,0

174,0)( 













CT

T
T    .                      (2.83) 

From this expression it is seen that, at temperatures near CT , the order parameter varies little 

over distances of the order of the pair length 0 . 

b) The second characteristic length appears when we consider electromagnetic effects, for 

example, when calculating the depth of penetration of the weak magnetic field. 

If the external field is small, in the first order in the field h , the parameter 
2

  can be 

replaced by its equilibrium value 
2

0  in the absence of the field. Calculating rotor (curl) of both 

sides of the second Ginzburg-Landau equation (2.79) and taking into account that Sjhrot


  and 

hArot


0  we arrive at the equation of London type (because 0  does not depend on the 

coordinates) 
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                                                 h
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e
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
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'
                                           (2.84) 

Comparing (2.84) with the London equation (2.56), we obtain an expression for the 

characteristic length 

                                              
2

0
'

'
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en
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T

S


                                                 (2.85) 

Note that the depth   is proportional to 1

0

  , i.e. 5,0)/1(  CTT . For a pure metal the BCS 

theory gives 

     )0(1
2

1
)(

5,0
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T 




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







 ,                               (2.86) 

where 
2

0

)0(
ne

m
L 
    (2.87)  is the London penetration depth at 0T . 

Since, as mentioned above, the applicability of the second Ginzburg-Landau equation is not 

limited to a condition of proximity to the critical temperature, the obtaining of (2.84) and (2.85) can 

be regarded as an independent derivation of the London equation, the applicability of which is 

determined only by the condition of independence of the module of order parameter on coordinates. 

This result is more general than that obtained in §2.3. 

c) We have found two characteristic lengths, )(T  and )(T , governing the behavior of a 

superconductor near its critical temperature. Both values are proportional to   5,0TTC , so their 

ratio 
)(

)(

T

T
κ




 , which is called the Ginzburg-Landau parameter of the substance, is of special 

interest. 

Depending on the value of   the superconductors are divided into two types:  

1  (i.e. )   - type I superconductors;  

1  (i.e. )   - type II superconductors.  

Later we will see that the exact boundary corresponds to the value 2/1 . 

2.5.3. Problems with constant amplitude of the order parameter 

We now use the Ginzburg-Landau equations to solve some specific problems. First, consider 

the simplest case when the amplitude of the order parameter   is the same at all points of the 

sample. We have already encountered this situation during the calculation of the penetration depth 

of the weak magnetic field into the bulk sample. Now we’ll investigate the case of another kind. We 

consider thin samples (film, wire, etc.), in which arbitrary change of   over the thickness is 

disadvantageous, since it would lead to a sharp increase of the term 
2

  in the expression for the 

Gibbs potential. The field strength h


 and current density j


 are not assumed to be weak, so the 

amplitude   remains constant, but not necessarily equal to its unperturbed value 0 .  
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2.5.3.1. The critical current in a thin film 

Let us consider a current with density j


 flowing along the x axis in a film of thickness d , as 

shown in Fig. 2.6a. 

Let the film be thin, i.e. )(Td   and  )(Td  . The first inequality provides constant 

amplitude over the film thickness, and the second one - the constancy of the current density. The 

equations are considerably simplified. 

Indeed, we put 

                                                   ))(exp( ri


  ,                                          (2.88) 

where the amplitude  does not depend on r


. 

The expression for the current density (2.79) can be written as 
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where                                               )'(
'

1
xAe

xm
v 







                                            (2.90) 

 

 

Figure 2.6. The calculation of the critical current of the thin film. 

 

The quantity v - is the velocity of  "particles" in the state with a wave function  . 

The Gibbs potential (2.77) also takes the simple form 
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From the condition of minimum of (2.91) relative to 
2

 we obtain 

                                     0)'
2

1
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Assuming f 0 , where 



 20 , and excluding the velocity v  from (2.89) and 

(2.92), we obtain 
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    (2.93) 

The relationship between j  and 
2f  is shown in Figure 2.6b. When j  increases from zero 

the function f  decreases from the initial value of  1  to 0.8 at 
)('33

'2 2

0

Tm
ejj C





 . 

When cjj   there are no solutions, that is, the film is in the normal state. At the transition point 

the parameter f  jumps from 0.8 to 0. The value cj  is called the critical current density of the film. 

From a physical point of view, the existence of the critical current density can be easily 

explained. The current creates a magnetic field that penetrates the sample. At a certain value of 

current density the magnetic field at some points exceeds the critical value and the sample can no 

longer remain superconducting in the entire volume. In the future, the critical currents in 

superconductors will be discussed in detail. 

2.5.3.2. Little and Parks effect 

Let us consider a superconducting film deposited on an insulating substrate in the shape of a 

cylinder of radius R (Figure 2.7). The thickness of the film Rd  . The uniform magnetic field is 

applied along the axis of the cylinder. 

We find the superconducting transition temperature as a function of the applied magnetic 

field. As before, we assume that )(Td   and )(Td  , and the amplitude   within the 

film is constant. As before, we write ))(exp( ri


  , where the amplitude   does not 

depend on r


. The density of the Gibbs potential is given by (2.91), and the velocity – by the 

formula  )'(
'

1
Ae

m
v





  . 

 
  

Fig.2.7. The experiment of Little and Parks. 
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Let us find the dependence of the velocity v


 on the field B . Consider the circulation 

  ldv


, where the integration is carried out along the circumference of the cylinder (radius R). 

Integrating expression (2.90), obtain 

                                        ldA
m
e

m
Rvldv


'
'

][
'

2                      (2.94) 

where ][  - the phase change due to a complete revolution around a cylinder. It follows from 

unambiguity of the function   that n 2][  , where n– any integer. The second term in (2.94) 

is proportional to the integral  

                            BRdBdArotldA 2


                 (2.95) 

i.e. to the magnetic flux inside the cylinder. Consequently, 

                                             )(
' 0


 n

Rm
v


,                                         (2.96) 

where 15

0 102
'

2 
e


Wb – the magnetic flux quantum. 

At a fixed magnetic field B  the flux   is also fixed, and the velocity, in agreement with 

(2.96), can have an infinite set of discrete values. However from (2.91) it follows that the Gibbs’ 

potential has a minimum only at those values of n  at which the modulus of the velocity is minimal. 

Thus,  
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                                     (2.97) 

i.e. v  is the periodic function of a field B with the period 
2

0

R


 (for example, at R=0.8 mkm the 

period equals 
310
T). Knowing the velocity, we will find the value   minimizing the Gibbs' 

potential (see (2.92)): 

                                                   )'5,0( 212
vm                            (2.98) 

 The solution exists only at 
2'5,0 vm . The temperature of transition HT  can be found 

of a condition 
2'5,0 vm , i.e. HT  is the periodic function of the field B with the period 

2

0

R


. As   is proportional to ( CTT  ), it is possible to tell that the curve of dependence 

)(HTH consists of a number of parabolic arches. The greatest shift of transition temperature takes 

place at Rmv '2   
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From a physical point of view, the Little and Parks effect can be explained as follows. If the 

magnetic flux of an external field through an opening of the  superconductor isn't equal to an integer 

of magnetic flux quanta, in accordance with the law of magnetic flux quantization, there has to be a 

superconducting current in the film, by its field bringing the value of a full magnetic flux to an 
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integer of quanta 0 . Emergence of this current leads to an increase in the internal energy due to 

the kinetic energy of moving Cooper pairs and the energy of the magnetic field created by the 

current. Therefore the transition to a normal state will happen at a lower temperature:  the stronger 

the currents, i.e. the greater the difference between the external field flux and an integer of quanta 

0 , the lower the transition temperature.   

2.5.4. Variation of amplitude of the order parameter in space 

2.5.4.1. Formation of nuclei of superconductivity in a sample 

Let us place a superconductor into a strong magnetic field so that the superconductivity is 

destroyed and the magnetic field in the sample is uniform. We will gradually reduce the field. When 

the field achieves some value 2CH , superconducting areas will start to be formed within the 

sample. We will show that the field 2CH  is not equal to the critical field CH , it can be either more 

or less. 

In the area of formation of the nuclei the amplitude of the order parameter   is small which 

allows one to linearize the Ginzburg-Landau equation (2.78) 

                                           






2

'
'2

1
Aei

m


                           (2.100) 

Also, we will assume that eHArot


0 , where eH


  is a uniform external field. It is 

admissible because superconducting currents are proportional to 
2

  and in the linear approach the 

amendments to a field caused by them are negligible. The same fact allows for the exclusion, at a 

minimization of Gibbs’s potential, of the integral over the area outside the sample (see 2.5.1) which 

confirms the acceptability of the Ginzburg-Landau equations in this case. 

Equation (2.100) formally coincides with the Schrödinger equation for a particle with charge 

'e  and  mass 'm  in a uniform magnetic field. In an infinit environment such a particle moves along 

the field with a constant speed and revolves in the xy plane with a frequency  
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m
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c
                                                  (2.101) 

The energy levels corresponding to the eigenfunctions of equation (2.100) have the form 

                                         cz nvm  )
2

1
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1 2  ,                              (2.102) 

where n  is a non-negative integer. The greatest value of eH , i.e. C , at a given   corresponds to 

the case 0,0  nvz , whence c 5,0 . From this we find 2cH . It is possible to show 

that   

                                                    cc HH 22   .                                           (2.103) 

Let us discuss the formula (2.103). 

At 21κ  , i.e. 2cc HH  , nuclei of superconductivity can be formed in the thickness of 

the sample at fields 2cc HHH  . In this state the field can't be pushed out completely from a 

sample because at cHH   the full effect of Meissner is energetically unfavorable. In this 
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magnetic field range a special, so-called mixed state, is established in the sample. This state is 

typical for type II superconductors and we will discuss it in detail further. 

 At 21 , i.e. 
2cc

HH  , at reduction of the field, at first the value 
c

H  is reached at 

which the full Meissner effect takes place, in other words, we have a type I superconductor. 

Thus, the division of superconductors into two types can be made depending on the value of 

the parameter  : for type I superconductors 21 , at 21  we have type II 

superconductors. 

 

CHAPTER 3. MAGNETIC PROPERTIES OF SUPERCONDUCTORS. 

As was said in chapter 1, depending on their behavior in a magnetic field superconductors can 

be divided into three main types. The present chapter is devoted to consideration of the 

microprocesses occurring in type I and type II superconductors and highlighting their differencies. 

§3.1. Type I superconductors. Intermediate state. 

In type I superconductors the Meissner state when the magnetic field is pushed out from the 

volume of a superconductor and is other than zero only in a thin near-surface region, takes place up 

to some critical field, CH . If the external field exceeds this value, the sample passes into the 

normal state. Thus, the dependence of the magnetic induction in a sample on the intensity of the 

external magnetic field has the form shown in fig. 3.1.  

                           

   Fig. 3.1. Magnetic field in a sample.                      Fig. 3.2. A curve of magnetization of a sample  

                                                                               having a core shape in a longitudinal field. 

 

The effect of expelling a magnetic field from a sample can be presented as follows. The 

shielding currents completely compensating an external magnetic field in a sample give it a 

magnetic moment. Though, strictly speaking, the internal areas of the sample don't possess a 

magnetization, it is formally acceptable to speak about the magnetization, M


, being equal to the 

magnetic moment per unit volume. As was said in §2.2, it allows for the concept of the magnetic 

field strength, H


, in the sample, using the relation )(0 MHB


  . Often the magnetization 

curve, i.e. the dependence of magnetization M on an external magnetic field, is used to characterize 

the behavior of a sample in a magnetic field. Such a dependence for a type I superconductor derived 

from the graph of Fig. 3.1 is shown in Fig. 3.2.  
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As it was shown in §2.2, if the sample has the shape of a long core and is placed into an 

external field eH


 parallel to its axis, the field H


 is uniform and equal to eH


 everywhere in the 

sample. This fact explains the use of eH


 instead of H


 in the formula )(0 MHB


   to draw 

Figures 3.1 and 3.2.   

In the Meissner state, the magnetic induction B


 in the superconductor is equal to zero, and 

the macroscopic intensity of the magnetic field, H


, is equal to the external field, i.e. is other than 

zero. Then the relation HB


0  can be fulfilled, only if 0 . Thus, a superconductor in the 

Meissner phase is an ideal diamagnet with 0 . 

The threshold, or critical, magnetic field, CH , necessary for the destruction of 

superconductivity depends on temperature. At the critical temperature CT  the critical field is equal 

to zero. With a decrease of temperature the value CH  increases, which is approximately described 

by the ratio (see 1.1) 

                                                 













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HTH                            (3.1) 

Using expressions )(
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 (see the line before (2.82)), 
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
             

(see (2.75)) and 
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0
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'

'
)(

en

m
T

S


   (see (2.85)), it is easy to come to an expression for CH  

                                               
)()(22

0
TTe

HC




                              (3.2) 

The difference between free energies per unit volume in the superconducting and normal 

states of a sample is equal to 22

0 CSN HFF   (see (1.2)). 

All this concerns samples having the shape of a long core, placed in a field, parallel to their 

axis (Fig. 3.3). If one were to neglect the influence of the ends, such a geometry provides equality 

of values of a field on the entire surface of the sample. 

  
Fig. 3.3. Expulsion of a magnetic field from a sample having a core shape  

when cooling in a magnetic field. 
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Let us consider a less trivial case, for example, a superconducting sphere of radius a  placed 

in a uniform external magnetic field eH


 (Fig. 3.4). If the field eH  is less than 3/2 CH , the lines 

of magnetic induction are forced out from the sample. Distribution of the field outside the sphere is 

defined by equations   

                                                   0;0  hrothdiv


                                 (3.3) 

and boundary conditions                eHh  at r , 0
arn

h ,  

where 
arn

h


 is a field component, normal to the surface of the sphere, r – the distance from the 

center of the sphere. The second of the written-down boundary conditions follows from the 

Meissner effect, i.e. from the fact that magnetic induction lines can't get into a superconducting 

sphere. 

The solution for the area outside the sphere has the form 

                                                    









2

3 cos

2 r

a
HHh ee


                       (3.4) 

A field component, parallel to the sphere surface, is equal to 

                                                      sin
2
3

ear
Hh 


                                  (3.5) 

At the poles of the sphere, Q  and 'Q , the field is equal to zero, on the equator ( 2/  ) 

the tangential component is maximum and equal to eH2/3 . When the external field eH  reaches 

the value CH3/2 , the field at the equator becomes equal to CH . Therefore, in the range 

CC HHH e 3/2  some areas of the sphere pass into the normal state. The other parts of the 

sphere do not lose superconductivity (if the entire sample passed into the normal state, the field at 

any point would equal CHHe  , i.e. superconductivity would appear again). 

 

Fig. 3.4. The distribution of a magnetic field near the superconducting sphere. 
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It could seem that the area near the equator has to pass into the normal state while the central 

part remains superconducting. Let us show that this can't happen. In this case the field at the 

interface of superconducting and normal phases has to be critical. With increasing distance from the 

sphere’s axis the field decreases and, therefore, the corresponding areas have to remain 

superconducting. That contradicts the initial assumption. 

It is possible to show that the entire volume inside the sphere will be in a so-called 

intermediate state, in which normal and superconducting microscopic areas alternate. In the general 

case of bodies of arbitrary shape, not necessarily all the volume has to be in an intermediate state. 

There can remain as well areas of purely superconducting and normal states adjoining to an area of 

an intermediate state, but only not in direct contact with each other. 

We note that the range of fields in which there exists the intermediate state depends on the 

geometrical shape of the sample. For example, if the sample has the shape of an ellipsoid extended 

(flattened) in the direction of the field, on its equator the field will less (more) differ from the 

external field and the intermediate state will begin at other values of an external field. In particular, 

in the case of a thin plate in the field eH


, perpendicular to its planes, the intermediate state will 

exist at arbitrarily small value of the field 0 eHHC . If in any field, other than zero, any 

macroscopic part of the plate remained completely superconducting, as a result of pushing out the 

field on the edge of this area would be very high which inevitably would lead to a transition to the 

normal state. 

The thicknesses of the normal and superconducting layers in an intermediate state are small, 

therefore  at the solution of many tasks it is possible to ignore the microscopic structure of layers 

and to operate only with the relative volume of S-areas  , and also the macroscopic quantities 

B and H . We will calculate values of these quantities in an intermediate state.  

The density of the free energy is equal to 

                                 
2

)1(
2

2

0

2

0 NC

N

hH
FF





                             (3.6) 

where Nh  is the field strength in normal areas. 

Here the second term represents the energy of condensation in the superconducting areas (see 

(1.2)), and the third - magnetic energy in normal areas. We neglected the energy of the interfaces 

between normal and superconducting areas, and also the terms considering a distortion of power 

lines near the film’s surface (for macroscopic bodies these terms are negligible). The magnetic 

induction by definition is proportional to the average field strength in a point and is equal to 

                    NN hhhB )1(0)1( 0000       (3.7) 

In variables  and B


 the density of free energy is  

                                       

0

2
2

0

)1(22 







BH
FF C

N                  (3.8) 

The free energy is minimal at fixed values of induction )(rB


 at each point and the 

temperature T . We write down the expression for the density of thermodynamic potential of Gibbs 

having a minimum at the fixed temperatures and currents in the coils creating the external field: 



 

 

 

47 

                       BH
BH

FBHFG C
N 




0

22

0

)1(22 


     (3.9) 

The entire Gibbs potential is equal to the integral over the volume of all space. But as is 

highlighted previously, the distortion of the field near the surface of the plate is negligible; 

therefore, at minimization of the Gibbs potential it is possible to be limited to integration (3.9) only 

over the sample volume. 

1) The minimization of Gibbs potential on  gives 

                                                            CHB )1(0                             (3.10) 

Comparing (3.10) with (3.7), we come to CN Hh  . 

2) As a result of minimization on B we obtain 

                                         HB )1(0                                                 (3.11) 

We could derive this ratio in another way, having substituted into (3.9) the value of Н , found 

from (2.43), and then having minimized (3.9) on B (in accordance with (2.43)). 

From the comparison of  (3.11) with (3.10) we receive CHH  , i.e. the value of the field 

Н  is constant and equal to CH  in the entire volume of the sample. 

Having written down this fact in the form 
22 HHC   and having taken a gradient from both 

parts, we will use the formula abbaarotbbrotabagrad

)()()(   to obtain 

HrotHHHH


 2)(20 2 . Since inside the sample 0Hrot


, then 0)(  HH


,  

i.e. the vector H


 doesn't change along the line of magnetic induction, therefore, all these lines are 

straight lines. Generalizing this result, it is possible to tell that for any structure of the intermediate 

state the borders of the phases have to be parallel to the magnetic field (see Fig. 3.4). 

 

Figure 3.5. The distribution of magnetic induction lines  

in a plate located in a  magnetic field perpendicular to its plane. 
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Let us consider the case of a flat plate in a field perpendicular to its plane. The distribution of 

normal (N) and superconducting (S) areas is shown in Figure 3.5: areas N and S form layers 

perpendicular to the plane of the drawing. Magnetic induction lines pass only through N. The 

magnetic induction at the interfaces should be equal to CH0 , and inside S-regions – to zero. 

For such a simple configuration the part of the volume occupied by S-regions 

)/( NSS ddd   can be found just from the flux conservation. Away from the film the field is 

uniform, eHh  , and the magnetic flux is eSH0  ( S - the surface area of the film). In the film 

this flux passes through the area of the N-region equal to )1( S , and the field in the N-areas, as 

shown above, is uniform and equal to CH . Consequently, CHSSHe )1(00    whence 

                                                             
CH

He1                                        (3.12) 

The greater the external field, the smaller the fraction of the volume occupied by the S-regions. 

Figure 3.6 shows a picture of an intermediate state of a thin film.  

 

 

Figure 3.6. Photo of the structure of the intermediate state of the thin film. 

The thickness of the film is 7 microns. Dark areas are superconducting regions. 
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§3.2. The energy of the boundary between the phases. 

In chapter II it has been shown that the external magnetic field required for the destruction of 

superconductivity in a superconducting film, having a thickness smaller than the penetration depth, 

is higher than the corresponding values for the bulk superconductor. Therefore, it would seem, it is 

energetically favorable for the sample to split into thin layers of alternating S and N, and thus it 

could remain in that state at CHHe  . However, it does not happen and at CHHe   the sample 

goes into the normal state. It means that splitting into thin layers is energetically unfavorable. The 

reason for this is that the formation of an interface is associated with an additional energy, which is 

positive for type I superconductors. Later we will see that this energy can be negative (in type II 

superconductors). 

Let us consider the interface energy in detail. Figure 3.7 schematically shows a boundary 

between normal and superconducting phases. 

 
Figure 3.7. The distribution of the magnetic field and the density of Cooper pairs near the boundary 

of the normal and superconducting phases. 

 

In the normal region (x<0), the magnetic field is higher than or equal to the critical value, and 

in the superconductor decreases to zero at the London depth  . In the interior of the 

superconductor ( x ), the density of Cooper pairs is equal to its equilibrium value. The 

Ginzburg-Landau theory (§2.5) shows that the density of Cooper pairs can not change abruptly, the 

characteristic length of change is the coherence length  . Therefore, in a superconductor the 

density of Cooper pairs and the magnetic field changes as shown in Figure 3.7. Let us assume that 

in the given superconductor        

                                                         .                                            (3.13) 

The energy of the interface is determined by the distinction of the picture near the interface 

from the situation where immediately to the right of the boundary the field is zero, and the density 

of superconducting pairs is equal to the equilibrium density. Let us find the energy BE  associated 

with the expulsion of the magnetic field and the energy, CE , released by the condensation of 

Cooper pairs. 

In the normal region 0 CB EE , and in the depth of the superconductor 

2/2

0 VHEE CCB   (see Eq. (1.2)), where V  is the volume. In the border area, both energies 

do not reach their full values. The positive energy of pushing out the field is smaller than it would 

be in the case of full pushing by the value of 2/2

0 CB HSE  , where S is the area of the 
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border. The negative energy of pairs condensation is also reduced (by modulus), since in the 

boundary layer the concentration is less than the equilibrium value. The reduction of the 

condensation energy is equal to 2/20 CC HSE  . 

BE  is gained and 
C

E  is lost. Therefore, the additional energy required for the formation 

of the border is 

                                            2/)( 2

0 CBC HSEE                    (3.14) 

and in the case    is positive. Therefore, the formation of boundaries is energetically 

unfavorable. 

From (3.14) it follows that the sign of the interface energy is determined by the ratio between 

the London length   and the coherence length  . 

§3.3. The magnetic properties of type II superconductors. 

From the previous discussion it follows that in the case     the creation of the interface 

must be connected with an energy gain. Therefore, we should expect that the magnetic field can 

penetrate a superconductor already at the field CHH  , while there are irregularities in the spatial 

distribution of the magnetic field and the density of Cooper pairs. 

It turns out that the condition    can be fulfilled in any case if we reduce the mean free 

path of the electrons. The fact is that, when it decreases, the penetration depth   slightly increases, 

and the coherence length   rapidly decreases. The mean free path can be easily reduced by doping 

a superconductor with foreign metals. The electrons are scattered by the atoms of impurities and 

their mean free path is reduced. 

Superconductors with    are called type II superconductors. They are characterized by 

the following macroscopic properties. 

1. For the cylinder placed in a longitudinal magnetic field, the Meissner effect occurs up to a 

value 1CH  which is significantly less than CH . 

2. When 1CHH   the induction lines penetrate the sample, but only partially. This is the 

case for the field 21 CC HHH  . The field 2CH  is higher than CH  and in some cases is very 

high. 

3. When 2CHH   the macroscopic sample does not push out the flux. However, even in this 

case, the superconductivity is not completely destroyed: in the field region 32 CC HHH   on 

the cylinder surface there remains a superconducting layer with a thickness of the order less than a 

micron. The physical reason for the presence of such a layer is as follows: a small superconducting 

region can more easily be formed near the sample surface like an air bubble is more easily formed 

on the bottom of the glass of lemonade than anywhere inside. 

Changing of the fields 321 ,, CCC HHH  with temperature is shown in Figure 3.8. 
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Figure 3.8. The phase diagram for a type II superconductor in the shape of a long cylinder. 

 

Consider the range 21 CC HHH   in which the flux penetrates partially. For the first time 

the existence of such a region has been demonstrated by Shubnikov in 1937. Therefore, sometimes 

it is called the Shubnikov phase. We will call this area the vortex or the mixed state. 

Typical plots of )(HB for type I and type II superconductors are shown in Figure 3.9. As it 

was mentioned earlier, the behavior of the sample in a magnetic field is often described by a 

magnetization curve, that is, the dependence of the magnetization M on the external magnetic field 

strength eH . In Figure 3.10 such graphs derived from the Figure 3.9 are shown. Note that if the 

values CH  are the same for both materials, then the shaded area of curvilinear triangles on Figure 

3.10 are equal. 

   

Figure 3.9. The dependence of the induction B on the applied field eH   

for type I and type II superconductors in the shape of a long cylinder. 
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Figure 3.10. Reversible magnetization curves of type I and type II superconductors  

in the shape of a long cylinder. 

 
Figure 3.11. The structure of an isolated vortex filament: a – the configuration of the field and 

the currents, b – the dependence of the magnetic field on the distance to the filament axis,  

c -  the density of Cooper pairs in the core region of the filament. 
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As mentioned above, when   , it is advantageous to be split up into a large number of 

microscopic regions with a characteristic size of the order of  . Two types of regions are most 

likely: layers of small thickness and filaments of small diameter. Theoretical calculations show that 

a filamentary structure has less energy. For the first time such structures were discussed by Onsager 

and Feynman in connection with the phenomenon of the superfluidity of helium. In 1956, 

A.A.Abrikosov generalized this approach to the case of superconductivity. 

The structure of an isolated vortex filament is shown in Figure 3.11. The thread has a rigid 

skeleton of the radius   in which the density of superconducting electrons falls to zero when 

approaching the center. The magnetic field lines exist not only in the core region. The field has 

maximum on the axis of the thread and extends from it to a distance of the order of  . We will 

show that the value of the magnetic flux associated with one thread is equal to one flux quantum 

(see also section 1.9).   

The equation for the current density has the form 

                               A
m

e

m

ie
jS


2

2

'

'
)**(

'2

'
              (3.15) 

It should be noted once again that, although (3.15) is one of the Ginzburg-Landau equations 

(see. (2.43)), its applicability is not limited by the proximity of the temperature to CT , because, as 

mentioned earlier, it is the general expression for the current density in quantum mechanics. 

Substituting ))(exp()()( rirr


   into (3.15), we obtain 

                                                )(
'

' '2
Ae

m

e
j





                              (3.16) 

Let us integrate (3.16) over a circle around the axis of the vortex with a radius r . At 

these distances the current density j  can be considered as being equal to zero. It should be taken 

into account that, due to the axial symmetry, the modulus of the current density is the same at all 

points of the circle, we obtain 

                            '''' eSdBeSdAroteldAe


       (3.17) 

where    is the entire phase change,  - the magnetic flux through the loop. From the 

unambiguity of the function   we can infer that   n 2 , where n  is an arbitrary integer. The 

minimum value of n  is 1, so the minimum magnetic flux associated with the thread is equal to one 

quantum of magnetic flux 
15

0 1022/  eh Wb. In principle, the vortex can contain any 

integer number of quanta 0 , but for reasons of minimum energy it prefers to be disintegrated into 

several vortices with one quantum 0  each. Indeed, we will see that the energy of the vortex is 

proportional to the square of the magnetic flux. This means that the energy of a vortex with n  

quantum 0  is n  times larger than the energy of n  vortices with one 0  each. 
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3.3.1. The properties of the isolated vortex filament 

Let us consider in detail the structure of a single vortex filament in the case   . 

Since in this case the core of the vortex is small, when calculating the energy we ignore its 

input, i.e. the change in the energy of the superconducting phase condensation. Then the free energy 

per unit length of an individual thread is equal to 

                                            dVhrothF )(
2

2
220

 





                    (3.18) 

where the integral is taken over the area r . 

From the condition of minimum for F  we obtain (beyond the core) the London equation 

                                                     02  hrotroth


                                   (3.19)  

Inside the core, strictly speaking, it would be necessary to apply a more complicated equation, 

but, since the radius of the core is small, we can replace the existing singularity by the two-

dimensional δ-function: 

                                      )(
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2 rhrotroth











                            (3.20) 

where 


 - a vector directed along the thread. 

We will show that the modulus of the vector 


 is equal to the flux quantum 0 . Let us 

integrate (3.20) over the area of the circle of radius r  centered on the axis: 

                                     0

2 /  ldhrotdh


                     (3.21) 

If the radius of the selected circle is much larger than   ( r ), the currents along the 

path, and hence all the contour integrals can be neglected. Then we find that the modulus of vector 




 is equal to the magnetic flux associated with the thread, i.e. 0 . 

Let us solve equation (3.20), together with the Maxwell equation 0hdiv


. 

It is easy to find the value of the current density hrotj


  in the area   r . If the 

integration path lies in this region, then in equation (3.21) the first term can be neglected, since only 

a small part of the total flux 0  passes through the circuit. Then we obtain       

00

2 /2  hrotr


 or 
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r

h
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


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
 and integrating, we obtain 
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To calculate the constant let us find the exact solution of (3.20). In cylindrical coordinates, 

this equation has the form (for 0r ) 



 

 

 

55 

                                               0'
1

"
2




h
h
r

h                                       (3.24) 

The solution of this equation decreasing when r  has a form 
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
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

r
KCh 0 ,  at r                        (3.25) 

where 0K  is the Bessel (Hankel) function of zero order of imaginary argument. 

Coefficient C  in (3.25) and const in (3.23) can be found by combining (3.23) and (3.25), 

resulting in (3.23) and (3.25) taking the form 
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The asymptotic solution of (3.27) at r   takes the form 
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Knowing the expression for the field, we can find the energy F  per unit length of the 

filament. Using the formula of vector analysis brotaarotbbadiv


 )(  and equation 

(3.19), we obtain the expression 

           
2222 )()()( hhrothrotrothhrothrothdiv 


.  (3.29) 

Substituting (3.29) into (3.18) and applying the Gauss theorem, we obtain 
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where the integration in the last integral is taken over the surface of the core, i.e. of the cylinder 

with a radius  . Since on the core surface the vectors h


, hrot


 and 

d  are mutually 

perpendicular, and their modules, according to (3.22) and (3.26), are constant, they can be taken out 

from the integral in (3.30). Then we get 
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 jhF  .       (3.31) 

Taking into account the core energy gives the final expression for the energy per unit length of 

the thread 
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where 1,0 . 
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3.3.2. Interaction of vortex filaments 

Let us consider two threads parallel to the z axis and passing at z = 0 through the points 

),( 111 yxr 


 и ),( 222 yxr 


. The resulting magnetic field distribution is described by the 

equation 

                                      )()(
21
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02 rrrrhrotroth
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

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

 


 ,    (3.33) 

which is a generalization of (3.20). 

The solution is a superposition of the two fields )()()( 21 rhrhrh


  generated by each of 

the threads individually 
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To find the free energy of the system it is necessary to calculate the integral (3.30) over the 

surface of the cores of both vortices that is not as easy as it was for a single thread. To calculate the 

energy of interacting of two vortices per unit length we should deduct from the energy of the system 

the own energy of the threads (3.31) that in the case    gives the following expression 
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     (3.35) 

The positive interaction energy 12U  corresponds to the mutual repulsion of the threads. For 

large distances,  12r , between the threads ( 12r ) the interaction energy 12U  decreases as 



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Writing (3.35) in the form 
1012

hU  , we can find the force acting in the x direction, for 

example, on the second vortex )(/
2102122

rjxUf
y


 , as jhrot


 . Writing the 

equation in the vector form, we get  

                                                     
0212

)( 
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rjf                                          (3.36) 

Summarizing (3.36) for an arbitrary lattice of vortices, we obtain the expression for the force 

acting on the vortex  

                                                    
0

)( 
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rjf ,                                            (3.37) 

where )(rj


 is the full current density from all other vortices (including even the density of the 

transport current) at the point of location of the axis of the vortex. 

 

3.3.3. The magnetization curve of type II superconductors. 

Suppose that the sample has the shape of a long core and is placed into an external field eH


 

parallel to its axis. If the field is sufficiently small, threads, if they exist, are rarely located, and their 

interaction can be neglected. Then the Gibbs potential per unit volume (1 m
2
 x 1 m) is equal to 
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                                                  BHFnFG LS                                     (3.38) 

where Ln  - the number of threads per 1 m
2
,  F - the energy per unit length of the thread (3.31). 

It has repeatedly been said that, for the considered geometry, the magnetic field H


 at all 

points, both outside and inside the sample, is equal to the external field eH


. Therefore, instead of 

H


 in the formulas we will write eH


. 

Since each filament has a magnetic flux 0 , the induction equal to the magnetic flux per unit 

area is given by 

                                                 0 LnB                                            (3.39) 

which allows us to write the Gibbs potential in the form 
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                                (3.40) 

If 

0


F
He  the most favorable energy situation corresponds to 0B ; the magnetic field is 

expelled from the sample (the Meissner effect).  If, however, 

0


F
He  the advantageous situation 

is 0B . Thus, the critical field 1CH  is        
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Compare the value of the field 1CH  with the field 
)()(22

0
TTe

HC



  (see 3.2). The 

ratio of these fields is equal 
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and may be very small. 

The magnitude of the field 2CH , in which the small superconducting areas are starting to be 

formed in the sample, as it has been shown in §2.5.4, is govern by the Ginzburg-Landau parameter 

)(/)( TT   :  
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                   (3.43) 

From (3.43) it is clear that the field 2CH  corresponds to the situation when the cores of the 

vortices begin to overlap. 

The value 3CH  is associated with a surface superconductivity and is determined by the 

creation of superconducting nuclei at the surface of the sample. Calculation based on the Ginzburg-

Landau equations leads to the following expression 

                                                    CHHH cc 4,27,1 23                              (3.44) 
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The equilibrium density of the threads in the sample can be found from the condition of 

minimum of Gibbs potential for a large number of threads. Consider the case when the external 

field slightly exceeds the critical value. Abrikosov showed that the minimal Gibbs potential 

corresponds to the periodic structure. Detailed calculations show that this is a triangular lattice (see 

Fig.3.12). For a small excess of eH  over 1CH  the density of the vortex filaments is low, so it is 

necessary to take into account only the interaction of the nearest neighbors (see 3.35)  
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where Z - the number of nearest neighbors (in a triangular lattice, Z = 6), 0K  - Bessel function 

(Hankel) of zero order of imaginary argument, d – the distance 

between adjacent vortices. Given that the area of each triangle  

4/32dS   contains a flux of 2/6/3 00   (in the 

triangular plane lattice each node is divided by 6 cells – see Fig. 

3.12) from the formula SB /  we can find 
3

2 0

B
d


 .        

                                                                                                                      Figure 3.12. 

 

Figure 3.13. The dependence of the thermodynamic potential G on the induction B. 

  

The dependence )(BG  is shown in Figure 3.13. For a small excess of eH  over 1CH  the last 

term in (3.45), corresponding to the interaction, is small and the slope is negative. With an increase 

of the induction B  the interaction is growing, but rather slowly. This is due to the fact that when 
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Therefore, for small B  the interaction is small. However, at high B  the contribution of this term is 

predominant, which leads to the growth of the function )(BG . Therefore, at a certain value 

)(0 eHB  the function )(BG  reaches a minimum. This value will be the equilibrium value of the 

induction in the field eH


.  
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The theoretical curve )( eHM for the vortex model is shown in Figure 3.14 (solid curve). 

At 1CHH e   it has an infinite slope. The dashed curve relates to a laminar model. The crosses 

show the results of the experiment. 

 

Figure 3.14. The magnetization curves of the type II superconductor having a shape of a long 

cylinder: solid line - vortex model, dashed - laminar model, crosses - the experimental values. 

3.3.4. Laminar structure 

Let us find the Gibbs potential and critical field for the structure shown in Figure 3.15. It is a 

system of thin equidistant N-layers. We denote by d  the period of the structure and assume that the 

layers are perpendicular to the x-axis. Within the N-layers the superconductivity is suppressed, and 

in superconducting areas it is characterized by the usual value of the density of superconducting 

electrons. 

 

 

Figure 3.15. The structure of the Shubnikov phase in a laminar model. 
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Suppose, as before, that   . We place the origin of coordinates in the middle between 

the neighboring N-layers. Field  )(xh  is parallel to the z axis and everywhere, except the narrow 

N-layers, satisfies the equation 
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2
2

dx

hd
h                                     (3.46) 

The solution of equation (3.46) has the form 
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where 2dP  , mH is the field within the N-layers. 

Let us find the value of the magnetic induction 
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The free energy density in the S-regions, according to (3.18) is equal to 
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We must add to this quantity the energy of creating the N-layers (per 1 m
3
)  
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where     - the Ginzburg-Landau parameter. 

To move to the Gibbs potential we need to subtract 
P

thP
HHBH m0 : 
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Taking into account the comments to (3.38), in formulas we will write eH  instead  of H . 

Minimizing G by mH , we find that the minimum is reached at em HH   
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At 
Ce HH   the minimum corresponds to P , i.e. there is a full Meissner effect. 

When 
C

HHe   the minimum is reached at a finite value of P . 

Thus, the critical field in the laminar model is equal to 
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Comparing this value with the critical field for the threads 1CH  from (3.41)      
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we come to the conclusion that in this case  (when    ,  i.e. 1 ) the critical field for the 

filaments is less than for the laminar structures. From the analysis it follows that in the range 

/.1 CC HHH e   the laminar state is a Meissner one, and the energy of the vortex state in 

this range is less than that of the Meissner one. In other words, the vortex state is energetically more 

favorable than the laminar state. 

We can show that this is true as well in the field range /CHHe  , i.e. throughout the 

entire range of fields 
1CHHe   the vortex state is the most energetically favorable. 

CHAPTER 4. CRITICAL CURRENTS IN SUPERCONDUCTORS 

In §1.4 it was shown that there exists a critical velocity of Cooper pairs, and hence a critical 

current density. When the current density is less than the critical value the system of Cooper pairs 

can not interact with the lattice. If the current density is greater than the critical value the Cooper 

pairs are being destroyed and the superconductivity disappears. 

The problems related to the critical currents are essential for the technical applications of 

superconductors. While type II superconductors retain superconductivity in strong magnetic fields, 

for their technical applications it is just important that they could carry, without losses, currents of 

sufficiently high values. As we will see, this problem can be solved in type III superconductors. 

§4.1. Critical currents in type I superconductors  

The simplest case, from a geometrical point of view, is a wire of circular cross section, 

through which a current flows. When the current is weak, the wire should be in the Meissner phase, 

i.e. the magnetic induction B


 within the sample is zero. It follows that inside the sample the current 

can not flow, because it would create a magnetic field inside the superconductor. Therefore, the 

current flows only in a thin surface layer, into which the magnetic field can penetrate. These 

currents, in order to be distinguished from screening ones, will be called the transport currents. 

Figure 4.1 shows the distribution of the transport current density and magnetic field in the 

cross section of the wire. With an increase of the current the magnetic field increases. In 1916  F. 

Silsbee suggested that the critical current density is achieved when at the surface of the sample the 

magnetic field reaches a critical value. This assumption was brilliantly confirmed by experiment. 

With Silsbee’s hypothesis one can also find critical currents of superconductors in an external 

magnetic field. To do this, we have to sum the external field and the field of the transport current. 

The critical value of the current corresponds to the moment, when at some point of the sample, the 

magnetic field is equal to the critical value. 

The critical current density can be very high (~
710 A / cm

2
), but due to the thinness of the 

surface layer the total current is not high. 

Consider a wire with radius a , through which a current J  flows. The field at the surface of 

the wire is aJah 2/)(   (from the theorem of circulation of magnetic strength). If CHah )(  

the whole wire can be in a superconducting state. This condition defines a critical current value 

CC aHJ 2 . If CJJ   we have CHah )(  and the wire near the surface must go to the 

normal state. However, the entire wire can not be in a normal state, because in this case the current 

would be distributed uniformly over the cross section of the wire and the field near the axis would 

be less than critical. To verify this, we find the field inside the wire at a distance r  from the axis 
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when the current is flowing with a current density j  in all points of the cross section. Using Stokes 

theorem on the circulation of the magnetic strength (   JldH


) we obtain: 

                                           
222
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2 jr

r

rj

r

J
rh r 






                                  (4.1) 

 
Figure 4.1. Distributions of current density and magnetic field  

in a superconducting wire with a transport current. 

 

From (4.1) it follows that near the axis ( 0r ) the field is weak. Therefore, the transition of 

these areas to the normal state is energetically unfavorable. Hence, the outer region of the wire 

( arR  ) is normal and the inner part ( Rr 0 ) should be either in a superconducting, or in 

an intermediate state. The radius of interface R corresponds to the condition CHRh )( . Thus, 

the current flowing in the inner part is 

                                                 CCC JJ
a

R
RHJ  21                                (4.2) 

The rest of the current ( 1JJ  ) flows in the outer part of the section. Since it is normal, then 

the current flowing through it requires a voltage along it. Consequently, the inner part can not be 

completely superconducting since it would short-circuit the poles of the generator. Thus, the inner 

part of the wire is in the intermediate state. But the option of alternating flat layers, as in Figure 3.5, 
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does not solve the problem, since at the interfaces of superconducting and normal areas the 

magnetic field must be equal to the critical value, and in a flat version it is not fulfilled. 

The detailed calculation gives the structure shown in Figure 4.2. Once the current reaches a 

critical value, the wire jumps to the state in which the superconducting cells reach the surface. With 

further increase of the current something like a normal phase shell arises covering a core in the 

intermediate state; with increasing current, the thickness of the shell increases, and the 

superconducting core region decreases. At all points on the N-S interfaces CHh  , i.e. the closer 

to the axis the higher is the current density (see. 4.1), which is obtained by increasing the size of the 

superconducting phase. 

From above, in particular, it follows that the current of CJJ   can not exist in a  

superconducting ring without a power supply. 

 
Figure 4.2. The structure of the intermediate state of the round cross-section wire  

with a transport current. The normal area is shaded. 

 

§4.2. Critical currents in type II superconductors.  

In weak magnetic fields and at low transport currents, they behave the same way as type I 

superconductors, i.e. push the magnetic field and current into a shallow surface layer. If the 

magnetic field on the sample surface is higher than 1CH , the sample is in a mixed state, i.e. it is 

penetrated by the filaments of magnetic flux. It turns out that in this state at any, even very small, 

transport currents the sample has a finite resistance. 

To understand the cause of this phenomenon, let us consider a rectangular plate along the 

surface of which the electric current flows, and due to the perpendicular external magnetic field the 

plate itself is in the mixed state (Figure 4.3). 

 
Figure 4.3. The mixed state in the presence of a transport current 
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An important conclusion from this consideration is the fact that in these conditions the current 

is distributed evenly over the cross section of the plate and is not limited to a thin layer near the 

surface. With the penetration of magnetic flux into the sample the transport current can also 

penetrate into the interior of the superconductor. 

This creates an extremely important interaction between the transport current and the threads 

of magnetic flux. The Ampere force (3.37),  

                                                    
0

)( 
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rjf ,                                           (4.3) 

directed perpendicular to the field and the current, acts on a thread.  

From the expression (4.3) it follows that the vortex can be in equilibrium only if the sum of 

the superconducting velocities from all other sources is equal to zero in each point. This condition 

can occur if each of the vortices is surrounded by a symmetrical vortex lattice, for example, square 

or triangular. However, the square lattice corresponds to unstable equilibrium, so that small 

displacements of the vortices will increase. A triangular lattice is stable, since it has the lowest 

energy. 

In addition, the expression (4.3) shows that the vortices will be subjects to a force from any 

transport current, with the result that the vortices will move and there will be loss of energy. This 

energy is drawn from the energy transport current, thus there is a voltage on the sample that 

corresponds to the appearance of resistance. Energy losses are defined by two basic mechanisms. 

The losses are caused by two main mechanisms.  

1. When a vortex moves the magnetic field at every point changes, an alternating electric field 

arises which accelerates the unpaired electrons, which later give energy to the lattice. 

2. At the movement of threads there is a continuous process of disintegration and formation of 

Cooper pairs. If the thread moves so slowly that the distribution of pairs remains in equilibrium, the 

energy spent for a rupture of pairs on the forward front of a vortex is released again behind it at 

formation of pairs with the result that there is no energy loss.  But at rather fast movement of a 

vortex the equilibrium density of pairs doesn't have enough time to be reestablished and the energy 

is dissipated. 

Let us now consider the question of the critical current in the absence of an external magnetic 

field. Consider again the wire of radius a  along which the current J  flows. The field on the 

surface of the wire equals aJah 2/)(  . If 1)( CHah  , the whole wire can be in the 

superconducting state. This condition defines a critical current value 12 CC aHJ  . When 

CJJ   the field at the surface exceeds 1CH , and t region at the surface of the wire must go to the 

Shubnikov phase. Since the magnetic field lines of the transport current are the concentric circles, 

the vortex filaments are also formed in the shape of closed circles (toroidal). At the beginning they 

have a radius a , but then for reasons of minimizing the energy, i.e. length, they are compressed to 

the wire axis, and finally disappear. The formation of vortices, their compression and disappearance 

occurs continuously, so there is a constant conversion of energy into heat. Since CC HH 1  the 

critical currents in type II superconductors are lower than in similar samples of the type I. 

It should be said that in the intermediate state of type I superconductors under the influence of 

sufficiently strong transport currents the movement of areas can also occur, which leads to the 

emergence of resistance. 
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§4.3. Type III superconductors.  

In paragraph 4.2 the important result is formulated: if a type II superconductor is in the mixed 

state (a Shubnikov phase), arbitrarily small transport currents lead to the movement of vortices. In 

other words, the critical current of a superconductor in the Shubnikov state is equal to zero. 

Nonzero critical currents can be obtained, only if to carry out the fixing (pinning) of vortex threads 

on certain sites of substance obstructing their traffic. Type II superconductors containing such 

centers of fixing of vortices are called rigid type II superconductors or type III superconductors. 

Various impurities, violations of structure, defects can serve as points energetically preferable 

for vortices. As it often happens, samples, ideal from the point of view of the theory, aren't the best 

in the relation of their practical application. 

Curves of magnetization of an alloy of Nb and Ta, typical for type III superconductors are 

given in Figure 4.4. Very careful annealing of a sample allows for it to receive very uniform solid 

solutions which possess an almost reversible curve of magnetization, characteristic for type II 

superconductors (a curve 1). If this alloy is subjected to deformation (for example, by drawing 

during the process of wire production), a set of defects in the lattice is formed and can be centers of 

for the pinning of vortices. Thus the curve of magnetization takes a completely different form (a 

curve 2).  

It is possible to note the following features: 

a) significantly increased values of magnetization, 

b) total absence of reversibility, 

c) after the removal of the external magnetic field the flux remains "frozen" in a sample,  

d) the top critical field 2CH  remains invariable.  

These facts can be easily explained qualitatively. Up to field 1CH  we don't observe anything 

new: the sample is in the Meissner phase, almost insensitive to presence of defects. Once at field 

1CH  vortices escape from the sample surface into its volume. However, the pinning doesn't allow 

them to penetrate the entire sample evenly all at once, as it would be in a uniform material. 

Therefore, vortices settle in a near-surface layer. In the area of their placement the shielding 

currents can flow. The expansion of the area in which thevortices are situated, leads to increasing of 

the shielding current in comparison with a Meissner phase that leads to an increase in the value of 

magnetization, M.  

In other words, the penetration of vortex threads into a near-surface layer increases the 

effective thickness of the shielding layer and therefore the total shielding current.  

For type II superconductors, at a decrease in the external field, in the absence of a pinning, a 

number of vortices would leave the sample, and the density of distribution of vortices in the section 

of a sample would decrease to equilibrium value. When a pinning exists, vortices are more or less 

strongly fixed on defects of the lattice. Therefore, at decreasing field they leave the sample with 

difficulty, which accounts for lack of reversibility.  

Even at  zero external field, the sample contains a number of vortices that provide the "frozen" 

magnetic flux directed along the external field. 
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Fig. 4.4. Magnetization curve of an alloy 
45.055.0 TaNb :  

1 - a well-annealed sample, 2 – a sample with a large amount of defects. 

Figure 4.5 shows the entire hysteresis loop for the same alloy. 

 

Fig.4.5. The entire cycle of magnetization. 

 

It is clear that there must be some critical pinning separating the two possible states. For small 

values of the pinning, where it can be neglected, we have a type II superconductor, in which the 

vortices fill the entire cross section of the sample. At a high pinning, vortices are located near the 

surface. How and when is there a transition from one mode to another with a gradual change of the 

pinning parameter? 

Calculations show that there exists a critical pinning separating the two possible modes of 

penetration of an external magnetic field into the medium. If it is exceeded, at any value of the 

external field there is a “near the surface” current configuration of finite length, fully compensating 

the external field in the depth of the sample, i.e. the situation is similar to type III superconductor. If 

pinning is less than critical, such a situation is realized only up to a certain value of the external 

field. For higher values of the field, it penetrates into the medium at infinite depth, which resembles 

the situation in type II superconductors. 
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CHAPTER 5. THE PHASE COHERENCE - JOSEPHSON EFFECTS. 

§5.1. Stationary and non-stationary Josephson effects   

In the chapter "Basic facts" we talked about the Josephson effects, caused by tunneling of 

Cooper pairs through an insulating layer. B. Josephson was the first who considered this effect in 

1962. For these works in 1973 he was awarded a Nobel Prize. He showed that the tunneling of 

Cooper pairs becomes essential at a barrier thickness of 10-20 angstrom. Additionally, he predicted 

some unusual and interesting phenomena taking place when electrons tunnel in pairs. Later all his 

predictions were excellently confirmed by experiment. Besides their basic importance for 

understanding of superconductivity the Josephson effects (this name is accepted to call this complex 

of the phenomena) provide opportunities for carrying out the most exact measurements. We will 

emphasize that they play an especially important role in the processes occurring in the high 

temperature ceramic superconductors (HTSC) because, in them, Josephson contacts already exist 

naturally (contacts between granules). For this reason these substances are sometimes called 

Josephson media.  

The stationary effect of Josephson is a percolation of not fading superconducting current  

through a thin isolating layer at zero voltage on contact. The magnitude of this current is determined 

by the phase values 1  and 2  on different sides of the contact and can not exceed a certain critical 

value CJ :  

                                                     )sin( 21   CJJ                                    (5.1) 

The non-stationary Josephson effect appears at a nonzero voltage, SU , on the contact. In this 

case a high-frequency alternating current percolates through the contact with frequency  , which is 

proportional to the voltage:  

                                                                   
h

eUS2
                                         (5.2) 

To understand a practical situation, we will consider the circuit represented in Figure 1.14. 

When a constant superconducting current flows through the contact (stationary effect of Josephson) 

the voltage at the contact is equal to zero, i.e. all 
e

U  falls on the resistor R. This state can exist if 

the current (equal to RU
e

) does not exceed the critical value CI . Thus, the stationary effect of 

Josephson takes place if RIU
Ce

 . If RIU
Ce

 , the generation of high-frequency current 

begins. Then the mathematical description of the circuit becomes very difficult. 

 

Fig. 5.1. The scheme for demonstration of Josephson effects. 
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From the point of view of quantum mechanics, all Cooper pairs are in the same state. This 

macroscopic filling of one state is the cause of the Josephson effects. Because all the pairs are in the 

same state, they must coincide for all parameters, in particular, the phases. This strong correlation 

by phase applies to very large (virtually unlimited) distance. 

Josephson equations (5.1) and (5.2) follow from the basic equations for the weakly coupled 

quantum systems. Let the systems be described by wave functions 1  and 2 . If the systems are 

completely isolated, the change in the wave functions is described by equations 
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If the systems are weakly linked, the time dependence of 1  affects 2  and vice versa. This 

effect is taken into account by the following independent equations 

                                              
211

1 


KE
i

t







                                     (5.4) 

                                              
122

2 


KE
i

t







                                   (5.5) 

The existence of a link means the ability to exchange Cooper pairs between the 

superconductors 1 and 2. The intensity of the exchange is defined by the constant K. 

Functions 1  and 2  describe the states with macroscopic filling. Then the square of the 

amplitude can be regarded as the concentration of the Cooper pairs. In this case, we can write 
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Substituting these wave functions in (5.4) and (5.5), we obtain 
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Splitting into real and imaginary parts gives 
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At an exchange of Cooper pairs between the systems 1 and 2 the condition 21 CC nn    takes 

place. When superconductors are the same, 21 CC nn  . Then from (5.9) and (5.9 '), we obtain 
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The time variation of particle concentration in the superconductor 1, multiplied by its volume 

V , gives the change of the number of particles, i.e. the particle flow through the junction. An 

electric current is obtained by multiplying the flow of particles by the charge of the particle, i.e. 2e. 

Then we get the Josephson equation (5.1) 

                                                      )sin( 21   CJJ , 

where 
CC

Vn
Ke

J


4
 . 

From (5.10) and (5.10'), we obtain the differential equation 
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When 21 EE   the phase difference is constant over time. If a voltage, U , is applied between 

the superconductors, then eUEE 221   and the phase difference increases linearly with time 
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This means that alternating current flows through the contact  
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JJ С
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 ,                                     (5.14) 

the frequency of which is equal to 
h

eU2
 . When the voltage U  on the contact equals 1 mV we 

have  
111085,4  Hz. 

Josephson junctions are also called “weak links”, and events associated with them are called 

"weak superconductivity". The weak link can be obtained also by a decrease in the contact area, for 

example, by pressing the sharp tip of a superconductor to a superconducting surface. 

§5.2. Interference of stationary superconducting currents. 

Let us analyze some experimental results of stationary Josephson effect. 

5.2.1. Superconducting interferometer 

We consider a closed contour,  , passing inside a superconducting ring, containing two 

tunneling contacts, and crossing them at points 1 and 2 (Fig. 5.2) 

 

Fig. 5.2. Scheme of the superconducting interferometer 
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A phase change upon completion of a passing along the contour is defined by the relation 
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where 1  and  2  - jumps of a phase on contacts 1T  and 2T , i.e. differences of values of a phase on 

the different sides of a contact. The current flowing through the interferometer is equal to 

                                                        2211 sinsin  CC JJJ                               (5.16) 

One of Ginzburg-Landau equations (3.16) has a form 
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where e  and  m  - the charge and the mass of an electron, Sn - concentration of superconducting 

electrons. Finding from (5.17) 


 and taking the integration contour in the superconductor depth 

where 0j , we obtain  
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where   is the magnetic flux penetrating the section of a ring, 
е


0

  - the magnetic flux 

quantum. 

At one revolution of a ring the wave functions have to be unambiguous, i.e. the change of a 

phase has to be a multiple 2 : k 2 . From (5.15) we obtain a condition of quantization of a 

fluxoid 
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Having entered a new variable 

0
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From (5.20) we can see that the greatest possible current via the interferometer is equal to  

mJ . Changing at the fixed value of a magnetic field the value of the current J  through the 

interferometer, for example, by means of the scheme of Fig. 5.1, and finding the value J  at which 

there is a transition to non-stationary effect of Josephson, we can find mJ . Changing a magnetic 

field, it is possible to draw the dependence of mJ  on a magnetic flux through the opening of the 

interferometer. As it is clear from (5.21), it has to be a periodic function with the period being equal 
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to 0 . Since 0  is very small, such a device can be used for the registration of very small 

magnetic fields. 

If the interferometer is made up of identical contacts ( CCC JJJ  21 ), the expression for 

mJ  takes the form 

                                                    

0

cos2
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



Cm JJ                                              (5.23) 

from where it is clear that the critical current of the interferometer mJ  becomes zero each time the 

flux   is equal to a half-integer number of flux quantum 0  (Fig. 5.3a). If 21 CC JJ  , mJ  

doesn't equal zero at any values of a flux   and oscillates between the minimum and maximum 

values 21 CC JJ   and  21 CC JJ   (Fig. 5.3b). 

We will note an important circumstance. The nature of behavior of the current doesn't depend 

on how the field in a ring is distributed. Only the value of a magnetic flux   is important. In 

particular, the magnetic field can be entirely concentrated within some area, smaller than the ring 

openings, and equal to zero in the points where the superconductor is located. 

We can realize such a situation, for example, having installed into the interferometer the long 

solenoid, outside of which the field is absent. In this case the impact on current is carried out solely 

by vector potential A


. Thus, in quantum mechanics the vector potential plays an especially 

essential role and observed characteristics are defined not only by the magnetic field induction B


or 

strength H


, but also by the vector potential A


. This is a purely quantum effect and it is difficult to 

offer an evident explanation for it within classical physics. 

 
Fig. 5.3. Dependence of critical current of the interferometer on a magnetic field 
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5.2.2. A superconducting ring with a weak link 

We consider features of behavior of a single tunnel junction in the closed superconducting 

chain (Fig. 5.4). If the critical current of the contact is rather high, the magnetic field in the ring 

opening can't be considered equal to the external. 

 

Fig. 5.4. A superconducting ring with a weak link. 

The equation of a quantum interference (5.19) takes the form 
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where   is a difference of phases on a barrier,  k  is an integer. 

The current through the contact is connected with a phase jump on it  

                                                        sinCJJ                                                  (5.25) 

The expression for the magnetic flux   through the ring is added to these two equations  

                                                         LJe  ,                                            (5.26) 

where  SBee   is a flux of an external field eB  through the ring,  L  - the inductance of the 

ring,  S  - its area. Condition (5.26) corresponds to the fact that the field in the opening of the ring 

consists of the external field and the field created by the current J  flowing in the ring.  

         From the equations (5.24) - (5.26) we obtain 
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The dependences of    and  J  on  e  are given in Figure 5.5. It is convenient to build the 

graph )(e , and then rotate it by 90 degrees.  

At small values  of CJ  the dependence )( e  does not differ much from a straight line, and 

the dependence )( eJ   - from a sinusoid. When CJ  increases the character of these curves 

changes. For example, if CJ  exceeds a certain critical value 
кр
CJ , these dependences become 

ambiguous so that for each value of e  there can correspond several values of    and  J  (Fig. 

5.5b). Critical value 
кр
CJ  can be found from a condition  e :  
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Fig. 5.5. Dependence of the flux   through the ring and the circulating current J   

on an external flux e : a) 
кр

CC JJ  , b)
кр

CC JJ  . 

 

At 
кр
CC JJ   the dependences )( e and )( eJ  have jumps at some values of e . At 

increase and decrease of the external flux e  these dependences have various forms, i.e. there is a 

hysteresis. The direction of transition at a hysteresis is shown by arrows in Figure 5.5b. 

A similar effect has to exist in superconducting interferometers with two tunnel junctions if 

the value of the critical current CJ  is comparable with the parameter  L/0 , where L  is the 

inductance of a loop of the interferometer. The consideration of operation of such interferometers, 

carried out in the previous paragraph, concerned only the case LJC /0 . 

§5.3. Interaction of an alternating Josephson current with an external  electromagnetic       

radiation - Shapiro's steps. 

Discovery of non-stationary Josephson effect gave the chance of creation of a new type of 

generators of electromagnetic radiation with very high frequency which value is regulated by the 

operating voltage.  

Historically, however, some indirect experimental confirmations of the existence of this effect 

were originally obtained. In these experiments the features on volt-ampere characteristics arising 

due to te interaction of an alternating superconducting current with external electromagnetic 

microwave radiation were studied.  

In the experiments of Shapiro with employees (1963), a tunnel contact of Al-Sn was located in 

the microwave resonator in which microwave oscillations of frequency   were created. The 

constant voltage 0U  was applied to the contact. Under the influence of a microwave field on a volt-

ampere characteristic some horizontal sites - steps - were observed. Their positions correspond to a 

relation  nheU 02 , where  n  are arbitrary integers (Fig. 5.6). 
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Fig. 5.6. Volt-ampere characteristics of Josephson contact of Nb-Nb in the presence of  

a microwave radiation of various power with a frequency of 72 GHz. 

For clarification of the origin of this effect we will consider simply that the microwave field 

causes the appearance on the contact of the additional voltage oscillating with a frequency  , 

which leads to the modulation of frequency of Josephson current J  in accordance with (5.2) 
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where  u  is an amplitude of an oscillating additive proportional to the intensity of a microwave 

field.  

The total current through the contact includes a Josephson current and a current of uncoupled 

electrons, equal to RU / , where  )2(cos0   tuUU  is a full voltage on the contact,  R  

– the contact resistance. Since the voltage on the contact depends on time, instead of (5.13) we will 
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where 0  - the initial value of a phase jump on the contact.  

After a number of transformations with use of series  
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the expression (5.30) takes a form 
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where  )(xJ n - the Bessel function of n -th order. 

From (5.31) we can see that the total current oscillates in time with very high frequency   or 

with a Josephson frequency heU /2 0 . The measured value of the current is a time average from 

the expression (5.31). It is easy to see that this value is equal to 
R

U
J 0 at all values of 0U , except 

those at which neU 2/2 0  , i.e. when the Josephson frequency is multiple of the microwave 

field frequency. At these values of  
0

U  one of the terms of the sum stops oscillating and makes a 

constant contribution to the value of the current. Thus the current becomes equal to 
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Since  n0  can assume arbitrary values, at the values of 0U , corresponding to the 

condition nheU 02 ,   the current can take values of a certain range. It means that at these 

voltages on the current-voltage characteristic there exist horizontal steps. It is confirmed by the 

experimental curves of Figure 5.6. This figure shows clearly not only the coinciding of the steps 

with the theoretical predictions, but satisfying quantitative agreement between the periodic change 

of the length of the steps with increasing microwave power and the dependence of the Bessel 

function on u . 

CHAPTER 6. HIGH-TEMPERATURE SUPERCONDUCTORS 

In chapter 1 it was already told about the history of discovery of high-temperature 

superconductivity (HTSC). We remind you that till 1986 a maximum critical temperature equal to 

23,2 K, was observed at an alloy of GeNb3 (1973). Despite considerable efforts of theorists and 

experimenters, scientists didn't manage to rise CT  above this value up to that moment when 

Bednorts and Müller found that the ceramics of OCuBaLa   showed signs of transition to a 

superconducting state when cooling lower than 35 K. The studied samples were a mix of different 

phases. In January, 1987 it was established that the phase 42 CuOBaLa xx  is responsible for 

superconductivity. Critical temperature depends on structure and has maximum (35 K) at x=0.2. 

A new direction of researches was opened. Physicists of the whole world began a search for 

superconductors close in structure. Replacement of La by other close elements from the 1st and 2nd 

groups of the table of Mendeleyev, and also the variation of structure created a large number of 

superconducting ceramics. Within 2 months the critical temperature 92 K was reached in ceramics 

YBa2Cu3O7-x. Thus the "nitric" barrier was broken, i.e. there was an opportunity to obtain 

superconductors not by means of expensive and inconvenient liquid helium with a temperature of 

boiling of 4,2 K, but with use of the cheap and simple in using liquid nitrogen boiling at 77 K. From 

that moment a large number of matters with critical temperature above a boiling point of liquid 



 

 

 

76 

nitrogen are created. The record belongs to the ceramic xOCuCaHgBa 8322  opened in 2003, the 

critical temperature of which is equal 135 K.  

The properties of HTSC are in many respects similar to usual superconductors, but at the same 

time there are both essential quantitative and qualitative differences. 

1) As well as in the case of usual superconductors, their resistance becomes zero when cooling 

below critical temperature. The values of  CT  are essentially higher and reach 100 K and above 

(nowadays to 135 K). 

2) At zero external magnetic field there is no release or absorption of heat, but a jump of a 

thermal capacity is observed, i.e. a phase transition of the 2nd type takes place. 

3) Meissner effect takes place, but the penetration depth  , equal to 
32 1010  angstrom, is 

much more than in usual superconductors. 

4) Experiments show the existence of an energy gap, the order of value of which is 

coordinated with the theory of BCS ( CkT5,32  ). However some experiments allow to find two 

different values of a gap. There are reasons to believe that a higher value is connected with the 

planes in a crystal, and a smaller - with linear chains. 

5) A dependence of CT  on the mass of atoms (isotopic effect) has been found to testify to a 

role of lattice fluctuations.  

6) In a magnetic field HTSC behave as type II superconductors. It is due to both a high 

penetration depth  , and a very small length of coherence   - from 0.5 to the 30 angstrom (in 

usual superconductors - thousands angstrom). Thus, the condition    characterizing type II 

superconductors is carried out for certain. 

7) The stationary effect of Josephson takes place and, from experiments on dependence of 

oscillation of the maximum Josephson current on a magnetic field (see §5.2.1), it follows that the 

magnetic flux quantum 0  is equal to eh 2/   which points to the transfer of current by Cooper 

pairs with charge e2 . 

8) In the case of applying to Josephson contact direct and alternating voltages simultaneously 

the Shapiro steps (see §5.3) testifying to non-stationary effect of Josephson can be observed. Thus 

the period between steps is equal to ehv 2/  which also speaks about Cooper pairs with charge e2 . 

9) The quantization of a magnetic flux takes place, i.e. a magnetic flux through an opening in 

a superconductor is equal to an integer of quanta of magnetic flux  eh 2/0  . 

10) The lattice of vortex threads was observed, and it was established that each thread 

contains the same quantum of a magnetic flux  eh 2/0  . 

The above-stated facts (points 7-10) give strong reasons to believe that current is transferred 

by Cooper pairs. However, it appeared that in the majority of HTSC, Cooper pairs are formed not 

by electrons, but by holes. 

Apparently from all aforesaid, the majority of the phenomena, considered in previous 

paragraphs for usual superconductors, take place as well in HTSC. But there are also essential 

features, general for all HTSC, distinguishing them from usual superconductors. 

1) Unlike the usual superconductors which are in a normal state metals or metal alloys, HTSC 

represent oxides of metals and in a normal state have considerably high resistance. Though it should 
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be noted that the linear growth of specific resistance with a temperature testifies, nevertheless, to 

the metallic nature of their conductivity. 

2) It is difficult to produce these metal-oxide compounds in the form of a monocrystal. The 

existing technology (agglomeration of previously mixed mixture of ingredients) allows to obtain 

ceramics made up of crystals ("granules") of the sizes from units to hundreds of microns, the space 

between which is filled by dielectric.  

3) In places of contacts of granules with each other, Josephson contacts - on which there can 

be processes connected with Josephson effects - are formed. As the sizes of granules are small, the 

number of such contacts is very great. Therefore superconducting ceramics sometimes are called 

Josephson media. Josephson effects are described by nonlinear equations. Therefore when such 

samples are placed into external constant and alternating electromagnetic fields different 

complicated processes in them can happen which weren't observed in other substances earlier. 

4) The transition to a state with zero resistance in HTSC happens in a wider temperature 

range, than in usual superconductors. So, for example, in Bednorts and Müller's first article it was 

reported that a sharp falling of resistance of oxide 42 CuOBaLa xx  with 2.0x  began at 35  K 

and the resistance reached zero at 25T  K. Big blurring of the transition is explained by the 

existence in ceramics of various phases with different values of the CT . 

5) Monocrystals of HTSC are prepared using special technologies. They have small sizes (up 

to several millimeters), layered structure and associated with it strong anisotropy of the majority of 

properties. 

 

Fig. 6.1. An elementary cell of a crystal  xOCuYBa 732 . 
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In Figure 6.1 the elementary cell of a crystal xOCuYBa 732  is represented. Its distinctive 

feature is the existence of two nonequivalent positions of atoms of copper: Cu(1) and Cu(2). Atoms 

of Cu(2) are put into a pyramid with the square base formed by four atoms of oxygen - O(2) and 

O(3)  - and are almost in the base plane. These layers located perpendicularly to the axis c are called   

planes of 2CuO . Unlike atoms of Cu(2) atoms of Cu(1) in the plane, perpendicular to the axis c, 

adjoin only to two atoms of oxygen O(1), forming so-called chains of CuO . Thus, in the structure 

of the xOCuYBa 732 there are two various elements - planes of 2CuO  and chains of CuO  - which 

weakly interact with each other through bridging oxygens O(4). The positions of O(5) remain 

vacant.  

The planes of 2CuO  are available in all ceramics, while in some of them there are CuO  

chains. There are bases to believe that both planes and chains play very important roles in high-

temperature superconductivity. 

The theory of HTSC is not created yet. There are essential bases to believe that for its 

construction it is enough to modify the theory of BCS, having found new, other than phonon, 

mechanism of an attraction of electrons (or holes) leading to their association in Cooper pairs. The 

phonon mechanism doesn't allow obtaining such high values of critical temperature. It is necessary 

to find some other, stronger type of interaction. The exchange of some particles can be the cause of 

such attraction. As the elementary cell of a crystal of HTSC is very complicated (Fig. 6.1), in a 

sample there can be a large number of different types of particles - phonons, excitons, polarons, 

bipolarons, magnons, etc. It is possible also that in different substances various particles are 

responsible for pairing. 

The answer to a question of the nature of this interaction isn't found so far as well as there is 

no explanation for some other facts, such as the existence of two gaps in one sample, anomalies in 

dependence of a thermal capacity on temperature, etc. 

In 2008, the new class of superconducting substances with high values of critical temperature 

-  layered compounds on the basis of iron and elements of the 5th group (pniktogen) or Se - were 

discovered. These substances are called ferropniktids (or selenids of iron). The superconducting 

state for substances containing magnetic atoms (Fe) was revealed for the first time, because usually 

magnetic field suppresses superconductivity. The crystal structure of all ferriferous superconductors 

(6 families are already known) has a form of alternating layers in which atoms of iron are 

surrounded with a tetrahedron from atoms of As or Se which suppress magnetic properties of atoms 

of Fe. At the moment the champion on critical temperature is a compound of GdOFeAs (Gd-

1111), doped by F  (fluorine) which replaces oxygen. Its CT  reaches 55 K. 

In 2001 2MgB  alloy (magnesium diborid) with 40CT  K - record for intermetalloid 

(chemical compounds of two or more metals) – was discovered.   

Use of very high pressure allows to increase critical temperatures. For example, the critical 

temperature of the ceramic xOCuCaHgBa 8322  mentioned above (with record-breaking high 

135CT  K) at a pressure of 40 GPa increases to 165  K.  

Mentioned before selenid of iron loses superconducting properties at 10 GPa, but at 11.5 GPa 

gets them again, and zero resistance remains to record for iron selenid critical temperature 48  K.  
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At high pressures superconducting properties can arise even in substances which couldn't be 

suspected of such abilities. For example, in 2014 it was revealed that hydrogen sulfide ( SH 2 ) at a 

pressure of 180 GPa and a temperature of 190 K suddenly sharply reduces the resistance that 

suggests an idea of superconductivity. However, this interpretation still needs to be tested. 

The reasons for all these phenomena are still unclear. 
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