С 17 марта 2020 г. для ресурсов (учебные, научные, материалы конференций, статьи из периодических изданий, авторефераты диссертаций, диссертации) ЭБ СПбПУ, обеспечивающих образовательный процесс, установлен особый режим использования. Обращаем внимание, что ВКР/НД не относятся к этой категории.

Детальная информация

Название: Модификация методов решения задач математического программирования с их реализацией в ПК "МВТУ": магистерская диссертация: 27.04.03
Авторы: Клепач Карина Игоревна
Научный руководитель: Симаков Игорь Павлович
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения: Санкт-Петербург, 2016
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: Математическое программирование; Нелинейное программирование; Лагранжа уравнения; Выпуклое программирование; mathematical programming; nonlinear programming; convex programming; Lagrange's equations
УДК: 519.85(043.3)
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 27.04.03
Группа специальностей ФГОС: 270000 - Управление в технических системах
DOI: 10.18720/SPBPU/2/v16-2809
Права доступа: Свободный доступ из сети Интернет (чтение, печать, копирование)

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Предложены и исследованы новые методы решения задач математического программирования, относящихся к классу задач оптимизации целевой функции на выпуклых и невыпуклых областях допустимых решений. В основе предложенных методов лежат способы сведения системы неравенств как к одному равносильному неравенству, так к одному функциональному соотношению (уравнению), описывающему либо область допустимых решений, либо границу этой области. Последнее позволило формально свести исходные задачи к классическим задачам Лагранжа и осуществлять их решение различными методами, в частности, методами непрерывного градиента (наибыстрейшего дифференциального спуска или подъема), обеспечивающими отыскание локальных оптимумов. Для отыскания экстремума при его нахождении на границе допустимой области, которая может быть и невыпуклой, предложен алгоритм, основанный на использовании идей и методов теории голономных систем и регулирования функциональных соотношений. Решена важная прикладная задача оптимизации скорости хода и угла перекладки руля для минимизации времени перехода корабля на новый курс при ограничениях, наложенных на угол крена, что приводит к невыпуклой нелинейной области допустимых решений.

Proposed and investigated new methods of solving mathematical programming problems belonging to the class of optimization problems the objective function on convex and non-convex regions of admissible solutions. In the basis of the proposed methods lie in the ways information systems of inequalities as one inequality is equivalent to, the functional relationship (equation) describing the area of valid solutions, or the boundary of this region. The latter allowed formally to reduce the original problem to the classical tasks of Lagrange and implement their solution by different methods, in particular methods continuous gradient (differential rapid descent or ascent), providing finding local Optima. To find extremum at its location on the border of the admissible region that may be nonconvex, the proposed algorithm based on the use of ideas and methods of the theory of holonomic systems and regulation of functional relations. Solved an important applied problem of the optimization of speed and rudder angle to minimize the transit time of the ship on a new course under the constraints imposed on the roll angle, which leads to a nonlinear non-convex region of feasible solutions.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Статистика использования документа

stat Количество обращений: 607
За последние 30 дней: 0
Подробная статистика